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ABSTRACT 
 

THE ROLE OF THE INTEGRATED STRESS RESPONSE KINASE GCN2 IN CELL CYCLE 

REGULATION AND TUMORIGENESIS 

Stacey L. Lehman 

Constantinos Koumenis, Ph.D. 

The tumor microenvironment is characterized by deficiencies in oxygen and nutrients, such as 

glucose and amino acids. Activation of the GCN2 arm of the Integrated Stress Response (ISR) in 

response to amino acid deprivation is one mechanism by which tumor cells cope with nutrient 

stress. GCN2 phosphorylates the alpha subunit of the eukaryotic translation initiation factor eIF2, 

leading to global downregulation of translation to conserve amino acids and initiation of a 

transcriptional program through the transcription factor ATF4 to promote recovery from nutrient 

deprivation. Loss of GCN2 results in decreased tumor cell survival in vitro under amino acid 

deprivation and attenuated tumor growth in xenograft models. However, the mechanisms by 

which GCN2 regulates cell survival and the role GCN2 plays in tumorigenesis are not clearly 

understood. Here, we demonstrate through 35S labeling, luciferase reporter assays, and 

polysome profiling that activation of GCN2 selectively upregulates the translation of a p21Cip1 

transcript variant containing 5’ upstream open reading frames (uORFs) through phosphorylation 

of eIF2α. Mutational analysis reveals that the uORFs suppress its translation under basal 

conditions, but promote its translation under stress. Functionally, ablation of p21 ameliorates G1/S 

arrest and reduces cell survival in response to GCN2 activation. We also demonstrate in a 

genetically engineered mouse model of soft tissue sarcoma that loss of GCN2 has no major 

effect on the rate of tumor growth or animal survival. The sarcomas displayed compensatory 

activation of PERK or phospho-eIF2α independent upregulation of ATF4 in order to maintain ISR 

signaling, indicating that this pathway is critical for tumorigenesis. Together, these results 

demonstrate that GCN2 exerts its pro-survival effects partially through p21-induced cell cycle 
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arrest and that sarcomas adapt to loss of GCN2 by upregulating other components of the ISR in 

order to exploit the survival benefits of this signaling pathway. 
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CHAPTER I: GENERAL INTRODUCTION  
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Tumor cells must adapt to a variety of stressors in their microenvironment. These can 

include hypoxia, low pH, and deficiencies in nutrients, such as glucose and amino acids1. In order 

to survive these harsh conditions, tumor cells rely on pathways to sense and respond to stress. 

One such pathway is signaling through the serine/threonine kinase general control non-

derepressible 2 (GCN2), which is activated in response to amino acid deprivation. GCN2 

regulates a variety of processes to maintain sufficient levels of amino acids for cellular 

metabolism. The work herein elucidates the role GCN2 plays in suppressing cell proliferation to 

promote cell survival under nutrient stress and describes a genetically engineered mouse model 

of cancer in order to better understand the contribution of GCN2 to tumorigenesis. 

GCN2: structure and function 

GCN2 is a relatively large protein containing several functional domains (Figure I-1). 

When amino acids are in short supply, uncharged transfer RNAs (tRNAs) accumulate in cells. 

GCN2 senses amino acid deprivation by binding to uncharged tRNAs through its C-terminal 

histidyl-tRNA synthetase-like (HisRS-like) domain2,3. It has been demonstrated that individual 

uncharged tRNAs can compete away the interaction between GCN2 and total uncharged tRNA 

with similar efficiencies, suggesting that GCN2 can sense the deprivation of any amino acid 

because it binds to the various uncharged tRNAs with similar affinities.4,5 The binding of 

uncharged tRNAs causes GCN2 to undergo a conformational change from its autoinhibitory state 

to its dimerized, catalytically active state. GCN2 homodimerizes through its C-terminal 

dimerization domain (DD)6. The HisRS-like domain also plays a role in dimerization7. GCN2’s 

catalytic activity is carried out by its serine/threonine kinase domain, which is located within the 

middle of the protein8. Autophosphorylation on threonine residues within the kinase activation 

loop is required for maximum kinase activity9. GCN2 also contains a pseudokinase domain (YKD) 

N-terminal to the kinase domain. Although this domain is catalytically inactive, it interacts with and 

activates the kinase domain10. GCN2 interacts with GCN1 through its RING finger and WD repeat 

containing proteins and DEXDc-like helicases (RWD) domain at the N-terminus11. In yeast, this 
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interaction is required for GCN2 activation, although the exact mechanism of how GCN1 activates 

GCN2 is unclear. GCN2 directly interacts with translating ribosomes through its C-terminus12, and 

it is thought that GCN1 facilitates the binding of uncharged tRNAs to GCN2 as they exit from the 

A site of the ribosome11. However, this interaction between GCN2 and ribosomes has not been 

observed in mammals13, and therefore, it is not clear if the mammalian homologue of GCN1 

activates GCN2 in a similar manner. 

 

 

Upon activation, GCN2 phosphorylates the alpha subunit of eukaryotic translation 

initiation factor 2 (eIF2α) on serine 5114. GCN2 is a member of the signaling pathway known as 

the Integrated Stress Response (ISR), which consists of four kinases that phosphorylate eIF2α in 

response to a variety of stressors (Figure I-2). In addition to GCN2, these kinases include heme 

regulated inhibitor (HRI), PKR (protein kinase RNA-activated), and PERK (protein kinase RNA-

activated-like endoplasmic reticulum kinase). HRI responds to heme deprivation, PKR to double-

stranded RNA viral infections, and PERK to accumulation of unfolded proteins in the endoplasmic 

reticulum (ER)15,16. Phosphorylation of eIF2α by any of these four kinases leads to a general 

downregulation of translation. Paradoxically, eIF2α phosphorylation also leads to the enhanced 

translation of specific transcripts that contain upstream open reading frames (uORFs) in their 5’ 

untranslated regions (UTRs)16,17. Both of these outcomes promote recovery from stress. 

However, if the stress is too prolonged or severe, continuous activation of the ISR can lead to 

apoptosis15,16. 

Figure I-1. GCN2 functional domains. GCN2 contains five functional domains: the RWD domain that 
binds to GCN1; the pseudokinase domain that activates GCN2 kinase activity; the serine/threonine 
kinase domain that phosphorylates eIF2α; the hisidyl-tRNA snythetase-like domain that binds 
uncharged tRNA; and the RB/DD domain that binds to ribosomes and is responsible for GCN2 
homodimerization. 
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Consequences of GCN2 activation 

 Activation of GCN2 and subsequent phosphorylation of eIF2α generally lead to a global 

decrease in translation. In unstressed cells, eIF2 binds to the initiator methionyl tRNA, GTP, the 

small ribosomal subunit, and several other initiation factors to form the 43S preinitiation complex. 

The 43S preinitiation complex scans messenger RNAs (mRNAs) for start codons. Upon start 

codon recognition, the GTP bound to eIF2 is hydrolyzed to GDP to promote the association of the 

large ribosomal subunit with the initiation complex18. The guanine nucleotide exchange factor 

(GEF) eIF2B recycles the newly released eIF2-GDP back to eIF2-GTP so it can participate in 

another round of translation initiation. Under stressed conditions, phosphorylated eIF2α forms a 

stable complex with eIF2B, preventing its GEF activity and the recycling of eIF2 back to its active, 

GTP-bound form. This leads to translation inhibition19. 

 Translational suppression under certain cellular stresses is beneficial for a number of 

reasons. First of all, translation is an extremely energetically costly process. Along with the 

Figure I-2. The Integrated Stress Response signaling pathway. Four kinases in mammals 
phosphorylate eukaryotic translation initiation factor eIF2α in response to diverse stressors. 
Phosphorylation of eIF2α leads to translational suppression, but also translationally upregulates certain 
proteins, such as the transcription factor ATF4. 
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sodium potassium pump, translation is the highest ATP consuming process in the cell20,21. 

Downregulating translation helps to conserve ATP during unfavorable conditions. Additionally, 

translational regulation allows for rapid and efficient changes in gene expression in response to 

stress, as there is no time lag necessary to transcribe genes to mRNA first. In the context of 

GCN2 activation, translational suppression also helps to conserve amino acids when they are 

limiting by decreasing their incorporation into proteins. 

