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Abstract

Capacity addition and withdrawal decisions are among the most important strategic decisions

made by �rms in oligopolistic industries. In this paper, we develop and analyze a fully dynamic

model of an oligopolistic industry with lumpy capacity and lumpy investment/disinvestment.

We use our model to answer two questions. First, what economic factors facilitate preemption

races? Second, what economic factors facilitate capacity coordination? We show that low prod-

uct di¤erentiation, low investment sunkness, and high depreciation promote preemption races.

We also show that low product di¤erentiation and low investment sunkness promote capacity

coordination. Although depreciation removes capacity, it may impede capacity coordination.

Finally, we show that, at least over some range of parameter values, �rms�expectation plays

a key role in determining whether or not industry dynamics are characterized by preemption

races and capacity coordination. Taken together, our results suggest that preemption races and

excess capacity in the short run often go hand-in-hand with capacity coordination in the long

run.
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1 Introduction

Capacity addition and withdrawal decisions are among the most important strategic decisions made

by �rms in oligopolistic industries. Because they are typically lumpy, these decisions to invest or

disinvest can have a signi�cant impact on price and pro�tability in the short run, and because

they are usually long-lived, they are a critical determinant of how the competitive environment

evolves in the long run. �Mistakes� in the form of overly aggressive or poorly sequenced capacity

additions can result in excess capacity that �spoils� the market for years or even for decades.

Periods of excess capacity have occurred in industries ranging from semiconductor memories to

hotels and o¢ ce building and some industries such as railroads, steel, and oil tankers have su¤ered

from chronic excess capacity for decades (see, e.g., Lieberman 1987). On the other hand, pursuing

an aggressive approach to investment may be a deliberate competitive move. In the early 1970�s,

for example, DuPont had a market share of 40% in the North American titanium dioxide industry.

To maintain its dominance of the industry, DuPont began to construct a plant of twice the normal

size in an e¤ort to preempt expansion by rivals.

These observations raise two key questions, both for understanding industry dynamics and for

formulating competitive strategy and competition policy in oligopolistic industries. First, what

economic factors facilitate preemption races? Second, what economic factors facilitate capacity

coordination? While preemption races entail building up excess capacity, by capacity coordination

we mean that there is little (if any) excess capacity relative to the benchmark of a capacity cartel.

There is thus an apparent tension between preemption races and capacity coordination.

And yet some industries appear to exhibit both preemption races and capacity coordination.

Christensen & Caves (1997), for example, demonstrate the presence of investment rivalry in the

North American paper and pulp industry. The fact that the mere announcement of a rival project

makes a �rm more likely to complete an investment project that it has previously announced, points

to �some sort of race to add capacity�(p. 48). The evidence for preemption races seems at odds

with the evidence for capacity coordination. Total industry-wide capacity quite promptly adjusts

to disturbances so as to restore long-run levels of price and capacity utilization in the Canadian

paper and pulp industry (Bernstein 1992). More speci�cally, in the North American newsprint

industry, a major sector of the paper and pulp industry, Booth, Kanetkar, Vertinsky & Whistler

(1991) show that higher concentration in regional markets led to less capacity expansion, a �nding

that they interpret as a weak form of capacity coordination. While some industries experience both
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preemption races and capacity coordination, others seem to sidestep preemption races altogether.

Empirical work on the U.K. brick industry, for example, suggests that �rms manage to avoid

excessive investments and the �unwarranted clustering of expansions�(Wood 2005, p. 47).

The contrasting experiences of the North American newsprint and the U.K. brick industries are

all the more surprising because these industries are similar in many ways. In the brick industry,

capacity is lumpy with one large modern factory being able to �supply more than 2% of the

national market� and much more of the regional market within a 100-mile radius of the factory

where most of its output is sold. (Wood 2005, p. 39). Investment is also lumpy since the major

piece of equipment of a factory is a kiln, �with the size of that kiln depending on the technology

that was available at the time of its commissioning� (p. 39). Capacity and investment are also

lumpy in the newsprint industry as an investment project typically involves the installation of

one paper machine at an existing or a green-�eld site. Since these machines are very large, the

average project �added 2.6 percent of industry capacity� (Christensen & Caves 1997, p. 56) and

�investment . . . is lumpy due to a minimum e¢ cient scale of production of 220000 tonnes a year�

(Booth et al. 1991, p. 256). Furthermore, products are more or less homogenous in the brick

industry, at least within a geographic market, and also in the newsprint industry that experienced

a �signi�cant reduction in transportation costs following deregulation of the railroads�after the mid

1960�s (Booth et al. 1991, p. 257). What sets the brick industry apart from the newsprint industry

is the sunkness of investment. In the brick industry, a kiln cannot be switched o¤ without risking

rapid deterioration and �even collapse when re-lit�(Wood 2005, p. 39). The fact that ��rms are

reluctant to mothball kilns�(p. 39) indicates high investment sunkness. In the newsprint industry,

in contrast, �exit . . . is possible through conversion of machines to produce uncoated groundwood

papers that have better printing characteristics and are priced above standard newsprint�(Booth

et al. 1991, p. 257), indicating low (or at least lower) investment sunkness.

To explore what industry characteristics facilitate preemption races and capacity coordination

and to provide a theoretical explanation for the above observations, we apply the Markov-perfect

equilibrium framework of Ericson & Pakes (1995) together with the puri�cation technique of Do-

raszelski & Satterthwaite (2007) to study the evolution of an oligopolistic industry with lumpy

capacity and lumpy investment/disinvestment. Incorporating incomplete information allows us to

capture the strategic uncertainty that �rms face about their rivals�investment/disinvestment deci-

sions. Both lumpiness and stochasticity are realistic features in many industrial settings (see, e.g.,

Doms & Dunne 1998, Caballero & Engel 1999).
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We show that low product di¤erentiation and low investment sunkness promote preemption

races and capacity coordination. During a preemption race, �rms continue investing as long as

their capacities are similar. The race comes to an end once one of the �rms gains the upper

hand. At this point, the investment process stops and a process of disinvestment starts. During

the disinvestment process some of the excess capacity that has been built up during the race is

removed. This boosts the extent of capacity coordination.

Low product di¤erentiation is necessary for preemption races and capacity coordination because

it gives rise to a price-umbrella e¤ect that incentivizes both the leader and the follower to start

a disinvestment process at the end of a preemption race. Low investment sunkness implies high

investment reversibility and promotes preemption races and capacity coordination by allowing �rms

to remove some of the excess capacity that has been built up during the race. In contrast, if they

lack the option to disinvest, then �rms have no reason to enter a preemption race in the �rst place

because they anticipate that the industry will be permanently locked into a state of excess capacity

and low pro�tability after the race. This is a dynamic manifestation of the maxim that �exit costs

are entry barriers� and may help to explain the absence of preemption races in the U.K. brick

industry where investment is fully sunk.

Taken together, our results suggest that preemption races and excess capacity in the short

run often go hand-in-hand with capacity coordination in the long run. The association of these

seemingly contradictory behaviors is consistent with observing both preemption races and capacity

coordination in the North American newsprint industry where investment is partially sunk. It is also

consistent with Gilbert & Lieberman�s (1987) �nding that in the 24 chemical processing industries

studied preemption may be a temporary phenomenon and that �the main role of preemptive activity

is to coordinate new investment and to promote e¢ ciency by avoiding excess capacity�(p. 30).

Strategic capacity investment decisions are a classic question in industrial economics. Spence

(1977) and Dixit (1980), among others, construct static investment models to show that entry

can be deterred by incumbents building up excess capacity. However, industry dynamics and the

transitory nature of preemption that is observed empirically cannot be captured by these static

models. Green & Porter (1984) and Brock & Scheinkman (1985) develop dynamic investment

models that give rise to phases of price wars, but the symmetry assumptions on �rm behavior

impose that market shares remain relatively stable. In contrast, we show that preemption can have

lasting e¤ects on industry structure: A preemption race leads to an asymmetric industry structure

in the long run in our model.
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Capacity withdrawal is an important phenomenon in practice. For example, after a merger

in a capital intensive industry, the merged �rm often closes ine¢ cient plants. It, however, is a

phenomenon that has not been much studied by economists either empirically or theoretically.

