
Statistics Papers
Document Type
Journal Article
Date of this Version
1995
Publication Source
SIAM Journal on Discrete Mathematics
Volume
8
Issue
4
Start Page
678
Last Page
683
DOI
10.1137/S0895480194262710
Abstract
Given a set S of n points in the unit square [0, 1]d , an optimal traveling salesman tour of S is a tour of S that is of minimum length. A worst-case point set for the Traveling Salesman Problem in the unit square is a point set S(n) whose optimal traveling salesman tour achieves the maximum possible length among all point sets S ⊂ [0, 1]d , where |S| = n. An open problem is to determine the structure of S(n) . We show that for any rectangular parallelepiped R contained in [0, 1]d , the number of points in S(n) ∩ R is asymptotic to n times the volume of R. Analogous results are proved for the minimum spanning tree, minimum-weight matching, and rectilinear Steiner minimum tree. These equidistribution theorems are the first results concerning the structure of worst-case point sets like S(n).
Keywords
Equidistribution, worst-case, non-linear growth, traveling salesman, rectilinear Steiner tree, minimum spanning tree, minimum-weight matching
Recommended Citation
Snyder, T. L., & Steele, J. M. (1995). Equidistribution in All Dimensions of Worst-Case Point Sets for the TSP. SIAM Journal on Discrete Mathematics, 8 (4), 678-683. http://dx.doi.org/10.1137/S0895480194262710
Date Posted: 27 November 2017
This document has been peer reviewed.