The Optical Properties of Spiky Gold Nanoshells

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Physics & Astronomy
Discipline
Subject
nanoparticles
Plasmons
quadrupole
SERS
T-matrix
Nanoscience and Nanotechnology
Optics
Funder
Grant number
License
Copyright date
2015-11-16T20:14:00-08:00
Distributor
Related resources
Contributor
Abstract

Plasmonic nanoparticles are a powerful and versatile tool for molecular sensing, drug delivery, and cancer treatment. When exposed to incident light, these nanoparticles have greatly increased far-field scattering and near-field enhancement. Spiky gold nanoshells are a recently developed class of nanoparticles composed of sharp gold spikes decorating a polystyrene core. Spiky nanoshells are synthesized using the templated surfactant-assisted seed growth method, which enables extensive control of the nanoparticle morphology. Here, it is shown that these particles have a tailorable far-field resonance, extremely uniform single-particle surface enhanced Raman scattering, and modal interference in dark-field microscopy measurements. Finite-difference time-domain simulations are performed to determine the morphological features which control these unusual behaviors. Additionally, a T-matrix method was developed to use finite-difference time-domain simulations to analyze mode mixing in these particles. These studies show that the lengths of spikes are critical in determining the far-field scattering peak. Additionally, simulation of the electric field near the particle surface show that the near-field Raman surface enhancement is dominated by the quadrupole modes, resulting in Quadrupole Enhanced Raman Scattering. Due to the large number of spikes, the near-field enhancement is relatively insensitive to variations in individual spikes, resulting in emergent homogeneity in optical properties due to heterogeneity in the structure. The disorder induced asymmetry of the spiky nanoshell enables mode-mixing between the dipole and quadrupole modes, which is observed experimentally in dark-field measurements and predicted theoretically in a T-matrix analysis of finite-difference time-domain simulations. This mode mixing was found to be of the order of 5% between the quadrupole and dipole modes. Such mode mixing is responsible for the broadening of the quadrupole modes towards the infrared and for the activation of all six quadrupole moments, partially explaining how heterogeneity can result in reliable and robust near-field enhancement.

Advisor
Zahra Fakhraai
Nader Engheta
Date of degree
2014-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation