
Statistics Papers
Document Type
Journal Article
Date of this Version
1981
Publication Source
The Annals of Statistics
Volume
9
Issue
4
Start Page
834
Last Page
845
DOI
10.1214/aos/1176345523
Abstract
Consider the problem of sequentially testing a null hypothesis vs an alternative hypothesis when the risk function is a linear combination of probability of error in the terminal decision and expected sample size (i.e., constant cost per observation.) Assume that the parameter space is the union of null and alternative, the parameter space is convex, the intersection of null and alternative is empty, and the common boundary of the closures of null and alternative is nonempty and compact. Assume further that observations are drawn from a p-dimensional exponential family with an open p-dimensional parameter space. Sufficient conditions for Bayes tests to have bounded stopping times are given.
Keywords
sequential tests, hypothesis testing, Bayes test, exponential family, stopping times, monotone likelihood ratio
Recommended Citation
Berk, R. H., Brown, L. D., & Cohen, A. (1981). Bounded Stopping Times for a Class of Sequential Bayes Tests. The Annals of Statistics, 9 (4), 834-845. http://dx.doi.org/10.1214/aos/1176345523
Date Posted: 27 November 2017
This document has been peer reviewed.