
EXAMPLE GUIDED SYNTHESIS OF RELATIONAL QUERIES

Aalok Thakkar

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2023

Supervisors of Dissertation

Rajeev Alur Mayur Naik

Zisman Family Professor of Computer
and Information Science

Professor of Computer and Information
Science

Graduate Group Chairperson

Mayur Naik, Professor of Computer and Information Science

Dissertation Committee

Val Tannen, Professor of Computer and Information Science
Susan Davidson, Weiss Professor of Computer and Information Science
Oleksandr Polozov, Research Scientist at X, the moonshot factory
Stephan Zdancewic, Schlein Family Professor of Computer and Information Science

ABSTRACT

EXAMPLE GUIDED SYNTHESIS OF RELATIONAL QUERIES

The goal of program synthesis is to automatically generate programs that meet user intention.

While a number of methods for expressing user intention has gained traction over the last five

decades, programming-by-example has proven to be useful in domains where the user may not be

able to articulate the desired program behavior as a logical specification but can describe it through

demonstrative input-output examples.

This dissertation studies programming-by-example in the context of relational queries. It is a

challenging and foundational problem; ideally, we would like a technique that is simultaneously:

(a) scalable enough to be applicable to real-world instances, (b) expressive in terms of the kinds of

queries that it can synthesize, and (c) fully automatic, so it requires minimal guidance from non-expert

users. Significant progress has been made on this problem in recent years Cropper and Dumančić

(2022), and a variety of algorithms have been proposed, including algorithms based on evolutionary

search Mendelson et al. (2021), numerical relaxation Si et al. (2019), constraint solving Law et al.

(2020a); Cropper and Morel (2021), and counterexample-guided search Raghothaman et al. (2020a).

Each of these approaches require additional supervision in the form of templates to restrict the space

of candidate programs and accelerate the search. In this line of work, we propose example-guided

synthesis, a paradigm of techniques to eliminate the need for such instance-specific supervision

by leveraging the underlying structure of the input-output examples. We present an example-

guided algorithm for conjunctive queries, and then extend it to support expressive features such as

disjunction, recursion, and comparison predicates, as well as learning in presence of noise.

We implement this technique and demonstrate that it outperforms the state-of-the-art tools on a

diverse set of benchmarks in terms of both, running time and the quality of examples.

ii

TABLE OF CONTENTS

ABSTRACT . ii

LIST OF TABLES . vi

LIST OF ILLUSTRATIONS . vii

CHAPTER 1 : Introduction . 1

1.1 Relational Query Synthesis . 2

1.1.1 Syntax-guided Techniques . 2

1.1.2 Constraint-solving Techniques . 3

1.2 An Example-guided Approach to Synthesis . 3

1.3 Contributions of this Dissertation . 4

CHAPTER 2 : Problem Formulation . 6

2.1 Problem Setting . 6

2.2 Syntax and Semantics of Relational Queries . 8

2.2.1 Datalog Syntax . 8

2.2.2 Semantics . 9

2.2.3 Syntax and Semantics of SPJ Queries . 10

2.2.4 Definitions . 11

2.3 Relational Query Synthesis Problem . 13

2.4 Decidability and Complexity . 14

CHAPTER 3 : Synthesis of Conjunctive Queries . 17

3.1 Searching Patterns of Co-occurence . 17

3.2 Example-Guided Synthesis Algorithm . 20

3.2.1 The Constant Co-occurrence Graph . 20

iii

3.2.2 Enumeration Contexts . 21

3.2.3 Learning Conjunctive Queries . 22

3.3 Extensions of the Synthesis Algorithm . 25

3.3.1 Multi-Column Outputs . 25

3.3.2 Unions of Conjunctive Queries . 27

3.3.3 Negation . 29

3.4 Experimental Evaluation . 30

3.4.1 Benchmark Suite . 31

3.4.2 Baselines . 32

3.4.3 Q1: Performance . 34

3.4.4 Q2: Quality of Programs . 36

3.4.5 Q3: Unrealizability . 37

CHAPTER 4 : Synthesis of Queries with Comparison Operators 40

4.1 Algorithm . 45

4.1.1 Example-Guided Enumeration of Projection and Joins 47

4.1.2 Supervised Learning of Comparisons for Selection 48

4.1.3 Interleaving Decision Tree Learning with Example-Guided Search for Joins . 53

4.2 Evaluation . 55

4.2.1 Benchmarks . 56

4.2.2 Baselines and Setup . 56

4.2.3 Performance . 57

4.2.4 Succinctness . 59

CHAPTER 5 : Synthesis of Recursive Relational Queries 61

5.1 Demonstrative Example . 63

5.1.1 Problem Setting . 63

5.1.2 Synthesis of Recursive Queries . 64

5.1.3 Provenance-Guided Generalization . 66

iv

5.2 Minimal Generalization Problem . 69

5.3 The Synthesis Algorithm . 70

5.3.1 Example-guided Synthesis . 70

5.3.2 Normalization . 71

5.4 Provenance-guided Generalization . 73

5.4.1 Generalization Algorithm . 74

5.4.2 Encoding Generalization as Constraint Satisfaction 75

5.4.3 Provenance-Guided Constraint Generation . 76

5.5 Experimental Evaluation . 79

5.5.1 Benchmarks . 79

5.5.2 Baselines . 80

5.5.3 E�ectiveness . 82

5.5.4 Generalizability . 85

5.5.5 Expressibility . 86

5.5.6 Convergence . 87

5.5.7 Performance on Non-Recursive Benchmarks 88

CHAPTER 6 : Synthesis in Presence of Noise . 90

6.1 Problem Formulation . 90

6.2 Synthesis Algorithm . 92

6.3 Experimental Evaluation . 93

CHAPTER 7 : Conclusion and Future Work . 96

BIBLIOGRAPHY . 100

APPENDIX A : Run-time Comparisons . 106

APPENDIX B : Quality of Synthesized Programs . 108

v

LIST OF TABLES

TABLE 3.1 Benchmark characteristics. For each benchmark, we summarize the number

of input-output relations, number of input-output tuples, and whether the

intended programs involve disjunctions (_) or negations (:). 33
TABLE 3.2 Unrealizable benchmarks. For each benchmark, we summarize runtimes

on EGS and the three baselines. Note thatScythe over�ts sql42 and

traffic-partial using operators like comparisons and negation. 38

TABLE 5.1 Table summarizing benchmark characteristics. We evaluateMobius on a suite

of 21 benchmarks featuring diverse recursion schemes. For each benchmark,

we summarize the number of input-output relations and the number of

input-output tuples. Ten of these benchmarks use invented predicates. . . . 81
TABLE 5.2 Table summarizing e�ectiveness of synthesis. We evaluateMobius and the

three baselines on a suite of 21 benchmarks. All tools are run in single-

threaded mode. Mobius successfully synthesizes all benchmarks with an

average run-time of 23.1 seconds, whileGenSynth , ILASP , and Popper

time out on 7 benchmarks each. Note thatGenSynth and Popper fail to

�nd a solution for 1 and 7 benchmarks respectively. 83

TABLE A.1 Performance ofEGS, Scythe , ILASP , and ProSynth on 20 knowledge

discovery benchmarks. 106
TABLE A.2 Performance of EGS, Scythe , ILASP , and ProSynth on 18 program

analysis benchmarks. 106
TABLE A.3 Performance ofEGS, Scythe , ILASP , and ProSynth on 41 database

querying tasks. 107

vi

LIST OF ILLUSTRATIONS

FIGURE 2.1 Data describing tra�c conditions in a city: (2.1a) Map of the city, (2.1b)

and listing of the input and output relations. We would like to explain the

accidents occurring onBroadwayand Whitehall. 7
FIGURE 2.2 Grammar for select-project-join queries. T ranges over tables, c ranges over

column names, and k ranges over constant values. The grammar does not

feature operators for negation, aggregation, or ordering. 11
FIGURE 2.3 The synthesis task is speci�ed as a search for a relational queryP that takes

the graph G as an input and returns a set of pairs of verticesO such that

O is a superset ofO+ and disjoint from O� 13

FIGURE 3.1 The induced constant co-occurrence graph, GI . We would like to explain

the accidents occurring onBroadwayand Whitehall. 18
FIGURE 3.2 Architecture of the EGS algorithm. 19
FIGURE 3.3 Example of a genealogy tree, used as training data to learn the programs

Pgrandparent and Psibling . Sarabi, Sara�na, Nala, and Kiara are female while

Mufasa, Jasiri, Simba, and Kopa are male. 25
FIGURE 3.4 Results of our experiments using EGS, Scythe, ILASP, and ProSynth to

solve a suite of 79 benchmarks. A datapoint(n; t) for a particular tool

indicates that it solved n of the benchmarks in less thant time. Note EGS

was the only tool to solve all 79 benchmarks. L and F refer to Task-Speci�c

and Task Agnostic Rule Sets respectively. 35

FIGURE 4.1 Example of a task to synthesize a relational query that takes instances of

tables registration , department , and major (as in 4.1a) as input relations

I , and outputs a set of student constants that contains all elements ofO+

and does not contain any elements inO� (as in 4.1b). The query in 4.1c is

a solution to this task. 41

vii

FIGURE 4.2 Each candidate join can be translated to a single table. The table in 4.2a

represents the join of registration and department tables. The label

column denotes the ideal labels which result in learning the decision tree in

Figure 4.2b. The user can annotate the rows of this table as positive (X) or

negative (�) to support decision tree learning. On running a decision tree

algorithm on it, we get the tree in Figure 4.2b. 43
FIGURE 4.3 Architecture of the Libra algorithm. The algorithm interleaves decision

tree learning of comparison predicates with example-guided enumeration of

candidate joins. Throughout, we maintain the size of the program and check

against this size to ensure that the synthesized query is minimal among all

consistent queries (subject to optimality of decision tree learning). 45
FIGURE 4.4 A collection of rows of the input table I . Two rows are shown connected

with an edge if they share a constant. The shaded part represents a context

C � I which corresponds to the join in Equation 4.2. 46
FIGURE 4.5 In order to compute the information gain of a comparison predicate at a

given node, we split the rows at the node into two parts, those that satisfy

the predicate and the others that don't. Here, we have split the joined table

TC (from Figure 4.2a) on the predicate(school = Engineering). 49
FIGURE 4.6 The decision tree generated by the processDTL on TC (from Figure 4.2a)

with O+ = f Alice; Bobg and O� = f Charlie; Davidg. 52
FIGURE 4.7 Performance ofLibra against Scythe and PatSQL on the 1,475 bench-

marks from the Spider and Geography datasets. Each data point (n, t)

for a tool indicates that it solved n benchmarks each withint seconds. . . 57
FIGURE 4.8 Sizes of generated programs forLibra , Scythe , and PatSQL . The bars

represent the benchmarks with reference solution of a given size that are

solved by each tool, and the hatched bar represents the subset of these

queries that are minimal. Since 99% of the queries generated byLibra are

minimal, there is very little visible unhatched bar. 59

viii

FIGURE 5.1 The architecture of the Mobius synthesis engine. We start by using a

pattern enumerator (such asEGS) to generate a non-recursive query that

is consistent with the input-output examples, and then generalize it into a

recursive query using a provenance-guided generalization algorithm. This

procedure,Generalize , repeatedly uses a constraint solver to generate

candidate solutions whose consistency it determines usingSouffle query

evaluator Zhao et al. (2020). Analysis of failed candidate solutions result

in additional constraints that are fed back to the constraint solver thereby

pruning the search space in subsequent iterations. 62
FIGURE 5.2 The synthesis task is speci�ed as a search for a relational queryP that takes

the graph G as an input and returns a set of pairs of verticesO such that O

is a superset ofO+ and disjoint from O� . We call such a query consistent

with the input-output examples. 63
FIGURE 5.3 The derivation tree of the tuple scc(c; d) for the queries T(Q0; �) and

T0(Q0; �). The input to the query is the graph of Figure 2.3a. 78
FIGURE 5.4 Summary of the runtime of Mobius on the benchmark suite for the e�ective-

ness study.Mobius outperforms the state-of-the-art baselinesGenSynth ,

ILASP , and Popper . The synthesis time of Mobius is split between the

non-recursive phase where we useEGS and the generalization phase where

we use a provenance-guided search. 84
FIGURE 5.5 Summary of the accuracy studies on three graph benchmarks:path , connected,

and scc. Observe that Mobius achieves perfect accuracy on unseen data

as recursion is required to express the target concepts. 86
FIGURE 5.6 Comparison of the running time of EGS and Mobius on a suite of 79 non-

recursive benchmarks. BecauseMobius begins with seed queries produced

by EGS, all points are naturally to the top-left of the y = x diagonal. The

dotted line corresponds toMobius taking twice the time needed byEGS.

Only 6 benchmarks take longer to complete. 88

ix

FIGURE 6.1 Data describing tra�c conditions in a city: (6.1a) Map of the city, (6.1b)

and listing of the input and output relations. The output relation Crashes

has an additional undesirable tupleLiberty St 91
FIGURE 6.2 Results of our experiments usingEGS and EGS-Ron a suite of 12 knowledge

discovery benchmarks. A datapoint(n; t) indicates that the corresponding

tool solved n of the benchmarks in less thant time. 94

x

CHAPTER 1

Introduction

The prevalence and use of structured data for diverse application domains including scienti�c

computing, medicine, and �nance require users to produce small but inherently complex queries that

demand algorithmic insights and expertise of programming syntax. For end-users of these database

systems who may not be experts at programming, designing queries can become ardours.

Over the last ten years, program synthesis technology has matured to become a practical tool

that addresses this concern. Program synthesis aims to automatically �nd programs in a given

programming language that satisfy user intent. Unlike compilers that translate a formally speci�ed

description (such as a regular language expression) to a low-level machine representation (such as

an automaton), synthesis tools perform a search over a space of candidate programs to generate a

program. The user intent for these programs can be de�ned in terms of formal speci�cation, natural

language instances, or input-output examples.

Synthesis has been the holy grail of computer science research at least since the late 60s; it was consid-

ered by Pnueli to be one of the most central problems in the theory of computation [Pnueli and Rosner

(1989)]. It was soon proved that program synthesis, in general, is intractable, and therefore, all e�orts

at synthesis have had to incorporate human insight into the synthesis process. This is primarily

done in two ways:

1. Restricting expressiveness of the programs, and

2. Providing additional supervision for users to direct the search process.

This thesis fundamentally studies the trade-o� between these two ways in the context of relational

query synthesis.

1

1.1. Relational Query Synthesis

Relational queries are declarative logic programs and �nd applications in domains such as knowledge

discovery, program analysis, and in querying databases. They operate over relational algebras [Codd

(1970)] and form the basis of database query languages such as SQL, Datalog [Abiteboul et al. (1994)],

SPARQL [Pérez et al.(2009)], Cypher [Francis et al. (2018)], as well as their variants for querying

code, such as PQL [Martin et al. (2005)], LogiQL [Green (2015)], and CodeQL [Avgustinov et al.

(2016)].

The problem of synthesizing such logic programs from input-output examples has been studied over

the last two decades and a number of tools have been developed with varying restrictions on the

expressiveness of the programs and with di�erent needs for additional supervision. In this section,

we summarize the advances in enumerative, constraint solving, and hybrid techniques to solve the

relational query synthesis problem. Each of the tools uses a form of instance-speci�c supervision to

guide the search.

1.1.1. Syntax-guided Techniques

Syntax-guided Synthesis (SyGuS) is a classical formulation of program synthesis where the user may

supplement the input-output examples with syntactic templates to constrains the space of allowed

programs. Si et al. (2018) build a syntax-guided tool called ALPS for the synthesis of relational

queries (in particular, Datalog queries) where the user provides instance-speci�c supervision in form

of meta-rules. According to the Si et al. (2018): the key challenge is to obtain a set of meta-rules

that is general enough to capture useful programs but speci�c enough to enable e�cient synthesis.

Another paradigm for enumerative synthesis is a two-phased search where the synthesis problem

is decomposed into �rst searching for anabstract queryand then searching for predicates that can

instantiate the abstractions. Wang et al. (2017a) develops the toolScythe and Takenouchi et al.

(2021) develops the toolPatSQL that implement such a two-phased approach. Both the tools target

the domain of SQL queries and require an exhaustive list of constants that may be used for the

comparison operators in the query.

2

A syntax-guided technique that di�ers from these two paradigms isGenSynth , an evolutionary

search strategy that mutates candidate programs and evaluates their �tness on the input-output

examples.GenSynth stands out among the synthesis engine as it requires the least instance-speci�c

supervision. It requires the signatures ofinvented predicates, unless they coincide with that of an

input or output relations.

1.1.2. Constraint-solving Techniques

Constraint-solving techniques inherently require syntactic constraints restrict the search space to a

�nite set of candidate programs. Then, they use SMT solvers to navigate through this �nite search

space.

Albarghouthi et al. (2017) introduces a constraint-based synthesis technique for Datalog programs

that uses uses an SMT solver to search through the space of Datalog programs de�ned by a set of

constraints on the number of clauses in each program as well as the length of each clause.

ProSynth is a provenance-guided technique for Datalog synthesis that generates constraints using

the provenance information from a program evaluator, and requires an exhaustive list of candidate

rules to restrict the search space.

Similarly, other Inductive Logic Programming tools such asPopper , Metagol , and ILASP use

di�erent syntactic constraints (hypothesis constraints, metarules, and mode declarations) to restrict

the search space. They all synthesize fragments of Answer Set Programs.

1.2. An Example-guided Approach to Synthesis

All existing techniques for synthesis of relational queries rely on instance-speci�c supervision. In

this thesis, we attempt to restrict the expressiveness of relational queries to develop fully automated

push-button techniques.

In recent years, techniques such as FlashFill [Gulwani (2011)] have demonstrated the e�ectiveness

of fully automated techniques when restricted to speci�c domains. FlashFill synthesizes string

transformations by analyzing the structure of input and output examples and searches for common

patterns between them. FlashRelate [Barowy et al. (2015)] and Golem [Muggleton and Feng(1990)]

3

are other examples of fully automated techniques that leverage the structure of the input-output

examples, and have shown to be more scalable then their syntax-guided and constraint-solving based

counterparts.

While all PBE techniques use the examples in some form, we call a technique example-guided only

when it meets the following criteria:

1. The candidate programs enumerated by the search depend on the latent structure of the

input-output examples, and not just a grammar of the target language, and

2. The input-output examples cannot be replaced by a black-box veri�cation oracle that checks if

a candidate program is consistent with the input-output examples or not.

Additionally, our objective is to develop example-guided techniques that do not require instance-

speci�c supervision and allow for a fully automated push-button synthesis framework for relational

queries.

1.3. Contributions of this Dissertation

Concretely, this thesis makes the following contributions:

1. We identify a category of synthesis algorithms for PBE calledExample-guided Synthesiswhich

exploit the latent structure in the provided examples while generating candidate programs.

2. We study the problem of relational query synthesis and establish its decidability and complexity.

3. We develop an example-guided algorithm for synthesizing conjunctive relational queries by

leveraging patterns in the input-output examples.

4. We show that this algorithm can be extended to support relational queries with a variety of

features such as disjunction, numerical comparison, and recursion.

5. We show that the algorithm can be extended to support learning in presence of noisy input-

output data.

4

6. We demonstrate that our technique outperforms state-of-the-art tools on a variety of benchmarks

across multiple dimensions: running time, quality of programs, and in proving unrealizability.

