Statistics Papers

Document Type

Technical Report

Date of this Version

2-2013

Publication Source

European Journal of Operational Research

Volume

224

Issue

3

Start Page

477

Last Page

485

DOI

10.1016/j.ejor.2012.08.009

Abstract

Consider a competitive facility location scenario where, given a set U of n users and a set F of m facilities in the plane, the objective is to place a new facility in an appropriate place such that the number of users served by the new facility is maximized. Here users and facilities are considered as points in the plane, and each user takes service from its nearest facility, where the distance between a pair of points is measured in either L1 or L2 or L metric. This problem is also known as the maximum coverage (MaxCov) problem. In this paper, we will consider the k-MaxCov problem, where the objective is to place k (⩾1) new facilities such that the total number of users served by these k new facilities is maximized. We begin by proposing an O(nlogn) time algorithm for the k-MaxCov problem, when the existing facilities are all located on a single straight line and the new facilities are also restricted to lie on the same line. We then study the 2-MaxCov problem in the plane, and propose an O(n2) time and space algorithm in the L1 and L metrics. In the L2 metric, we solve the 2-MaxCov problem in the plane in O(n3logn) time and O(n2logn) space. Finally, we consider the 2-Farthest-MaxCov problem, where a user is served by its farthest facility, and propose an algorithm that runs in O(nlogn) time, in all the three metrics.

Copyright/Permission Statement

© 2013 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

reverse nearest neighbor, competitive location, computational geometry, facility location

Share

COinS
 

Date Posted: 25 October 2018

This document has been peer reviewed.