
Statistics Papers
Document Type
Technical Report
Date of this Version
3-31-2015
Publication Source
Nucleic Acids Research
Volume
43
Issue
6
Start Page
e39
DOI
10.1093/nar/gku1363
Abstract
High-throughput sequencing of DNA coding regions has become a common way of assaying genomic variation in the study of human diseases. Copy number variation (CNV) is an important type of genomic variation, but detecting and characterizing CNV from exome sequencing is challenging due to the high level of biases and artifacts. We propose CODEX, a normalization and CNV calling procedure for whole exome sequencing data. The Poisson latent factor model in CODEX includes terms that specifically remove biases due to GC content, exon capture and amplification efficiency, and latent systemic artifacts. CODEX also includes a Poisson likelihood-based recursive segmentation procedure that explicitly models the count-based exome sequencing data. CODEX is compared to existing methods on a population analysis of HapMap samples from the 1000 Genomes Project, and shown to be more accurate on three microarray-based validation data sets. We further evaluate performance on 222 neuroblastoma samples with matched normals and focus on a well-studied rare somatic CNV within the ATRX gene. We show that the cross-sample normalization procedure of CODEX removes more noise than normalizing the tumor against the matched normal and that the segmentation procedure performs well in detecting CNVs with nested structures.
Copyright/Permission Statement
© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Keywords
computational methods, genomics
Recommended Citation
Jiang, Y., Oldridge, D. A., Diskin, S. J., & Zhang, N. R. (2015). CODEX: A Normalization and Copy Number Variation Detection Method for Whole Exome Sequencing. Nucleic Acids Research, 43 (6), e39-. http://dx.doi.org/10.1093/nar/gku1363
Included in
Business Commons, Genetics and Genomics Commons, Genetic Structures Commons, Statistics and Probability Commons
Date Posted: 25 October 2018
This document has been peer reviewed.