5

CHAPTER 2

Problem Formulation

We devote this chapter to formalizing the query synthesis problem and proving its decidability and

complexity.

2.1. Problem Setting

We begin by presenting an overview of the example-guided synthesis (EGS) framework. As an

example, consider a researcher who has data describing tra�c accidents in a city and who wishes to

explain this data using information about the road network and tra�c conditions.

We present this data in Figure 2.1. Suppose that at a given instant, accidents occur onBroadway

and Whitehall. The researcher observes that these streets intersect, that they both had tra�c, and

that the tra�c lights on both streets were green. They generalize this observation, and �nd that

the resulting hypothesis, that an accident occurs at every pair of streets with similar conditions, is

consistent with the data. One may formally describe their hypothesis as the following Horn clause:

Crashes(x) :- Intersects (x; y); HasTraffic (x); HasTraffic (y);

GreenSignal (x); GreenSignal (y); (2.1)

wherex and y are universally quanti�ed variables ranging over street names, �:-� denotes implication

� (�, and � ;� denotes conjunction. Our goal is to automate the discovery of such hypotheses.

This problem can be naturally formalized as a programming-by-examples (PBE) task. Given a set

of input facts I encoded as relations, and a set of desirable and undesirable output facts,O+ and

O� respectively, we seek a program which derives all of the tuples inO+ and none of the tuples in

O� . In our example, we implicitly assume that the data is completely labelled, so that

O+ = f Crashes(Broadway); Crashes(Whitehall) g;

6

(a)

Intersects

Broadway Liberty St
Broadway Wall St
Broadway Whitehall
Liberty St Broadway
Liberty St William St
Wall St Broadway
Wall St William St
Whitehall Broadway
William St Liberty St
William St Wall St

GreenSignal

Broadway
Liberty St
William St
Whitehall

HasTraffic

Broadway
Wall St
William St
Whitehall

Crashes

Broadway
Whitehall

(b)

Figure 2.1: Data describing tra�c conditions in a city: (2.1a) Map of the city, (2.1b) and listing of
the input and output relations. We would like to explain the accidents occurring onBroadwayand
Whitehall.

7

and O� is the set of all other streets,

O� = f Crashes(Liberty St); Crashes(Wall St); Crashes(William St) g:

Traditional methods for PBE use syntax-guided enumerative techniques that search the space of

candidate programs. In our example, a candidate program would be a Horn clause with the premise

consisting of one or more ofHasTraffic , GreenSignal , or Intersects literals.

A naive approach is to enumerate all candidate programs in order of increasing size till we �nd a

consistent hypothesis. For the running example, we will have to enumerate more than12 � 106

candidate programs before discovering the one shown in Equation 2.1. Unsurprisingly, most work

on program synthesis has focused on reducing the size of this search space: in our context, tools

such as ALPS andProSynth restrict the search space by only looking for programs composed of

rules from a �xed �nite set of candidate rules Si et al. (2018); Raghothaman et al. (2020b), while

ILASP constrains the space through �mode declarations� that bound the number of joins (in our

case conjunctions) and the number of variables usedLaw et al. (2014, 2020b). On the other hand,

Scythe , a synthesis tool for SQL queries, �rst �nds �abstract� queries that over-approximate the

desired output, and then searches for concrete instantiations of these abstract queries that are

consistent with the data Wang et al. (2017b).

2.2. Syntax and Semantics of Relational Queries

Di�erent fragments of relational queries are de�ned using a variety of languages such as select-project-

join (SPJ) queries, SQL, Datalog, and Prolog. In this thesis, we will use the syntax of Datalog to

de�ne relational queries.

2.2.1. Datalog Syntax

A relational query Q is a set of rules. To de�ne the syntax of rules, we �rst �x a set of input

predicates, a set of invented predicates, and a set of output predicates. Each predicateR is associated

with an arity k. A literal , R(v1; v2; : : : ; vk), consists of ak-ary predicate R with a list of k variables.

8

Then, a rule r is of the form:

Rh(~uh) :- R1(~u1); R2(~u2); : : : ; Rn (~un); (2.2)

where the single literal on the left,Rh(~uh), is the head of r and R1(~u1), R2(~u2), . . . , Rn (~un), is called

the body of r . The literals in the body can have input predicates, invented predicates, or output

predicates, while the head of the rules must have either invented predicates or output predicates.

A variable that occurs in the head must appear at least once in the body in order to bound the

variables.

The program in Equation 2.1 is an example of a relational query. The head consists ofCrashes(x)

and the body has �ve literals.

2.2.2. Semantics

The semantics of a relational query may be speci�ed in multiple equivalent ways (Abiteboul et al.

(1994)). In our work, we will formalize their semantics using rule instantiations and derivation trees.

The semantics of a relational query is interpreted over a data domainD whose elements are called

constants. For simplicity of formalization, we are assuming that there is a single type. The synthesis

framework and its theoretical guarantees can be extended to support typed constants and typed

relations. We can de�ne rule instantiation as:

De�nition 2.2.1 (Rule Instantiation) . Given a map v from variables to the data domain D, the

rule instantiation of a rule as in Equation 2.2 is:

Rh(v(~uh)) (= R1(v(~u1)) ; R2(v(~u2)) ; : : : ; Rn (v(~un)) :

That is, one can systematically replace each variablex by v(x). For example, consider the query in

Equation 2.1. One can systematically replace its variables according to the mapf x 7! Whitehall; y 7!

9

Broadwayg to obtain the rule instantiation:

Crashes(Whitehall) (= Intersects (Whitehall; Broadway);

HasTraffic (Whitehall); HasTraffic (Broadway);

GreenSignal (Whitehall); GreenSignal (Broadway): (2.3)

We say that a tuple t is derivable from input tuples I if there exists a rule r and a map v such that

on instantiating r with v, the head tuple Rh(v(~uh)) is t, and each of the tuples in the bodyRi (v(~ui))

occur in I . Then, a relational query Q takes input tuples I and returns output tuples O = JQK(I) as

the set of all tuples that are derivable fromI using rules in Q.

2.2.3. Syntax and Semantics of SPJ Queries

We now study select-project-join queries where selection supports categorical and numerical compar-

isons, and all joins are equi-joins. We will use SQL syntax to denote these SPJ queries.

To de�ne the syntax of these queries, we �rst �x a set of input tables and a set ofoutput tables.

For simplicity, the columns of each table are of either of the kinds:categorical , numerical , and

uncomparable.

The syntax of the select-project-join queries is de�ned by the grammar in Figure 2.2. TheJOIN

operator featured in this query is anequi-join, that is a join parameterized by a set of columns� .

Comparisons of the form(T:c = k) or (T:c 6= k) are supported only for columns of thecategorical

kind, all other comparisons are only supported for thenumerical kind, and no comparisons are

supported for the uncomparable kind.

The semantics for these queries are as de�ned in classical works on relational algebra (Date (2009);

Imieli«ski and Lipski (1984)). We denote the set of tuples produced by queryQ on input tables I as

JQK(I). We consider theset-semanticsand not bag-semantics, that is, a relation is a set of literals

with the same predicate (such asregistration , instructor , and department).

10

Q :- SELECT(T1:c1; : : : Tn :cn) FROMJ WHERE�

J :- T j J JOINT ON�

� :- T:c v k j � 1 AND� 2 j � 1 OR� 2

� :- T1:c1 = T2:c2 j � 1 AND� 2

v :- = j 6= j < j � j > j �

Figure 2.2: Grammar for select-project-join queries. T ranges over tables, c ranges over column
names, and k ranges over constant values. The grammar does not feature operators for negation,
aggregation, or ordering.

2.2.4. De�nitions

In this section, we de�ne some terms that are used throughout the proposal.

De�nition 2.2.2 (Conjunctive Queries). A query comprising of a single rule as de�ned in Section 2.2.1

that uses only input predicates in its body is termed a conjunctive query.

Conjunctive queries are also termedselect-project-join (SPJ) queries because of their representation

in relational algebra, and are correspond to queries expressed using the select-from-where idiom in

SQL. Adding the disjunction operator to these queries give usunion of conjunctive queries:

De�nition 2.2.3 (Union of Conjunctive Queries (UCQ)). A query comprising of rules as de�ned in

Section 2.2.1 that use only input predicates in their bodies is termed a union of conjunctive queries.

Observe that UCQs are inherently non-recursive as the predicates are divided into either output

predicates that can occur in the head of a rule or input predicates that can occur in the body of a

rule. In order to de�ne recursive queries, we introduce the concept of invented predicates.

De�nition 2.2.4 (Invented Predicate). An invented predicate is one that is neither an output

predicate, nor an input predicate.

Consider the following programPscc to identify the pair of vertices in a directed graph that are in

11

the same strongly connected component (given only theedge relation as an input) :

scc(x; y) :- path (x; y); path (y; x):

path (x; z) :- path (x; y); path (y; z):

path (x; y) :- edge(x; y):

(2.4)

Observe that the predicatepath is neither an input predicate nor an output predicate. It is the

transitive closure of edge that is used as an intermediate to de�ne thescc relation. Therefore, it is

an example of an invented predicate. Additionally,path also calls itself and in that sense, it is a

recursive predicate.

De�nition 2.2.5 (Recursive Predicate). A predicate R is said to be recursive if there exists a �nite

sequence of rulesr1; r2; : : : ; r k such that R occurs in the head of ruler1 and the body of rule r k ,

and the head of each ruler i +1 occurs in the body of the ruler i .

That is, a predicate is said to be recursive if it can call itself during the execution of the program.

The semantics of a recursive query are best de�ned using derivation trees.

De�nition 2.2.6 (Derivation Tree) . Given a query P and a valuation of the input relations I , a

derivation tree of a tuple t is a labelled rooted tree where: (a) each node of the tree is labeled by

a tuple, (b) each leaf is labeled by a tuple inI ; (c) the root node is labeled byt; and (d) for each

internal node labeled� , there exists an instantiation � (= � 1; : : : ; � n of a rule in P such that the

children of the node are respectively labelled� 1, . . . , � n .

We say that a query P derives t using I if there exists a derivation tree for t. Consider, for example

the graph in Figure 2.3a. Figure 2.3b shows the derivation tree forscc(a; b) in Pscc . The output

JPK(I) of a query P given an input I is the set of output tuples R(c1; c2; : : : ; ck) which it derives

from I . The query Pscc on the input in Figure 2.3a generates the output as in Figure 2.3c.

12

a b c

d

e f

(a) Graph G.

edge(b; c)

path(b; c)edge(a; b)

path(a; c)

edge(c; a)

path(c; a)

scc(a; c)

(b) Example derivation tree.
Query semantics(JPsccK(I)) :

scc(a,a), scc(a,b), scc(a,c),
scc(b,a), scc(b,b), scc(b,c),
scc(c,a), scc(c,b), scc(c,c),
scc(e,e), scc(e,f), scc(f ,e)
scc(f ,f)

(c) Semantics ofPscc with respect to the input of di-
rected graph G as in Figure 2.3a. The setI is the set
of input tuples and the query semantics areJPsccK(I).

Figure 2.3: The synthesis task is speci�ed as a search for a relational queryP that takes the graph
G as an input and returns a set of pairs of verticesO such that O is a superset ofO+ and disjoint
from O� .

2.3. Relational Query Synthesis Problem

Our ultimate goal is to synthesize relational queries which are consistent with a given set of examples.

In this context, an example consists of input and output tuples; the user has labeled the output

tuples as either positive or negative. The objective then is to synthesize a program which is consistent

with the examples, that is, a program which derives all of the positive tuples and none of the negative

tuples.

Problem 2.3.1 (Relational Query Synthesis Problem). Given input relation names I , output

relation names O, input tuples I , and output tuples partitioned asO+ and O� , return a relational

query Q such that O+ � JQK(I) and O� \ JQK(I) = ; , if such a query exists, andunsat otherwise.

We call the triple M = (I; O + ; O�) an example, and a query Q is said to be consistent with it if

O+ � JQK(I) and O� \ JQK(I) = ; .

13

2.4. Decidability and Complexity

We will now show that checking whether a synthesis problem instance is solvable is co-NP complete.

One of the main ingredients of this proof will be the following construction:

Let the data domain D = f c1; c2; : : : ; cng, and the input tuples I = f R1(~c1); R2(~c2); : : : ; Rn (~cn)g.

Then, for t = R(~c), we then de�ne the rule r (t) as follows:

r (t) :R(~v):- R1(~v1); R2(~v2); : : : ; Rn (~vn):

where the headR(~v) and the body literals Ri (~vi) are obtained by by consistently replacing the

constants in the output tuple R(~c) and input tuples Ri (~ci) with fresh variables vc. The idea is that

the body of this rule captures all patterns which exist among the input tuples. The rule r (t) is

therefore the strongest query in this data which also producest. This gives us the following lemma:

Lemma 2.4.1. Given a problem instanceE = (I; O + ; O�), let QO+ = f r (t) : t 2 O+ g. The problem

instance admits a solution if and only ifQ+
O is consistent with E .

Proof. One direction of the claim is immediate: if QO+ is consistent with E , then the problem

admits a solution.

In the reverse direction, suppose thatQO+ is not consistent with E but there exists a query P

consistent with E . Observe that for eacht 2 O+ , the rule r (t) can produce it by picking an

appropriate instantiation with which it was constructed. Hence, there exists a tuplet � 2 O� that is

produced by QO+ . We will show that P also producest � and establish a contradiction.

SinceP is consistent with E , t 2 JPK(I). Let � be the derivation tree which producest. Pick the

variable valuation
 : X ! D which causesr (t) to produce the tuple t � . Let v : D ! X be the map

that was used to constructr (t). Apply the constant renaming map f =
 � v : D ! D to every node

of the derivation tree � to produce the renamed treef (�). Observe that f (�) is still a well-formed

derivation tree of the query P, and that f (t) = t � . It follows that the query P also producest � as

an output tuple, contradicting our assumption that P was consistent withE .

14

We now establish our main complexity result, which follows from Claims 2.4.3, 2.4.4, and 2.4.5.

Theorem 2.4.2. Determining whether an instance of the relational query synthesis problem admits

a solution is co-NP complete.

We devote the rest of this section to the proof of this theorem.

Claim 2.4.3. The problem of determining whetherQ+
O is consistent with the input-output example

E = (I; O + ; O�) is in co-NP.

Proof. By construction, O+ � JQO+ K(I) and it only remains to check that O� \ JQO+ K(I) = ; . A

rule r 2 QO+ and map v from variables to constants serve as a certi�cate ofO� \ JQ+
OK(I) 6= ; . The

certi�cate can be veri�ed by con�rming that the tuple derived by instantiating r with v is in O� . It

follows that checking whetherQI 7! O+ is consistent with E is in co-NP.

To show co-NP hardness, we reduce the problem of checking whether an undirected graphG = (V; E)

has a clique of sizek to that of determining whether an instance of the synthesis problem is

unsolvable. Without loss of generality, assume thatG does not have self-loops. Consider a set ofk

constantsVk = f v1; v2; : : : ; vkg disjoint from V . Then, consider the instance of the synthesis problem

(I; O + ; O�), where:

I = f edge(u; v) j (u; v) 2 Eg

[f edge(vi ; vj) j vi ; vj 2 Vk ; vi 6= vj g;

O+ = f clique (v) j v 2 Vkg; and

O� = f clique (u) j u 2 Vg:

Claim 2.4.4. If G does not have a clique of sizek, then the given instance is realizable.

15

Proof. Consider a queryQ with only one rule:

clique (x1) :- edge(x1; x2); : : : ; edge(x i ; x j); : : : edge(xk ; xk� 1):

Where the premise consists ofedge(x i ; x j) for i 6= j . If G does not have a clique, then we claim that

JPK(I) = O+ . It is clear that O+ � JQK(I). For sake of contradiction, let clique (u) 2 O� \ JQK(I).

Then, there is a mapv : f x1; : : : ; xkg ! V [Vk such that instantiating the rule r with v derives

clique (u) for some u 2 V . I must contain a tuple edge(v(x i); v(x j)) 2 I for each i 6= j . By

construction of I , if edge(x; y) 2 I , then x 6= y, so eachv(x i) is distinct. Also, we know that

u = v(x1) 2 V and edge(u; v(x i)) 2 I for 2 � i � k, hence,v(x i) 2 V . Let uk = v(xk). We have

distinct vertices u1; : : : ; uk each in V such that there is an edge between them. Then, these vertices

form a k-clique, contradicting the assumption.

Claim 2.4.5. If G has a clique of sizek, then the given instance is unrealizable.

Proof. Let the vertices u1; : : : ; uk form a clique in G. Consider the map� : V [Vk ! V where

� (u) = u for u 2 V and � (vi) = ui for vi 2 Vk . For sake of contradiction, let P be a query consistent

with the input-output example, and hence, clique (v1) 2 JPK(I). The derivation tree for clique (u1)

in P can be constructed by replacing eachv by � (v) in the derivation tree of clique (v1) in P.

Hence,u1 2 JPK(I) \ O� , contradicting the assumption that P is consistent with the input-output

example.

Lemma 2.4.1, and Claims 2.4.3, 2.4.4, 2.4.5 allow us to conclude the Relational Query Synthesis

Problem is co-NP complete. Moreover, theQO+ construction synthesizes a polynomial sized relational

query using the input-output examples.

16

CHAPTER 3

Synthesis of Conjunctive Queries

In this chapter, we describe the core algorithm for example-guided synthesis of relational queries.

For the purpose of this chapter, we will be using the running example of tra�c crashes.

3.1. Searching Patterns of Co-occurence

Consider the alternative representation of the training data shown in Figure 3.1, summarizing input

facts I . We call this the constant co-occurrence graphGI : every constant is mapped to a vertex,

and the edges indicate the presence of a tuple in which the constants occur simultaneously.

In order to synthesize a query, we pick an output tuple, sayWhitehall, and focus on the por-

tion of the graph surrounding it. Of the 18 tuples present in the data, only 4 tuples refer

to this street: GreenSignal (Whitehall), HasTraffic (Whitehall), Intersects (Whitehall, Broadway), and

Intersects (Broadway, Whitehall). With these tuples, we can identify the following candidate queries:

q1 : Crashes(x) :- GreenSignal (x);

q2 : Crashes(x) :- HasTraffic (x);

q3 : Crashes(x) :- Intersects (x; y); and

q4 : Crashes(x) :- Intersects (y; x):

Notice that these queries produce the desirable tuplesCrashes(Whitehall) and Crashes(Broadway), but

also produce several undesirable tuples: two undesirable tuples byq1 and q2, and three undesirable

tuples by q3 and q4 respectively.

Each of these candidate programs can be made more speci�c by considering sets of tuples. For

example, one can extend the setC1 = f GreenSignal (Whitehall) g which producesq1 with a new

17

Figure 3.1: The inducedconstant co-occurrence graph, GI . We would like to explain the accidents
occurring on Broadwayand Whitehall.

tuple HasTraffic (Whitehall) to obtain:

q5 : Crashes(x) :- GreenSignal (x); HasTraffic (x): (3.1)

In contrast to q1, this query only produces one undesirable tuple, namely,Crashes(William St).

Instead of directly enumerating candidate programs, our insight is to enumerate the subsets of the

constant co-occurrence graph to generate candidates. Our algorithm tracksenumeration contexts:

each such context is a set of input tuples obtained from a connected sub-graph of the co-occurrence

graph GI , and can be generalized into a candidate program by systematically replacing its constants

with fresh variables.