Most models of exit (such as Ghemawat & Nalebu¤ 1985) are just that and disregard entry. Our

model, in contrast, treats capacity addition� a form of entry� and capacity withdrawal� a form of

exit� in a uni�ed framework.

Our paper is most closely related to Besanko & Doraszelski (2004), but there are important

di¤erences on both the methodological and the substantive front. First, in light of the empirical lit-

erature, we treat investment/disinvestment as lumpy. Moreover, we treat investment/disinvestment

as certain, meaning in particular that a �rm is guaranteed to expand its capacity once it has paid

the entire cost of the capacity. The lumpiness and certainty assumptions avoid the somewhat

unrealistic situation arising in Besanko & Doraszelski�s (2004) model that even a tiny amount of

investment may still enable a �rm to expand its capacity, albeit with a fairly small probability of

success.

Second, our model is �exible enough to characterize fully or partially sunk investment by pa-

rameterizing the values of the cost/bene�t of adding/withdrawing capacity. In addition, we model

depreciation as another source of investment reversibility. In contrast, in Besanko & Doraszelski�s

(2004) model depreciation is the only source of investment reversibility. Put di¤erently, their model

assumes fully sunk investment. Like Besanko & Doraszelski (2004), we show that depreciation pro-

motes preemption races. Unlike Besanko & Doraszelski (2004), we show that depreciation� the

involuntary withdrawal of capacity� and disinvestment� the voluntary withdrawal of capacity�

are less than perfect substitutes. In particular, although depreciation removes capacity, it may

impede capacity coordination. The reason is that depreciation is beyond the control of �rms.

Hence, the leader keeps a �safety stock�of capacity to counter the risk that the industry leadership

is lost to depreciation. This hinders the extent of capacity coordination.

Third, we apply the homotopy method as introduced by Besanko, Doraszelski, Kryukov &

Satterthwaite (2007) to the analysis of dynamic stochastic games to explore the equilibrium cor-

respondence in a systematic fashion and, in contrast to Besanko & Doraszelski (2004), �nd ample

evidence of multiplicity. We conjecture that multiplicity arises in our model due to the lumpiness of

investment/disinvestment and the incomplete information that a �rm has on its rivals�cost/bene�t

of adding/withdrawing capacity. Our results on multiplicity not only enrich the set of equilibrium

investment/disinvestment patterns, but also broaden our understanding of the determinants of
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strategic behavior beyond economic factors. We show that, at least over some range of parameter

values, �rms�expectation plays a key role in determining whether they pursue a cautious approach

to investment or an aggressive approach that entails preemption races and capacity coordination.

Our paper is organized in four sections, including the introduction. Section 2 lays out the

model, Section 3 presents the results, and Section 4 concludes.

2 Model

We model the evolution of an oligopolistic industry using a discrete-time, in�nite-horizon dynamic

stochastic game.

Setup and Timing There are two �rms, indexed by 1 and 2, with potentially di¤erent ca-

pacities �qi and �qj , respectively. Capacity is lumpy so that �qi and �qj take on one of M values,

0;�; 2�; : : : ; (M � 1)�, where � > 0 measures the lumpiness of capacity. For notational simplic-

ity, we take (i; j) to mean (�qi; �qj). We refer to (i; j) 2 f0; 1; 2; : : : ; (M � 1)g2 as the state of the

industry; in state (i; j) �rm 1 has a capacity of i� units and �rm 2 has a capacity of j� units.

At the beginning of a period, �rms �rst learn their cost/bene�t of capacity addition/withdrawal.

Its cost/bene�t is private to a �rm and hence unknown to its rival. Then �rms make invest-

ment/disinvestment decisions. They next compete in the product market. At the end of the

period, the investment/disinvestment decisions are implemented and previously installed capacity

is subjected to depreciation.

We �rst give details on the product market competition and then turn to the dynamic frame-

work.

Demand The two �rms compete in a di¤erentiated product market by setting prices subject to

capacity constraints. We derive their demand functions from the utility-maximization problem of a

representative consumer with quadratic utility function. This speci�cation was originally proposed

by Bowley (1924) and has subsequently been used by Spence (1976) and Dixit (1979) to model

di¤erentiated product oligopolies.

The utility-maximization problem of the representative consumer is

max
q0;q1;q2�0

q0 +Aq1 +Aq2 �
B

2
q21 �

B

2
q22 � Bq1q2
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subject to the budget constraint

q0 + p1q1 + p2q2 = y;

where q1 and q2 are the quantities of goods 1 and 2 as purchased from �rms 1 and 2 at prices p1

and p2, q0 is the numéraire good, and y the consumer�s income.  2 [0; 1) measures the degree of

product di¤erentiation: If  = 0, then goods 1 and 2 are independent; as  approaches 1 the two

goods become homogeneous (perfect substitutes). The demand functions thus derived are

q1(p1; p2) =
1

1� 2 (a(1� )� bp1 + bp2);

q2(p1; p2) =
1

1� 2 (a(1� )� bp2 + bp1);

where a = A
B > 0 and b =

1
B > 0. Note that there are no income e¤ects because utility is quasilinear.

We do not explicitly model a �rm�s decision to enter or exit the industry. Instead, we simply

assume that a �rm�s demand is zero if its capacity is zero. The �rm�s rival then faces the entire

market demand as long as its capacity is nonzero. For example, if �rm 1 has nonzero capacity and

�rm 2 has zero capacity, then the demand functions are q1(p1; p2) = a� bp1 and q2(p1; p2) = 0 and,

if both �rms have zero capacity, then q1(p1; p2) = q2(p1; p2) = 0.

Soft Capacity Constraints We follow Besanko & Doraszelski (2004) in modeling price setting

subject to capacity constraints. The key assumption is that capacity constraints are �soft�in that

they allow �rms to produce any quantity, albeit at an exploding cost. In the real world, hiring

temporary workers, adding shifts, or expediting material deliveries to alleviate capacity constraints

are common and often costly.

From hereon we focus on �rm 1; the derivations for �rm 2 are analogous. The production cost

function of �rm 1 depends on the its quantity q1 and its capacity �qi:

C(q1; �qi) =
1

1 + �

�
q1
�qi

��
q1;

where � measures the �hardness�of the capacity constraint. The larger is �, the closer we are to

�hard� capacity constraints. Hard capacity constraints imply that the cost of producing beyond
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capacity is in�nite. Indeed, in our model, the marginal cost of production

�
q1
�qi

��
!

8>>><>>>:
0 if q1 < �qi;

1 if q1 = �qi;

1 if q1 > �qi

as � !1.

Price Competition The key advantage of soft capacity constraints is that they allow us to

assume that �rms have a �common carrier requirement.� That is, a �rm is obliged to satisfy all of

its demand and cannot turn away customers. This avoids specifying a rationing scheme and gives

rise to a Nash equilibrium in pure strategies in the product market game (see Maggi (1996) among

others).

Suppose �rms�capacities are (�qi; �qj) in state (i; j). Because �rms produce to satisfy demand,

the pro�t-maximization problem of �rm 1 is

max
p1;q1(p1;p2)�0

p1q1(p1; p2)� C(q1(p1; p2); �qi):

Solving both �rms�problems yields a Nash equilibrium in prices (p1(i; j); p2(i; j)). The single-period

pro�t function of �rm 1 thus derived is

�1(i; j) = p1(i; j)q1(p1(i; j); p2(i; j))� C(q1(p1(i; j); p2(i; j)); �qi):

Figure 1 displays the pro�t �1(i; j) (left panels) and price p1(i; j) (right panels) of �rm 1 in the

Nash equilibrium of the product market game for di¤erent degrees of product di¤erentiation. In

each panel, the x- and y-axes are the capacities of �rms 1 and 2 as indexed by i and j, respectively,

and the z-axis is the pro�t/price of �rm 1 in state (i; j). Product di¤erentiation plays a key role

in shaping the single-period pro�t function. When product di¤erentiation is high ( = 0:70, upper

panels), a �rm�s pro�t from product market competition plateaus in its capacity. In contrast,

when production di¤erentiation is low ( = 0:99, lower panels), a �rm�s pro�t �rst increases and

then decreases in its capacity. This peak in the single-period pro�t function also arises in models

of product market competition with homogenous goods and hard capacity constraints (Kreps &

Scheinkman 1983, Deneckere & Kovenock 1996, Allen, Deneckere, Faith & Kovenock 2000).

