Departmental Papers (CIS)

Date of this Version

December 2001

Document Type

Conference Paper


Copyright 2001 IEEE. Reprinted from Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Volume 1, pages I-299 - I-306.
Publisher URL:

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to By choosing to view this document, you agree to all provisions of the copyright laws protecting it.


In this paper we propose a new 3D kernel for the recovery of 3D-orientation signatures. The kernel is a Gaussian function defined in local spherical coordinates and its Cartesian support has the shape of a truncated cone with its axis in the radial direction and very small angular support. A set of such kernels is obtained by uniformly sampling the 2D space of polar and azimuth angles. The projection of a local neighborhood on such a kernel set produces a local 3D-orientation signature. In the case of spatiotemporal analysis, such a kernel set can be applied either on the derivative space of a local neighborhood or on the local Fourier transform. The well known planes arising from single or multiple motion produce maxima in the orientation signature. Due to the kernel's local support spatiotemporal signatures possess higher orientation resolution than 3D steerable filters and motion maxima can be detected and localized more accurately. We describe and show in experiments the superiority of the proposed kernels compared to Hough transformation or EM-based multiple motion detection.



Date Posted: 21 November 2004

This document has been peer reviewed.