Statistics Papers

Document Type

Conference Paper

Date of this Version

2012

Publication Source

Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing

Volume

STOC '12

Start Page

1041

Last Page

1060

DOI

10.1145/2213977.2214071

Abstract

Recently, quantitative versions of the Gibbard-Satterthwaite theorem were proven for k=3 alternatives by Friedgut, Kalai, Keller and Nisan and for neutral functions on k ≥ 4 alternatives by Isaksson, Kindler and Mossel. In the present paper we prove a quantitative version of the Gibbard-Satterthwaite theorem for general social choice functions for any number k ≥ 3 of alternatives. In particular we show that for a social choice function f on k ≥ 3 alternatives and n voters, which is ε-far from the family of nonmanipulable functions, a uniformly chosen voter profile is manipulable with probability at least inverse polynomial in n, k, and ε-1.

Removing the neutrality assumption of previous theorems is important for multiple reasons. For one, it is known that there is a conflict between anonymity and neutrality, and since most common voting rules are anonymous, they cannot always be neutral. Second, virtual elections are used in many applications in artificial intelligence, where there are often restrictions on the outcome of the election, and so neutrality is not a natural assumption in these situations.

Ours is a unified proof which in particular covers all previous cases established before. The proof crucially uses reverse hypercontractivity in addition to several ideas from the two previous proofs. Much of the work is devoted to understanding functions of a single voter, and in particular we also prove a quantitative Gibbard-Satterthwaite theorem for one voter.

Comments

At the time of publication, author Elchanan Mossel was affiliated with the University of California, Berkeley. Currently (August 2016), he is a faculty member at the Statistics Department at the University of Pennsylvania.

Keywords

computational social choice, gibbard-satterthwaite, isoperimetric inequalities, manipulation, reverse hypercontractivity, voting

Share

COinS
 

Date Posted: 27 November 2017