At �rst glance it may seem surprising that a �rm�s pro�t peaks in its capacity even if its rival

8



is very small. In fact, this feature of the single-period pro�t function contrasts with Kreps &

Scheinkman�s (1983) model, where the �rm�s pro�t plateaus under these circumstances. While

in our model the leading �rm can idle its capacity, there is an important limitation: Because

marginal cost decreases when capacity increases, the reaction function of the leading �rm shifts

down, resulting in �ercer price competition and ultimately a lower pro�t for the leading �rm. Hence,

the peak in the single-period pro�t function in our model captures the empirical observation that

the higher the total capacity of an industry, the more competitive and less pro�table the industry

is.

Investment/Disinvestment We next turn to the dynamic framework. We treat not only capac-

ity but also investment/disinvestment as lumpy. In particular, in our model a �rm cannot expand

its capacity unless it pays the entire cost of � units of capacity. Once this cost is paid, however,

the �rm is guaranteed to expand its capacity by � units. Hence, investment is certain. Taken

together, the lumpiness and certainty assumptions avoid the somewhat unrealistic situation arising

in Besanko & Doraszelski�s (2004) model that even a tiny amount of investment may still enable a

�rm to expand its capacity, albeit with a fairly small probability of success.

A �rm chooses from three mutually exclusive actions: Invest to add� units of capacity, disinvest

to withdraw � units of capacity, or remain inactive. Before making its investment/disinvestment

decisions, the �rms is privately informed about its cost/bene�t. The cost of capacity addition of

�rm 1 is

�e;1 = �e + �e�1

and its bene�t of capacity withdrawal is

�w;1 = �w + �w�1;

where �1 is a random variable drawn from a Beta(3; 3) distribution with mean zero and distribution

function

F (�1) =

8>>><>>>:
0 if �1 < �1;

1
2 +

15
16�1 �

5
8�
3
1 +

3
16�

5
1 if �1 � �1 < 1;

1 if �1 � 1:

We assume that �1 is drawn anew each period and that draws are independent across periods and

�rms. This captures the changing nature of project opportunities. �e is the expected cost of adding
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capacity and �w is the expected bene�t of withdrawing capacity and �e > 0 and �w > 0 are scale

parameters.

We assume min
�1
f�e;1g > 0; hence, adding capacity is costly. In contrast, we impose no restric-

tions on the sign of �w;1 so that withdrawing capacity can either yield a scrap value if �w;1 > 0

or require a costly payment if �w;1 < 0. We �nally assume that min
�1
f�e;1g > max

�1
f�w;1g in order

to rule out arbitrage opportunities. The di¤erence between �e and �w measures the sunkness of

investment; in particular, investment is fully sunk if �w = �1.

Note that �1 is private to �rm 1 and hence unknown to �rm 2. The motivation for incorporating

incomplete information into our model is twofold. First, in reality, a �rm hardly ever knows a ri-

val�s exact cost/bene�t of capacity addition/withdrawal. The �rm thus faces strategic uncertainty

when it comes to its rival�s investment/disinvestment decisions. Second, incorporating incomplete

information allows us to apply the puri�cation technique developed by Doraszelski & Satterthwaite

(2007) that ensures that the MPE is computable. Indeed, because the cost of adding capacity is

perfectly positively correlated with the bene�t of withdrawing capacity, a �rm�s optimal invest-

ment/disinvestment decisions are given by simple cuto¤ rules as we show below in more detail. In

what follows, we let

e1(i; j; �1) = 1fadd � units of capacity};

w1(i; j; �1) = 1fwithdraw � units of capacity}

denote the investment/disinvestment decisions. Because these decisions are mutually exclusive,

we must have e1(i; j; �1)w1(i; j; �1) = 0. Recalling that �rm 2 cannot exactly pinpoint the invest-

ment/disinvestment decisions of �rm 1 because �1 is private to �rm 1, we further let, with a slight

abuse of notation,

e1(i; j) =

Z
e1(i; j; �1)dF (�1);

w1(i; j) =

Z
w1(i; j; �1)dF (�1)

denote the investment/disinvestment probabilities of �rm 1 as viewed from the perspective of �rm

2 (or, alternatively, from the perspective of an outside observer of the industry).

The lumpiness of investment/disinvestment in our model gives rise to frictions in the adjustment

of capacity to changes in the competitive environment. There is extensive evidence in disaggregated
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plant-level data that capital adjustments occur in discrete episodes (e.g., Doms & Dunne 1998).

This lumpiness contradicts standard neoclassical investment models, where the assumption of con-

vex adjustment costs dictates that �rms smoothly adjust their capital stocks over time; instead

the evidence favors �xed (and hence nonconvex) adjustment costs. Incorporating a stochastic com-

ponent, albeit modeled with a stylized form, allows us to capture two realistic features, namely

heterogeneity in adjustment costs at any point in time and variation across time in these costs

for any given �rm. Using U.S. manufacturing data, Caballero & Engel (1999) have shown that

stochastic �xed adjustment costs allow their aggregate investment model to perform well empir-

ically. This is because the stochasticity makes �rms�decisions imperfectly synchronized, thereby

generating nonlinearities in aggregate investment behavior.

State-to-State Transitions While a �rm invests to add and disinvests to withdraw capacity,

its capacity is also subject to depreciation. We think of depreciation as being of a physical nature

such as machine breakdowns, technological obsolescence, and natural disasters, and assume that a

�rm is subjected to depreciation with probability � 2 [0; 1].

Putting investment, disinvestment, and depreciation together, the state-to-state transitions of

�rm 1 are described by the following probabilities: If i 2 f2; : : : ;M � 2g, then

Pr(i0ji; e1; w1) =

8>>>>>><>>>>>>:

(1� �)e1 if i0 = i+ 1;

�e1 + (1� �)(1� e1 � w1) if i0 = i;

�(1� e1 � w1) + (1� �)w1 if i0 = i� 1;

�w1 if i0 = i� 2:

Clearly, �rm 1 cannot further decrease (increase) its capacity when its previously installed capacity

is already at the minimum (maximum). Thus, if i = 0, we set

Pr(i0j0; e1; w1) =

8<: (1� �)e1 if i0 = 1;

�e1 + 1� e1 if i0 = 0;

if i = 1, we set

Pr(i0j1; e1; w1) =

8>>><>>>:
(1� �)e1 if i0 = 2;

�e1 + (1� �)(1� e1 � w1) if i0 = 1;

�(1� e1 � w1) + w1 if i0 = 0;
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and, if i =M � 1, we set

Pr(i0jM � 1; e1; w1) =

8>>><>>>:
e1 + (1� �)(1� e1 � w1) if i0 =M � 1;

�(1� e1 � w1) + (1� �)w1 if i0 =M � 2;

�w1 if i0 =M � 3:

An alternative formulation of depreciation is additive and takes the probability of �rm 1 tran-

siting from state i 2 f1; : : : ;M � 1g to state i0 = i � 1 to be w1 + �. This implies that the �rm

can shed at most � units of capacity in a period and seems most sensible if depreciation is in-

terpreted as production obsolescence. In contrast, with our multiplicative formulation, withdrawal

and depreciation occur independently and the �rm can shed 2� units of capacity.

Bellman Equation Let V1(i; j; �1) denote the expected net present value of �rm 1�s cash �ow

if the industry is currently in state (i; j) and the �rm has drawn �1 for its cost of capacity ad-

dition/withdrawal. In what follows, we �rst characterize the value function V1(i; j; �1) under

the presumption that �rm 1 behaves optimally. In a second step, we derive the optimal in-

vestment/disinvestment decisions of �rm 1, e1(i; j; �1) and w1(i; j; �1). Throughout we take the

investment/disinvestment probabilities of �rm 2, e2(i; j) and w2(i; j), as given.