Our main insight is that the only tuples which increase the speci�city of an enumeration context are

those which are directly adjacent to it in the co-occurrence graph. For example, consider context

C5 = f GreenSignal (Whitehall); HasTraffic (Whitehall) g which produces the queryq5 in Equation 3.1.

18

Figure 3.2: Architecture of the EGS algorithm.

Observe in Figure 3.1 that there are exactly two tuples incident onC5: t = Intersects (Whitehall;

Broadway) and t0 = Intersects (Broadway; Whitehall). We conclude that there are exactly two contexts

which need to be enumerated as successors toC5, namely: C6 = C5 [f tg and C7 = C5 [f t0g. These

contexts respectively produce the candidate queries:

q6 : Crashes(x) :- GreenSignal (x); HasTraffic (x); Intersects (x; y); and

q7 : Crashes(x) :- GreenSignal (x); HasTraffic (x); Intersects (y; x):

The EGS algorithm repeatedly strengthens the enumeration contextC with new tuples until it �nds

a solution program. For example, after �ve rounds of iterative strengthening, the context grows to

include the tuples:

C = f GreenSignal (Whitehall); HasTraffic (Whitehall);

Intersects (Whitehall; Broadway);

GreenSignal (Broadway); HasTraffic (Broadway) g; (3.2)

which, when used to explainCrashes(Whitehall), produces the desired solution in Equation 2.1.Fig-

ure 3.2 presents the overall architecture of theEGS algorithm. It maintains a set of enumeration

contexts, organized as a priority queue, and repeatedly extends each of these contexts with a new

tuple, in an example-guided manner. Each enumeration context can be naturally abstracted into

a candidate query, as discussed in Section 2.2.2, and the procedure returns as soon as it �nds an

explanation which is consistent with the data. The priority function depends on both the size of the

candidate program, and its accuracy on the training data, and we formally de�ne it in Section 3.2.3.

Additionally, because the training data is �nite, the co-occurrence graph is also �nite, and therefore

the EGS algorithm will eventually exhaust the space of enumeration contexts. At this point,

Lemma 3.2.2 guarantees the non-existence of a program which is consistent with the training data,

19

thus proving the completeness of the synthesis procedure.

While the approach of iteratively strengthening candidate queries is similar to that followed by

decision tree learning algorithmsQuinlan (1986); Grzymala-Busse(1993), a notable di�erence is

the presence of the queue inEGS, which holds alternative candidate explanations. The di�erence

between the two algorithms is therefore similar to the di�erence between breadth-�rst search and

greedy algorithms, with EGS being biased towards producing small candidate programs.

In our example, a syntax-guided prioritization would be forced to enumerate all programs with

less than �ve joins, which induces an extremely large search space:Scythe takes approximately

16 seconds to �nd a consistent query andILASP takes approximately 2 seconds, while theEGS

algorithm returns in less than one second.

3.2. Example-Guided Synthesis Algorithm

In this section and the next, we formally describe the EGS algorithm for synthesizing relational

queries. For ease of presentation, we �rst develop our core ideas for the case of a single desirable

output tuple with a single column, t = R(c). Given a set of input tuplesI , the target tuple t, and a set

of undesirable output tuples, theExplainCell algorithm produces a query which is consistent with

the example(I; f tg; O�). We extend this synthesis procedure to solve for multi-tuple multi-column

output relations in Section 3.3.

The query is constructed by analyzing patterns of co-occurrence of constants in the examples,

which we summarize using theconstant co-occurrence graph. We �rst formalize this graph, and

then introduce enumeration contextsas a mechanism to translate these patterns into relational

queries. We conclude the section with a description of theExplainCell procedure which searches

for appropriate enumeration contexts using the co-occurrence graph.

3.2.1. The Constant Co-occurrence Graph

Recall that the data domain D is the set of all constants which appear in the input tuplest 2 I .

Then, the constant co-occurrence graph, GI = (D; E), is a graph whose vertices consist of constants

20

in D and with labeled edgesE which are de�ned as:

E = f ci
R��! cj j input tuple R(c1; c2; : : : ; ck) 2 I g: (3.3)

In other words, there is an edgec ! R c0 i� there is a tuple t in the input relation R which

simultaneously contains both constantsc and c0. Observe that this makes each edge bi-directional.

If constants c and c0 occur in a tuple t, we say that t witnessesthe edgec ! R c0. The constant

co-occurrence graph induced by the example of Figure 2.1b is shown in Figure 3.1.

The main insight is that patterns in the training data can be inferred by examining the co-occurrence

relationships between constants. We express these patterns as subgraphs of the co-occurrence

graph: as a consequence, the �nalExplainCell procedure of Algorithm 1 reduces to the problem of

enumerating subgraphs ofGI .

3.2.2. Enumeration Contexts

An enumeration context is a non-empty subset of input tuples,C � I . Equation 3.2 shows an

example of an enumeration context. As Algorithm 1 exploresGI , it builds these contexts out of the

tuples which witness each subsequent edge.

We can naturally translate a context C = f R1(~c1); R2(~c2); : : : ; Rn (~cn)g and an output tuple t = R(~c)

into a conjunctive query rC7! t as follows:

rC7! t : R(~v) :- R1(~v1); R2(~v2); : : : ; Rn (~vn); (3.4)

where the headR(~v) and body literals Ri (~vi) are obtained by consistently replacing the constants in

the output tuple t = R(~c) and in the contributing input tuples R(~ci) with fresh variables vc. We say

that a context C explains a tuple t when the rule rC7! t is consistent with (I; f tg; O�).

Recall from Section 2.2.2 that a rule may be instantiated by replacing its variables with constants,

analogous to the process of specialization. In contrast, the procedure to obtainrC! t from the context

C and output tuple t may be viewed as a process of generalization. This correspondence between

21

enumeration contexts and rule instantiations allows us to state the following theorem:

Theorem 3.2.1. Given an exampleM = (I; f tg; O�), there exists a contextC � I explaining t if

and only if there exists a conjunctive query consistent with the example.

Proof Sketch. Clearly, if context C explains t, then, by de�nition, rC7! t is consistent with example

M . Conversely, if there is a conjunctive queryQ consistent with M , then let v be a valuation map

deriving t in query Q. Then, consider the contextC � I to be the set of tuples that occur in the

premise of the rule inQ when it is instantiated with v. Observe that rC7! t is the rule in query Q

and hence the contextC � I explains t.

If a context C explains a tuple t and if C � C0, then C0 also explainst. We can therefore apply

Theorem 3.2.1 with the largest available context,C = I , i.e. the set ofall input tuples, to prove the

following lemma, which establishes the decidability of the relational query synthesis problem:

Lemma 3.2.2. The given instance of the relational query synthesis problemM = (I; f tg; O�) admits

a solution if and only if r I 7! t is consistent with M .

3.2.3. Learning Conjunctive Queries

See Algorithm 1 for a description of theExplainCell procedure, which forms the core of the EGS

synthesis algorithm. See Figure 3.2 for a graphical description of its architecture.

The algorithm maintains a priority queue L of enumeration contexts and iteratively expands these

contexts by drawing on adjacent tuples from the constant co-ocurrence graphGI . It initializes

this priority queue in Step 2, with all input tuples t0 that contain the target concept c. In

the case of our running example, to explain the tupleCrashes(Broadway), we would initialize L

to f C1; C2; C3; C4g, with C1 = f GreenSignal (Broadway)g, C2 = f HasTraffic (Broadway)g, C3 =

f Intersects (Whitehall; Broadway)g, and C4 = f Intersects (Broadway;

Whitehall)g. These contexts result in the queriesq1� q4 shown in Section 3.1. It subsequently iterates

over the elements ofL , and enqueues new contexts for later processing in Step 3(c)ii. In Step 3b,

the algorithm returns the �rst enumeration context which is found to be consistent with the training

22

data.

Algorithm 1 ExplainCell (I; R (c); O�), where t = R(c) is an output tuple with a single �eld.
Produces an enumeration contextC � GI such that rC7! t is consistent with the example(I; f tg; O�).

1. Let GI = (D; E) be the constant co-occurrence graph.
2. Initialize the priority queue, L :

L := ff t0g j t0 2 I contains the constantcg: (3.5)

Each elementC 2 L is a subset of the input tuples,C � I .
3. While L 6= ; :

(a) Pick the highest priority element C 2 L, and remove it from the queue:L := L n f Cg.
(b) If rC! t is consistent with (I; f tg; O�), then return C.
(c) Otherwise:

i. Let N = f c 2 D j 9t0 2 C where t0 contains cg.
ii. For each constantc 2 N , edgee = c ! R c0 in GI , and for each additional input tuple

t0 2 I n C which witnessese, update:

L := L [f C [f t0gg:

4. Now, sinceL = ; , return unsat .

A critical aspect of the ExplainCell algorithm is the priority function which arranges elements of

the queueL. The EGS algorithm permits two choices for this priority function: We could consider

the enumeration contexts in ascending order of their size, so that:

p1(C) = �j Cj:

This would guarantee the syntactically smallest solution which is consistent with the data. Alterna-

tively, we could organize the enumeration contexts in lexicographic order of theirscores, de�ned as

the number of undesirable tuples eliminated per literal,

score(C) =
jO� n JrC7! t K(I)j

jCj
;

and the size of the context, so that:

p2(C) = (score(C); �j Cj):

23

For example, the score of the contextsC1 from Section 3.1 is1:0 tuples=literal , as it eliminates one

undesirable tuple,Crashes(Wall St), using one literal. On the other hand, the contextC3 does not

eliminate any undesirable tuples, so that its score is0. Similarly, the context C5 eliminates two

undesirable tuples,Crashes(Wall St) and Crashes(Liberty St) using two literals, therefore resulting in

the score1:0 tuples=literal. Therefore we havep2(C1) > p 2(C5) > p 2(C3).

In this way, the priority function p2 simultaneously prioritizes enumeration contexts with high

explanatory power and small size, and is inspired by decision tree learning heuristics which greedily

choose decision variables to maximize information gain. In practice, we have found this functionp2

to result in faster synthesis times thanp1 without incurring a signi�cant increase in solution size,

and we therefore use this function in our experiments in Section 3.4. We remark that the desired

solution may not always be the smallest, and searching for small solutions can result in over�tting.

We further discuss over�tting in Section 3.4.

After enumerating all possible contexts, if the algorithm has not found any context which explains

the training data, Lemma 3.2.2 implies that the problem does not admit a solution. The following

theorem formalizes this guarantee:

Theorem 3.2.3 (Completeness). Given an exampleM = (I; f tg; O�), where t = R(c),

ExplainCell (I; t; O �) returns a contextC � I such that the queryrC7! t is consistent with(I; f tg; O�)

if such a query exists, and returnsunsat otherwise.

Proof Sketch. In the �rst direction, if ExplainCell (I; t; O �) returns a context C then, by construc-

tion, rC7! t is consistent with (I; f tg; O�). To prove the converse, we assume for simplicity that the

graph GI is connected. IfExplainCell (I; t; O �) returns unsat , then the last context considered in

the loop in Step 3 must have been the set of all input tuples,C = I . From Lemma 3.2.2, it follows

that the problem is unsolvable.

24

Kopa Kiara

Simba

Mufasa Sarabi

Nala

Jasiri Sara�na

Figure 3.3: Example of a genealogy tree, used as training data to learn the programsPgrandparent

and Psibling . Sarabi, Sara�na, Nala, and Kiara are female whileMufasa, Jasiri, Simba, and Kopa are
male.

3.3. Extensions of the Synthesis Algorithm

In this section, we extend the centralExplainCell procedure described in Algorithm 1 with the

ability to synthesize output relations of any arity and with any number of tuples, and also to

synthesize queries which require negation.

As an example, we consider the problem of learning kinship relations from the training data in

Figure 3.3. We have two binary (two column) input relations, father and mother, and we would

like to learn queries which describegrandparents and siblings .

3.3.1. Multi-Column Outputs

In order to support multi-column outputs, we explain the �elds of the tuple one at a time. Say the

output table has k columns, and we wish to explain a tuple of the formt = R(c1; c2; : : : ; ck). We

modify the ExplainCell procedure to synthesize explanatory contextsC1 � C2 � : : : � Ck � I such

that each context Ci explains the �rst i �elds of t, that is, they explain t[1::i] = Ri (c1; c2; : : : ; ci).

We call this object the i -slice of t. We also refer to slices of entire relations such asO+ [1::i] and

O� [1::i] by lifting the slicing operation to sets of tuples in the natural manner.

For example, consider the task of learning thegrandparent relation from the input data in Figure 3.3.

Consider the output labels:

O+ = f grandparent (Sarabi; Kiara)g

O� = f grandparent (Sarabi; Simba)g

25

Then, in order to �nd a query consistent with M = (I; O + ; O�), we will �rst search for a context

C1 � I which explains t[1] = grandparent 1(Sarabi), and then grow it to C2 which explains

t = t[1::2] = grandparent (Sarabi; Kiara).

Observe that the negative examples also need to besliced appropriately. In this example, the search for

a context consistent with (I; O + [1]; O� [1]) would fail sinceO+ [1] = O� [1] = f grandparent 1(Sarabi)g,

making this instance unrealizable. We therefore de�ne theforbidden i -slice, Fi as the set of tuplest f =

(c0
1; c0

2; : : : ; c0
i) of arity i such that every extension oft f into a k-ary tuple, te = (c0

1; c0
2; : : : ; c0

i ; : : : ; c0
k),

is destined to appear inO� : te 2 O� . We achieve this by formally de�ning:

Fi = O� [1::i] n (U n O�)[1::i]; (3.6)

where U = D k is the set of all k-ary tuples over the data domain. In the grandparent example we

have F1 = ; , resulting in the sliced example:

M 1 = (I; f t[1]g; F1) = (I; f grandparent 1(Sarabi)g; ;):

Now, we wish to �nd C1 � C2 � I such that rC17! t [1] is consistent with M 1 and rC27! t is consistent

with M . We can �nd C1 by calling ExplainCell (I; t [1]; F1), which will give us the result:

C1 = f mother(Sarabi; Simba)g:

To grow it to C2, we modify the ExplainCell procedure to initialize the worklist L in Equation 3.5

as:

L = f C1 [f tg j 8t 2 I containing Kiarag

= f C1 [f father (Simba; Kiara)g;

C1 [f mother(Nala; Kiara)gg:

26

More formally, we de�ne the ExplainCell Ci � 1
(I; t [1::i]; Fi) procedure by modifying the initialization

step of Equation 3.5 so that:

L = f Ci � 1 [f t0g j t0 2 I contains t[i]g: (3.7)

We then follow the same process to expand the subgraph one edge at a time, which in case of our

running example produces the context:

C2 = f mother(Sarabi; Simba); father (Simba; Kiara)g

We formally present the ExplainTuple procedure in Algorithm 2. The completeness guarantee of

Theorem 3.2.3 carries over as:

Lemma 3.3.1. Given a contextCi � 1 which explains a sliced exampleM i � 1 = (I; f t[1:::(i � 1)]g; Fi � 1),

ExplainCell Ci � 1
(I; t [1::i]; Fi) returns a context Ci � I such that the queryrCi 7! t [1::i] is consistent

with M = (I; f t[1::i]g; Fi) if such a query exists, and returnsunsat otherwise.

Algorithm 2 ExplainTuple (I; t; O �). Given a tuple t with arity k � 1, synthesizes a contextC
which is consistent with the example(I; f tg; O�).

1. Let t = R(c1; c2; : : : ; ck).
2. Initialize the context C0 = ; .
3. For i 2 f 1; 2; : : : ; kg, in order:

(a) Construct the forbidden i -slice, Fi as in Equation 3.6.
(b) De�ne Ci = ExplainCell Ci � 1

(I; t [1::i]; Fi). If the procedure fails, return unsat .
4. Return Ck .

3.3.2. Unions of Conjunctive Queries

Observe that while the context generated above captures the concept:

grandparent (x; y) :- mother(x; z); father (z; y);

the assumption of a single output tuple does not allow us to express the full grandparent relation

(involving both grandfather and grandmother concepts). We therefore extend the tool to allow for

multiple positive output tuples and extend the query language to support disjunctions, that is, we

27

now synthesize unions of conjunctive queries (UCQ). Suppose we are given:

O+ = f grandparent (Sarabi; Kiara); grandparent (Mufasa; Kopa);

grandparent (Jasiri; Kopa); grandparent (Sara�na; Kiara)g

O� = f grandparent (Mufasa; Kiara); grandparent (Sara�na; Nala)g

In order to �nd a UCQ consistent with M = (I; O + ; O�), we use a divide-and-conquer strategy: We

separately synthesize a conjunctive query that explaining each desired tuple, and then construct

their union. Because the rules are non-recursive, it follows that their union is consistent with the

training data. In the running example, we get the following queries for each of the four tuples inO+ :

q1 : grandparent (x; y) :- father (x; z); father (z; y):

q2 : grandparent (x; y) :- father (x; z); mother(z; y):

q3 : grandparent (x; y) :- mother(x; z); father (z; y):

q4 : grandparent (x; y) :- mother(x; z); mother(z; y):

Observe that the UCQ with the rules f q1; q2; q3; q4g is consistent with (I; O + ; O�). This approach is

similar to the technique used byeusolver which �rst synthesizes small programs that conform to

portions of the full speci�cation, and then glues them together using conditional statements and

case splitting operators provided by the target language Udupa et al. (2013).

In order to implement this procedure, we maintain a set of unexplained output tuplesO?, which

is initialized to O+ , and repeatedly generate conjunctive queries explaining tuplest 2 O? until

all tuples are explained. We construct these conjunctive queries by invoking theExplainTuple

procedure of Section 3.3.1. We formally describe this process in Algorithm 3. Using the completeness

guarantee of theExplainTuple procedure, we have:

Lemma 3.3.2. Given exampleM = (I; O + ; O�), LearnUCQ(I; O + ; O�) returns a union of conjunc-

tive queries Q consistent with M , if such a query exists, and returnsunsat otherwise.

28

Algorithm 3 EGS(I; O + ; O�). Given an exampleM = (I; O + ; O�), �nds a UCQ Q consistent
with M if such a query exists, and returnsunsat otherwise.

1. Initialize Q to be the empty query, Q := ; .
2. Initialize the set of still-unexplained tuples, O? := O+ .
3. While O? is non-empty:

(a) Pick an arbitrary tuple t 2 O?.
(b) Synthesize an explanation,

Ct = ExplainTuple (I; t; O �);

and construct qt = rCt ! t .
(c) If synthesis fails, return unsat .
(d) Otherwise, update:

Q := Q [f qt g; and O? := O? n Jqt K(I):

4. Return Q.

3.3.3. Negation

Finally, we extend the EGS algorithm to synthesize queries with negation. Similar to propositional

formulas, UCQs also admitnegation normal forms, where the negation operators are pushed down

all the way to the individual literals. For example, a rule of the form:

r : R(x; y; z) :- : (R1(x); R2(y)) ; R3(z):

can instead be written as the disjunction of two rules:

r1 : R(x; y; z) :- : R1(x); R3(z):

r2 : R(x; y; z) :- : R2(y); R3(z):

We therefore limit ourselves to learning UCQs in negation normal form. In our implementation, the

user identi�es input relation names that can possibly be negated in the �nal result. For an input

relation name R of arity k, let I (R) denote the set of tuples inI labeled with R. Given the data

29

domain D , we explicitly construct the negated relation : R with the following tuples:

I (: R) = f R(~c) j ~c2 D k and R(~c) 62I (R)g:

We add : R to the set of input relations and �nd a solution using Algorithm 3, exactly as before.

