Date of Award


Degree Type


Degree Name

Doctor of Philosophy (PhD)

Graduate Group

Computer and Information Science

First Advisor

James C. Gee

Second Advisor

Norman I. Badler


Interactive image registration is important in some medical applications since automatic image registration is often slow and sometimes error-prone. We consider interactive registration methods that incorporate user-specified local transforms around control handles. The deformation between handles is interpolated by some smooth functions, minimizing some variational energies. Besides smoothness, we expect the impact of a control handle to be local. Therefore we choose bounded biharmonic weight functions to blend local transforms, a cutting-edge technique in computer graphics. However, medical images are usually huge, and this technique takes a lot of time that makes itself impracticable for interactive image registration.

To expedite this process, we use a multigrid active set method to solve bounded biharmonic functions (BBF). The multigrid approach is for two scenarios, refining the active set from coarse to fine resolutions, and solving the linear systems constrained by working active sets. We've implemented both weighted Jacobi method and successive over-relaxation (SOR) in the multigrid solver. Since the problem has box constraints, we cannot directly use regular updates in Jacobi and SOR methods. Instead, we choose a descent step size and clamp the update to satisfy the box constraints. We explore the ways to choose step sizes and discuss their relation to the spectral radii of the iteration matrices. The relaxation factors, which are closely related to step sizes, are estimated by analyzing the eigenvalues of the bilaplacian matrices. We give a proof about the termination of our algorithm and provide some theoretical error bounds.

Another minor problem we address is to register big images on GPU with limited memory. We've implemented an image registration algorithm with virtual image slices on GPU. An image slice is treated similarly to a page in virtual memory. We execute a wavefront of subtasks together to reduce the number of data transfers.

Our main contribution is a fast multigrid method for interactive medical image registration that uses bounded biharmonic functions to blend local transforms. We report a novel multigrid approach to refine active set quickly and use clamped updates based on weighted Jacobi and SOR. This multigrid method can be used to efficiently solve other quadratic programs that have active sets distributed over continuous regions.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."