The value function V1(i; j; �1) is de�ned recursively as the solution to the Bellman equation

V1(i; j; �1) = max
e1;w12f0;1g;
e1w1=0

�1(i; j) + e1
�
��e;1 + �W+

1 (i; j)
	

+(1� e1 � w1)�W 0
1 (i; j) + w1

�
�w;1 + �W

�
1 (i; j)

	
;

where � 2 [0; 1) is the discount factor. The continuation values W+
1 (i; j); W

0
1 (i; j); and W

�
1 (i; j)

are

W+
1 (i; j) = (1� �)W1(i+ 1; j) + �W1(i; j);

W 0
1 (i; j) = (1� �)W1(i; j) + �W1(i� 1; j);

W�
1 (i; j) = (1� �)W1(i� 1; j) + �W1(i� 2; j);
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where the superscripts +; 0; � denote investment, inaction, and disinvestment, respectively, and

W1(i; j) =
M�1X
j0=0

V1(i; j
0) Pr(j0jj; e2(i; j); w2(i; j)):

While V1(i; j; �1) is the value function after �rm 1 has drawn �1, V1(i; j) =
R
V1(i; j; �1)dF (�1) is

the expected (or integrated) value function, i.e., the value function before �rm 1 has drawn �1.

Note that the above expressions assume (i; j) 2 f2; : : : ;M � 2g2; the appropriate modi�cations at

the boundaries of the state space are obvious and therefore omitted for the sake of brevity.

Turning to the optimal investment/disinvestment decisions, e1(i; j; �1) = 1 if and only if

��e;1 + �W+
1 (i; j) � max

�
�w;1 + �W

�
1 (i; j); �W

0
1 (i; j)

	
or, equivalently,

�1 � �1(i; j) = min
�
��e � �w + �(W+

1 (i; j)�W
�
1 (i; j))

�e + �w
;
��e + �(W+

1 (i; j)�W 0
1 (i; j))

�e

�
:

Similarly, w1(i; j; �1) = 1 if and only if

�w;1 + �W
�
1 (i; j) � max

�
��e;1 + �W+

1 (i; j); �W
0
1 (i; j)

	
or, equivalently,

�1 � ��1(i; j) = max
�
��w + �(W 0

1 (i; j)�W�
1 (i; j))

�w
;
��e � �w + �(W+

1 (i; j)�W
�
1 (i; j))

�e + �w

�
:

Hence, the optimal investment/disinvestment decisions are determined by the cuto¤s �1(i; j) and

��1(i; j). Notice that �1(i; j) � ��1(i; j) by construction so that e1(i; j; �1)w1(i; j; �1) = 0 almost

surely.1 The implied investment/disinvestment probabilities can be written as

ei(i; j) =

Z
1[�1 � �1(i; j)]dF (�1) = F (�1(i; j));

w1(i; j) =

Z
1[�1 � ��1(i; j)]dF (�1) = 1� F (��1(i; j)):

It remains to determine the expected value function V1(i; j). Substituting the optimal invest-

1�1 = �1(i; j) =
��1(i; j) implies e1(i; j; �1) = w1(i; j; �1) = 1, but this is a probability zero event.

13



ment/disinvestment decisions into the Bellman equation and integrating both sides with respect to

�1 gives

V1(i; j) = �1(i; j) + e1(i; j)

�
��e �

�e
e1(i; j)

Z
�11[�1 � �1(i; j)]dF (�1) + �W+

1 (i; j)

�
+(1� e1(i; j)� w1(i; j))�W 0

1 (i; j)

+w1(i; j)

�
�w +

�w
w1(i; j)

Z
�11[�1 � ��1(i; j)]dF (�1) + �W�

1 (i; j)

�
;

where the closed-form expressions for the above integrals are

Z
�11[�1 � �1]dF (�1) =

8<: � 5
32 +

15
32�

2
1 � 15

32�
4
1 +

5
32�

6
1 if � 1 � �1 < 1;

0 otherwise,Z
�11[�1 � ��1]dF (�1) =

8<: 5
32 �

15
32
��
2
1 +

15
32
��
4
1 � 5

32
��
6
1 if � 1 � ��1 < 1;

0 otherwise.

Note that an optimizing �rm cares about the expected cost/bene�t of adding/withdrawing capacity

conditional on investing/disinvesting. The �rst integral, when scaled by �e
e1(i;j)

, can be thought of

as the deviation from the unconditional expectation of the cost of adding capacity �e. Hence, �e

plus this deviation gives the expected cost of adding capacity conditional on investing. Similarly,

�w plus the properly scaled second integral gives the expected bene�t of withdrawing capacity

conditional on disinvesting.

Equilibrium Our model of product market competition gives rise to symmetric price and pro�t

functions, i.e., p1(i; j) = p2(j; i) and �1(i; j) = �2(j; i). We therefore restrict attention to symmetric

Markov-perfect equilibria (MPE) with V1(i; j) = V2(j; i), e1(i; j) = e2(j; i), and w1(i; j) = w2(j; i).

Existence follows from the arguments in Doraszelski & Satterthwaite (2007). From here on, we use

p(i; j) and �(i; j) to denote �rm 1�s price and pro�t functions, V (i; j) to denote its value function,

and e(i; j) and w(i; j) to denote its investment/disinvestment probabilities (policy functions).

Computation We use the Pakes & McGuire (1994) algorithm to compute an MPE. A known

problem of this iterative method is that it is not guaranteed to converge. Moreover, if there are

multiple MPE, some of them cannot be computed by this method (Besanko et al. 2007). To obtain

a more complete characterization of the set of MPE, we use the homotopy method as introduced by

Besanko et al. (2007) to the analysis of dynamic stochastic games (see also Borkovsky, Doraszelski
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& Kryukov 2008). Whereas the Pakes & McGuire (1994) algorithm aims to compute an MPE for a

particular parameterization of the model, the homotopy method traces out an entire path through

the set of MPE by varying one or more parameters of the model. We relegate the details to the

Online Appendix.

Parameterization Throughout we assume M = 10 and � = 5. Thus capacity is fairly lumpy.

The discount factor is � = 0:9524, corresponding to a yearly interest rate of 5%. We set � = 10

to approximate hard capacity constraints. The demand parameters are a = 40 and b = 10. These

parameters ensure that demand is small relative to the range of capacities. In other words, it is

possible for a �rm to acquire more than enough capacity to supply the entire market.

We let the degree of product di¤erentiation  range from 0 to close to 1 with a focus on

three values, namely 0:1, 0:7, and 0:99. These values correspond to almost independent goods,

reasonably di¤erentiated goods, and almost homogenous goods. The resulting intensity of product

market competition can be seen from the cross-price elasticities: When both �rms have 3� units

of capacity, the cross-price elasticities are 0:161, 1:424, and 33:815, respectively.2

We set �e = 72; �e = 36; �w = 24 or �1000; and �w = 12. When �w = 24; the expected scrap

value is 13 of the expected cost of adding capacity, and investment is partially sunk. However, when

�w = �1000; withdrawing capacity is too costly to be economically viable, and investment is fully

sunk. We use these two values of �w to study the role of investment sunkness.

Finally, we let the rate of depreciation � range from 0 to 1 with a focus on three values, namely

0, 0:1, and 0:2. For the latter two values, there is a signi�cant probability that a �rm involuntarily

sheds capacity.

2.1 Capacity Cartel

To assess the extent of capacity coordination in the industry, we contrast the behavior of the two

�rms in the MPE with the optimal forward-looking behavior of a capacity cartel. The cartel, as

we model it, produces two products in two plants, indexed by 1 and 2, that have price autonomy.

Thus, the single-period pro�t function of the cartel is identical to the total pro�ts of the two �rms

in our baseline model:

�(i; j) = �(i; j) + �(j; i):

2Because they depend on �rms� capacities, the cross-price elasticities vary across states. Nevertheless, because
�rms�long-run capacities are close to 3� units in the MPE we study later on, the reported numbers give a su¢ ciently
accurate picture of the intensity of competition.
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This formulation isolates the e¤ects of capacity coordination from those of price coordination

in a monopoly. The two plants have independent realizations of their cost of capacity expan-

sion/withdrawal that are known to the cartel. The cartel has to solve a single-agent dynamic

programming problem to arrive at its investment/disinvestment decisions. This problem has a

unique solution that can be computed by value function iteration. We relegate the details to the

Online Appendix.

3 Results

We organize our results to answer two questions. First, what economic factors facilitate preemption

races? Second, what economic factors facilitate capacity coordination?

