Statistics Papers

Document Type

Journal Article

Date of this Version

2011

Publication Source

Journal of the American Statistical Association

Volume

106

Issue

494

Start Page

672

Last Page

684

DOI

10.1198/jasa.2011.tm10560

Abstract

In this article we consider estimation of sparse covariance matrices and propose a thresholding procedure that is adaptive to the variability of individual entries. The estimators are fully data-driven and demonstrate excellent performance both theoretically and numerically. It is shown that the estimators adaptively achieve the optimal rate of convergence over a large class of sparse covariance matrices under the spectral norm. In contrast, the commonly used universal thresholding estimators are shown to be suboptimal over the same parameter spaces. Support recovery is discussed as well. The adaptive thresholding estimators are easy to implement. The numerical performance of the estimators is studied using both simulated and real data. Simulation results demonstrate that the adaptive thresholding estimators uniformly outperform the universal thresholding estimators. The method is also illustrated in an analysis on a dataset from a small round blue-cell tumor microarray experiment. A supplement to this article presenting additional technical proofs is available online.

Copyright/Permission Statement

This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of the American Statistical Association on 24 Jan 2012, available online: http://wwww.tandfonline.com/10.1198/jasa.2011.tm10560.

Keywords

Frobenius norm, optimal rate of convergence, spectral norm, support recovery, universal thresholding

Share

COinS
 

Date Posted: 27 November 2017