Statistics Papers

Document Type

Journal Article

Date of this Version


Publication Source

Marketing Science





Start Page


Last Page





Many data sets, from different and seemingly unrelated marketing domains, all involve paths—records of consumers' movements in a spatial configuration. Path data contain valuable information for marketing researchers because they describe how consumers interact with their environment and make dynamic choices. As data collection technologies improve and researchers continue to ask deeper questions about consumers' motivations and behaviors, path data sets will become more common and will play a more central role in marketing research.

To guide future research in this area, we review the previous literature, propose a formal definition of a path (in a marketing context), and derive a unifying framework that allows us to classify different kinds of paths. We identify and discuss two primary dimensions (characteristics of the spatial configuration and the agent) as well as six underlying subdimensions. Based on this framework, we cover a range of important operational issues that should be taken into account as researchers begin to build formal models of path-related phenomena. We close with a brief look into the future of path-based models, and a call for researchers to address some of these emerging issues.

Copyright/Permission Statement

Originally published in Marketing Science © 2009 INFORMS

This is a pre-publication version. The final version is available at


path data, path models, integrative review, grocery shopping, eye tracking, Web browsing, clickstream, information acceleration



Date Posted: 25 October 2018

This document has been peer reviewed.