Preemption races entail building up excess capacity in the short run. In contrast, capacity

coordination means that there is little (if any) excess capacity relative to our benchmark of a

capacity cartel. We show that low product di¤erentiation, low investment sunkness, and high

depreciation promote preemption races. We also show that low product di¤erentiation and low

investment sunkness promote capacity coordination. Although depreciation removes capacity, it

may impede capacity coordination. Finally, we show that, at least over some range of parameter

values, �rms� expectation play a key role in determining whether or not industry dynamics are

characterized by preemption races and capacity coordination. Taken together, our results suggest

that preemption races and excess capacity in the short run often go hand-in-hand with capacity

coordination in the long run.

Throughout we proceed in two steps. First, we analyze �rms�investment/disinvestment strate-

gies in an MPE by studying e(i; j) and w(i; j). Second, we use the investment/disinvestment

probabilities to construct the probability distribution over next period�s state (i0; j0) given this pe-

riod�s state (i; j). With this transition matrix in hand, we are able to further describe industry

dynamics by computing the distribution over states, and hence the structure of the industry, at

any point in time.

3.1 Preemption Races and Capacity Coordination

Conventional wisdom in investment theory holds that irreversibility lends commitment value to

investment and makes preemption more credible and thus more likely to be pursued (Tirole 1988, p.

345). In our model two parameters are tied to investment reversibility: First, the di¤erence between
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�e and �w measures the sunkness of investment. In particular, decreasing the expected bene�t of

withdrawing capacity by reducing the scrap value �w (or by even assuming that withdrawing

capacity requires a costly payment) whilst holding �e �xed makes investment more sunk and thus

less reversible. Second, increasing the rate of depreciation makes previously installed capacity

more vulnerable to depreciation and thus investment more reversible. One di¤erence between

investment sunkness and depreciation is, of course, that a �rm controls capacity withdrawal through

its disinvestment decision whereas the �rm does not control depreciation. Another di¤erence is that

depreciation entails neither a direct bene�t nor a direct cost. We �rst set � = 0 to focus on the role

of investment sunkness. In Section 3.2 we then come back to the role of depreciation.

Investment sunkness We set  = 0:99 to model almost homogenous goods and contrast the case

of partially sunk investment (�w = 24) with the case of fully sunk investment (�w = �1000). Fig-

ure 2 illustrates the investment/disinvestment probabilities e(i; j) (left panels) and w(i; j) (right

panels) for �w = 24 (upper panels) and �w = �1000 (lower panels). In each panel, the x- and

y-axes are the capacities of �rms 1 and 2 as indexed by i and j, respectively, and the z-axis is

the investment/disinvestment probabilities of �rm 1 in state (i; j). The corresponding probabil-

ities of �rm 2 can be found by looking at the mirror image re�ected through the 45 degree line

(because e2(i; j) = e(j; i) and w2(i; j) = w(j; i)). For added clarity we list in Table 1 the in-

vestment/disinvestment probabilities e(i; j) (upper panel) and w(i; j) (lower panel) for the case of

partially sunk investment.

With partially sunk investment, the investment probability is high if a �rm�s capacity is zero (in

states (i; j) with i = 0) because its pro�t from product market competition is zero if its capacity

is zero but positive if its capacity is positive; the investment probability is smaller if the rival�s

capacity is larger. The investment probability is also high along the diagonal of the state space (in

states (i; j) with i = j), indicating that a �rm invests aggressively when it and its rival have equal

or at least similar capacities. In contrast, the �rm does not disinvest under these circumstances.

Noticeable disinvestment occurs when a �rm is either a leader (in states (i; j) with i > j) or a

not-too-small follower (in states (i; j) with i < j and i > 1).

The �diagonal� investment/disinvestment pattern indicates strong rivalry in adding capacity.

This rivalry indeed resembles a preemption race. Firms start o¤ the race by investing and they

continue investing as long as their capacities are similar. The race comes to an end once one

of the �rms gains the upper hand. At this point, the investment process stops and a process of
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e(i; j) j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

i = 0 0:986 0:580 0:550 0:496 0:456 0:420 0:366 0:292 0:215 0:152
i = 1 1 0:841 0:015 0 0 0 0 0 0 0
i = 2 0:362 0:408 0:774 0 0 0 0 0 0 0
i = 3 0 0 0:227 0:764 0 0 0 0 0 0
i = 4 0 0 0 0 0:721 0 0 0 0 0
i = 5 0 0 0 0 0 0:626 0:316 0 0 0
i = 6 0 0 0 0 0 0:685 0:680 0 0 0
i = 7 0 0 0 0 0 0 0 0:561 0:342 0
i = 8 0 0 0 0 0 0 0 0:605 0:625 0
i = 9 0 0 0 0 0 0 0 0 0 0

w(i; j) j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

i = 0 0 0 0 0 0 0 0 0 0 0
i = 1 0 0 0 0 0 0 0 0 0 0
i = 2 0 0 0 0:035 0:319 0:312 0:272 0:285 0:316 0:338
i = 3 0 0 0 0:030 0:596 0:603 0:635 0:614 0:583 0:560
i = 4 0:244 0:475 0 0 0:046 0:950 0:967 0:839 0:773 0:728
i = 5 0:666 0:904 0:860 0:816 0:041 0:054 0:684 0:998 0:907 0:854
i = 6 0:899 1 1 0:997 0:960 0:315 0:087 1 1 0:945
i = 7 0:974 1 1 1 1 1 0 0:062 0:658 1
i = 8 0:985 1 1 1 1 1 1 0:395 0:106 1
i = 9 0:977 1 1 1 1 1 1 1 0 0:068

Table 1: Investment/disinvestment probabilities e(i; j) and w(i; j).  = 0:99, �w = 24, and � = 0.
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disinvestment starts. During the disinvestment process some of the excess capacity that has been

built up during the race is removed.

Figure 3 illustrates the preemption race and the resulting asymmetric industry structure. It

displays �(T )(0;0) =
�
�
(T )
(0;0)(i; j)

�
, the distribution over states in period T = 1; 5; 10; 50 starting from

state (0; 0).3 In each panel, the x- and y-axes are the capacities of �rms 1 and 2 as indexed by i

and j, respectively, and the z-axis is the probability that the industry is in state (i; j) in period T .

By period 5, both �rms have most likely (with a probability of 0.125) built up 5� units of capacity,

indicating that they must have relentlessly invested in every period. The second most likely states

are (3; 1) and (1; 3) (each with a probability of 0.120) where the winner of the preemption race has

already been decided. By period 10, the preemption race has most likely ended. By period 50, one

of the �rms has for sure acquired industry leadership with 3� units of capacity and marginalized

its rival with � units of capacity. Thus, the total capacity of the industry is likely to fall over time.

With fully sunk investment, the disinvestment probability is zero by construction (see the lower

right panel of Figure 2). Removing the option to disinvest also has a dramatic impact on �rms�

investment strategies and the implied industry dynamics. As can be seen in the lower left panel of

Figure 2, the diagonal investment pattern disappears, so that a preemption race does not occur.

Investment activities mostly occur when the the total capacity of the industry is lower than 6�

units.4 A �rm seems to gradually build up its capacity to a certain target level and then recede

forever into inactivity. The industry evolves towards a symmetric structure as illustrated in Figure

4. By period 5, the two �rms have most likely built up a total capacity of 5� units that is split

slightly unevenly between them: The most likely states are (3; 2) and (2; 3) (each with a probability

of 0.314). By period 50, the industry has settled at one of three states: (3; 2) or (2; 3) (each with a

probability of 0.414) or (3; 3) (with a probability of 0.178). As time passes, a symmetric industry

structure becomes more likely. Indeed, state (3; 3) has probability one in the limiting distribution

�(1) =
�
�(1)(i; j)

�
.5

In sum, with partially sunk investment, �rms invest aggressively in a bid for industry leadership.

3Let P be the M2 �M2 transition matrix of the Markov process of industry dynamics. The distribution over
states in period T is given by �(T ) = �(0)PT , where �(0) is the 1 �M2 initial distribution. We focus on two initial
distributions, one that puts probability one on state (0; 0) and one that puts probability one on state (9; 9). We
denote the resulting distributions in period T by �(T )(0;0) and �

(T )

(9;9), respectively.
4The spike in the investment probability of �rm 1 when i = 5 or 6 and j = 0 occurs because �rm 2 ceases to

invest and de facto does not enter the industry if �rm 1 succeeds in building up at least 6� units of capacity: e(0; j)
is close to zero when j � 6.

5Let P be the M2 �M2 transition matrix of the Markov process of industry dynamics. The limiting distribution
over states solves �(1) = �(1)P .

19



This naturally leads to a preemption race and a concomitant build-up of excess capacity in the short

run. With fully sunk investment, on the other hand, �rms adopt a more timid investment strategy.

The question therefore is: Does a preemption race mean that the industry becomes stuck forever in

a state of excess capacity and low pro�tability? Quite to the contrary, as we argue below, the phase

of excess capacity may be transitory and in the long run capacity coordination may be achieved

through the disinvestment process that follows a preemption race.

To make this point, we compute the time path of the total capacity of the industry implied by

the MPE as

�q
(T )
(0;0) =

M�1X
i=0

M�1X
j=0

(�qi + �qj)�
(T )
(0;0)(i; j): (1)

The upper left panel of Figure 5 displays the result as a dashed line. The x-axis is the period T

and the y-axis is the total capacity in the duopoly in period T in units of �. The total capacity

peaks slightly above 6� units at around period 5. In the long run, it settles at around 4� units.

Thus, the industry su¤ers excess capacity as high as 50% above its long-run level. Yet, the excess

capacity that has been built up during the preemption race is quickly removed after the race comes

to an end. In fact, in the long run, capacity coordination obtains and there is little excess capacity

relative to our benchmark of a capacity cartel. The upper left panel of Figure 5 displays the time

path of the total capacity in the cartel as a solid line. As can be seen, the total capacity in the

duopoly (dashed line) converges towards the total capacity in the cartel (solid line), an instance of

capacity coordination.

The upper left panel of Figure 5 also displays the time path of the total capacity in the duopoly

when investment is fully sunk as a dash-dotted line. The total capacity does not peak; instead,

it is built up gradually and plateaus slightly above 5� units. Comparing this to the time path of

the total capacity in the cartel when investment is fully sunk (dotted line), it is obvious that the

industry becomes stuck forever in a state of excess capacity.

The lower left panel of Figure 5 is analogous to the upper left panel but replaces �(T )(0;0) by �
(T )
(9;9)

in Equation (1). Starting the industry in state (9; 9) models a situation of massive excess capacity.

This can be thought of as an industry that has established long-run equilibrium capacities of 9� unit

per �rm, but then faces an unanticipated collapse of demand. When investment is partially sunk,

both the duopoly (dashed line) and the cartel (solid line) remove excess capacity. Not surprisingly,

the cartel sheds capacity at a faster rate than the duopoly. The duopolists disinvest much more

reluctantly than the cartel because they �ght for industry leadership along the way. Indeed, in
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state (9; 9), a war of attrition takes place and the disinvestment probability w(9; 9) = 0:068 is very

low (see the lower panel of Table 1). Eventually, however, one of the �rms draws a high scrap value

and disinvests. This initial capacity withdrawal breaks the deadlock: The disinvestment probability

of the smaller �rm jumps to one (w(8; 9) = 1) and that of the larger �rm to zero (w(9; 8) = 0),

thus ensuring that the gap in capacities widens rapidly. In the long run, the total capacity in

the duopoly (dashed line) converges towards the total capacity in the cartel (solid line), another

instance of capacity coordination. This clearly indicates that the option to disinvest resolves the

problem of excess capacity. When investment is fully sunk, neither the duopoly (dash-dotted line)

nor the cartel (dotted line) can remove any excess capacity and the industry remains stuck forever

in the initial state.

In sum, capacity coordination succeeds when �rms �ght a preemption race but fails otherwise.

Put di¤erently, preemption races in the short run go hand-in-hand with capacity coordination in

the long run. The question therefore is: Why do �rms build up excess capacity early on only to

remove it later on? The sunkness of investment plays a key role in promoting both preemption races

and capacity coordination as it a¤ects whether or not �rms can remove capacity. When investment

is partially sunk, �rms know they can remove capacity and recover part of the investment cost.

Since the option to disinvest is economically viable, �rms are emboldened to �ght a preemption

race in a bid for industry leadership. However, because a �rm�s cost of adding capacity varies from

period to period, one of the �rms is bound to get unlucky with a high draw and thus lose the race

at some point. The loser of the race gives up by removing capacity. Note that in Table 1, �rm

1�s disinvestment probabilities are high in states (3; 4), (4; 5), (5; 6), and (6; 7), where �rm 1 is the

follower. The leader also removes capacity. However, to preserve its leadership, the leader does not

disinvest as aggressively as the follower until the gap between the two �rms is more than � units

of capacity: Firm 1�s disinvestment probabilities in states (4; 1), (5; 3), (6; 4), and (7; 5), where �rm

1 is the leader, are much higher than those in states (4; 2), (5; 4), (6; 5), and (7; 6).

Since removing capacity reduces the pressure on prices and enhances the pro�tability of the

industry, it is in fact in the self-interest of both the leader and the follower to start a disinvestment

process at the end of a preemption race. To more clearly see why, we consider the pro�t function

in the lower left panel of Figure 1. As we discussed in Section 2, with low product di¤erentiation

(i.e., high ), a �rm�s pro�t peaks in its capacity. Hence, it is often better for the smaller �rm

to be considerably smaller than the larger �rm rather than slightly smaller. For example, if the

smaller �rm has 4� units of capacity and the larger �rm has 5� units, then the smaller �rm earns
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a pro�t of 3:50. On the other hand, if the smaller �rm were to scale back to 2� units of capacity,

then it stood to earn a pro�t of 5:96. In other words, there is a bene�t to assuming the posture

of a �puppy dog�while allowing one�s rival to be a �top dog.�The reason is that, for intermediate

capacity levels, the top dog charges higher prices and in this way extends a price umbrella over the

puppy dog. Hence, it is in the self-interest of the follower to remove capacity. Once the follower

has scaled back to 2� units of capacity, the leader has an incentive to remove capacity because its

pro�t stands to increase from 14:55 to 20:13 if it scales back from 5� to 3� units. Hence, it is

eventually in the self-interest of the leader to remove capacity.

Preemption races and capacity coordination hinge on the fact that investment is partially sunk.

In fact, if investment is fully sunk, then the incentive to preempt vanishes. Anticipating that the

industry will be in a state of excess capacity and low pro�tability after the race, without the option

to disinvest �rms have no reason to enter the race in the �rst place. Instead, a �rm gradually builds

up its capacity to a certain target level (3� units in our example) and then stops there. When

both �rms have 3� units of capacity, they each earn a pro�t of 13:9. Neither would like to further

expand to earn a reduced pro�t of 11:7 because this reduction in pro�t will be permanent once the

capacity has been added. In states (2; 3) and (3; 2), the smaller �rm can improve its pro�t from

13:5 to 13:9 by adding one unit of capacity. Since capacity is costly, however, and the improvement

in pro�t is small, the �rm has to wait for a very favorable draw before it pays to add capacity. This

explains the slow transition from states (2; 3) and (3; 2) to state (3; 3).6

Product di¤erentiation When  = 0:7 and goods are reasonably di¤erentiated, �rms�invest-

ment/disinvestment strategies and the implied industry dynamics change drastically even when we

continue to set �w = 24 to model partially sunk investment. The investment/disinvestment proba-

bilities of a �rm are almost completely independent of the capacity of its rival as the upper panels of

Figure 6 illustrate. Clearly, there is no trace of a preemption race in the investment/disinvestment

probabilities. As expected, this leads to a symmetric industry structure both in the short run and

in the long run. The time paths of the total capacity in the duopoly in the left panels of Figure

7 indicate that �rms either gradually �invest up�(upper left panel) or gradually �disinvest down�

(lower left panel) to a certain target level (3� units per �rm in our example). Moreover, it does not

matter whether investment is partially or fully sunk as long as �rms start below the target level:

6Recall that state (3; 3) has probability one in the limiting distribution �(1).
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The dashed and dashed-dotted lines coincide in the upper left panel.7 Comparing the time path

of the total capacity in the duopoly (dashed and dash-dotted lines) with that in the cartel (solid

and dotted lines) shows that the industry su¤ers excess capacity as high as 50%. This suggests

that low product di¤erentiation is not only necessary for preemption races but also for capacity

coordination.