Consider, for example the task to learn the sibling relation from the training data in Figure 3.3.

Suppose we are given:

O+ = f sibling (Kopa; Kiara)g

O� = f sibling (Kopa; Kopa)g:

We can show that no strictly positive program exists which can distinguishsibling (Kopa; Kiara) from

sibling (Kopa; Kopa) as our hypothesis space does not support the inequality check,Kopa6= Kiara.

If we allow negation, a query consistent with(I; O + ; O�) is:

sibling (x; y) :- mother(z; x); mother(z; y); : (x = y):

We can encode the relation: (x = y) using a two-column relation table that pairs unequal constants.

We call this relation neq, and de�ne it as:

I (neq) = f (c; c0) 2 D 2 j c 6= c0g:

With this additional input relation, EGS is able to solve for the desired concept in less than one

second.

3.4. Experimental Evaluation

We have implemented theEGS algorithm in Scala comprising 2200 lines of code. In this section, we

evaluate it to answer the following questions:

30

Q1: Performance: How e�ective is EGS on synthesis tasks from di�erent domains in terms of

synthesis time?

Q2: Quality of Programs: How do the programs synthesized byEGS measure qualitatively?

Q3: Unrealizability: How doesEGS perform on synthesis tasks that do not admit a solution?

We present our benchmark suite in Section 3.4.1 and three baselines to compareEGS against in

Section 3.4.2. We present our empirical �ndings forQ1� Q3 in Sections 3.4.3�3.4.5.

We performed all experiments on a server running Ubuntu 18.04 LTS over the Linux kernel version

4.15.0. The server was equipped with an 18 core, 36 thread Xeon Gold 6154 CPU running at 3

GHz and with 394 GB of RAM. Note that EGS is single-threaded and is CPU-bound rather than

memory-bound on all benchmarks. Therefore, similar results should be obtained on contemporary

laptops and desktop workstations with similarly-clocked processors.

3.4.1. Benchmark Suite

We evaluate the EGS algorithm on a suite of 86 synthesis tasks. Of these, 79 admit a solution,

meaning there exists a relational query which can perfectly explain their input-output examples.

These 79 benchmarks are from three di�erent domains: (a) knowledge discovery, (b) program analysis,

and (c) database queries.

Knowledge discovery.These benchmarks comprise 20 tasks that involve synthesizing conjunctive

queries and unions of conjunctive queries frequently used in the arti�cial intelligence and database

literature.

Program analysis. These benchmarks comprise 18 tasks that involve synthesizing static analysis

algorithms for imperative and object-oriented programs.

Database queries.These benchmarks comprise 41 tasks that involve synthesizing database queries.

These tasks, originally from StackOver�ow posts and textbook examples, are obtained from Scythe's

benchmark suite Wang et al. (2017b).

31

There are seven additional benchmarks that do not admit a solution. We describe them in Section

3.4.5.

In each of the benchmark is provided with an exhaustive set of positive output tuples. The tuples

not in the positive set are labelled negative. This data is provided upfront and not in an interactive

fashion.

Table 3.1 presents characteristics of all 86 benchmarks, including the number of input-output

relations, number of input-output tuples, and whether the intended programs involve disjunctions

(_) or negations (:). In total, 17 tasks involve disjunctions while 9 of them involve negations.

3.4.2. Baselines

We compareEGS with three state-of-the-art synthesizers that use di�erent synthesis techniques:

Scythe Wang et al. (2017b), which uses enumerative search;ILASP Law et al. (2020b), which

is based on constraint solving; andProSynth Raghothaman et al. (2020b), which uses a hybrid

approach by combining search with constraint solving.

ILASP and ProSynth phrase the synthesis problem as a search through a �nite space of candidate

rules. In order to evaluate them on our benchmark suite, we generated candidate rules for each

benchmark usingmode declarationsin ILASP . A mode declaration is a syntactic restriction on the

candidate rules such as the length of the rule, number of times a particular relation can occur, and

the number of distinct variables used. In our experiments we only focus on the number of times an

input relation occurs in a rule, and the number of distinct variables used. Providing a suitable set of

mode declarations is a delicate balancing act: generous mode declarations can hurt scalability while

insu�cient mode declarations can result in insu�cient candidate rules to synthesize the desired

program. Given a query, one can recover the minimum mode declarations required to generate it. For

example, for the program in Equation 2.1 in the running example, we have the mode declarations:

#modeb(2, GreenSignal(var(V)), (positive)).

#modeb(2, HasTraffic(var(V)), (positive)).

#modeb(1, Intersects(var(V),var(V)), (positive)).

32

Table 3.1: Benchmark characteristics. For each benchmark, we summarize the number of input-output
relations, number of input-output tuples, and whether the intended programs involve disjunctions
(_) or negations (:).

Input Output Features
Name #Relations #Tuples #Relations #Tuples

Knowledge Discovery
abduce 2 12 1 8 _
adjacent-to-red 4 18 1 4
agent 4 106 1 5 :
animals 9 50 4 17
cliquer 1 4 1 4
contains 2 14 1 4
grandparent 2 8 1 7 :
graph-coloring 2 19 1 3
headquarters 2 9 1 4
in�ammation 12 640 1 49 _ ; :
kinship 2 8 1 5 _
predecessor 1 9 1 9
reduce 2 10 1 6
scheduling 2 8 1 1 :
sequential 2 9 3 17 _
ship 3 15 1 5
son 3 12 1 3
tra�c 3 18 1 2
trains 12 223 1 5
undirected-edge 1 3 1 5 _

Program Analysis
arithmetic-error 3 11 1 1
block-succ 3 21 1 1
callsize 3 21 1 3
cast-immutable 3 15 1 2
downcast 5 89 4 175 :
increment-�oat 4 16 1 1
int-�eld 3 9 1 1
modi�es-global 3 9 1 1
mutual-recursion 1 13 1 3
nested-loops 3 39 1 3
overrides 2 6 1 1
polysite 3 97 3 27
pyfunc-mutable 3 19 1 2
reach 3 17 1 2
reaching-def 2 6 1 1
realloc-misuse 3 18 1 1
rvcheck 4 74 1 2
shadowed-var 2 12 1 1

Database Queries
sql 1 � 41 � 6 � 65 1 � 20 _ ; :

Unsynthesizable Benchmarks
isomorphism 1 2 1 1 -
sql 42 � 44 � 2 � 8 1 � 4 -
tra�c-extra-output 3 18 1 3 -
tra�c-missing-input 2 8 1 2 -
tra�c-partial 3 11 1 1 -

33

#modeh(Crashes(var(V))).

#maxv(2).

This speci�es for each candidate rule the output relation isCrashes, the input relations GreenSignal

and HasTraffic occur at most twice, Intersects occurs at most once, and at most two distinct

variables are used. This particular choice of modes generates 97 rules. Increasing the mode

declarations results in a larger space of candidate rules. For our suite of benchmarks, we observed

that a given input relation occurs in a rule at most thrice (such as insequential), and the number

of distinct variables in a single rule are at most 10 (as inincrement-float). This allowed us to

generate two set of candidate rules per benchmark:

1. Task-Agnostic Rule Set: Candidate rules where any given input relation occurs at most thrice

and the number of distinct variables is at most 10, and

2. Task-Speci�c Rule Set: Candidate rules generated using the minimum mode declarations for the

desired program.

With a threshold of 300 seconds, the candidate rule enumerator timed out when generating the

task-agnostic rule set for 31 of the 79 benchmarks and the task-speci�c rule set for 2 benchmarks.

We summarize the number of candidate rules generated per benchmark in Appendix A.

Similar to EGS, Scythe does not require a set of candidate rules, but the fragment of relational

queries targeted byScythe is SQL (with selection, join, projection, constant comparison, aggregation,

and union). In order to compare the four tools fairly, we disableScythe 's support for aggregations.

Also, Scythe supports complete labeling, that is every tuple either occurs inO+ or O� ; therefore,

we consider the set of negative examplesO� to be all tuples of appropriate arity that do not occur

in O+ .

3.4.3. Q1: Performance

We ran EGS and the three baselines (withProSynth and ILASP with two sets of candidate rules

each) on all 79 benchmarks with a timeout of 300 seconds. We tabulate the results in Appendix A,

and present a graphical summary in Figure 3.4.

34

Figure 3.4: Results of our experiments using EGS, Scythe, ILASP, and ProSynth to solve a suite of
79 benchmarks. A datapoint (n; t) for a particular tool indicates that it solved n of the benchmarks
in less than t time. Note EGS was the only tool to solve all 79 benchmarks. L and F refer to
Task-Speci�c and Task Agnostic Rule Sets respectively.

35

EGS runs fastest with an average runtime of under a second and no timeouts. In fact, for all but 6

benchmarks,EGS returns a solution in less than one second, and never takes more than 33 seconds

for any benchmark. Scythe takes an average of 7.6 seconds for 62 benchmarks and times out on 17

of the rest.

When provided with a task-speci�c rule set, both ILASP and ProSynth exhibit competitive

performance on a subset of the benchmarks, and return a solution in less than one second for 57 and

51 benchmarks respectively. Still, their performance su�ers on the more complicated benchmarks,

and they exhibit timeouts on 7 and 21 of the 79 benchmarks, respectively. However, when provided

with a task-agnostic rule set, the performance of both tools quickly degrades, and they timeout on

51 and 77 benchmarks, respectively.

All three baselines are disadvantaged by the enumeration required, and this causesEGS to outperform

them, especially on benchmarks with larger numbers of input tuples, larger numbers of relations, or

complex target queries.ProSynth and ILASP sometimes outperformEGS when provided with a

task-speci�c choice of target rules on particularly simple benchmarks. However, we emphasize that,

in all these cases, all three tools solve the problem in less than one second.

Notably, there are four benchmarks whereEGS succeeds, but where all other tools time out:animals ,

sequential , downcast, and polysite . Upon examination, these benchmarks reveal the situations

which cause the baseline techniques to underperform. For example, theanimals benchmark involves

classifying animals into their taxonomic classes based on their characteristics which are represented

through 9 input relations. The larger number of input relations induces a complex search space

causingScythe to timeout. Furthermore, ILASP enumerates over 2000 candidate rules, even in

the task-speci�c setting, causing bothILASP and ProSynth to also timeout.

3.4.4. Q2: Quality of Programs

We investigated the quality of the synthesized programs for each of the 79 benchmarks and observed

that the program synthesized byEGS captures the target concept. For all but two cases, the programs

generated byEGS also matched a program crafted by a human programmer. The two outliers

36

are sequential and sql36 . In sequential , one of the tasks is to learn thegreat-grandparent

relation. The desired program has eight rules (each representing a combination of themother and

father input relations to form rules of size three); however, we are provided with only two output

tuples, and hence we learn a program with 2 rules that correctly explains the data. This can be �xed

by adding more training data such that it covers all cases of the target concept. In case ofsql36 ,

the task involves comparing numbers; however, the input only includes the successor relation. The

output of EGS therefore unfolds the greater-than relation using a four-way join of successors. While

this is the smallest query that one can generate consistent with the examples, a more succinct query

can be learned if we are provided an input table for the greater-than relation. In general, we observe

over�tting when either there exists a program consistent with the input-output examples that is

smaller than the desired program (assequential) or when the training data does not represent all

of the desired features of the target program (as insql36). In general, one can overcome these cases

by providing richer input-ouput examples.

One may also observe over�tting when our heuristic generates a consistent but larger program. This

is possible as the priority function greedily optimizes over explanatory power and size simultaneously.

We have not observed this case in any of our 78 benchmarks.

We also manually inspected the outputs of the baselines. The programs synthesized byProSynth

and ILASP are identical to ours in the cases when the tools terminate (in both, task-agnostic and

task-speci�c rule sets). However, the programs synthesized byScythe are neither small nor easy to

generalize. In many cases, including knowledge discovery benchmarks such asadjacent-to-red ,

graph-coloring , and scheduling , we �nd the synthesized queries to be inscrutable. Appendix B

compares the output ofEGS and Scythe on these three benchmarks.

3.4.5. Q3: Unrealizability

To test the completeness guarantees provided by theEGS algorithm, we evaluated it on 7 unrealizable

benchmarks. The results of these experiments are summarized in Table 3.2.

The �rst benchmark, isomorphism, is the simplest benchmark which does not admit a solution. In

37

Table 3.2: Unrealizable benchmarks. For each benchmark, we summarize runtimes onEGS and
the three baselines. Note thatScythe over�ts sql42 and traffic-partial using operators like
comparisons and negation.

Benchmark EGS Scythe ILASP ProSynth

isomorphism 0.1 - 0.2 12.4
sql42 0.2 1.79 0.6 -
sql43 0.1 - - -
sql44 0.1 - - -
traffic-extra-output 0.2 - 0.2 0.1
traffic-missing-input 0.1 - 0.1 0.4
traffic-partial 59.5 2.33 0.2 1.5

this benchmark, we have the inputI = f edge(a; b); edge(b; a)g, and attempt to distinguish between

the two vertices by specifying the outputs,O+ = f ag and O� = f bg. From symmetry considerations,

it follows that the benchmark does not admit a solution, and our algorithm successfully reports this

in less than one second, whileScythe times out on this benchmark, andILASP and ProSynth

claim that there is no solution with respect to the given mode declarations.

We remark that while ILASP and ProSynth do not provide completeness guarantees like we do,

Lemma 3.2.2 allows us to also strengthen their claims. Observe that as the inputI has only two

tuples, and any rule explaining the tuple needs at most one join. This can be used to construct

an upper bound on the mode declaration which permitsILASP and ProSynth to also prove the

unrealizability of the benchmark. However, as these mode declarations grow with the setI , we

observe time outs in other unrealizable benchmarks.

The next three benchmarkssql42 � sql44 are sourced from theScythe 's benchmark suite, and

involve some form of aggregation, which is unsupported byEGS. The task in sql42 is to assign row

numbers to the tuples, in sql43 is to get the top two records grouped by a given parameter, and in

sql44 is to sum items using several IDs from another table.EGS proves the unrealizability of each

of these tasks in less than a second. Forsql42 , Scythe produces an over�tting solution (using

comparison operators) andILASP proves the absence of a solution in less than a second. The mode

declarations for these benchmarks were the same as that for the task-agnostic rule set.

The �nal three unrealizable benchmarks are modi�cations of the running example generated by

38

adding noise. In traffic-extra-output we have a constant in the output that does not occur

in the input, in traffic-missing-input we do not provide the Intersects input relation, and in

traffic-partial we remove certain input and output tuples which are essential to explain the

crashes. WhileScythe over�ts a solution to traffic-partial using negation,EGS takes about a

minute to prove that there cannot exist a solution which does not involve negation or aggregations.

39

CHAPTER 4

Synthesis of Queries with Comparison Operators

Unlike the queries discussed in Chapter 3, real world queries involve features beyond multi-column

outputs, disjunction, and negation. In particular, queries for practical application in domains

such as bioinformaticsSeo(2018), big-data analyticsShkapsky et al. (2016), roboticsPoole (1995),

networking Loo et al. (2009), and program analysisNaik et al. (2021b) require comparison predicates.

Consider the example of university records of students taking courses, subjects students are majoring

in, and departments in a university, as shown in Figure 4.1. Suppose the user intends to discover a

concept that explains students `Alice' and `Bob', but excludes `Charlie' and `David'. The simplest

explanation is that `Alice' and `Bob' take an undergraduatecourse (a course with ID less than 500)

in the Engineering school. This explanation can be expressed as the SQL query shown in Figure 4.1c.

The output examples, both positive and negative, are represented by entries from a single column

(or a subset of columns) as in Figure 4.1b. We illustrate the two aforementioned challenges using

this example.

Learning the join policy corresponds to learning the projections and joins that correspond to

the SELECTand FROMclauses in Figure 4.1c. Search-based query synthesis techniques have made

signi�cant strides in learning relational queries over multiple tables by e�ectively enumerating the

possible ways in which tables may be joined, thereby specializing in navigating the network of tables

in a relational database. ILP techniques use language bias mechanisms such as mode declarations

and meta-rules while program synthesis methods enumerate candidate programs using syntactic

constraints or an explicit list of candidate rules to de�ne a hypothesis space and explore the di�erent

key-foreign key pairs to join tables. Example-guided techniques rely on the underlying patterns in

the data to discover them. All of these techniques struggle to address the challenge of synthesizing

comparison predicates likecourseID < 500 or school = Engineering required by the target query.

Most query synthesis techniques require additional supervision from the user in the form of an

exhaustive list of constants that may be used in comparisons. On the other hand, decision tree

40

registration
studentID deptCode courseID

Alice Comp. 201
Alice Chem. 310
Alice Mech. 550
Bob Mech. 320
Bob Mech. 550

Charlie Chem. 310
David Comp. 500
David Mech. 502
Erin Chem. 310

department
deptCode school

Chem. Arts and Science
Comp. Engineering
Math. Arts and Science
Mech. Engineering

major
studentID deptCode

Alice Chem.
Bob Comp.

Charlie Math.
David Chem.
Erin Mech.

(a) Instances of tablesregistration , department , and major provided as the input relations I .

Positive Labels (O+)
Alice
Bob

Negative Labels (O �)
Charlie
David

(b) Labeled output examples O+ and O� .

SELECT registration :studentID

FROM registration JOIN department ON

registration :deptCode= department :deptCode

WHERE registration :courseID < 500AND

department :school = \ Engineering "

(c) The target SQL query QEX.

Figure 4.1: Example of a task to synthesize a relational query that takes instances of tables
registration , department , and major (as in 4.1a) as input relationsI , and outputs a set of student
constants that contains all elements ofO+ and does not contain any elements inO� (as in 4.1b).
The query in 4.1c is a solution to this task.

41

learning techniquesWu et al. (2007); Quinlan (1986) solve this problem in a limited setting in which

the data is provided as asingle table, where each row represents an instance of the input, and

each column represents a feature of the instanceMitchell (1997); Kumar et al. (2016). In such a

setting, the labeling is given by a partition of the instances intopositive and negativeexamples.

These techniques then construct classi�ers using greedy information gain heuristics to search for and

combine locally optimal comparison predicates.

However, using these techniques requires additional user supervision to produce the single table

they take as input. This is typically done by performing key-foreign key joins to construct such a

single table and then applying a feature selection methodGuyon et al. (2006). For example, the

user would have to provide the table from Figure 4.2a to the learning algorithm, along with the

correct labels for each row, to obtain the decision tree in Figure 4.2b that corresponds to theWHERE

clause in the target query. To obtain this table, the user must manually join theregistration and

department tables over thedeptCodecolumn. This process is tedious and prodigal as it requires a

careful analysis of the relational database, and errors in the process can introduce data redundancy

and impact the e�ciency of the learning algorithm. Manually doing so also becomes intractable for

databases with several tables, necessitating the automation of this process. Additionally, the user

must provide accurate labels to obtain the correct decision tree, though there is no clear way to do

so given only the output examples.

We thus observe a dichotomy of existing techniques � they either support multi-table databases

(as with search-based relational query synthesis) or excel at learning comparison predicates (as

in the case of decision trees), but not both. We leverage the strengths of the two paradigms to

design an end-to-end algorithm for the synthesis of relational queries that feature both comparison

predicates and joins across multiple tables. Speci�cally, we focus on the class ofselect-project-join

(SPJ) queries like the one in Figure 4.1c which constitute an important fragment of relational

algebra Imieli«ski and Lipski (1984). These queries featureequi-joins, that is joins across tables

parameterized by a set of columns (with matching types), as well as categorical and numerical

comparisons for selections.

42

studentID deptCode courseID school label
Alice Comp. 201 Engineering X
Alice Chem. 310 Arts and Science �
Alice Mech. 550 Engineering �
Bob Mech. 320 Engineering X
Bob Mech. 550 Engineering �

Charlie Chem. 310 Arts and Science �
David Comp. 500 Engineering �
David Mech. 502 Engineering �
Erin Chem. 310 Arts and Science ?

(a) The result of joining registration and department over the deptCode
columns of each table.

courseID < 500?

�school = Engineering?

X �

yes no

yes no

(b) A decision tree for classifying rows of the table in
Figure 4.2a. It can be �attened to a Boolean formula
(courseID < 500)^ (school = Engineering).

Figure 4.2: Each candidate join can be translated to a single table. The table in 4.2a represents
the join of registration and department tables. The label column denotes the ideal labels which
result in learning the decision tree in Figure 4.2b. The user can annotate the rows of this table as
positive (X) or negative (�) to support decision tree learning. On running a decision tree algorithm
on it, we get the tree in Figure 4.2b.

43

Our key insight is to interpret the query synthesis problem as a search across a two-dimensional space

de�ned by comparison predicates on one side and candidate joins on the other. To e�ciently search

through this space, we introduce an interleaved approach that allows us to leverage the strengths of

both decision tree learning and search-based synthesis.

This interleaved approach seeks to address the challenge of �nding the optimal join policy by enumer-

ating di�erent projection and join policies as partial queries, each producing a single intermediate

table over which a decision tree could be learned to generate the comparison predicates for the target

query. We use the example-guided search strategyThakkar et al. (2021) to enumerate these queries

as it prioritize joins with fewer tables, thus synthesizing queries that contain only su�cient and

necessary features from the database.

Once we generate a candidate single intermediate table, the next step is to synthesize comparison

predicates. Classical decision tree learning techniques require the rows of the intermediate table to

be labeled, while in our setting, only certain constants (or tuples of constants) are labeled. There

is no straightforward way to handle this discrepancy without additional user supervision. We

fundamentally modify the classical decision tree learning algorithm ID3Quinlan (1986) by changing

the de�nition of entropy and information gain used by it and present it in Section 4.1.2.

Together, the search for candidate joins and the modi�ed decision tree learning procedure can work in

tandem to synthesize the relational queries with categorical and numerical comparisons. In practice,

our algorithm synthesizes queries that are general (that is, it does not over�t the data) and of minimal

size. We also prove the completeness of the algorithm�it synthesizes a query consistent with the

training data i� there exists such a query. We implement this interleaved approach asLibra , and

evaluate it on a benchmark suite of 1,475 instances of SPJ queries from theSpider Yu et al. (2018)

and Geography Finegan-Dollak et al. (2018); Zelle and Mooney(1996); Iyer et al. (2017) datasets

over 160 di�erent databases, each with multiple tables.Libra solves 1,361 of these instances with a

timeout of 10 minutes per task, and takes 58.9 seconds on average per instance. We also compare

with state-of-the-art tools Scythe and PatSQL that can synthesize select-project-join queries. They

can solve 195 and 673 instances, and take 139.50 and 23.13 seconds on average per task respectively.

44

Figure 4.3: Architecture of the Libra algorithm. The algorithm interleaves decision tree learning
of comparison predicates with example-guided enumeration of candidate joins. Throughout, we
maintain the size of the program and check against this size to ensure that the synthesized query is
minimal among all consistent queries (subject to optimality of decision tree learning).

All the benchmarks solved by the baselines are also solved by at least one instance of our framework,

and our framework additionally solves a signi�cantly larger set of the total benchmarks which the

baselines fail to solve.

4.1. Algorithm

In this section we describe the end-to-endLibra algorithm, which takes input-output examples

E = (I; O + ; O�) as input and returns a relational queryQ consistent with E . Algorithm 4 summarises

the procedure and Figure 4.3 presents its architecture.

We start with an example-guided search to construct a partial query with projection and joins (and

without the comparisons for the selection operator). This partial query is constructed by analyzing

patterns of co-occurrence of constants in the input-output examples Section 4.1.1 formalizes these

patterns as enumeration contextsthat can be translate into partial queries with projection and join

operators. These correspond to the step 2 of the algorithm.

To synthesize categorical and numerical comparisons for the selection operator we turn to supervised

learning. We maintain the enumeration contexts in a priority queueL ordered by increasing size.

For each context C in L , we convert C into a single table Tc through a join of the input relation

tables that occur in C. This is followed by the modi�ed decision tree learning procedure (DTL)

which completes the query. This corresponds to step 4a-4c.

In step 4d, we expand the context by one tuple. This corresponds to considering a join with an

45

Algorithm 4 Libra (I; O + ; O�), where I is the set of input tuples, and O+ and O� are the sets of
positively and negatively labeled output tuples respectively.

1. Set ans = unsat and N = 1 .
2. For an arbitrary t 2 O+ , let Ct be the initial contexts that explain t as de�ned in Equation 4.1.

3. Initialize the priority queue as L = Ct .
4. While L is non-empty:

(a) Pick the smallest size elementC 2 L, and remove it from the queue:L := Lnf Cg.
(b) If jCj > N , exit the loop and go to Step 5.
(c) For each table TC constructed using Equation 4.4:

i. Let > be a node of an empty decision tree. RunDTL (TC ; > ; O+ ; O�).
ii. If DTL (TC ; > ; O+ ; O�) returns a tree � such that j� j + jCj � N and entropy of j� j

is 0,
A. Set ans = Q(TC ; �) as de�ned in Equation 4.6.
B. Set N = jCj + j� j.

(d) For each tuple t0 that shares a constant with a tuple in C, update:

L = L [f C [f t0gg:

5. Return ans.

(Alice, Mech., 550)

(Alice, Comp., 201)

(David, Comp., 500)

(Mech., Engineering)

(Comp., Engineering)

(Alice, Chem.)

(Charlie,Math.)

Figure 4.4: A collection of rows of the input table I . Two rows are shown connected with an edge if
they share a constant. The shaded part represents a contextC � I which corresponds to the join in
Equation 4.2.

additional table. Therefore, the steps 4a-4c explore comparison predicates and step 4d explores joins.

Through the two, we search through the two-dimensional search space.

Throughout the algorithm, we maintain the size of the queryQ as variableN and guarantee that the

query Q has minimal size among all queries consistent with the input-output example (subject to

the optimality of the decision tree). Additionally, if no such query exists, the algorithm terminates

and returns unsat . We prove this completeness result in Theorem 4.1.1.

46

4.1.1. Example-Guided Enumeration of Projection and Joins

An enumeration context is a non-empty subset of the input tuples,C � I . The shaded part

of Figure 4.4 corresponds to the contextC = f (Alice, Comp., 201); (Comp.,Engineering)g. An

enumeration context C � I is said to explain a tuple t 2 O+ when for each columnc of t, there is a

tuple tc 2 C such that for some columnc0 in tc, we havet:c = tc:c0.

Given a tuple t 2 O+ , we construct the initial set of enumeration contexts for step 2 of Algorithm 4

by considering enumeration contexts:

Ct = ff tc : for each columnc of t;

there exists a columnc0 of tc such that t:c = tc:c0gg
(4.1)

In step 4d we extend a contextC by adding a tuple t0 such that for somet 2 C, there is an edge

t ! t0 2 E with appropriate labels. One can translate a contextC = f t1; : : : ; tng and an output

tuple t into a partial query with projection and joins.

Consider the output `Alice' that is explained by the context

C = f (Alice, Comp., 201); (Comp., Engineering)g

. This can be translated to the query:

SELECT registration :studentID

FROM registration JOIN department

ON registration :deptCode= department :deptCode

(4.2)

This is because the constant `Alice' occurs in the columnstudentID of registration , and

the tuples from the tables registration and department share a constant for the columns

department .deptCode and registration .deptCode. In general, given an output tuple t and a

context C � I , we �rst consider the sequence of columns (T� 1 :c� 1 ; : : : T� k :c� k) from where we get the

47

constants in t. These will correspond to the columns for the projection operator. For each tuplet i in

C, we consider the tableTi . These will correspond to the tables to be joined. In order to construct

the parameters for the join, for eacht i 2 C, let E i be the set of predicates of the form(t i :c = t0:c0)

where t0 2 f t1; : : : ; t i � 1g. Then, we can construct the queries of the form:

SELECT(T� 1 :c� 1 ; : : : T� k :c� k)

FROM(: : : (T1 JOINT2 ON� 2) : : : JOINTn ON� n)
(4.3)

Where each� i is a conjunction of comparison predicates that label edges inE i . We consider all

possible non-empty subsets of the labels inE i , and therefore, for each pair(t; C) of output tuple

and context, there may be multiple candidate joins.

4.1.2. Supervised Learning of Comparisons for Selection

We now turn to decision trees to add a selection operator to the query in Equation 4.3. Our approach

is motivated by the Iterative Dichotomiser 3 (ID3) algorithm for learning decision trees Quinlan

(1986). We �rst need to convert the tables T1; : : : ; Tn in context C into one single tableTC . This is

achieved by implementing the join in Equation 4.3, that is we consider the output of the SQL query:

SELECT� FROM(: : : (T1 JOINT2 ON� 2) : : : JOINTn ON� n) (4.4)

This join produces a single table. As before, each context corresponds to multiple joins and hence

there are multiple candidates forTC . We consider all of them in our search.

We start by introducing some notation. Let
 be the schema of the output tuples, that is the types

of the columns from which we draw output tuples. Let �
 (TC) represent the projection ofTC to the

columns in
 . Then, the entropy of a nodeN is de�ned as:

p = P(O+ j�
 (TC); O+ [O�) =
j�
 (TC) \ O+ j

j�
 (TC) \ (O+ [O�)j

n = P(O� j�
 (TC); O+ [O�) =
j�
 (TC) \ O� j

j�
 (TC) \ (O+ [O�)j

48

TC with (school = Engineering)
studentID deptCode courseID school

Alice Comp. 201 Engineering
Bob Mech. 320 Engineering
Alice Mech. 550 Engineering
Bob Mech. 550 Engineering

David Comp. 500 Engineering
David Mech. 502 Engineering

(a) Table with rows of TC that satisfy the predicate
(school = Engineering).

TC with : (school = Engineering)
studentID deptCode courseID school

Alice Chem. 310 Arts and Science
Charlie Chem. 310 Arts and Science

Erin Chem. 310 Arts and Science

(b) Table with rows of TC that do not satisfy the
predicate (school = Engineering).

Figure 4.5: In order to compute the information gain of a comparison predicate at a given node, we
split the rows at the node into two parts, those that satisfy the predicate and the others that don't.
Here, we have split the joined tableTC (from Figure 4.2a) on the predicate(school = Engineering).

S(N) = � (p log2 p + n log2 n)

Here, we restrict our analysis to output tuples that occur in O+ or O� only. Consider the joined

table in Figure 4.2a. We can compute the entropy of the node with label(school = Engineering):

p = P(f Alice; Bobgjf Alice; Bob; Charlie; David g) =
1
2

n = P(f Charlie; David gjf Alice; Bob; Charlie; David g) =
1
2

S(N) = �
�

1
2

log2
1
2

+
1
2

log2
1
2

�
= 1

Here, we do not consider `Erin.' This is our �rst concrete modi�cation to the decision tree learning

algorithm.

A comparison predicatea splits the table TC into two: � a(TC) which comprises of rows that satisfya

and � : a(TC) which comprises of rows that do not satisfya. Let � a(TC) correspond to a nodeL and

� : a(TC) correspond to a nodeR. Then we can compute their entropiesS(L) and S(R) just as above.

Consider the predicate(school = Engineering) which splits the joined table in Figure 4.2a into two

tables as shown in Figure 4.5. Let� (school = Engineering) (TC) form nodeL and � : (school = Engineering) (TC)

form node R. The entropiesS(L) and S(R) are 0.918 and 1 respectively.

We can now compute theinformation gain. Information gain is de�ned as the di�erence between the

49

entropy of the node and the weighted sum of the entropy of its children. That is, the information

gain at nodeN is of the form:

IG (N) = S(N) � (�S (L) + �S (R))

where � + � = 1 . In a classical setting, the coe�cients � and � are the ratio of the number of rows

corresponding to the child nodesL and R. In our study, we focus on projection, and only the tuples

in O+ and O� . For ease of notation, letj�
 (� a(TC)) \ (O+ [O�) j, the number of rows in � a(T),

projected to columns
 , that occur in either O+ or O� be � a (and analogously for� : a(TC) be � : a).

Then information gain at Node N with comparison predicatea is de�ned as:

IG (N; a) = S(N) �
�

� a

� a + � : a
S(L) +

� : a

� a + � : a
S(R)

�
(4.5)

In our running example, � a is 3 and � : a is 2. This gives us an information gain of 0.0328. The

change in the weighted sum is our second concrete modi�cation to decision tree learning.

The decision tree learning algorithm as described in Algorithm 5 starts with the tableT and nodeN

as an input. We introduce nodeN so we can call this procedure recursively. IfO+ or O� is empty,

we return the trivial tree with N as the only node. Otherwise, we construct a set of comparison

predicates of the form(T:c v k), whereT:c is a column of the tableT, k is a constant that occurs in

the column T:c, and v is a comparison operator (in our case either= , < , or � . Then, similar to the

classical algorithm, we pick a comparison predicatea that maximizes the information gain IG (N; a).

If no comparison predicate can maximize the information gain beyond 0, we return the trivial tree

with N as the only node, labeled with `?' and terminate the process. This is the case where there is

no classi�er for the given input data.

Otherwise, we split the table T on predicatea as tables� a(T) and � : a(T), introduce child nodesL

and R corresponding to them, and call theDTL process recursively on the children ofN . When we

call DTL on the L and R nodes, we ensure that theO+ and O� are updated to the output tuples

that occur in � a(T) and � : a(T).

50

Algorithm 5 DTL (T; N; O+ ; O�), where T is a table, N is a node, andO+ and O� are the sets of
positively and negatively labeled tuples respectively.

1. If O+ is empty, label N with � , return the leaf node N , and terminate.
2. If O� is empty, label N with X , return the leaf node N , and terminate.
3. Otherwise, let A = fg .
4. For each columnc in T,

(a) if c is of the categorical type, then for each constantk in column c, update:

A = A [f (T:c = k)g

(b) if c is of the numerical type, then for each constantk in column c, update:

A = A [f (T:c < k); (T:c � k)g

5. For eacha 2 A, compute IG (N; a) using the formula in Equation 4.5.
6. Find a predicate a for which IG (N; a) is maximum. If the maximum for IG (N; a) is 0, label

N as ?, return the leaf nodeN , and terminate the process.
7. Otherwise, label N with predicate a and create new nodesL and R as left child and right

child of N respectively.
8. Recursively compute:

� L = DTL (� a(T); L; O + \ �
 (� a(T)) ; O� \ �
 (� a(T))) and

� R = DTL (� : a(T); R; O+ \ �
 (� : a(T)) ; O� \ �
 (� : a(T))) ;

where
 is the sequence of projected columns for the output.
9. Return the tree with root node N , left sub-tree � L and right sub-tree � R .

51

courseID < 500?

school = Engineering? courseID � 502?

X ? � X

yes no

yes no yes no

Figure 4.6: The decision tree generated by the processDTL on TC (from Figure 4.2a) with
O+ = f Alice; Bobg and O� = f Charlie; Davidg.

On executing the DTL procedure on our running algorithm, we get a tree as in Figure 4.6. Observe

that it has a redundant right subtree, and one of the leaves is labeled `?'. Instead, the desired tree is

the one in Figure 4.2b.

The problem of �nding a minimal decision tree, or even approximating it, is NP-completeSieling

(2008). Therefore we opt for a greedy search that is computationally e�cient. Instead of considering

all possible Boolean combinations of comparison predicates, Algorithm 5 makeslocally optimal

decisions, it enabling it to handle large data-sets e�ciently and produces satisfactory results in

practice. While it is possible that locally optimal choices may not lead to the smallest decision tree,

it most often leads to good enough solution that is succinct and general, as observed in Section 4.2

The soundness check of Algorithm 4 also ensures that whileDTL may generate a larger tree, the

synthesized query will always be consistent with the given input-output examples. Greedy heuristics

based on information gain commonly used in decision tree learning and search algorithms for this

reason Quinlan (1986); Su and Zhang (2006); Suthaharan (2016).

By using the greedy heuristic,DTL generates aperfect separator betweenO+ and O� , however, we

only need apartial separator. That is, we seek a relational queryQ that captures some derivation

for each tuple in O+ , and no derivation for any tuple in O� . We do not have a stronger requirement

that Q should capture all derivations for tuples inO+ . On the other hand, the decision tree attempts

to branch till every node is at entropy 0, that is every node either leads to tuples inO+ or O�

exclusively, instead of stopping when there is at least one leaf node corresponding to every tuple in

O+ . As our setting allows for a weaker notion of separation, we can further trim the decision trees.

52

More concretely, the right branch of the root node in the tree in Figure 4.2b corresponds to rows with

studentID values in {Alice, Bob David}, as all three of them are taking courses withcourseID � 500.

DTL naturally assumes that one needs to branch further to separate Alice and Bob from David.

However, it is not necessary as the node labeledX can explain Alice and Bob. Similarly, at the leaf

labeled `?,' the projected column has valuesf Alice; Charlieg, and we do not have any comparison

predicate that separates them.

We implement an lazy version of DTL to achieve the trimmed decision trees. This is our third

modi�cation to classical decision tree learning. In theDTL process, we introduce a set ofunexplained

output tuples O?, initialized to O+ and a �rst-in-�rst-out (FIFO) queue that maintains a list of

nodes, initialized to f N g. Throughout the algorithm, we update O? by removing the output tuples

that are already explained by a particular leaf of the decision tree. While there exist any unexplained

tuples, we dequeue a node from the queue and branch it out as described in Algorithm 5. Instead of

calling the process recursively, we enqueue the children and then eventually get to them only when

there are unexplained tuples. This lazy evaluation allows us to generate smaller trees with fewer

redundancies. With this modi�cation, we get the desired tree depicted in Figure 4.2b.

In summary, the three modi�cations allow us to adapt decision tree learning to our setting. Addi-

tionally, these modi�cations do not compromise any guarantees about termination of the procedure

or size of the learned decision tree Mitchell (1997).

4.1.3. Interleaving Decision Tree Learning with Example-Guided Search for Joins

A decision tree� can then be converted to a boolean formula� � in disjunctive normal form. For

each leaf of the tree that is markedX , we consider a clause that is composed of the conjunction

of the predicate at its parent node (if the node is a left child, and the negation of the predicate

otherwise). And then, we construct the disjunction of each of these clauses. For example, we can

translate the tree in Figure 4.2b to the formula (courseID < 500)^ (school = Engineering). The

negations, if any, can be removed by considering the negated comparison operators (6= , > , and �).

