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ABSTRACT

EXAMPLE GUIDED SYNTHESIS OF RELATIONAL QUERIES

The goal of program synthesis is to automatically generate programs that meet user intention.
While a number of methods for expressing user intention has gained traction over the last five
decades, programming-by-example has proven to be useful in domains where the user may not be
able to articulate the desired program behavior as a logical specification but can describe it through

demonstrative input-output examples.

This dissertation studies programming-by-example in the context of relational queries. It is a
challenging and foundational problem; ideally, we would like a technique that is simultaneously:
(a) scalable enough to be applicable to real-world instances, (b) expressive in terms of the kinds of
queries that it can synthesize, and (c¢) fully automatic, so it requires minimal guidance from non-expert
users. Significant progress has been made on this problem in recent years Cropper and Dumancic¢
(2022), and a variety of algorithms have been proposed, including algorithms based on evolutionary
search Mendelson et al. (2021), numerical relaxation Si et al. (2019), constraint solving Law et al.

(2020a); Cropper and Morel (2021), and counterexample-guided search Raghothaman et al. (2020a).

Each of these approaches require additional supervision in the form of templates to restrict the space
of candidate programs and accelerate the search. In this line of work, we propose example-guided
synthesis, a paradigm of techniques to eliminate the need for such instance-specific supervision
by leveraging the underlying structure of the input-output examples. We present an example-
guided algorithm for conjunctive queries, and then extend it to support expressive features such as

disjunction, recursion, and comparison predicates, as well as learning in presence of noise.

We implement this technique and demonstrate that it outperforms the state-of-the-art tools on a

diverse set of benchmarks in terms of both, running time and the quality of examples.
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CHAPTER 1

INTRODUCTION

The prevalence and use of structured data for diverse application domains including scientific
computing, medicine, and finance require users to produce small but inherently complex queries that
demand algorithmic insights and expertise of programming syntax. For end-users of these database

systems who may not be experts at programming, designing queries can become ardours.

Over the last ten years, program synthesis technology has matured to become a practical tool
that addresses this concern. Program synthesis aims to automatically find programs in a given
programming language that satisfy user intent. Unlike compilers that translate a formally specified
description (such as a regular language expression) to a low-level machine representation (such as
an automaton), synthesis tools perform a search over a space of candidate programs to generate a
program. The user intent for these programs can be defined in terms of formal specification, natural

language instances, or input-output examples.

Synthesis has been the holy grail of computer science research at least since the late 60s; it was consid-
ered by Pnueli to be one of the most central problems in the theory of computation [Pnueli and Rosner
(1989)]. It was soon proved that program synthesis, in general, is intractable, and therefore, all efforts
at synthesis have had to incorporate human insight into the synthesis process. This is primarily

done in two ways:
1. Restricting expressiveness of the programs, and
2. Providing additional supervision for users to direct the search process.

This thesis fundamentally studies the trade-off between these two ways in the context of relational

query synthesis.



1.1. Relational Query Synthesis

Relational queries are declarative logic programs and find applications in domains such as knowledge
discovery, program analysis, and in querying databases. They operate over relational algebras [Codd
(1970)] and form the basis of database query languages such as SQL, Datalog [Abiteboul et al. (1994)],
SPARQL [Pérez et al. (2009)|, Cypher |Francis et al. (2018)], as well as their variants for querying
code, such as PQL [Martin et al. (2005)], LogiQL [Green (2015)], and CodeQL [Avgustinov et al.
(2016)].

The problem of synthesizing such logic programs from input-output examples has been studied over
the last two decades and a number of tools have been developed with varying restrictions on the
expressiveness of the programs and with different needs for additional supervision. In this section,
we summarize the advances in enumerative, constraint solving, and hybrid techniques to solve the
relational query synthesis problem. Each of the tools uses a form of instance-specific supervision to

guide the search.
1.1.1. Syntax-guided Techniques

Syntax-guided Synthesis (SyGuS) is a classical formulation of program synthesis where the user may
supplement the input-output examples with syntactic templates to constrains the space of allowed
programs. Si et al. (2018) build a syntax-guided tool called ALPS for the synthesis of relational
queries (in particular, Datalog queries) where the user provides instance-specific supervision in form
of meta-rules. According to the Si et al. (2018): the key challenge is to obtain a set of meta-rules

that is general enough to capture useful programs but specific enough to enable efficient synthesis.

Another paradigm for enumerative synthesis is a two-phased search where the synthesis problem
is decomposed into first searching for an abstract query and then searching for predicates that can
instantiate the abstractions. Wang et al. (2017a) develops the tool SCYTHE and Takenouchi et al.
(2021) develops the tool PATSQL that implement such a two-phased approach. Both the tools target
the domain of SQL queries and require an exhaustive list of constants that may be used for the

comparison operators in the query.



A syntax-guided technique that differs from these two paradigms is GENSYNTH, an evolutionary
search strategy that mutates candidate programs and evaluates their fitness on the input-output
examples. GENSYNTH stands out among the synthesis engine as it requires the least instance-specific
supervision. It requires the signatures of invented predicates, unless they coincide with that of an

input or output relations.
1.1.2. Constraint-solving Techniques

Constraint-solving techniques inherently require syntactic constraints restrict the search space to a
finite set of candidate programs. Then, they use SMT solvers to navigate through this finite search

space.

Albarghouthi et al. (2017) introduces a constraint-based synthesis technique for Datalog programs
that uses uses an SMT solver to search through the space of Datalog programs defined by a set of

constraints on the number of clauses in each program as well as the length of each clause.

PROSYNTH is a provenance-guided technique for Datalog synthesis that generates constraints using
the provenance information from a program evaluator, and requires an exhaustive list of candidate

rules to restrict the search space.

Similarly, other Inductive Logic Programming tools such as POPPER, METAGOL, and ILASP use
different syntactic constraints (hypothesis constraints, metarules, and mode declarations) to restrict

the search space. They all synthesize fragments of Answer Set Programs.
1.2. An Example-guided Approach to Synthesis

All existing techniques for synthesis of relational queries rely on instance-specific supervision. In
this thesis, we attempt to restrict the expressiveness of relational queries to develop fully automated

push-button techniques.

In recent years, techniques such as FlashFill [Gulwani (2011)| have demonstrated the effectiveness
of fully automated techniques when restricted to specific domains. FlashFill synthesizes string
transformations by analyzing the structure of input and output examples and searches for common

patterns between them. FlashRelate [Barowy et al. (2015)] and Golem [Muggleton and Feng (1990)]



are other examples of fully automated techniques that leverage the structure of the input-output
examples, and have shown to be more scalable then their syntax-guided and constraint-solving based

counterparts.

While all PBE techniques use the examples in some form, we call a technique example-guided only

when it meets the following criteria:

1. The candidate programs enumerated by the search depend on the latent structure of the

input-output examples, and not just a grammar of the target language, and

2. The input-output examples cannot be replaced by a black-box verification oracle that checks if

a candidate program is consistent with the input-output examples or not.

Additionally, our objective is to develop example-guided techniques that do not require instance-
specific supervision and allow for a fully automated push-button synthesis framework for relational

queries.
1.3. Contributions of this Dissertation

Concretely, this thesis makes the following contributions:

1. We identify a category of synthesis algorithms for PBE called Example-guided Synthesis which

exploit the latent structure in the provided examples while generating candidate programs.
2. We study the problem of relational query synthesis and establish its decidability and complexity.

3. We develop an example-guided algorithm for synthesizing conjunctive relational queries by

leveraging patterns in the input-output examples.

4. We show that this algorithm can be extended to support relational queries with a variety of

features such as disjunction, numerical comparison, and recursion.

5. We show that the algorithm can be extended to support learning in presence of noisy input-

output data.



6. We demonstrate that our technique outperforms state-of-the-art tools on a variety of benchmarks

across multiple dimensions: running time, quality of programs, and in proving unrealizability.



CHAPTER 2

PROBLEM FORMULATION

We devote this chapter to formalizing the query synthesis problem and proving its decidability and

complexity.
2.1. Problem Setting

We begin by presenting an overview of the example-guided synthesis (EGS) framework. As an
example, consider a researcher who has data describing traffic accidents in a city and who wishes to

explain this data using information about the road network and traffic conditions.

We present this data in Figure 2.1. Suppose that at a given instant, accidents occur on Broadway
and Whitehall. The researcher observes that these streets intersect, that they both had traffic, and
that the traffic lights on both streets were green. They generalize this observation, and find that
the resulting hypothesis, that an accident occurs at every pair of streets with similar conditions, is

consistent with the data. One may formally describe their hypothesis as the following Horn clause:

Crashes(z) :- Intersects(z,y), HasTraffic(z), HasTraffic(y),

GreenSignal(x),GreenSignal(y), (2.1)

where x and y are universally quantified variables ranging over street names, “:-” denotes implication

“<" and “)” denotes conjunction. Our goal is to automate the discovery of such hypotheses.

This problem can be naturally formalized as a programming-by-examples (PBE) task. Given a set
of input facts I encoded as relations, and a set of desirable and undesirable output facts, O™ and
O~ respectively, we seek a program which derives all of the tuples in O and none of the tuples in

O~. In our example, we implicitly assume that the data is completely labelled, so that

O™ = { Crashes(Broadway), Crashes(Whitehall) },
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Figure 2.1: Data describing traffic conditions in a city: (2.1a) Map of the city, (2.1b) and listing of
the input and output relations. We would like to explain the accidents occurring on Broadway and

Whitehall.



and O~ is the set of all other streets,

O~ = { Crashes(Liberty St), Crashes(Wall St), Crashes(William St) }.

Traditional methods for PBE use syntax-guided enumerative techniques that search the space of
candidate programs. In our example, a candidate program would be a Horn clause with the premise

consisting of one or more of HasTraffic, GreenSignal, or Intersects literals.

A naive approach is to enumerate all candidate programs in order of increasing size till we find a
consistent hypothesis. For the running example, we will have to enumerate more than 12 x 109
candidate programs before discovering the one shown in Equation 2.1. Unsurprisingly, most work
on program synthesis has focused on reducing the size of this search space: in our context, tools
such as ALPS and PROSYNTH restrict the search space by only looking for programs composed of
rules from a fixed finite set of candidate rules Si et al. (2018); Raghothaman et al. (2020b), while
ILASP constrains the space through “mode declarations” that bound the number of joins (in our
case conjunctions) and the number of variables used Law et al. (2014, 2020b). On the other hand,
SCYTHE, a synthesis tool for SQL queries, first finds “abstract” queries that over-approximate the
desired output, and then searches for concrete instantiations of these abstract queries that are

consistent with the data Wang et al. (2017b).
2.2. Syntax and Semantics of Relational Queries

Different fragments of relational queries are defined using a variety of languages such as select-project-
join (SPJ) queries, SQL, Datalog, and Prolog. In this thesis, we will use the syntax of Datalog to

define relational queries.
2.2.1. Datalog Syntax

A relational query @ is a set of rules. To define the syntax of rules, we first fix a set of input
predicates, a set of invented predicates, and a set of output predicates. FEach predicate R is associated

with an arity k. A literal, R(v1,va,...,v;), consists of a k-ary predicate R with a list of k variables.



Then, a rule r is of the form:

Rh(ﬁh) - R1 (’l_fl), RQ(Q_[Q), e ,Rn(ﬁn), (22)

where the single literal on the left, Ry (i), is the head of r and Ry (1), Re(U2), ..., Ry(iy,), is called
the body of r. The literals in the body can have input predicates, invented predicates, or output
predicates, while the head of the rules must have either invented predicates or output predicates.
A variable that occurs in the head must appear at least once in the body in order to bound the

variables.

The program in Equation 2.1 is an example of a relational query. The head consists of Crashes(x)

and the body has five literals.
2.2.2. Semantics

The semantics of a relational query may be specified in multiple equivalent ways (Abiteboul et al.
(1994)). In our work, we will formalize their semantics using rule instantiations and derivation trees.
The semantics of a relational query is interpreted over a data domain D whose elements are called
constants. For simplicity of formalization, we are assuming that there is a single type. The synthesis
framework and its theoretical guarantees can be extended to support typed constants and typed

relations. We can define rule instantiation as:

Definition 2.2.1 (Rule Instantiation). Given a map v from variables to the data domain D, the

rule instantiation of a rule as in Equation 2.2 is:

Rp(v(i@y)) <= Ry(v(i0y)), Ro(v(ids)), . ., Ru(v(@n)).

That is, one can systematically replace each variable x by v(x). For example, consider the query in

Equation 2.1. One can systematically replace its variables according to the map {x — Whitehall, y —



Broadway} to obtain the rule instantiation:

Crashes(Whitehall) <= Intersects(Whitehall, Broadway),
HasTraffic(Whitehall), HasTraffic(Broadway),

GreenSignal(Whitehall), GreenSignal(Broadway). (2.3)

We say that a tuple ¢ is derivable from input tuples I if there exists a rule r and a map v such that
on instantiating r with v, the head tuple Ry (v(})) is ¢, and each of the tuples in the body R;(v(4;))
occur in I. Then, a relational query @ takes input tuples I and returns output tuples O = [Q](I) as

the set of all tuples that are derivable from I using rules in Q.
2.2.3. Syntax and Semantics of SPJ Queries

We now study select-project-join queries where selection supports categorical and numerical compar-

isons, and all joins are equi-joins. We will use SQL syntax to denote these SPJ queries.

To define the syntax of these queries, we first fix a set of input tables and a set of output tables.
For simplicity, the columns of each table are of either of the kinds: categorical, numerical, and

uncomparable.

The syntax of the select-project-join queries is defined by the grammar in Figure 2.2. The JOIN
operator featured in this query is an equi-join, that is a join parameterized by a set of columns 6.
Comparisons of the form (T.c = k) or (T.c # k) are supported only for columns of the categorical
kind, all other comparisons are only supported for the numerical kind, and no comparisons are

supported for the uncomparable kind.

The semantics for these queries are as defined in classical works on relational algebra (Date (2009);
Imieliriski and Lipski (1984)). We denote the set of tuples produced by query @ on input tables I as
[Q](I). We consider the set-semantics and not bag-semantics, that is, a relation is a set of literals

with the same predicate (such as registration, instructor, and department).
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- SELECT (T}.ci,...T,.c,) FROM J WHERE &
T | .J JOIN T ON 6

- T.cw k| oy AND 05 | 01 OR 09

- Ty.c; = To.co | 61 AND 6,
=l#I<]<]>]2

9 WO

S

Figure 2.2: Grammar for select-project-join queries. T ranges over tables, ¢ ranges over column
names, and k ranges over constant values. The grammar does not feature operators for negation,
aggregation, or ordering.

2.2.4. Definitions

In this section, we define some terms that are used throughout the proposal.

Definition 2.2.2 (Conjunctive Queries). A query comprising of a single rule as defined in Section 2.2.1

that uses only input predicates in its body is termed a conjunctive query.

Conjunctive queries are also termed select-project-join (SPJ) queries because of their representation
in relational algebra, and are correspond to queries expressed using the select-from-where idiom in

SQL. Adding the disjunction operator to these queries give us union of conjunctive queries:

Definition 2.2.3 (Union of Conjunctive Queries (UCQ)). A query comprising of rules as defined in

Section 2.2.1 that use only input predicates in their bodies is termed a union of conjunctive queries.

Observe that UCQs are inherently non-recursive as the predicates are divided into either output
predicates that can occur in the head of a rule or input predicates that can occur in the body of a

rule. In order to define recursive queries, we introduce the concept of invented predicates.

Definition 2.2.4 (Invented Predicate). An invented predicate is one that is neither an output

predicate, nor an input predicate.

Consider the following program Ps.. to identify the pair of vertices in a directed graph that are in

11



the same strongly connected component (given only the edge relation as an input) :

SCC($7 y) = path(:v, y)v path(y7 l’)

path(z, z) :- path(z,y), path(y, z). (2.4)

path(a:, y) - edge(aja y)

Observe that the predicate path is neither an input predicate nor an output predicate. It is the
transitive closure of edge that is used as an intermediate to define the scc relation. Therefore, it is
an example of an invented predicate. Additionally, path also calls itself and in that sense, it is a

recursive predicate.

Definition 2.2.5 (Recursive Predicate). A predicate R is said to be recursive if there exists a finite
sequence of rules r1,7r9,...,r; such that R occurs in the head of rule r; and the body of rule 7,

and the head of each rule r;4; occurs in the body of the rule r;.

That is, a predicate is said to be recursive if it can call itself during the execution of the program.

The semantics of a recursive query are best defined using derivation trees.

Definition 2.2.6 (Derivation Tree). Given a query P and a valuation of the input relations I, a
derivation tree of a tuple t is a labelled rooted tree where: (a) each node of the tree is labeled by
a tuple, (b) each leaf is labeled by a tuple in I; (¢) the root node is labeled by ¢; and (d) for each
internal node labeled «, there exists an instantiation a« <= pf1,..., B, of a rule in P such that the

children of the node are respectively labelled 51, ..., B,.

We say that a query P derives ¢ using [ if there exists a derivation tree for ¢. Consider, for example
the graph in Figure 2.3a. Figure 2.3b shows the derivation tree for scc(a,b) in Pscc. The output
[P](I) of a query P given an input I is the set of output tuples R(cy,co,...,c;) which it derives

from I. The query Pscc on the input in Figure 2.3a generates the output as in Figure 2.3c.
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edge(b, c)
1
@ edge(a,b) | |path(b,c)| |edge(c,a)
@A A+e] (5 N I
path(a,c) path(c,a)
N /
(a) Graph G. scc(a, c)

(b) Example derivation tree.

Query semantics ([Pscc](1)):
scc(a,a), scc(ab), scc(ac),
scc(b,a), scc(b,b), sce(b,c),
scc(c,a), scc(e,b), scc(c,c),
scc(e,e), scc(e,f), scc(f,e)

(c) Semantics of Ps.. with respect to the input of di-
rected graph G as in Figure 2.3a. The set I is the set
of input tuples and the query semantics are [Pscc] ().

Figure 2.3: The synthesis task is specified as a search for a relational query P that takes the graph
G as an input and returns a set of pairs of vertices O such that O is a superset of O" and disjoint
from O~.

2.3. Relational Query Synthesis Problem

Our ultimate goal is to synthesize relational queries which are consistent with a given set of examples.
In this context, an example consists of input and output tuples; the user has labeled the output
tuples as either positive or negative. The objective then is to synthesize a program which is consistent
with the examples, that is, a program which derives all of the positive tuples and none of the negative

tuples.

Problem 2.3.1 (Relational Query Synthesis Problem). Given input relation names I, output
relation names O, input tuples I, and output tuples partitioned as O and O, return a relational

query Q such that O C [Q](I) and O~ N [Q](I) = 0, if such a query exists, and unsat otherwise.

We call the triple M = (I,0",07) an example, and a query Q is said to be consistent with it if
O C [Q](I) and O~ N[Q](I) = 0.
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2.4. Decidability and Complexity

We will now show that checking whether a synthesis problem instance is solvable is co-NP complete.

One of the main ingredients of this proof will be the following construction:

Let the data domain D = {c1,ca,...,¢,}, and the input tuples I = {R;(¢1), R2(C2), ..., Rn(Cn)}-

Then, for t = R(¢), we then define the rule r(¢) as follows:

T(t) ZR(??):— Rl(ﬁl), Rg(ﬁg), ey Rn(Un)

where the head R(¢) and the body literals R;(7;) are obtained by by consistently replacing the
constants in the output tuple R(¢) and input tuples R;(¢;) with fresh variables v.. The idea is that
the body of this rule captures all patterns which exist among the input tuples. The rule r(¢) is

therefore the strongest query in this data which also produces t. This gives us the following lemma:

Lemma 2.4.1. Given a problem instance E = (I,0%,07), let Qo+ = {r(t) : t € OT}. The problem

stance admits a solution if and only if Qg is consistent with E.

Proof. One direction of the claim is immediate: if Qo4 is consistent with E, then the problem

admits a solution.

In the reverse direction, suppose that Qo is not consistent with E but there exists a query P
consistent with E. Observe that for each ¢ € OT, the rule 7(¢) can produce it by picking an
appropriate instantiation with which it was constructed. Hence, there exists a tuple t~ € O~ that is

produced by Qp+. We will show that P also produces ¢t~ and establish a contradiction.

Since P is consistent with E, ¢t € [P](I). Let 7 be the derivation tree which produces ¢. Pick the
variable valuation v : X — D which causes r(t) to produce the tuple t~. Let v : D — X be the map
that was used to construct r(t). Apply the constant renaming map f =~yov: D — D to every node
of the derivation tree 7 to produce the renamed tree f(7). Observe that f(7) is still a well-formed
derivation tree of the query P, and that f(t) =t . It follows that the query P also produces ¢t~ as

an output tuple, contradicting our assumption that P was consistent with F. O
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We now establish our main complexity result, which follows from Claims 2.4.3, 2.4.4, and 2.4.5.

Theorem 2.4.2. Determining whether an instance of the relational query synthesis problem admits

a solution is co-NP complete.
We devote the rest of this section to the proof of this theorem.

Claim 2.4.3. The problem of determining whether Qg is consistent with the input-output example

E = (I1,07,07) is in co-NP.

Proof. By construction, O C [Qp+](I) and it only remains to check that O~ N [Qo+](I) = 0. A
rule r € Qo+ and map v from variables to constants serve as a certificate of O~ N [QE](I) # 0. The
certificate can be verified by confirming that the tuple derived by instantiating r» with v is in O~. It

follows that checking whether Q;_,o+ is consistent with E is in co-NP. O

To show co-NP hardness, we reduce the problem of checking whether an undirected graph G = (V, E)
has a clique of size k to that of determining whether an instance of the synthesis problem is
unsolvable. Without loss of generality, assume that G does not have self-loops. Consider a set of k
constants Vi, = {v1, v, ..., v} disjoint from V. Then, consider the instance of the synthesis problem

(I,0",07), where:

I = {edge(u,v) | (u,v) € E}
U {edge(vivvj) | Vi, Vg € Vkvv’i 3& Uj}v
O" = {clique(v) | v € V};}, and

O~ ={clique(u) |u e V}.

Claim 2.4.4. If G does not have a clique of size k, then the given instance is realizable.
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Proof. Consider a query ) with only one rule:

clique(xy) :- edge(x1,22),...,edge(xs, x;), . .. edge(xy, Tp—1).

Where the premise consists of edge(x;, x;) for i # j. If G does not have a clique, then we claim that
[P](I) = O*. It is clear that OF C [Q]([). For sake of contradiction, let clique(u) € O~ N [Q](I).
Then, there is a map v : {z1,...,2x} — V UV} such that instantiating the rule r with v derives
clique(u) for some v € V. I must contain a tuple edge(v(x;),v(x;)) € I for each i # j. By
construction of I, if edge(z,y) € I, then = # y, so each v(x;) is distinct. Also, we know that
u=wv(x1) € V and edge(u,v(x;)) € I for 2 < i < k, hence, v(z;) € V. Let uy = v(z). We have
distinct vertices ui,...,ur each in V' such that there is an edge between them. Then, these vertices

form a k-clique, contradicting the assumption. O

Claim 2.4.5. If G has a clique of size k, then the given instance is unrealizable.

Proof. Let the vertices uq,...,u; form a clique in G. Consider the map 7 : V UV, — V where
m(u) = u for w € V and 7(v;) = u; for v; € V. For sake of contradiction, let P be a query consistent
with the input-output example, and hence, clique(v;) € [P](I). The derivation tree for clique(u;)
in P can be constructed by replacing each v by m(v) in the derivation tree of clique(v;) in P.
Hence, uy € [P](I) N O~, contradicting the assumption that P is consistent with the input-output

example. 0

Lemma 2.4.1, and Claims 2.4.3, 2.4.4, 2.4.5 allow us to conclude the Relational Query Synthesis
Problem is co-NP complete. Moreover, the Qo+ construction synthesizes a polynomial sized relational

query using the input-output examples.
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CHAPTER 3

SYNTHESIS OF CONJUNCTIVE QUERIES

In this chapter, we describe the core algorithm for example-guided synthesis of relational queries.

For the purpose of this chapter, we will be using the running example of traffic crashes.
3.1. Searching Patterns of Co-occurence

Consider the alternative representation of the training data shown in Figure 3.1, summarizing input
facts I. We call this the constant co-occurrence graph Gj: every constant is mapped to a vertex,

and the edges indicate the presence of a tuple in which the constants occur simultaneously.

In order to synthesize a query, we pick an output tuple, say Whitehall, and focus on the por-
tion of the graph surrounding it. Of the 18 tuples present in the data, only 4 tuples refer
to this street: GreenSignal(Whitehall), HasTraffic(Whitehall), Intersects(Whitehall, Broadway), and

Intersects(Broadway, Whitehall). With these tuples, we can identify the following candidate queries:

q1 - Crashes(x) - GreenSignal(x),
qo : Crashes(l‘) - HasTraffic(m),
g3 : Crashes(z) :- Intersects(z,y), and

qs : Crashes(z) :- Intersects(y, ).

Notice that these queries produce the desirable tuples Crashes(Whitehall) and Crashes(Broadway), but
also produce several undesirable tuples: two undesirable tuples by ¢; and g2, and three undesirable

tuples by g3 and ¢4 respectively.

Each of these candidate programs can be made more specific by considering sets of tuples. For

example, one can extend the set C; = { GreenSignal(Whitehall) } which produces ¢; with a new
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Figure 3.1: The induced constant co-occurrence graph, Gr. We would like to explain the accidents
occurring on Broadway and Whitehall.

tuple HasTraffic(Whitehall) to obtain:

g5 : Crashes(x) :- GreenSignal(z),HasTraffic(x). (3.1)

In contrast to ¢p, this query only produces one undesirable tuple, namely, Crashes(William St).

Instead of directly enumerating candidate programs, our insight is to enumerate the subsets of the
constant co-occurrence graph to generate candidates. Our algorithm tracks enumeration contexts:
each such context is a set of input tuples obtained from a connected sub-graph of the co-occurrence
graph Gy, and can be generalized into a candidate program by systematically replacing its constants

with fresh variables.

Our main insight is that the only tuples which increase the specificity of an enumeration context are
those which are directly adjacent to it in the co-occurrence graph. For example, consider context

(5 = { GreenSignal(Whitehall), HasTraffic(Whitehall) } which produces the query ¢s in Equation 3.1.
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Figure 3.2: Architecture of the EGS algorithm.

Observe in Figure 3.1 that there are exactly two tuples incident on C5: t = Intersects(Whitehall,
Broadway) and ¢’ = Intersects(Broadway, Whitehall). We conclude that there are exactly two contexts
which need to be enumerated as successors to Cs, namely: Cs = C5 U {t} and C7 = C5 U {t'}. These

contexts respectively produce the candidate queries:

ge : Crashes(x) - GreenSignal(m),HasTraffic(x), Intersects(x,y), and

g7 : Crashes(z) :- GreenSignal(z),HasTraffic(x), Intersects(y, x).

The EGS algorithm repeatedly strengthens the enumeration context C' with new tuples until it finds
a solution program. For example, after five rounds of iterative strengthening, the context grows to

include the tuples:

C = { GreenSignal(Whitehall), HasTraffic(Whitehall),
Intersects(Whitehall, Broadway),

GreenSignal(Broadway), HasTraffic(Broadway) }, (3.2)

which, when used to explain Crashes(Whitehall), produces the desired solution in Equation 2.1.Fig-
ure 3.2 presents the overall architecture of the EGS algorithm. It maintains a set of enumeration
contexts, organized as a priority queue, and repeatedly extends each of these contexts with a new
tuple, in an example-guided manner. Each enumeration context can be naturally abstracted into
a candidate query, as discussed in Section 2.2.2, and the procedure returns as soon as it finds an
explanation which is consistent with the data. The priority function depends on both the size of the

candidate program, and its accuracy on the training data, and we formally define it in Section 3.2.3.

Additionally, because the training data is finite, the co-occurrence graph is also finite, and therefore
the EGS algorithm will eventually exhaust the space of enumeration contexts. At this point,

Lemma 3.2.2 guarantees the non-existence of a program which is consistent with the training data,
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thus proving the completeness of the synthesis procedure.

While the approach of iteratively strengthening candidate queries is similar to that followed by
decision tree learning algorithms Quinlan (1986); Grzymala-Busse (1993), a notable difference is
the presence of the queue in EGS, which holds alternative candidate explanations. The difference
between the two algorithms is therefore similar to the difference between breadth-first search and

greedy algorithms, with EGS being biased towards producing small candidate programs.

In our example, a syntax-guided prioritization would be forced to enumerate all programs with
less than five joins, which induces an extremely large search space: SCYTHE takes approximately
16 seconds to find a consistent query and ILASP takes approximately 2 seconds, while the EGS

algorithm returns in less than one second.
3.2. Example-Guided Synthesis Algorithm

In this section and the next, we formally describe the EGS algorithm for synthesizing relational
queries. For ease of presentation, we first develop our core ideas for the case of a single desirable
output tuple with a single column, t = R(c). Given a set of input tuples I, the target tuple ¢, and a set
of undesirable output tuples, the ExplainCell algorithm produces a query which is consistent with
the example (I, {t},O7). We extend this synthesis procedure to solve for multi-tuple multi-column

output relations in Section 3.3.

The query is constructed by analyzing patterns of co-occurrence of constants in the examples,
which we summarize using the constant co-occurrence graph. We first formalize this graph, and
then introduce enumeration contexts as a mechanism to translate these patterns into relational
queries. We conclude the section with a description of the ExplainCell procedure which searches

for appropriate enumeration contexts using the co-occurrence graph.
3.2.1. The Constant Co-occurrence Graph

Recall that the data domain D is the set of all constants which appear in the input tuples t € I.

Then, the constant co-occurrence graph, Gy = (D, E), is a graph whose vertices consist of constants
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in D and with labeled edges E which are defined as:
E ={¢ £, ¢; | input tuple R(ci,ca,...,cx) € 1}. (3.3)

In other words, there is an edge ¢ —% ¢ iff there is a tuple ¢ in the input relation R which
simultaneously contains both constants ¢ and ¢’. Observe that this makes each edge bi-directional.
If constants ¢ and ¢ occur in a tuple t, we say that t witnesses the edge ¢ =% ¢/. The constant

co-occurrence graph induced by the example of Figure 2.1b is shown in Figure 3.1.

The main insight is that patterns in the training data can be inferred by examining the co-occurrence
relationships between constants. We express these patterns as subgraphs of the co-occurrence
graph: as a consequence, the final ExplainCell procedure of Algorithm 1 reduces to the problem of

enumerating subgraphs of G.
3.2.2. Enumeration Contexts

An enumeration context is a non-empty subset of input tuples, C C I. Equation 3.2 shows an
example of an enumeration context. As Algorithm 1 explores Gy, it builds these contexts out of the

tuples which witness each subsequent edge.
We can naturally translate a context C' = {R1(¢1), R2(¢2), ..., Rn(Cy)} and an output tuple t = R(?)
into a conjunctive query r¢,; as follows:

TCwst - R(ﬁ) - R1 (171), Rz(l_fg), e ,Rn(l_fn), (3.4)

where the head R(¥)) and body literals R;(¥;) are obtained by consistently replacing the constants in
the output tuple t = R(¢) and in the contributing input tuples R(¢;) with fresh variables v.. We say

that a context C' explains a tuple ¢t when the rule r¢.y; is consistent with (7,{t},O7).

Recall from Section 2.2.2 that a rule may be instantiated by replacing its variables with constants,
analogous to the process of specialization. In contrast, the procedure to obtain rc_¢ from the context

C and output tuple £ may be viewed as a process of generalization. This correspondence between
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enumeration contexts and rule instantiations allows us to state the following theorem:

Theorem 3.2.1. Given an example M = (I,{t},O™), there exists a context C C I explaining t if

and only if there exists a conjunctive query consistent with the example.

Proof Sketch. Clearly, if context C' explains ¢, then, by definition, r¢,; is consistent with example
M. Conversely, if there is a conjunctive query @) consistent with M, then let v be a valuation map
deriving ¢ in query ). Then, consider the context C' C I to be the set of tuples that occur in the
premise of the rule in ) when it is instantiated with v. Observe that rc; is the rule in query @)

and hence the context C' C I explains t. O

If a context C' explains a tuple ¢t and if C C C’, then C’ also explains t. We can therefore apply
Theorem 3.2.1 with the largest available context, C' = I, i.e. the set of all input tuples, to prove the

following lemma, which establishes the decidability of the relational query synthesis problem:

Lemma 3.2.2. The given instance of the relational query synthesis problem M = (I,{t},O~) admits

a solution if and only if r7s is consistent with M.
3.2.3. Learning Conjunctive Queries

See Algorithm 1 for a description of the ExplainCell procedure, which forms the core of the EGS

synthesis algorithm. See Figure 3.2 for a graphical description of its architecture.

The algorithm maintains a priority queue L of enumeration contexts and iteratively expands these
contexts by drawing on adjacent tuples from the constant co-ocurrence graph Gjy. It initializes
this priority queue in Step 2, with all input tuples ¢’ that contain the target concept c¢. In
the case of our running example, to explain the tuple Crashes(Broadway), we would initialize L
to {C1,Cq,C5,Cy}, with C1 = {GreenSignal(Broadway)}, Co = {HasTraffic(Broadway)}, C5 =
{Intersects(Whitehall, Broadway)}, and Cy = {Intersects(Broadway,

Whitehall)}. These contexts result in the queries g;—q4 shown in Section 3.1. It subsequently iterates
over the elements of L, and enqueues new contexts for later processing in Step 3(c)ii. In Step 3b,

the algorithm returns the first enumeration context which is found to be consistent with the training
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data.

Algorithm 1 ExplainCell(], R(c),O~), where ¢t = R(c) is an output tuple with a single field.
Produces an enumeration context C' C G such that 7oy is consistent with the example (I, {t},O7).

1. Let G; = (D, E) be the constant co-occurrence graph.
2. Initialize the priority queue, L:

L= {{t'} | t' € I contains the constant c}. (3.5)

Each element C € L is a subset of the input tuples, C C I.
3. While L # (:
(a) Pick the highest priority element C' € L, and remove it from the queue: L = L\ {C}.
(b) If r¢—¢ is consistent with (I, {t}, O™), then return C.
(c) Otherwise:
i. Let N ={ce D |3t' € C where t’ contains c}.
ii. For each constant ¢ € N, edge e = ¢ =% ¢ in Gy, and for each additional input tupl