 GCN2 activation can also lead to the translational upregulation of specific transcripts 

through eIF2α phosphorylation. The most well-characterized of these is activating transcription 

factor 4 (ATF4)22,23. ATF4 is translationally upregulated under conditions of eIF2α 

phosphorylation due to the presence of uORFs in its 5’ UTR (Figure I-3). Murine Atf4 has two 5’ 

uORFs. uORF1 is short and encodes for only three amino acids. uORF2 is longer and overlaps 

with the coding region for ATF4. Under normal conditions, translation initiates at uORF1. Since 

eIF2-GTP is in abundant supply, translation is able to rapidly reinitiate at uORF2. uORF2 is out of 

frame with respect to the ATF4 ORF, so no ATF4 protein is produced22. However, under stressed 

conditions when eIF2α is phosphorylated, recycling of eIF2-GDP to eIF2-GTP is greatly slowed. 

Thus, after translation of uORF1, translation reinitiation cannot occur rapidly enough for 

ribosomes to translate uORF2. Instead, ribosomes are much more likely to reinitiate translation at 

the actual ATF4 ORF, producing the ATF4 protein under stress22. Several other genes, such as 

growth arrest and DNA-damage-inducible 34 (GADD34)24 and activating transcription factor 5 

(ATF5)25, are regulated by similar mechanisms.  
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Translational upregulation of ATF4 initiates a transcriptional program that aids in stress 

recovery26. ATF4 regulates several categories of genes that are particularly important in the 

context of GCN2 activation, such as amino acid transporters, amino acid biosynthetic enzymes, 

aminoacyl tRNA synthetases, redox related genes, and autophagy related genes. Examples of 

these genes and their role in the GCN2-mediated stress response are discussed below. ATF4 

also transcriptionally regulates additional transcription factors to amplify and provide specificity to 

the transcriptional response26-28 and GADD34, a positive regulator of the eIF2α phosphatase, 

which provides negative feedback control to ISR activation29. 

Amino acid transporters and biosynthetic enzymes. ATF4 regulates the transcription of 

genes involved in regulating amino acid levels in order to increase their availability under stress. 

Two of the major categories of genes involved in these processes are amino acid transporters 

and amino acid biosynthetic enzymes. In regards to amino acid transporters, ATF4 has been 

demonstrated to regulate solute carrier family 7, member 5 (SLC7A5); solute carrier family 1, 

Figure I-3. Translational regulation of ATF4. Under normal conditions, ribosomes translate two 
uORFs in the ATF4 5’ UTR, resulting in no ATF4 protein production. When eIF2α is phosphorylated 
under stress, translation reinitiation is delayed after translation of the first uORF, resulting in ribosomes 
translating the ATF4 ORF instead of the second uORF. 
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member 5 (SLC1A5); and solute carrier family 3, member 2 (SLC3A2)26. All three transporters 

bring neutral amino acids, such as phenylalanine, tyrosine, leucine, arginine, and tryptophan, into 

the cell. ATF4 also regulates enzymes that synthesize amino acids. One of these is asparagine 

synthetase (ASNS), which produces asparagine from glutamine. A second is branched chain 

amino acid transaminase 1 (BCAT1), which synthesizes leucine, isoleucine, and valine from their 

alpha-keto acid forms26. 

Aminoacyl tRNA synthetases. ATF4 transcriptionally regulates a whole host of aminoacyl 

tRNA synthetases. These include alanyl-tRNA synthetase (AARS), asparaginyl-tRNA synthetase 

(NARS), tryptophanyl-tRNA synthetase (WARS), threonyl-tRNA synthetase (TARS), leucyl-tRNA 

synthetase (LARS), isoleucyl-tRNA synthetase (IARS), and tyrosyl-tRNA synthetase (YARS)30. 

As a whole, upregulation of aminoacyl tRNA synthetases promotes the charging of tRNAs, which 

would dampen GCN2 activation as the cells recover from amino acid starvation. 