Therefore we can convert a joined tableTC and decision tree� into a query Q(TC ; �) by using the

53

boolean formula� � to complete the query in Equation 4.3. This gives us the query:

SELECT(T:c1; : : : ; T:ck)

FROM(: : : (T1 JOINT2 ON� 1) : : : JOINTn ON� n� 1)

WHERE� �

(4.6)

Figure 4.3 summarizesLibra . The end-to-end algorithm guarantees completeness:

Theorem 4.1.1 (Completeness). If there exists a relational query consistent with the input-output

exampleE = (I; O + ; O�), then Libra produces a queryQ consistent with E .

The proof of this theorem relies on the completeness of the example-guided enumeration and the

completeness of decision tree learning. We assume the reader is familiar with the analogous guarantees

for example-guided synthesis of conjunctive queriesThakkar et al. (2021), and those for classical

decision trees. Observe that if a contextC explains a tuple t, then all contexts C0 � C, also explaint.

We can consider the largest contextC = I , that is, the set of all input tuples, to prove the following

lemma:

Lemma 4.1.2. If there exists a relational query consistent with the input-output exampleE =

(I; O + ; O�), then there exist a decision tree� with predicates of the form(T:c v k) whereT is an

input table, c is a column of T, and k is a constant in the columnc, such that the queryQ(TI ; �) is

consistent with E .

It follows from the completeness of example-guided enumeration that a decision tree must exist,

however, it remains to show that the predicates for the decision tree must be of the said form.

Without loss of generality, suppose the comparison predicate is of the form(T:c > k 1), where k1

does not occur inc. The arguments for other comparison operators is analogous. Observe that

must exist the greatest lower boundk2 of k1 in c (that is, k2 = maxf k 2 c : k < k 1g). Replacing

the predicate by (T:c > k2) does not change the semantics of the query with respect to inputI ,

as there are no constants in betweenk1 and k2. By systematically replacing the predicates in a

query consistent with E , we can prove that there must exist a query where the selection operator

54

corresponds to a decision tree of the said form. As we exhaustively enumerate all possible predicates,

we can guarantee:

Lemma 4.1.3. Given a tableT, a nodeN and output tuples partitioned asO+ and O� , if there

exists a decision tree that separatesO+ from O� , then DTL (T; N; O+ ; O�) will return such a tree.

Together, Lemma 4.1.2 and Lemma 4.1.3 can prove Theorem 4.1.1.

Additionally, observe that at each step of the algorithm, we maintain the constantN that tracks the

size of the query. As the contexts are maintained in increasing order of size, the number of joins in

the enumerated queries is always increasing.

4.2. Evaluation

We have implemented theLibra algorithm in Scala. In this section, we evaluate it on a large-scale

benchmark suite. First, we measure the performance of our algorithm compared to state-of-the-art

synthesis tools. We do so by comparing the number of instances solved by each tool and the time

taken by each tool to do so. Next, we evaluate the generality of the solutions generated by each tool.

To do so at scale, we leverage Occam's razor to use the succinctness of a query as a proxy of how

speci�c a query is to the training data. As such, we propose to answer two main research questions

through this evaluation:

Q1. Performance: How e�ective is Libra on synthesis tasks from di�erent domains in terms of

synthesis time?

Q2. Succinctness: How large are the programs synthesized byLibra compared to the reference

solution?

We discuss our benchmark suite in Section 4.2.1 and the baselines against which we compareLibra in

Section 4.2.2 along with the setup for each. We present our �ndings forQ1 and Q2 in Sections 4.2.3

and 4.2.4. We performed all experiments on a Linux server equipped with an 18-core, 36-thread

Xeon Gold 6154 CPU running at 3 GHz and with 394 GB of RAM.

55

4.2.1. Benchmarks

We evaluateLibra on the set of all SPJ instances from theSpider Yu et al. (2018) and Geogra-

phy Finegan-Dollak et al. (2018); Zelle and Mooney(1996); Iyer et al. (2017) datasets.Spider is

an open-access large-scale manually annotated dataset. There are 1,203 SPJ instances in theSpider

dataset over 159 databases. On the other hand,Geography is a dataset of SQL queries about US

geography. We use version 4 of the modi�ed SQL dataset forGeography from Finegan-Dollak et al.

(2018); Zelle and Mooney(1996); Iyer et al. (2017). Upon deduplication of the queries, we extract

272 SPJ instances, all over the same database, giving us a total of 1,475 instances over both datasets.

For each benchmark, we consider the tables from its corresponding database as the input tables and

the result of running the ground truth query over that database as the output table.

Each benchmark has 2 to 26 input tables (with a median of 8), each with 1 to 352 columns (with

a median of 30), containing 8 to around 553k tuples in the input tables (with a median of 937).

Additionally, each benchmark is labeled with aground truth query that serves as a reference solution.

This reference solution is used to obtain the output examples for the corresponding benchmark.

Overall, the reference solutions feature a join of at most 6 tables and the use of at most 3 predicates.

4.2.2. Baselines and Setup

We evaluateLibra against the following baselines in Sections 4.2.3 and 4.2.4:Scythe Wang et al.

(2017a), which synthesizes SQL queries using enumerative search, andPatSQL Takenouchi et al.

(2021), which uses relational algebra properties to perform a more scalable enumerative search.

We now discuss the experimental setup for each benchmark. For each benchmark, we provide each

tool with the corresponding input and output tables as described in Section 4.2.1. We initialize

O+ as the set of all expected output tuples. Since bothScythe and PatSQL require exhaustive

labeling, i.e. any tuple not labeled asO+ is considered to beO� , we initialize O� to be all tuples of

appropriate arity that do not occur in O+ for all tools being compared. The benchmarks are labeled

with a reference solution which identi�es each column of the input tables as eithercategorical ,

numerical , or uncomparable.

56

Figure 4.7: Performance ofLibra against Scythe and PatSQL on the 1,475 benchmarks from
the Spider and Geography datasets. Each data point (n, t) for a tool indicates that it solved n
benchmarks each withint seconds.

For the baselinesScythe and PatSQL , the user is required to specify constants that may occur in

the comparison predicates. We recover the list of constants that occur in the reference solution and

provide it to the two baselines as additional supervision which is not provided toLibra .

4.2.3. Performance

We run Libra , Scythe , and PatSQL on all 1,475 benchmarks with a timeout of 10 minutes and

summarize the performance of each tool in a cactus plot in Figure 4.7. From this �gure, we see

that Libra solves the most number of benchmarks, solving 1,361 out of 1,475 in an average of 58.9

seconds, and solves 1,097 of those within 10 seconds. Of the 1,361 solved benchmarks, 1,090 are SPJ

instances from theSpider dataset, while 271 are from theGeography dataset.

The plot for Libra plateaus at 600 seconds since it searches for a minimal solution to a benchmark,

but returns the best solution found so far when it times out. PatSQL is outperformed by Libra ,

solving 673 benchmarks in an average of 23.13 seconds, and 548 in 10 seconds.Scythe solves only

195 benchmarks, in an average of 139.50 seconds, and only 15 in 10 seconds. All of the benchmarks

solved by both PatSQL and Scythe are SPJ instances from theSpider dataset; neither tool solves

a single instance from theGeography dataset. Also, PatSQL solves 2 benchmarks unsolved by

Libra , while all benchmarks solved byScythe are solved byLibra .

57

Among the benchmarks that Libra uniquely solves, a signi�cant portion of the benchmarks have

ground truths involving many joins, but with a few shared constants between tables, leading to a

sparse tuple co-occurrence graph while there are syntactically many possible joins. The following

generated query whichLibra is the only to produce (and which happens to match the reference

solution) shows how the example-guided technique allows for learning very large queries and combined

with decision tree learning allows for learning complex SPJ queries:

SELECT employee.emp_fname; class.class_room

FROM(((class JOIN employee ON class.prof_num = employee.emp_num)

JOIN professor ON employee.emp_num= professor.emp_num)

JOIN department ON department.dept_code = professor.dept_code)

WHERE department.dept_name= \ Accounting "

The example-guided strategy used byLibra allows it to explore solutions of a larger size more

quickly than syntax-guided strategies since the smaller joins that are syntactically valid but don't

explain any output tuple are skipped. This results in Libra solving benchmarks with reference

solutions of a larger size where other baselines would require a longer time to search through the

hypothesis space even with the additional supervision that was provided to each.

However, it is di�cult to scale Libra over larger input databases. For the 114 benchmarks unsolved

by Libra , over 70% have more than 5,000 tuples, and all have tables with over 20 columns, with

a median of 64 columns.Libra faces two main issues when solving these benchmarks. First, it

may struggle to build the tuple co-occurrence graph that it uses to enumerate contexts, and second,

frequently occurring constants can result in a large number of contexts to be enumerated. The

second case is true for the 2 benchmarks thatPatSQL solved which were unsolved byLibra , since

they contained 43 and 20 columns, with 103 and 577 rows respectively. However, the ground truth

solutions for those benchmarks could be easily explored by syntax-guided processes, with one of the

benchmarks consisting only of joins, and soPatSQL was able to synthesize them.

58

Figure 4.8: Sizes of generated programs forLibra , Scythe , and PatSQL . The bars represent the
benchmarks with reference solution of a given size that are solved by each tool, and the hatched
bar represents the subset of these queries that are minimal. Since 99% of the queries generated by
Libra are minimal, there is very little visible unhatched bar.

4.2.4. Succinctness

We now turn to evaluating the quality of the programs in terms of succinctness. Algorithm 4 is

sound by construction, that is the synthesized query is always consistent with the training data.

In order to inspect for generalizability, we use the size of the query as a measure of its speci�city

with respect to the training data, where a more succinct query is assumed to be less speci�c to the

particular data, and we rely on Occam's razor to assess over-�tting.

The size of the query is de�ned as the sum of the number of tables joined and the number of

comparison predicates in the selection operator in the disjunctive normal form (DNF). We summarize

the size of the programs synthesized by both instances ofLibra and the baselines in Figure 4.8.

We observe that 1,339 of the 1,361 programs (around 99%) synthesized byLibra are minimal, that

is, the size of the query is equal to or smaller than that of the reference solution. In 271 of the

1,361 programs,Libra generates a smaller query than the reference solution. This is a peculiar case

common to programming-by-examples where the input-output examples under-specify the task. That

is, the input-output examples do not feature all the cases that the synthesis tool should consider.

Here is an example of one of the benchmarks where the input tablecampusesconsists of columns

for the id, campus, location, county, and year for a set of college campuses, and the input table

59

csu_fees consists of columns for campus, year, and campus fee for a set of campuses. The reference

solution is:

SELECT campusfee FROM campuses

JOIN csu_fees ON campuses.id= csu_fees.campus

WHERE(campuses.campus= \ San F rancisco State University ")

AND(csu_fees.year = 1996)

Instead of this solution, Libra generates the query:

SELECT campusfee FROM csu_fees

WHERE(csu_fees.campus = \18")

This is because the campus name �San Francisco State University" occurs only once incampuses

with id �18", and the only row with campus �18" in csu_fees has year of 1996. Therefore, the

conjunction on both the campus name and year is unnecessary and there is also no longer a need for

the join of campuseswith csu_fees since selecting campus �18" directly fromcsu_fees is su�cient.

There are 22 benchmarks where the size of the query generated byLibra is larger than the reference

solution. On manual inspection of these benchmarks, we observe that the larger size is due to

the sub-optimal size of the decision tree generated byDTL . As discussed before, the problem of

�nding a minimal decision tree is intractable and hence we adopt a greedy heuristic-based search.

Therefore, any minimality guarantee will be subject to the performance of the decision tree, but we

quantitatively observe that 99% of the synthesized programs are minimal.

For the baselines, we observe that the size of the synthesized programs is usually large. In contrast

to Libra , only 115 of the 673 (17%) programs synthesized byPatSQL are minimal, and only 99

of the 195 (51%) programs synthesized byScythe are minimal. Figure 4.8 shows the number of

benchmarks each tool �nds a solution for at each reference benchmark size shown on the x-axis, and

the subset of these solutions which are minimal is shown in a bright color. We seeLibra consistently

outputs minimal solutions across program sizes.

60

CHAPTER 5

Synthesis of Recursive Relational Queries

In the context of programming-by-examples, recursion is crucial to synthesizing queries that generalize

to arbitrary data [Cropper and Duman£i¢(2022)]. Recursive queries also �nd applications in numer-

ous domains, including knowledge discoveryBohan et al. (2011), program reasoningSivaraman et al.

(2019); Naik et al. (2021a), and database queryingWang et al. (2022). Signi�cant strides have

been made in this area by techniques including constraint solving, enumerative search, and their

combinations.

As discussed in Chapter 1, it is a greater challenge to specify the language bias mechanisms in

presence of invented and recursive predicates. Determining a suitable set of templates is a delicate

balancing act: overly general templates hurt scalability whereas overly constrained templates fail to

synthesize the desired program.

On the other hand, there exist fully automated techniques to synthesizenon-recursive relational

queries, as discussed in the previous chapters.

In this chapter, our goal is to address the gap between template-free techniques to synthesize

non-recursive queries and template-dependent techniques to synthesize recursive queries. We observe

that previous synthesis techniques for non-recursive queries are successful at inferring patterns in

data of �nite size but are limited in generalizing those patterns to perform computation on data of

arbitrary size. Additionally, the recursive techniques are successful in generalizing the patterns once

templates summarize some patterns in the data and constrain the space of candidate programs. We

therefore seek to leverage the strengths of the two paradigms to construct an end-to-end template-free

algorithm for synthesizing recursive relational queries.

We materialize this insight as a two-phase synthesis engine calledMobius as depicted in Figure 5.1. In

the �rst phase, we synthesize a non-recursive queryQ using example-guided synthesis of conjunctive

queries. In the second phase, we use this non-recursive query to constrain the hypothesis space

61

Input-output
examples

Pattern Enu-
merator

Non-recursive query

Query Normalizer

Normalized query

Query Evaluator

Provenance-Guided
Generalizer

Constraint Solver

Generalized
query

Figure 5.1: The architecture of theMobius synthesis engine. We start by using a pattern enumerator
(such asEGS) to generate a non-recursive query that is consistent with the input-output examples,
and then generalize it into a recursive query using a provenance-guided generalization algorithm.
This procedure,Generalize , repeatedly uses a constraint solver to generate candidate solutions
whose consistency it determines usingSouffle query evaluator Zhao et al. (2020). Analysis of
failed candidate solutions result in additional constraints that are fed back to the constraint solver
thereby pruning the search space in subsequent iterations.

to queries that generalizeit. Our key technical contribution is a procedure Generalize that

realizes this generalization through provenance-guideduni�cation of invented predicates. While

these predicates may not feature inQ itself, we propose a normalization procedure that exposes

them by rewriting Q to a semantically equivalent queryQ. Then, generalization proceeds in an

iterative fashion that involves synergistic interaction between a constraint solver (z3) and a query

evaluator (Souffle). In each iteration, the former selects a candidate uni�cation � , and the latter

checks whether the resulting query� (Q) is consistent with the given input-output data. If so, the

process terminates; otherwise, the constraints are updated to avoid the ill-fated uni�cation choice

and the process is repeated.

A naive constraint formulation su�ers from prohibitively slow convergence in practice due to an

exponential number of uni�cation choices. To accelerate the process, we develop a novel provenance-

guided technique that leveragesdata provenancea derivation tree that serves as a witness of a given

spurious tuple to identify a minimal incorrect core of the ill-fated uni�cation choice (Cheney et al.

(2009); Zhao et al. (2020)). We thereby eliminate from future consideration all other uni�cation

choices that are similarly destined to derive the spurious tuple.

62

a b c

d

e f

(a) Graph G.

Input I
edge(a,b), edge(b,c),
edge(c,a), edge(c,d),
edge(c,e), edge(e,f),
edge(f ,a)

(b) Input edge relation.

Positive labels O+ :
scc(a,a), scc(a,b), scc(a,c),
scc(c,b), scc(e,f), scc(f ,e),

Negative labelsO� :
scc(a,d), scc(c,d), scc(c,e),
scc(d,e), scc(c,f), scc(e,c)

(c) Positive and negative labels forscc.

Figure 5.2: The synthesis task is speci�ed as a search for a relational queryP that takes the graph
G as an input and returns a set of pairs of verticesO such that O is a superset ofO+ and disjoint
from O� . We call such a query consistent with the input-output examples.

5.1. Demonstrative Example

We begin with a high-level overview of our end-to-end synthesis framework. As a running example,

we consider the task of synthesizing a query that computes the relation induced by the strongly

connected components (SCCs) in a directed graph.

5.1.1. Problem Setting

Figure 5.2a shows a directed graph and Figure 5.2b describes its adjacency relationedge. A user

can provide this relation as an input I to a synthesis engine with the intent to synthesize a query

that computes a relation scc representing SCCs in the graph. In order to express this intent, they

label some pairs of vertices as positive tuplesO+ and some as negative tuplesO� such that the

tuples in O+ must be present in relationscc while those in O� must be absent. Figure 5.2c shows

an example of the positive and negative labelled output tuples. The synthesis task is to �nd a query

P consistent with (I; O + ; O�), that is, a query that takes I , the edge relation, as an input and

generates all tuples inO+ but none in O� .

63

The following relational query P � 3
scc is consistent with (I; O + ; O�):

r1 : scc(x; x) :- edge(x; y); edge(y; x):

r2 : scc(x; y) :- edge(x; y); edge(y; x):

r3 : scc(x; x) :- edge(x; y); edge(y; z); edge(z; x):

r4 : scc(x; y) :- edge(x; y); edge(y; z); edge(z; x):

r5 : scc(x; z) :- edge(x; y); edge(y; z); edge(z; x):

(5.1)

P � 3
scc is a collection of rulesf r1; : : : ; r5g. We can interpret each rule inP � 3

scc as a Horn clause. For

instance, the second rule means that if both tuples(x; y) and (y; x) are in the edge relation, then

vertices x and y are in the same SCC.

As we can observe,P � 3
scc correctly captures all SCCs in the graph of Figure 5.2a, and in general, in

all directed graphs with SCCs of size2 or 3. A program synthesis technique such as example-guided

synthesis (EGS) can e�ciently synthesize such queries. However, the goal of the synthesis task is to

�nd a query that is not only consistent with the user input, but also generalizes to match the intent

of the user.

5.1.2. Synthesis of Recursive Queries

We next illustrate a query for computing SCCs that matches user intent.

The following relational query Pscc computes SCCs in a given graph:

r 0
1 : scc(x; y) :- path (x; y); path (y; x):

r 0
2 : path (x; z) :- path (x; y); path (y; z):

r 0
3 : path (x; y) :- edge(x; y):

(5.2)

Observe that Pscc uses a predicatepath which is not pre-de�ned (that is, it does not occur as an

input to the synthesis task) and also calls itself in ruler 0
2. A predicate that does not appear in the

synthesis task as an input or an output predicate is called aninvented predicate. A predicate that

64

can call itself by applying a series of rules is called arecursive predicate. Our goal is the discovery

of succinct and general queries such asPscc that potentially use invented and recursive predicates.

