Statistics Papers

Document Type

Journal Article

Date of this Version

2009

Publication Source

Journal of the American Statistical Association

Volume

104

Issue

485

Start Page

209

Last Page

219

DOI

10.1198/jasa.2009.0111

Abstract

In the past decade there has been a resurgence of interest in nonlinear dimension reduction. Among new proposals are “Local Linear Embedding,” “Isomap,” and Kernel Principal Components Analysis which all construct global low-dimensional embeddings from local affine or metric information. We introduce a competing method called “Local Multidimensional Scaling” (LMDS). Like LLE, Isomap, and KPCA, LMDS constructs its global embedding from local information, but it uses instead a combination of MDS and “force-directed” graph drawing. We apply the force paradigm to create localized versions of MDS stress functions with a tuning parameter to adjust the strength of nonlocal repulsive forces.

We solve the problem of tuning parameter selection with a meta-criterion that measures how well the sets of K-nearest neighbors agree between the data and the embedding. Tuned LMDS seems to be able to outperform MDS, PCA, LLE, Isomap, and KPCA, as illustrated with two well-known image datasets. The meta-criterion can also be used in a pointwise version as a diagnostic tool for measuring the local adequacy of embeddings and thereby detect local problems in dimension reductions.

Copyright/Permission Statement

This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of the American Statistical Association on 01 Jan 2012, available online: http://wwww.tandfonline.com/10.1198/jasa.2009.0111.

Keywords

cluster analysis, energy functions, force-directed layout, isomap, local linear embedding, multidimensional scaling, principal components analysis, unsupervised learning

Share

COinS
 

Date Posted: 27 November 2017