Antioxidant response. ATF4 is known to be a major regulator of antioxidant response 

genes under stress. In fact, ATF4-/- MEFs require supplementation with a reducing agent, such as 

β-mercaptoethanol, to grow in culture26. Although the ATF4-dependent induction of redox genes 

has not been widely studied in the context of GCN2, it has been demonstrated that GCN2-/- mice 

fed a leucine imbalanced diet exhibited increased oxidative damage in the liver31. ATF4-

dependent regulation of redox response genes may be particularly important in the context of 

cysteine deprivation since it is required for cells to synthesize the antioxidant glutathione32. ATF4 

has been shown to regulate the redox genes cytochrome b5 reductase 1 (CYB5R1), 

coproporphyrinogen oxidase (CPOX), ERO-1 like (ERO1L), FK506 binding protein 11 (FKBP11), 

and heme oxygenase 1 (HMOX1)26. 

Autophagy. Autophagy is a process in which double membrane structures engulf 

cytoplasmic material and fuse with lysosomes to degrade and recycle the contents. Autophagy 

has a variety of uses, including degrading nonfunctional or dysfunctional organelles and clearing 

the cytoplasm of misfolded or aggregated proteins33. In the context of GCN2 activation, 

autophagy acts as a starvation response by degrading cellular proteins and recycling the amino 
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acids as an energy source. It has been demonstrated that ATF4 regulates the transcription of 

several autophagy genes, including autophagy related 16-like 1 (ATG16L1), beclin 1 (BECN1), 

and autophagy related 12 (ATG12), in a GCN2-dependent manner under leucine starvation34. 

 

The ISR and cell cycle regulation 

 In response to stress, cells will often undergo cell cycle arrest to allow time for recovery 

before dividing. This can be achieved by induction of cell cycle inhibitors or suppression of cell 

cycle activators. The chief cell cycle activator proteins are the cyclins. As their name implies, 

cyclins are expressed in a periodic fashion as cells progress through the cell cycle. Cyclins form 

complexes with cyclin dependent kinases (CDKs) to activate their kinase activity; the complex 

then phosphorylates targets that are important for progression into the next phase of the cell 

cycle35. Typically, D cyclins are active in G1 phase, E cyclins are active from late G1 to early S, A 

cyclins are active from S phase into G2, and B cyclins are active from G2 into mitosis35. In 

mammalian cells, there are two major families of cell cycle inhibitors to counteract the effect of 

cyclins: the INK4 family and the CIP/KIP family. The INK4 family consists of p15INK4B, p16INK4A, 

p18INK4C, and p19INK4D. The CIP/KIP family consists of p21CIP1, p27KIP1, and p57KIP2. Both groups 

of proteins form complexes with cyclin:CDK proteins to block their activity. The INK4 family 

proteins typically bind to CDK4 or CDK6 in complex with cyclin D, while the CIP/KIP family 

proteins typically bind CDK2 in complex with cyclin E or A36. 

There is mounting evidence that activation of the ISR leads to cell cycle arrest as a 

mechanism to cope with cellular stress. In cells exposed to ER stress, GCN2 and PERK 

cooperate to phosphorylate eIF2α, which leads to cell cycle arrest through translational 

suppression of cyclin D37. ER stress also results in PERK-dependent induction of the p53 isoform 

p53/47, which promotes G2 arrest through 14-3-3σ38. In T cells, arginine deprivation induces G1 

arrest through GCN2. T cells stimulated in the absence of arginine fail to induce cyclin D3 and 

CDK4, and these effects are rescued by knockout of GCN239. In fission yeast, activation of Gcn2 

through nitrogen starvation40 and, interestingly, UV light41 causes cell cycle arrest in G1. However, 
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the molecular mechanisms acting downstream of Gcn2 to regulate the cell cycle in yeast have not 

been elucidated. The ability of amino acid deprivation and glucose deprivation to induce cell cycle 

inhibitors suggests that GCN2 may have additional unidentified roles in cell cycle regulation42,43. 