Further, observe that a non-recursive query synthesis engine such asEGS or Scythe cannot

generatePscc , nor can we modify them to directly enumerate such a query as they do not support

recursive or invented predicates. Two principal challenges when synthesizing such queries:First ,

the outputs of intermediate relations are under-constrained and are not explicitly speci�ed in the

input-output examples. This signi�cantly inhibits the ability of the synthesizer to prune candidate

queries during search.Second, synthesis engines which attempt to enumerate candidate programs

also need constraints on the number and schema of these intermediate predicates. Tools such as

ProSynth and ILASP that support recursion would require additional supervision in form of

the correct set of mode declarations that specify the invented and recursive predicates with their

schema. AlthoughGenSynth is able to discover invented predicates, it implicitly assumes that

they must share schema with one of the input or output predicates already provided as part of the

problem description. In our experiments in Section 5.5, we will present benchmarks that require

both predicate invention as well asschema invention, and observe that state-of-the-art tools fail to

correctly synthesize these queries.

We leverage a non-recursive queryP � 3
scc that can be generated without templates (by usingEGS) as

a starting point for the search for Pscc . Observe that Pscc generalizesP � 3
scc . That is, on any graph

Pscc will also report all pairs of vertices generated byP � 3
scc . In addition, for graphs with SCCs of

size4 or more, Pscc can report pairs of verticesscc(x; y) that P � 3
scc would miss.

In order to generalize it, we �rst normalize the given query, that is, convert it into a semantically

equivalent query where a premise comprises of at most one input predicate or two invented predicates.

65

For ease of notation, letQ = P � 3
scc . The normal form Q for the query Q would look like:

� 1 : scc(x; x) :- R1(x; y); R1(y; x):

� 2 : scc(x; y) :- R1(x; y); R1(y; x):

� 3 : scc(x; x) :- R1(x; y); R2(y; x):

� 4 : scc(x; y) :- R1(x; y); R2(y; x):

� 5 : scc(x; y) :- R2(x; y); R1(y; x):

� 6 : R2(x; z) :- R1(x; y); R1(y; z):

� 7 : R1(x; y) :- edge(x; y):

(5.3)

Observe that rules � 1; : : : ; � 5 in Q correspond exactly to the rulesr1; : : : ; r5 in Q, and uses two

invented predicatesR1 and R2. The rules for these invented predicates are� 6 and � 7.

At this point, we can highlight our key insight. There is a correspondence between the rules� 6 and

� 7 in Q and the rules r2 and r3 in Pscc . These rules are identical up to renaming of the predicates.

That is, if we could map R1(x; y) and R2(x; y) to path (x; y), we would have synthesized the rulesr2

and r3 in Pscc . Applying this mapping to the rest of the rules gives us a query similar toPscc .

Our generalization technique builds on this insight and identi�es an e�cient way to search for such

a map that uni�es invented predicates. Also observe that normalization automatically discovers

schema of the intermediate relations, thus eliminating the need for them to be explicitly provided as

a part of the input. In this context, the normalized program Q e�ectively serves as a template and

constraints the space of candidate programs to those that can be generated by uni�cation.

5.1.3. Provenance-Guided Generalization

In order to search for a queryP that generalizesQ, we seek ways to unify the invented predicatesR1

and R2. Section 5.4 details out a way to encode this as a constraint satisfaction problem. We start

with a bound on the number of invented predicates. For the sake of example, let it be1. That is, we

wish to map R1 and R2 to the same predicate, sayS1. Clearly, there are four ways to permute the

66

variables for R1 and R2, and each of them gives us a map:

� 1 : R1(x; y) 7! S1(x; y); R2(x; y) 7! S1(x; y)

� 2 : R1(x; y) 7! S1(x; y); R2(x; y) 7! S1(y; x)

� 3 : R1(x; y) 7! S1(y; x); R2(x; y) 7! S1(x; y)

� 4 : R1(x; y) 7! S1(y; x); R2(x; y) 7! S1(y; x)

In order to apply a uni�cation � to Q, we replace each occurrence ofR1(x; y) and R2(x; y) with

� (R1(x; y)) and � (R2(x; y)) respectively in each rule. For example, on applying� 2 to Q we get the

query T(Q; � 2):

� 2(� 1) : scc(x; x) :- S1(x; y); S1(y; x):

� 2(� 2) : scc(x; y) :- S1(x; y); S1(y; x):

� 2(� 3) : scc(x; x) :- S1(x; y); S1(x; y):

� 2(� 4) : scc(x; y) :- S1(x; y); S1(x; y):

� 2(� 5) : scc(x; y) :- S1(y; x); S1(y; x):

� 2(� 6) : S1(x; z) :- S1(y; x); S1(z; y):

� 2(� 7) : S1(y; x) :- edge(x; y):

Observe that if a tuple is produced by Q, then for any uni�cation map � , the same tuple can

be generated byT(Q; �) by applying the corresponding set of rules. We formally prove this in

Theorem 5.4.3. However, it is possible thatT(Q; �) has an output larger than Q. In this sense,

uni�cation leads to generalization. We call T(Q; �) a candidate query.

We then check if the candidate queryT(Q; �) is consistent with the input-output example (I; O + ; O�).

If it is, then we can return it as a synthesized result. On the other hand, it is also possible that such

a generalization istoo general, that is, it also generates some of the tuples inO� .

67

In the example above, the tuplescc(c; d) can be generated byT(Q; � 2) while c and d are not in

the same SCC. We can analyze the derivation tree for a tuple likescc(c; d) to assign blame to

a part of the uni�cation map. This blame can be converted into a constraint to rule out future

uni�cation maps where similar patterns may occur, and thereby guide the search towards correct

generalizations.

In order to implement this, we set up an interactive process involving a constraint solver that

proposes candidate queries and a query evaluator that veri�es whether the candidate is consistent

with the input-output example. In the case where the candidate is not consistent, the query evaluator

provides a derivation tree of every tuple int 2 O� that can be generated by the candidate. We use

these derivation trees to craft the constraints.

The key insight of the provenance-guided technique is to leverage the derivation tree of an unexpected

tuple. The derivation tree allows us to identify a number of uni�cations that lead to such a tuple

and they can be avoided in future iterations.

Eventually, the constraint solver proposes the uni�cation map � 1. Not only is the query T(Q; � 1)

consistent with (I; O + ; O�), it is also similar to the intended query Pscc . It has the rules:

� 1(� 1) : scc(x; y) :- S1(x; y); S1(y; x):

� 1(� 2) : scc(x; y) :- S1(x; y); S1(y; x):

� 1(� 3) : scc(x; x) :- S1(x; y); S1(y; x):

� 1(� 4) : scc(x; y) :- S1(x; y); S1(y; x):

� 1(� 5) : scc(x; y) :- S1(x; y); S1(y; x):

� 1(� 6) : S1(x; z) :- S1(x; y); S1(y; z):

� 1(� 7) : S1(x; y) :- edge(x; y):

The rules � 1(� 2), � 1(� 5), and � 1(� 6) correspond exactly to the rulesr 0
1, r 0

2, and r 0
3 in Pscc (Equa-

tion 5.2). The rules � 1(� 4), and � 1(� 5) are identical to � 1(� 1) or can be derived using it. Using the

68

rules � 1(� 1) and � 1(� 5), one canderive the rule � 1(� 1) and � 1(� 3). Once simpli�ed, this gives a

correct and interpretable solution to the problem originally posed in Figure 5.2.

5.2. Minimal Generalization Problem

Our ultimate goal is to synthesize a recursive relational query which is consistent with given input-

output examples. Given a set of input tuples,I , and a set of output tuples partitioned asO+ and

O� , tools such asEGS and Scythe can e�ectively synthesize queriesP such that P generates

tuples in O+ and does not generate any tuple inO� . However, these are non-recursive query. As

discussed in the overview, we are interested in the generalization problem where given a queryQ

that is consistent with the input-output examples, we wish to �nd a query P that generalizes it. For

this purpose, we �rst de�ne subsumption:

De�nition 5.2.1 (Subsumption). A relational query P subsumes a relational queryQ if for any set

of input tuples I , JQK(I) � JPK(I).

That is, for any input I , if Q generates a tuplet, then P also generatest. For example, the query

Pscc subsumesP � 3
scc We can now de�ne the size of a relational query. The size of a query is the sum

of size of the rules in the query. For example, the size of the queryPscc is 5 and ofP � 3
scc is 11. We

can now de�ne the minimal generalization problem:

Problem 5.2.2 (Minimal Generalization) . Given an input-output exampleE = (I; O + ; O�), and a

relational query Q consistent with E , �nd a relational query P that subsumesQ, is consistent with

E , and is of minimal size among such queries.

For example, the user may specify the input and output tuples and seek a query thatexplains the

relation between input and output tuples. They may use the queryP � 3
scc generated byEGS as a seed

in order to search for the queryPscc that uses invented and recursive predicates so it can match

user intention.

69

5.3. The Synthesis Algorithm

In this section we describe the end-to-endMobius algorithm, which takes an input-output example

E = (I; O + ; O�) as input and returns a relational query P (which potentially has invented and

recursive predicates). Algorithm 6 summarises the procedure.

Algorithm 6 Mobius (I; O + ; O�), where (I; O + ; O�) is an instance of the synthesis task.

1. Let Q0 = EGS(I; O + ; O�). If EGS fails to return a relational query, end the procedure and
return unsat .

2. Initialize Q := ; .
3. While there is a tuple t 2 O+ n JQK(I):

(a) Let r 2 Q0 derive t. Update Q := Q [f r g.
(b) Let Q = Normalize (Q).
(c) Compute P = Generalize (Q; I; O �).
(d) If O+ � JPK(I), end the procedure and outputt.

We start with using a non-recursive query synthesizerEGS. The output of EGS, Q0, is a non-

recursive query. We construct a queryQ � Q0 on demand, initialized to the empty set, that grows

till the synthesized query is not consistent with (I; O + ; O�).

In order to generalize the queryQ, we �rst normalize it to Q. We discuss the normalization procedure

in Section 5.3.2. The normalized query is then provided as an input to the provenance-guided

generalization procedure which we discuss in Section 5.4.

5.3.1. Example-guided Synthesis

Example-guided Synthesis (EGS) is a template-free algorithm to synthesize non-recursive queries

from input-output examples. While EGS supports features such as multi-way joins and unions,

it does not allow for invented or recursive predicates. Therefore, on inherently recursive tasks,

EGS cannot synthesize theintended query. P � 3
scc is an example of a query thatEGS may generate.

Additionally, EGS cannot be modi�ed to generate recursive programs as it not a syntax-guided tool.

However, EGS does provide a completeness guarantee that if there exists a non-recursive query

consistent with the input-output example (I; O + ; O�), then EGS will �nd a consistent query Q0. We

can prove that there exists a recursive relational query consistent with a given input-output example

E = (I; O + ; O�) only if there is a non-recursive query that is consistent withE . Therefore, when

70

EGS returns unsat , we can conclude that there does not exist a query (recursive or non-recursive)

that is consistent with the input-output example. Using this, we can prove:

Theorem 5.3.1 (Completeness). If there exists a query consistent with the input-output example

E = (I; O + ; O�), then Mobius produces a relational queryP consistent with E .

This is because we useEGS as a �rst step in the process, which allowsMobius to ensure that if

there is no consistent query, then we do not proceed with a futile search. On the other hand, ifEGS

produces a query,Mobius only further generalizes it and in the worst case, it may output the same

query (after normalization). This allows us to conclude a completeness guarantee for the end-to-end

synthesis procedure:

5.3.2. Normalization

Once we have the queryQ0, we construct Q on demand. Then, in Step 3b, we normalizeQ to Q.

Normalization introduces invented predicates in the query which we further use for generalization

through uni�cation. The following de�nition of a normal query is motivated by the Chomsky Normal

Form for context-free languages Sipser (2012).

De�nition 5.3.2 (Normal Form) . A relational query is said to be in the normal form if every rule

is of one of the two forms:

R(~x) :- R1(~x1); R2(~x2)

R(~x) :- Rin (~xin)

where R, R1, and R2 are invented predicates andRin is an input predicate. That is, the body of a

rule either has two invented predicates or one input predicate.

For example, P � 3
scc in Equation 5.1 is not in normal form while Pscc in Equation 5.2 is. Analogous to

context-free languages, the normalization of relational queries can be carried out by rewriting the

rules into semantically equivalent rules and introducing invented predicates, and we can show that

every query can benormalized. We employ a greedy heuristic to normalize queries that allows us to

71

minimize the size of the number of invented predicates as well as their arity.

Let a given rule be of the form:

R(~x) :- R1(~x1); R2(~x2); : : : ; Rn (~xn):

We partition the literals in the body into two disjoint sets Sl and Sr such that the number of variables

shared by literals in Sl and literals in Sr are minimal. Let ~xl be a vector of variables that occur

in the literals in Sl and either in ~x or a literal in Sr . Similarly, let ~xr be a vector of variables that

occur in the literals in Sr and either in ~x or a literal in Sl . Then, we can rewriter as:

R(~x) :- Rl (~xl); Rr (~xr)

Rl (~xl) :- Ri 1 (~xi 1); : : : ; Ri n (~xi n)

Rr (~xj) :- Rj 1 (~xj 1); : : : ; Rj m (~xj m);

where we haveSl = f Ri 1 (~xi 1); : : : ; Ri n (~xi n)g and Sr = f Ri 1 (~xi 1); : : : ; Ri n (~xi n)g. We can iteratively

apply this rewriting rule to normalize the query. Observe that this is a greedy process, and hence

minimality of the normal form is not guaranteed.

Secondly, instead of recreatingRl and Rr at every step of the normalization procedure, wereuse

the invented predicates. That is, if there are two predicates which are described by syntactically

identical rule bodies (up to permutation of variables) that exists in the query, we require only one of

them. This allows us to reuse predicates and shrink the search space. If one chooses not toreuse

the predicates, they will be eventually uni�ed during the generalization step. However, this heuristic

allows us to reduce the size of the search space and hence accelerate the synthesis process. Note

that this optimization does not compromise the end-to-end guarantee of Theorem 5.3.1. For the

running example, the normalization ofP � 3
scc generates the queryQ in Equation 5.3.

72

5.4. Provenance-guided Generalization

We can use the normalized relational query as a template to constrain the space of candidate

queries to only those which can be constructed by uni�cation of predicates. As discussed in the

overview, the user may provide a query likeP � 3
scc (Equation 5.1) and intend to generalize it to Pscc

(Equation 5.2). In the rest of this section, we develop a provenance-guided technique to solve the

minimal generalization problem (Problem 5.2.2) for queries in the normal form. We have named this

provenance-guided generalization procedureGeneralize and outline it in Algorithm 7.

Algorithm 7 Generalize (Q; I; O �), where Q is a normalized query,I is the set of input tuples
and O� is the set of negatively labeled output tuples.

1. Initialize � := � 0(Q).
2. Let Q have K invented predicates. Then, fork = 1 to k = K :

(a) Let � = Generalize (Q; k; �).
(b) If the Generalize procedure fails to �nd a uni�cation map � , then break the loop.
(c) Otherwise, let P = T(Q; �).

i. If JPK(I) \ O� = ; , end the procedure and returnP.
ii. Otherwise, for eacht in JPK(I) \ O� , update:

� := � ^ Constraint (Q; �; t):

We can show that Generalize solves the generalization problem (Problem 5.2.2) for normal queries

with the guarantee that the output of Algorithm 7 will have the least number of invented predicates.

Theorem 5.4.1. Given a normalized queryQ, input tuples I and negatively labeled output tuples

O� , the queryP generated byGeneralize (Q; I; O �) is a normalized query that subsumesQ, does

not generate tuples inO� , and has the fewest invented predicates among all such queries.

The proof of this theorem relies on Theorem 5.4.3 which ensures thatP subsumesQ, the soundness

check in step 2(c)i of Algorithm 7 that ensures no tuple inO� are generated, and the fact that

step 2 of Algorithm 7 searches for the least number of invented predicates incrementally. Therefore,

Algorithm 6 solves Problem 5.2.2 when the input is a normalized queryQ. In cases where the input

query is not normalized, we can guarantee subsumption but not minimality. The rest of this section

discusses the details of the algorithm.

73

5.4.1. Generalization Algorithm

This algorithm approaches generalization as a uni�cation procedure. That is, as explained in the

overview, we rewrite the literals in the query. In order to carry out this process, we seek a map�

from the literals using the invented predicates inQ to literals using fresh invented predicates. For

this section, we consider the following queryQ0 that uses three invented predicatesR1, R2, and R3:

� 1 : scc(x; y) :- R1(x; y); R2(x; y):

� 2 : R1(x; y) :- edge(x; y):

� 3 : R2(x; z) :- R1(z; y); R1(y; x):

� 4 : R3(x; z) :- R1(x; y); R2(z; y):

(5.4)

Here, the predicateR1(x; y) represents that there is an edge betweenx and y, R2(x; z) represents

there is a path of length two from z to x and R3(x; z) represents there is a path of length three from

x to z. Consider a uni�cation map � that maps all of R1(x; y), R2(x; y), and R3(x; y) to an invented

predicate S1(x; y). Formally, we de�ne:

De�nition 5.4.2 (Uni�cation Map) . Given query Q with invented predicates in R and variables in

X , and a set of invented predicatesS that do not occur in Q, a uni�cation map � : R � X � ! S � X �

is a function from literal R(~x) in Q that use predicateR 2 R to a literal S(~x0) that uses predicate

S 2 S and where~x0 is a permutation of variables~x.

In order to apply a uni�cation map � to a query Q, we replace each occurrence of the literalR(~x) in

Q with S(~x0). We denote such a query withT(Q; �) where T is a transformation that applies � to

Q. In the running example, we haveT(Q0; �):

� (� 1) : scc(x; y) :- S1(x; y); S1(x; y):

� (� 2) : S1(x; y) :- edge(x; y):

� (� 3) : S1(x; z) :- S1(z; y); S1(y; x):

� (� 4) : S1(x; z) :- S1(x; y); S1(z; y):

(5.5)

74

This method of uni�cation provides a subsumption guarantee that the queryT(Q0; �) generates all

the tuples generated byQ0:

Theorem 5.4.3 (Subsumption). For every relational queryQ and a uni�cation map � , the query

T(Q; �) subsumesQ, that is, on every input I , JQK(I) � JT(Q; �)K(I).

Proof. Consider a tuple t that can be derived by Q and has a derivation tree� . Then, to prove that

t can be derived byT(Q; �), we construct a derivation tree for t in T(Q; �) by replacing each rule�

in t by � (�). It is immediate that the constructed tree uses rules inT(Q; �) to derive t.

However,T(Q; �) may derive undesirable tuples, for instance, consider the tuplescc(c; d) derived by

T(Q0; �) (as shown in Figure 5.3a). Hence,T(Q0; �) is an incorrect generalization and we would like

to prune it out in the next iteration of the generalization procedure. Observe that for a given query

Q, the space of uni�cation maps is �nite. One can enumerate all uni�cation maps, construct the

corresponding queries and check if they are consistent with the input-output example. If there are

K predicates inQ and k predicates after uni�cation, then the number of possible maps are given by:

KX

k=1

�
K
k

�
(K � k)n! � n!

NX

k=1

�
K

k � 1

�
(K � k) v n!2K � 2n+ K ;

where
� K

k

	
is the Stirling number of the second kind and we assume that each predicate has arityn

and the signatures are untyped. This implies that number of candidate queries that can be generated

by uni�cation grow exponentially in both the number of invented predicates in the normalized query

as well as the arity of the predicates, making an exhaustive search infeasible. Therefore we reduce

this search problem to a constraint satisfaction problem by encoding the possible uni�cation maps

as variables, and prune it using provenance.

