Statistics Papers

Document Type

Journal Article

Date of this Version

4-2008

Publication Source

Econometric Theory

Volume

24

Issue

2

Start Page

528

Last Page

533

DOI

http://dx.doi.org/10.1017/S0266466608080213

Abstract

Suppose we observe X ~ Nm(, σ2I) and would like to estimate the predictive density p(y|β) of a future Y ~ Nn(Bβ, σ2I). Evaluating predictive estimates by Kullback–Leibler loss, we develop and evaluate Bayes procedures for this problem. We obtain general sufficient conditions for minimaxity and dominance of the “noninformative” uniform prior Bayes procedure. We extend these results to situations where only a subset of the predictors in A is thought to be potentially irrelevant. We then consider the more realistic situation where there is model uncertainty and this subset is unknown. For this situation we develop multiple shrinkage predictive estimators and obtain general minimaxity and dominance conditions. Finally, we provide an explicit example of a minimax multiple shrinkage predictive estimator based on scaled harmonic priors.

Keywords

Bayesian prediction, model uncertainty, multiple shrinkage, prior distributions, shrinkage estimation

Share

COinS
 

Date Posted: 27 November 2017

This document has been peer reviewed.