It may seem puzzling that more product di¤erentiations leads to less capacity coordination in

this example. A closer look at the pro�t function in the upper left panel of Figure 1 resolves this

apparent paradox. With high product di¤erentiation (i.e., low ), a �rm�s pro�t plateaus in its

capacity. Except when the rival has zero capacity, the plateau is reached at 4� units of capacity,

but the improvement in pro�t from 3� to 4� units is negligible relative to the cost of adding

capacity. Hence, once a �rm has made it to its �sweet spot,�it has no incentive to scale back even

when facing a larger �rm. The price-umbrella e¤ect that incentivizes the smaller �rm to take a

�puppy dog�position does not exist here. Consequently, the industry becomes stuck forever in a

state of excess capacity.

Of course, in the extreme case of independent goods ( = 0), the distinction between duopoly

and cartel is moot and capacity coordination obtains trivially. Hence, in the vicinity of this case,

more product di¤erentiations must lead to more capacity coordination. We set  = 0:1 to model

almost independent goods. As the lower panels of Figure 6 shows, a �rm�s investment and disin-

vestment decisions become completely independent of its rival�s capacity level. Not surprisingly,

the time path of the total capacity (not shown) for this case indicates that the gap between the

duopoly and the cartel is much smaller than in Figure 7, indicating a greater extent of capacity

coordination.

Summary So far we have shown that low product di¤erentiation (i.e., high ) and low investment

sunkness (i.e., high �w) are together su¢ cient for preemption races and capacity coordination. This

suggests that preemption races and excess capacity in the short run often go hand-in-hand with

capacity coordination in the long run. Low product di¤erentiation is necessary for preemption

races and capacity coordination because it gives rise to the price-umbrella e¤ect that incentivizes

both the leader and the follower to start a disinvestment process at the end of a preemption race.

Very low product di¤erentiation is trivially su¢ cient for capacity coordination but not preemption

7 If �rms start above the target level, then it clearly matters whether or not they can invoke the option to disinvest.
In particular, if investment is fully sunk, then the industry remains stuck forever in the initial state (lower left panel).
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races. Finally, we note that, contrary to conventional wisdom in investment theory, it is actually

low sunkness, and thus high reversibility, of investment that promotes preemption races by allowing

�rms to invoke the option to disinvest and remove some of the excess capacity that has been build

up during the race.

3.2 Depreciation

In our model, depreciation is another source of investment reversibility. If investment sunkness

promotes preemption races and capacity coordination, does depreciation do the same? Besanko

& Doraszelski (2004) have shown that depreciation indeed induces preemption races when �rms

compete in a homogenous product market by setting prices subject to capacity constraints. We next

study the role of depreciation in our model where �rms can invoke the option to disinvest. Unless

otherwise noted we set � = 0:1 so that there is a signi�cant probability that a �rm involuntarily

sheds capacity.

Starting with the case of almost homogenous goods ( = 0:99), our results readily con�rm that

depreciation induces preemption races when investment is fully sunk (as assumed by Besanko &

Doraszelski (2004)). In the upper panels of Figure 5, we see a preemption race with depreciation

(see the dash-dotted line in the upper right panel) where there was none without depreciation (see

the dash-dotted line in the upper left panel). The reason that depreciation induces preemption

races is the same as the reason that partially sunk investment induces preemption races: Both

economic factors allow �rms to remove some of the excess capacity that has been build up during

the race.

Turning to the case of reasonably di¤erentiated goods ( = 0:7), we once more see a preemption

race with su¢ ciently high depreciation (� = 0:2, see the dashed line in Figure 8) where there was

none without depreciation (see the dashed line in the upper left panel in Figure 7). In Section 3.3

we show that for a given degree of product di¤erentiation there exists a threshold for the rate of

depreciation above which a preemption race occurs and that this threshold increases as the degree

of product di¤erentiation increases (i.e.,  decreases).

Perhaps more interestingly, depreciation renders preemption races �ercer when investment is

partially sunk. Returning to with the case of almost homogenous goods ( = 0:99), consider the

upper panels of Figure 5. Note that the peak capacity built up during the preemption race with

depreciation (see the dashed line in the upper right panel) exceeds that without depreciation (see

the dashed line in the upper left panel). The key feature of depreciation is that it removes capacity
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whether or not this is in the interest of �rms. Because depreciation is beyond the control of �rms,

it breaks the deadlock at the end of a preemption race. Rather than having to wage a war of

attrition to determine who starts the disinvestment process, depreciation takes this decision out of

�rms�hands. But knowing that any excess capacity will be removed swiftly emboldens �rms to

�ght more �ercely during the preemption race.

Because depreciation removes capacity whether or not this is in the interest of �rms, a reasonable

conjecture is that depreciation alleviates the problem of excess capacity, and it often does so. For

example, in the upper panels of Figure 5, we see a greater extent of capacity coordination with

depreciation (see the di¤erence between the dash-dotted and dotted lines in the upper right panel)

than without depreciation (see the di¤erence between the dash-dotted and dotted lines in the upper

left panel) when investment is fully sunk.

However, depreciation may also impede capacity coordination. For example, in the upper panels

of Figure 5, we see a smaller extent of capacity coordination with depreciation (see the di¤erence

between the dashed and solid lines in the upper right panel) than without depreciation (see the

di¤erence between the dashed and solid lines in the upper left panel) when investment is partially

sunk. In the lower panels of Figure 5, �rms shed capacity at a slower rate with depreciation (see

the dashed line in the lower right panel) than without depreciation (see the dashed line in the lower

left panel) when investment is partially sunk. By period 10, for example, the total capacity of the

industry is around 13� units with depreciation but around 10� units without depreciation. In both

cases the reason is that, because the leader wants to preserve its position relative to the follower, its

disinvestment activities are more cautious. After all, because depreciation is beyond the control of

�rms, there is always a risk that the industry leadership is lost to deprecation. To counter this risk,

the leader pursues a more cautious disinvestment strategy and keeps a �safety stock�of capacity

so as to prevent unintended restoration of symmetry between �rms. Hence, depreciation impedes

rather than promotes capacity coordination.8

In sum, depreciation promotes preemption races but it may promote or impede capacity coordi-

nation. This shows that depreciation� the involuntary withdrawal of capacity� and disinvestment�

the voluntary withdrawal of capacity� are less than perfect substitutes.

8Of course, in the extreme case of � = 1, the industry never takes o¤ and capacity coordination succeeds trivially.
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3.3 Multiplicity

Our model has multiple MPE for a range of parameter values. We use the homotopy method to

explore the equilibrium correspondence in a systematic fashion by tracing out paths through the

set of MPE. Throughout we focus on the case of partially sunk investment (�w = 24). To succinctly

describe an MPE on a path, we compute the Her�ndahl index of �rms�capacities implied by the

MPE as

H(1) =
M�1X
i=0

M�1X
j=0

 �
�qi

�qi + �qj

�2
+

�
�qj

�qi + �qj

�2!
�(1)(i; j);

where �(1) is the limiting distribution over states. The Her�ndahl index summarizes expected in-

dustry structure and dynamics. To the extent that it exceeds 0:5, an asymmetric industry structure

arises in the long run.

Figure 9 visualizes the equilibrium correspondence. In the left panels, we trace out paths

through the set of MPE by varying the rate of depreciation � (x-axis) whilst holding the remaining

parameters �xed and, in the right panels, by varying the degree of product di¤erentiation  (x-

axis). In each panel, the y-axis is H(1). As can be seen from Figure 9, higher depreciation tends

to lead to more asymmetric industry structures as does lower product di¤erentiation (i.e., higher

). Strikingly, the Her�ndahl index in each panel very suddenly shoots up from close to 0:5 to close

to 1. This indicates that the transition from a symmetric to an extremely asymmetric industry

structure occurs rapidly around certain critical parameter values. In the vicinity of these critical

values, multiplicity is especially pervasive.

The transition from a symmetric to an extremely asymmetric industry structure occurs around

� = 0:1 in the upper left panel of Figure 9 and around  = 0:9 in the upper right panel. We mark

these critical values by vertical lines in both panels. Note that the upper panels �intersect�each

other at the vertical line. That is, the slices through the equilibrium correspondence in the upper

panels are centered at the point ( = 0:9; � = 0:1). The middle and lower panels are constructed

analogously and centered at the point ( = 0:8; � = 0:14) and ( = 0:7; � = 0:175), respectively. It

thus appears that if we increase the rate of depreciation, then we also have to increase the degree

of product di¤erentiation (i.e., decrease ) in order to continue to obtain a symmetric industry

structure.

