Learning, Large Scale Inference, and Temporal Modeling of Determinantal Point Processes

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Statistics
Discipline
Subject
Determinantal Point Processes
diversity
large-scale
learning
point processes
repulsion
Computer Sciences
Statistics and Probability
Funder
Grant number
License
Copyright date
2015-11-16T20:14:00-08:00
Distributor
Related resources
Contributor
Abstract

Determinantal Point Processes (DPPs) are random point processes well-suited for modelling repulsion. In discrete settings, DPPs are a natural model for subset selection problems where diversity is desired. For example, they can be used to select relevant but diverse sets of text or image search results. Among many remarkable properties, they offer tractable algorithms for exact inference, including computing marginals, computing certain conditional probabilities, and sampling. In this thesis, we provide four main contributions that enable DPPs to be used in more general settings. First, we develop algorithms to sample from approximate discrete DPPs in settings where we need to select a diverse subset from a large amount of items. Second, we extend this idea to continuous spaces where we develop approximate algorithms to sample from continuous DPPs, yielding a method to select point configurations that tend to be overly-dispersed. Our third contribution is in developing robust algorithms to learn the parameters of the DPP kernels, which is previously thought to be a difficult, open problem. Finally, we develop a temporal extension for discrete DPPs, where we model sequences of subsets that are not only marginally diverse but also diverse across time.

Advisor
Eric T. Bradlow
Date of degree
2014-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation