Statistics Papers

Document Type

Journal Article

Date of this Version

1994

Publication Source

The Annals of Statistics

Volume

22

Issue

4

Start Page

1787

Last Page

1807

DOI

10.1214/aos/1176325757

Abstract

Preexperimental frequentist error probabilities are arguably inadequate, as summaries of evidence from data, in many hypothesis-testing settings. The conditional frequentist may respond to this by identifying certain subsets of the outcome space and reporting a conditional error probability, given the subset of the outcome space in which the observed data lie. Statistical methods consistent with the likelihood principle, including Bayesian methods, avoid the problem by a more extreme form of conditioning.

In this paper we prove that the conditional frequentist's method can be made exactly equivalent to the Bayesian's in simple versus simple hypothesis testing: specifically, we find a conditioning strategy for which the conditional frequentist's reported conditional error probabilities are the same as the Bayesian's posterior probabilities of error. A conditional frequentist who uses such a strategy can exploit other features of the Bayesian approach--for example, the validity of sequential hypothesis tests (including versions of the sequential probability ratio test, or SPRT) even if the stopping rule is incompletely specified.

Keywords

likelihood principle, conditional frequentist, Bayes factor, likelihood ratio, significance, Type I error, Bayesian statistics, stopping rule principle

Share

COinS
 

Date Posted: 27 November 2017

This document has been peer reviewed.