 

Physiological functions of GCN2 

Given its function in amino acid sensing, GCN2 plays a crucial role in regulating 

metabolism. In wildtype mice deprived of the essential amino acid leucine, GCN2 suppresses 

protein synthesis in the liver44 and mobilizes lipid sources as an alternative source of energy45. 

Although GCN2 knockout mice are overtly phenotypically normal when fed a complete diet, they 

cannot employ these metabolic adaptations under stress and rapidly become moribund upon the 

removal of one amino acid from their diet44. GCN2 also plays a role in regulating hepatic 

gluconeogenesis, as GCN2-/- mice or mice with a liver specific GCN2 knockout have deficiencies 

in maintaining glucose homeostasis while fasting46. Additionally, GCN2 influences feeding 

behaviors in animals by regulating an aversion response to food sources lacking an amino acid47. 

Interestingly, short-term removal of tryptophan from the diet induces resistance to ischemia-

reperfusion tissue damage in mice, and this protection is dependent upon GCN248. 

GCN2 functions in many other contexts in addition to metabolism. GCN2 is highly 

expressed in the brain and regulates synaptic plasticity and memory. In a Morris water maze, 

GCN2-/- mice exhibit enhanced long-term spatial memory after weak training and impaired long-

term memory after strong training49. This is thought to be due to decreased expression of ATF4, 

which is an antagonist of the cyclic AMP response element binding protein (CREB) transcription 

factor. CREB is responsible for transcribing genes responsible for long-term memory. Thus, in 

GCN2-/- mice, CREB activity is increased in the hippocampus, resulting in increased memory and 

learning. However, too much stimulation appears to block synaptic plasticity49. 

Although PKR is the ISR kinase typically associated with defence against viral infections, 

GCN2 also plays a role in this process. GCN2-/- mice are more susceptible to both Sindbis virus 

(SV), an RNA virus50, and mouse cytomegalovirus (MCMV), a DNA virus51. It has been 
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demonstrated that the SV genome activates GCN2 by binding to the HisRS-like domain50. The 

mechanism behind MCMV-dependent activation has not yet been elucidated, but in both cases 

GCN2 is thought to protect against viral infection by phosphorylating eIF2α to inhibit translation of 

viral proteins50,51. It has also been demonstrated that human immunodeficiency virus (HIV) RNA 

activates GCN2 in cultured cells, which is also likely due to the HIV RNA genome binding the 

HisRS-like domain of GCN2. Interestingly, HIV-1 and HIV-2 proteases cleave GCN2, apparently 

to counteract GCN2’s inhibitory effect on viral protein translation52. 

GCN2 also plays an important role in the immune system, particularly in the context of 

cancer. It has been demonstrated that GCN2 relays signals from the immunosuppressive enzyme 

indoleamine 2,3-dioxygenase (IDO) to T lymphocytes. Both tumor cells themselves53 and a 

subset of CD19+ plasmacytoid dendritic cells (pDCs) present in tumor draining lymph nodes54 

express IDO. IDO participates in the first and rate-limiting step of tryptophan catabolism, creating 

local tryptophan depletion that activates GCN2 in both cytotoxic and regulatory T cells. In an 

antigen-specific manner, IDO+ pDCs induce anergy in wildtype CD8+ T cells and block their 

proliferation both in vitro and in vivo, while GCN2-/- CD8+ T cells maintain normal levels of 

proliferation and responsiveness to antigen55. IDO+ pDCs can also suppress CD8+ T cell 

proliferation indirectly by activating Tregs. However, GCN2-/- Tregs exposed to IDO+ pDCs are 

unable to suppress the proliferation of CD8+ T cells in response to antigen56. Furthermore, 

overexpression of IDO in tumor cells prevents the accumulation of tumor-specific CD8+ T cells in 

vivo53. These data indicate that IDO signaling through GCN2 may promote tumor growth by 

inhibiting CD8+ T cells from recognizing and responding to tumor cells, thus preventing their 

elimination. 