5.4.2. Encoding Generalization as Constraint Satisfaction

Let the bound on the number of invented predicates in the candidate query bek. Then, for every

invented predicate R of arity n in Q, we introduce:

1. an integer variablec(R) such that 1 � c(R) � k, and

75

2. for each integeri such that 1 � i � n, an integer variable p(R; i) such that 1 � p(R; i) � n.

Additionally, we have the constraint that each p(R; i) should be unique fori . That is, for all relations

R and indicesi and j , p(R; i) = p(R; j) =) i = j .

The conjunction of the above constraints form the initial constraint � 0(Q). In order to interpret

an assignment to this encoding as a uni�cation, we say that the literalR(x1; : : : ; xn) is mapped to

Sc(R) (xp(R;1) ; : : : ; xp(R;n)).

5.4.3. Provenance-Guided Constraint Generation

Observe that � is an incorrect generalization and we would like to eliminate the assignment that

leads to it. For this purpose, we carefully analyze the programT(Q0; �). Intuitively, it is clear that

unifying R1 and R2 can lead to an incorrect program as the former represents paths and the latter

represents reverse paths. Therefore, one can assign theblame of incorrect generalization to the

uni�cation of R1(x; y) with R2(x; y), and this is independent of howR3(x; y) is uni�ed with either

of the two.

In general, the goal is to identify a minimal set of predicates whose uni�cation leads to incorrect

generalization, and use this to prune out all uni�cation maps that contain them. For this purpose,

we construct a program that is equivalent toT(Q; �) by introducing tunneling clausesto Q. In the

uni�cation map if some predicate R(~x) is uni�ed with R0(~x0), then we add the rulesR(~x) :- R0(~x0)

and R0(~x0) :- R(~x). For a query Q and uni�cation map � , the program constructed using the

tunneling clauses is represented asT0(Q; �). We wish to show that T(Q; �), the program generated

by unifying predicates in Q is semantically equivalent to T0(Q; �), the program generated by adding

the tunneling clauses.

Theorem 5.4.4 (Tunneling) . The programsT(Q; �) and T0(Q; �) are semantically equivalent.

Proof. Consider an input I . We will show that T(Q; �) can derive a tuplet using input I , if and

only if, T0(Q; �) can derivet. The proof in both directions proceed by structural induction on the

derivation tree of t.

76

In the forward direction, consider a derivation of t in T(Q; �). If R(~x0) is uni�ed to S(~x), for every

rule of the form S(~x) :- Rin (~xin) we introduce the rule R(~x0) :- Rin (~xin). For every rule � (�) of the

form S(~x) :- S1(~x1); S2(~x2), consider the rules� (� 1) and � (� 2) whose heads derive the predicates

S1(~x1) and S2(~x2). Let � be R(~x) :- R1(~x1); R2(~x2) and the heads of� 1 and � 2 be R0
1(~x0

1) and

R0
2(~x2)0 respectively. As we have� (�) using the heads of� (� 1) and � (� 2), we have that R1(~x1) is

uni�ed with R0
1(~x0

1) to form S1(~x1) (and similarly for S1(~x1)). Hence, we can introduce the rules�

and the tunneling clausesR1(~x1) :- R0
1(~x0

1) and R0
1(~x0

1) :- R1(~x1). The corresponding derivation tree

in T0(Q; �) can derivet.

Now consider a derivation tree inT0(Q; �). If it uses a rule � 2 Q, we introduce the rule � (Q). If it

uses a tunneling clauseR1(~x1) :- R2(~x2), then it must be the case that � uni�es R1(~x1) and R2(~x2)

to someS(~x). Then, we introduce the ruleS(~x) :- S(~x). The corresponding tree derivest using rules

in � (Q) along with tautological rules of the form S(~x) :- S(~x). Observe that tautological rules can

be eliminated in the derivation tree as their head is the same as the predicate in the premise. This

gives us a derivation tree fort using rules� (Q).

Therefore, any tuple that can be derived in� (Q) can be derived inT0(Q; �), and they are semantically

equivalent queries.

Below is the query with tunneling clauses for the running exampleQ0 with uni�cation � (that is,

T(Q0; �) as in Equation 5.5) .

� 1 : scc(x; y) :- R1(x; y); R2(x; y): � 6 : R1(x; y) :- R3(x; y):

� 2 : R1(x; y) :- edge(x; y): � 7 : R2(x; y) :- R1(x; y):

� 3 : R2(x; z) :- R1(z; y); R1(y; x): � 8 : R2(x; y) :- R3(x; y):

� 4 : R3(x; z) :- R1(x; y); R2(z; y): � 9 : R3(x; y) :- R1(x; y):

� 5 : R1(x; y) :- R2(x; y): � 10 : R3(x; y) :- R2(x; y):

77

edge(c; d)

S1(c; d)

edge(c; d)

S1(c; d)

scc(c; d)

(a) Example derivation tree of the output tuple
scc(c; d) for the query T(Q0; �).

edge(c; d)

R1(c; d)

R2(c; d)

edge(c; d)

R1(c; d)

scc(c; d)

(b) Example derivation tree of the output tuple
scc(c; d) for the query T0(Q0; �).

Figure 5.3: The derivation tree of the tuple scc(c; d) for the queriesT(Q0; �) and T0(Q0; �). The
input to the query is the graph of Figure 2.3a.

On evaluating the program T(Q0; �) on the input graph of Figure 5.2b, we observe that it derives the

tuple scc(c; d). By Lemma 5.4.4,T0(Q0; �) also derivesscc(c; d). Figure 5.3 shows the derivation

tree for the two programs.

We will use the derivation tree of scc(c; d) in T0(Q; �) to assign the blame of generating a tuple

in O� . That is, in the running example, we analyze the derivation tree in Figure 5.3b and seek all

tunneling rules used in the derivation. Observe that the tree uses only the rule� 7 which corresponds

to unifying R1(x; y) and R2(x; y). Any uni�cation map that uni�es these two predicates (with the

same rearrangement of variables) will generatescc(c; d) and we can eliminate them in the future

iterations. However, the derivation tree does not use a rule withR3, and hence we can conclude that

a uni�cation of R3 is irrelevant to the derivation of the undesirable tuple. In this sense, the analysis

of the derivation tree gives us a part of the uni�cation to assign blame for generating a tuple inO� .

In general, if the derivation tree includes a tunneling clause of the formR(~x1) :- R0(� (~x)) for some

permutation of variables � , we add the constraint:

:

c(R) = c(R0) ^
k̂

i =1

p(R; i) = p(R0; � (i))

!

;

where k is the arity of R. This constraint prunes out all uni�cations where R(~x1) is uni�ed with

R0(� (~x)) . If the derivation tree uses more than one tunneling clause, we take the conjunction of all

78

of them.

The process of constructing the derivation tree of a tuplet in T0(Q; �) is implemented as a subroutine

Constraint (Q; �; t), and is used in Algorithm 7.

5.5. Experimental Evaluation

Our implementation of Mobius consists of approximately 1,300 lines of Python code. We use

Souffle Zhao et al. (2020) to evaluate candidate queries and compute data provenance, and we

usez3 to solve the constraints generated by theGeneralize procedure. Our evaluation in this

section attempts to answer the following questions:

Q1. E�ectiveness: How e�ective is Mobius in synthesizing queries with a variety of recursion

schemes compared to state-of-the-art tools?

Q2. Generalizability: Does predicate uni�cation improve accuracy when the learned query is tested

on unseen data?

Q3. Expressibility: How does the expressive power ofMobius compare against the baselines?

Q4. Convergence:Does accounting for data provenance improve convergence time?

We describe our benchmark suite in Section 5.5.1 and the three baselines against which we compare

Mobius in Section 5.5.2. We present our �ndings forQ1, Q2, Q3, and Q4 in Sections 5.5.3�5.5.6

respectively.

5.5.1. Benchmarks

We evaluate Mobius on a suite of 21 synthesis tasks obtained from the domains of knowledge

discovery and program analysis. The intended solutions for all of these tasks involve the use of

recursion. We present a summary of these benchmarks in Table 5.1. The benchmarks are divided

into seven categories:

1. Transitive Closure: This is the simplest example of a recursive query that constructs the

transitive closure of the input predicate. We use the example of reachability in directed graphs

79

for this category.

2. Boolean Transitive Closure: This category comprises of queries that involve transitive closure

and some Boolean operation such as conjunction or disjunction. It includes �ve benchmarks

that draw from the domains of knowledge discovery and program reasoning.

3. Linear Queries: A linear query is one where the invented (or output) predicate occurs at most

once in each ruleAbiteboul et al. (1994). While the previous two benchmark categories also

include only linear queries, this category includes three benchmarks from knowledge discovery

that are not covered by Boolean transitive closure.

4. Intersection: These queries correspond to intersection of linear queries (such asscc is an

intersection of path and its reverse). This category consists of two benchmarks.

5. Schema Invention: The monochromatic query corresponds �nding monochromatic paths in a

vertex colored graph. We discuss it in detail in Section 5.5.4.

6. Non-linear Queries: These are three other queries from knowledge discovery and program

analysis that cannot be expressed as a linear query.

7. Mutual Recursion: This category consists of six linear and non-linear queries involving mutual

recursion, that is, they have two or more recursive predicates that call each other.

These benchmarks are collected from previous literature on relational query synthesis and express a

diverse range of challenges from across di�erent application domains.

5.5.2. Baselines

We compare Mobius with three state-of-the-art synthesizers that use di�erent synthesis tech-

niques: GenSynth Mendelson et al. (2021), which uses an evolutionary search algorithm, and

ILASP Law et al. (2020a) andPopper Cropper and Morel (2021), which are based on constraint

solving techniques.

ILASP and Popper model the synthesis problem as a search through a �nite space of candidate

80

Table 5.1: Table summarizing benchmark characteristics. We evaluateMobius on a suite of 21
benchmarks featuring diverse recursion schemes. For each benchmark, we summarize the number of
input-output relations and the number of input-output tuples. Ten of these benchmarks use invented
predicates.

Name Brief description
Input Output

Preds Tuples Preds Tuples
transitive closure

path graph reachability Raghothaman et al. (2020a) 1 7 1 31
boolean transitive closure

ancestor �nd ancestor in a family tree Muggleton et al. (2015) 2 8 1 19
connected unidirectional graph reachability Mendelson et al. (2021) 1 20 1 104
escape escape analysis for Java Si et al. (2018) 4 13 1 6
union-�nd equivalence of elements in same set Si et al. (2018) 3 21 1 36
wikiedits extract edit history in Wikipedia 4 16 1 7

linear queries
rsg reverse-same-generation in family tree Abiteboul et al. (1994) 3 17 1 11
sgen same generation in family tree Abiteboul et al. (1994) 1 7 1 21
zero checking equality of numbers 2 12 1 38

intersection
blue-and-green graph reachability with two colored paths 2 9 1 5
scc compute SCCs in graph Raghothaman et al. (2020a) 1 10 1 25

schema invention
monochromatic monochromatic paths in a vertex colored graph 2 134 1 56

non-linear queries
andersen inclusion-based pointer analysis for C Andersen (1994) 4 7 1 7
dyck well balanced parentheses 2 10 1 8
modref mod-ref analysis for Java Si et al. (2018) 7 18 5 34

mutual recursion
1-call-site 1-call-site pointer analysis for Java Whaley and Lam (2004) 7 28 1 4
1-object 1-object-sensitive pointer analysis Milanova et al. (2002) 9 40 1 4
1-object-1-type 1-type-1-object sensitive analysis Smaragdakis et al. (2011) 10 48 1 6
1-type 1-type-sensitive pointer analysis Smaragdakis et al. (2011) 10 42 1 5
2-call-site 2-call-site pointer analysis for Java Whaley and Lam (2004) 7 30 1 4
buildwall learn a stable wall strategy Muggleton et al. (2015) 4 30 1 4

queries. In order to evaluate them in our setting, we generated candidate rules for each of the 20

benchmarks using instance-speci�cmode declarations. A mode declaration is a syntactic constraint

on the candidate queries such as the length of the rule or the number of times a particular relation

can occur in its body. In particular, we provide ILASP with the names and signatures of all

predicates, including invented predicates, whether they can appear as the head of a clause, and the

maximum number of times each predicate can appear in a clause body. In addition, we also provide

the maximum number of variables in each rule. Similarly, we providePopper with bounds on the

number of learned rules, their lengths, and the number of variables which can occur in each rule.

We ensure uniformity by running all baselines in single-threaded mode.

For each benchmark query, we recovered the minimum mode declarations required from its reference

solution. For example, for the query:

path(x; z) :- path (x; y); path (y; z):

81

path(x; y) :- edge(x; y):

We have the mode declarations:

#modeb(1, edge(var(V), var(V)), (positive)).

#modeb(2, path(var(V), var(V)), (positive)).

#modeh(path(var(V), var(V))).

#maxv(3).

These mode declarations specify thatedge and path predicates may appear in rule bodies, and

also specify the maximum number of times they may be used. Additionally, the head of a rule can

only have path or scc predicate, and no rule should use more than 3 variables. That is, the mode

declaration implicitly specify that there is only one recursive predicatepath . In case of invented

predicates, the user must explicitly provide the invented predicate along with its schema.

Lemma 4.2 of 3.2.2 alternatively provides an instance-agnostic technique to derive mode declarations.

However, as we will see in our evaluation in Section 3.4.3, the baseline tools often run out of time

with even the more constrained instance-speci�c settings, thereby rendering this instance-agnostic

approach infeasible.

In summary, we make the most favorable case for these baselines by choosing the tightest set of

mode declarations that contains the reference solution for the corresponding synthesis task.

5.5.3. E�ectiveness

We compared the performance ofMobius against the baselines by running each of them on the

benchmarks. We set a uniform timeout of 15 minutes for all tools, and ran the experiments on

a desktop workstation with a Ryzen 9 5950X CPU and 128 GB of memory running Linux. We

measured the running time of each of these tools on each benchmark. We present the running times

in Table 5.2 and present an alternative visualization in Figure 5.4a.

Overall, Mobius consistently produces solutions in the least time, despite requiring lesser guidance

82

Table 5.2: Table summarizing e�ectiveness of synthesis. We evaluateMobius and the three baselines
on a suite of 21 benchmarks. All tools are run in single-threaded mode.Mobius successfully
synthesizes all benchmarks with an average run-time of 23.1 seconds, whileGenSynth , ILASP ,
and Popper time out on 7 benchmarks each. Note thatGenSynth and Popper fail to �nd a
solution for 1 and 7 benchmarks respectively.

Name
Runtime

Mobius GenSynth ILASP Popper
path <1 <1 <1 <1
ancestor <1 5.0 timeout 21.8
connected 1.2 - timeout -
escape <1 4.5 1.0 -
union-�nd 1.0 2.1 20.2 timeout
wikiedits 1.5 157.8 1.0 42.1
rsg 1.8 39.5 27.9 3.7
sgen 1.3 6.5 2.3 <1
zero 11.1 timeout 3.4 -
blue-and-green 1.6 17.9 3.1 3.2
scc 2.2 4.7 timeout -
monochromatic 14.2 5.1 timeout timeout
andersen 5.7 timeout 554.8 timeout
dyck 133.9 565.9 52.1 -
modref 275.8 timeout timeout -
1-call-site 1.1 timeout timeout timeout
1-object 1.4 753.7 299.9 timeout
1-object-1-type 20.8 timeout 455.9 24.6
1-type 3.1 timeout timeout timeout
2-call-site 1.2 timeout 406.5 timeout
buildwall 2.3 44.3 194.3 -

than all three baseline tools. Across the 21 benchmarks, on average,Mobius requires 41%, 76%,

and 60% of the time needed byGenSynth , ILASP and Popper respectively. Observe also that

it is the only tool which does not timeout on any benchmark, and in several instances is the only

system which successfully synthesizes a solution.

We note that Mobius solves all but two synthesis tasks in less than 30 seconds. In the two most

expensive benchmarks, modref (a program analysis task) and dyck (matching well-parenthesized

strings), more than 85% of the �nal synthesis time is needed by EGS to produce the seed query in

Step 1 of Algorithm 6 (Figure 5.4b shows a breakdown of the time needed for the initial synthesis of

non-recursive queries).

Additionally, ILASP and Popper fail to solve 7 and 14 problem instances respectively. ForPopper ,

these failures arise both from running out of time and because of its inability to synthesize invented

predicates. In particular, it reports infeasibility for �ve synthesis tasks, including the SCC query

(which requires the invented predicatepath).

83

(a) Comparing the performance of Mobius , GenSynth ,
ILASP , and Popper on the suite of 21 benchmarks.

(b) Comparing the total runtime of the end-
to-end Mobius tool against the time spent
in the non-recursive phase that usesEGS
for the suite of 21 benchmarks.

Figure 5.4: Summary of the runtime of Mobius on the benchmark suite for the e�ectiveness study.
Mobius outperforms the state-of-the-art baselinesGenSynth , ILASP , and Popper . The synthesis
time of Mobius is split between the non-recursive phase where we useEGS and the generalization
phase where we use a provenance-guided search.

84

5.5.4. Generalizability

Next, we asked whether the generalization algorithm improves the accuracy of learned queries when

they are applied to previously unseen datasets. In order to determine the empirical accuracy of

Mobius and to compare it to that of EGS and GenSynth , we focused on three synthesis tasks

involving graph properties: path , connected, and scc. The two vertices x and y are related by

connected(x; y) if there is either a path from x to y or a path from y to x. It is therefore similar to

SCC, with the top-level conjunction instead replaced with a disjunction.

We used the same training data as in Section 5.5.3. The test data is generated by sampling graphs

of increasing size (ranging from10 to 50 vertices) that contain Hamiltonian cycles. The Hamiltonian

cycle ensures that all sampled graphs are non-trivial, i.e.,; (path ; connected; scc (V � V . The

experiment is repeated 10 times and the mean values are reported in Figure 5.5.

The queries learned byEGS only achieve at most 62%, 81%, and 37% test accuracy in each of the

three queries. This is unsurprising: because the test graph is larger than any of the training graphs,

it is unlikely for non-recursive queries learned byEGS to achieve perfect accuracy in test.

Two expected trends are also evident from this: First, the test accuracy of EGS decreases as the size

of the input graph increases. On average, the accuracy falls by over half for graphs with50 vertices

compared to those with10 vertices. Second, complex benchmarks such asscc that involve invented

predicates show signi�cant drops in accuracy compared to relatively simpler benchmarks such as

path and connected.

On the other hand, observe thatMobius consistently achieves perfect test accuracy consistently. In

other words, Algorithm 7 e�ectively transforms the non-recursive query to produce a query with

recursive and invented predicate that generalizes to arbitrarily large unseen data.

Another e�ect of predicate uni�cation is that the learned queries are smaller than the seed non-

recursive queries. Over su�ciently large training datasets, the compressed query stops growing

once theGeneralize procedure has identi�ed the target concept, while the non-recursive query

generated byEGS continues to grow as larger instances of these patterns occur in the training data.

85

	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Problem Formulation
	Synthesis of Conjunctive Queries
	Synthesis of Queries with Comparison Operators
	Synthesis of Recursive Relational Queries
	Synthesis in Presence of Noise
	Conclusion and Future Work
	BIBLIOGRAPHY
	Run-time Comparisons
	Quality of Synthesized Programs

