
Statistics Papers
Document Type
Journal Article
Date of this Version
10-2015
Publication Source
Statistics in Biosciences
Volume
7
Issue
2
Start Page
206
Last Page
224
DOI
10.1007/s12561-014-9113-5
Abstract
The standard methods of diagnosing disease based on antibody microtiter plates are quite crude. Few methods create a rigorous underlying model for the antibody levels of populations consisting of a mixture of positive and negative subjects, and fewer make full use of the entirety of the available data for diagnoses. In this paper, we propose a Bayesian hierarchical model that provides a systematic way of pooling data across different plates, and accounts for the subtle sources of variations that occur in the optical densities of typical microtiter data. In addition to our Bayesian method having good frequentist properties, we find that our method outperforms one of the standard crude approaches (the “3SD Rule”) under reasonable assumptions, and provides more accurate disease diagnoses in terms of both sensitivity and specificity.
Copyright/Permission Statement
The final publication is available at Springer via http://dx.doi.org/10.1007/s12561-014-9113-5.
Recommended Citation
Entine, O., Small, D. S., Jensen, S. T., Sanchez Garcia, G., Bastos Mazuelos, M., Verastegui Pimentel, M. R., & Levy, M. Z. (2015). Disease Diagnosis From Immunoassays With Plate to Plate Variability: A Hierarchical Bayesian Approach. Statistics in Biosciences, 7 (2), 206-224. http://dx.doi.org/10.1007/s12561-014-9113-5
Date Posted: 27 November 2017
This document has been peer reviewed.