Statistics Papers

Document Type

Conference Paper

Date of this Version

2014

Publication Source

Seventeenth International Conference on Artificial Intelligence and Statistics

Volume

33

Start Page

448

Last Page

456

Abstract

We develop a new sampling strategy that uses the hit-and-run algorithm within level sets of a target density. Our method can be applied to any quasi-concave density, which covers a broad class of models. Standard sampling methods often perform poorly on densities that are high-dimensional or multi-modal. Our level set sampler performs well in high-dimensional settings, which we illustrate on a spike-and-slab mixture model. We also extend our method to exponentially-tilted quasi-concave densities, which arise in Bayesian models consisting of a log-concave likelihood and quasiconcave prior density. We illustrate our exponentially-tilted level-set sampler on a Cauchy-normal model where our sampler is better able to handle a high-dimensional and multi-modal posterior distribution compared to Gibbs sampling and Hamiltonian Monte Carlo.

Share

COinS
 

Date Posted: 27 November 2017

This document has been peer reviewed.