To understand this trade-o¤, note that a higher rate of depreciation makes it harder and there-

fore more costly for a �rm to acquire and maintain its capacity. On the other hand, a higher degree
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of product di¤erentiation (i.e., a lower ) softens product market competition and thus leads to

higher pro�ts. Hence, in order to continue to obtain a symmetric industry structure, we have to

o¤set the higher cost due to the increase in the rate of depreciation by the higher pro�t due to the

increase in the degree of product di¤erentiation. Otherwise, we obtain an extremely asymmetric

industry structure with one �rm being nearly a monopolist.

Multiplicity arises around the critical parameter values because �rms�expectations about the

evolution of the industry matter. If  and � are too high relative to the critical values, the market

cannot possibly sustain two pro�table �rms. Knowing this, �rms have no choice but to invest

aggressively. The result is a preemption race and, ultimately, an extremely asymmetric industry

structure with the winner of the race attaining industry leadership. Conversely, if  and � are

too low, the market can easily sustain two pro�table �rms, and �rms may as well adopt a more

timid investment strategy. In both cases, the primitives of the model tie down the MPE. But the

primitives of the model no longer su¢ ce to tie down the MPE around the critical parameter values.

Thus the stage is set for multiplicity, with MPE that may or may not entail preemption races and

capacity coordination.

Figure 10 makes this point by displaying the investment/disinvestment probabilities in the three

MPE that we have found for  = 0:9 and � = 0:1. The three MPE are displayed in decreasing

order of H(1) (visually, they correspond to the intersections, from top down, of the equilibrium

correspondence and the vertical lines in the upper panels of Figure 9). The MPE in the upper panels

displays the diagonal investment/disinvestment pattern that is characteristic for a preemption race.

The MPE in the lower panels exhibits much more cautious behavior. Investment activities are

spread out over the low capacity states and disinvestment activities over the high capacity states.

Moreover, the investment/disinvestment probabilities of a �rm are almost completely independent

of the capacity of its rival. Taken together, it is not surprising that this leads to a symmetric

industry structure with no or little capacity coordination. The MPE in the middle panels appears

to be a �mixture�of the other two MPE and can be thought of as the transition from a market

that can sustain two pro�table �rms to one that cannot.

Around the critical parameter values, whether or not the market can sustain two pro�table

�rms depends on how �rms behave. Firms�behavior, in turn, depends on their expectations. If

�rms believe that the market cannot sustain two pro�table �rms, then they will invest aggressively

in a bid for industry leadership. This naturally leads to a preemption race and, in the long run, to
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an extremely asymmetric industry structure exhibiting capacity coordination.9 If, however, �rms

believe that the market can sustain two pro�table �rms, then they will avoid a preemption race

and the concomitant build-up of excess capacity in the short run. This, in turn, ensures that the

market can indeed sustain two pro�table �rms. In sum, how the industry evolves depends on how

�rms expect the industry to evolve.

4 Conclusions

In this paper we apply the Markov-perfect equilibrium framework of Ericson & Pakes (1995) to-

gether with the puri�cation technique of Doraszelski & Satterthwaite (2007) to study the evolution

of an oligopolistic industry with lumpy capacity and lumpy investment/disinvestment. Because

�rms cannot pinpoint rivals exact cost/bene�t of capacity addition/withdrawal, they face strategic

uncertainty about their rivals� investment/disinvestment decisions. Both lumpiness and stochas-

ticity are realistic features in many industrial settings (see, e.g., Doms & Dunne 1998, Caballero

& Engel 1999). We use our model to answer two questions. First, what economic factors facilitate

preemption races? Second, what economic factors facilitate capacity coordination?

We �rst show that low product di¤erentiation, low investment sunkness, and high depreciation

promote preemption races. Both low investment sunkness and high depreciation imply high invest-

ment reversibility and, contrary to conventional wisdom in investment theory, promote preemption

races by allowing �rms to remove some of the excess capacity that has been built up during the

race. This result is in line with the empirical �ndings in the North American newsprint and U.K.

brick industries. These industries di¤er mainly in the sunkness of investment. In the former, in-

vestment sunkness is low and there is evidence suggestive of �some sort of race to add capacity�

(Christensen & Caves 1997, p. 48). In the latter, in contrast, investment sunkness is high and �in

general brick �rms manage to sequence successfully their capacity expansion insofar as they avoid

excessive contemporaneous bunching of expansions�(Wood 2005, p. 43).

Second we show that low product di¤erentiation and low investment sunkness promote ca-

pacity coordination. Although depreciation removes capacity, it may impede capacity coordina-

tion. Because depreciation is beyond the control of �rms, the leader keeps a safety stock of ca-

pacity to counter the risk that the industry leadership is lost to deprecation. This shows that

9Because an industry with an extremely asymmetric structure is close to a natural monopoly, it is not surprising
that capacity coordination obtains.
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depreciation� the involuntary withdrawal of capacity� and disinvestment� the voluntary with-

drawal of capacity� are less than perfect substitutes.

Taken together, our results therefore suggest that preemption races and excess capacity in the

short run often go hand-in-hand with capacity coordination in the long run. The association of

these seemingly contradictory behaviors is consistent with Gilbert & Lieberman�s (1987) �nding

that preemption may be a temporary phenomenon in chemical processing industries and that �the

main role of preemptive activity is to coordinate new investment and to promote e¢ ciency by

avoiding excess capacity�(p. 30).

Of course, none of this means that preemption cannot have lasting e¤ects on industry structure.

In fact, we show that a preemption race leads to an asymmetric industry structure in the long run.

This is consistent with the dominance of DuPont of the North American titanium dioxide industry

that can be traced back to the preemptive strategy of capacity accumulation that DuPont initiated

in the early 1970�s (Ghemawat 1984, Ghemawat 1997, Hall 1990).

In addition, we show that, at least over some range of parameter values, �rms�expectation play

a key role in determining whether or not industry dynamics are characterized by preemption races

and capacity coordination. This is because, around certain critical parameter values, whether or

not the market can sustain two pro�table �rms depends on whether �rms pursue a cautious or an

aggressive approach to investment. Firms�behavior, in turn, depends on their expectations about

the evolution of the industry.
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Figure 1: Pro�t �(i; j) and price p(i; j) in Nash equilibrium of product market game.  = 0:70
(upper panels) and  = 0:99 (lower panels).
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Figure 2: Investment/disinvestment probabilities e(i; j) and w(i; j).  = 0:99, �w = 24 (upper
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Figure 3: Distribution over states �(T )(0;0) in period T = 1; 5; 10; 50 with initial state (0; 0).  = 0:99,
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Figure 5: Total capacity �q(T ) (in units of �) in period T with initial state (0; 0) (upper panels)
and (9; 9) (lower panels).  = 0:99, � = 0 (left panels) and � = 0:1 (right panels). Duopoly with
�w = 24 (dashed line) and �w = �1000 (dash-dotted line) and cartel with �w = 24 (solid line) and
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Figure 6: Investment/disinvestment probabilities e(i; j) and w(i; j).  = 0:7 (upper panels) and
 = 0:1 (lower panels), �w = 24, and � = 0.
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Figure 7: Total capacity �q(T ) (in units of �) in period T with initial state (0; 0) (upper panels)
and (9; 9) (lower panels).  = 0:7, � = 0 (left panels) and � = 0:1 (right panels). Duopoly with
�w = 24 (dashed line) and �w = �1000 (dash-dotted line) and cartel with �w = 24 (solid line) and
�w = �1000 (dotted line).

38



0 10 20 30 40 50
0

1

2

3

4

5

6

7
δ = 0.2

T

To
ta

l C
ap

ac
ity

 (i
n 

un
its

 o
f ∆

)

D (24)
C (24)

Figure 8: Total capacity �q(T ) (in units of �) in period T with initial state (0; 0).  = 0:2, �w = 24,
and � = 0:2. Duopoly (dashed line) and cartel (solid line).
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Figure 9: Her�ndahl index of �rms�capacities H(1). �w = 24.
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Figure 10: Investment/disinvestment probabilities e(i; j) and w(i; j). Multiple MPE.  = 0:9,
�w = 24, and � = 0:1.
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