
Statistics Papers
Document Type
Journal Article
Date of this Version
11-13-2009
Publication Source
Philosophical Transactions of the Royal Society A
Volume
367
Issue
1906
Start Page
4361
Last Page
4383
DOI
10.1098/rsta.2009.0120
Abstract
We propose to furnish visual statistical methods with an inferential framework and protocol, modelled on confirmatory statistical testing. In this framework, plots take on the role of test statistics, and human cognition the role of statistical tests. Statistical significance of ‘discoveries’ is measured by having the human viewer compare the plot of the real dataset with collections of plots of simulated datasets. A simple but rigorous protocol that provides inferential validity is modelled after the ‘lineup’ popular from criminal legal procedures. Another protocol modelled after the ‘Rorschach’ inkblot test, well known from (pop-)psychology, will help analysts acclimatize to random variability before being exposed to the plot of the real data. The proposed protocols will be useful for exploratory data analysis, with reference datasets simulated by using a null assumption that structure is absent. The framework is also useful for model diagnostics in which case reference datasets are simulated from the model in question. This latter point follows up on previous proposals. Adopting the protocols will mean an adjustment in working procedures for data analysts, adding more rigour, and teachers might find that incorporating these protocols into the curriculum improves their students’ statistical thinking.
Keywords
permutation tests, rotation tests, statistical graphics, visual data mining, simulation, cognitive perception
Recommended Citation
Buja, A., Cook, D., Hofmann, H., Lawrence, M., Lee, E., Swayne, D. F., & Wickham, H. (2009). Statistical Inference for Exploratory Data Analysis and Model Diagnostics. Philosophical Transactions of the Royal Society A, 367 (1906), 4361-4383. http://dx.doi.org/10.1098/rsta.2009.0120
Date Posted: 27 November 2017