 

GCN2 activation in tumors 

 The tumor microenvironment is frequently characterized by nutrient deficiencies. Nutrient 

deprivation is typically thought to occur in the microenvironment due to poor perfusion. The rapid 

proliferation of tumor cells can outstrip the tumor’s ability to form new vasculature. This is 



11 

 

compounded by the fact that tumor vasculature is often inadequately constructed, resulting in 

tortuous networks of leaky vessels, and therefore, inefficient delivery of nutrients to the tumor 

through the blood1. Tumor cells have increased metabolic demands as compared to normal cells, 

which can also result in nutrient deprivation as tumor cells rapidly consume the nutrients present 

in the microenvironment57. Amino acid deprivation in the tumor microenvironment can activate 

GCN2. Glucose deprivation can also activate GCN2, presumably due to tumors depleting amino 

acids as an alternative energy source when glucose is not available58.  

The PERK arm of the ISR is also relevant in tumorigenesis, as both glucose and oxygen 

deprivation perturb protein folding and induce ER stress59,60. PERK and GCN2 cooperate to 

signal through phospho-eIF2α and ATF4 to promote tumor cell survival. PERK also has functions 

outside the ISR, including direct phosphorylation and activation of the antioxidant transcription 

factor nuclear factor erythroid 2-like 2 (NRF2)61 and phosphorylation of diacylglycerol, which 

mediates the activity of mechanistic target of rapamycin (mTOR) and RAC-alpha 

serine/threonine-protein kinase (AKT) under stress62. When PERK-/- Ras and Simian virus 40 

(SV40) large T antigen transformed MEFs are injected subcutaneously into nude mice, they grow 

more slowly than their wildtype counterparts and display areas of apoptosis which overlap with 

areas of hypoxia63. A pro-tumorigenic role for PERK has been demonstrated in genetically 

engineered mouse models of mammary carcinoma and insulinoma64,65.  

 Previous work from our lab demonstrated that GCN2 supports tumor cell survival both in 

vitro and in vivo58. Cells lacking GCN2 undergo apoptosis when cultured in media lacking an 

amino acid. Cells lacking GCN2 also have decreased survival under glucose deprivation and fail 

to induce ATF4 transcriptional targets when grown without glucose. In mouse xenograft models, 

knockdown of GCN2 in the human fibrosarcoma cell line HT1080 completely blocked tumor 

growth. GCN2-/- Ras and SV40 large T antigen transformed MEFs also formed drastically smaller 

tumors in nude mice as compared to GCN2+/+ cells. These findings are clinically relevant as well. 

Increased GCN2 protein levels were found in human liver, breast, and lung tumors as compared 
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to normal tissue controls. Activation of GCN2, as evidenced by staining for its autophosphorylated 

form, was detected by immunohistochemistry (IHC) in human lung, breast, and colon cancer. 

 Similar observations were made with proteins downstream of GCN2 in the ISR signaling 

pathway. Cells containing a knock-in mutation of eIF2α in which serine 51 is converted to alanine 

to block its phosphorylation also undergo apoptosis when grown in media lacking an amino 

acid58. Ras and SV40 large T antigen transformed eIF2α S51A MEFs exhibited decreased tumor 

growth when injected into mice63. We found high eIF2α phosphorylation concomitant with GCN2 

overexpression in human liver, breast, and lung tumors58. Cells lacking ATF4 also have 

decreased survival when grown without an amino acid or glucose58. In vivo, HT1080 cells with 

stable knockdown of ATF4 exhibit decreased tumor growth58. ATF4 was found to be 

overexpressed in samples from human glioblastoma, breast adenocarcinoma, cervical 

carcinoma, and melanoma63,66. Increased copy number of ATF4 has been documented in breast 

tumors as well67. 

 Several processes downstream of GCN2 are thought to promote tumor cell survival. The 

GCN2-eIF2α-ATF4 pathway regulates a number of genes involved in amino acid biosynthesis, 

which can aid in meeting the metabolic demands of tumor cells. The sensitivity of HT1080 cells 

with stable ATF4 knockdown to glutamine deprivation can be rescued by addition of asparagine 

to the media or by overexpression of the ATF4 target ASNS58. Indeed, overexpression of ASNS 

in these cells partially rescues tumor growth in xenografts58. Cells containing the eIF2α S51A 

mutation or lacking GCN2 are compromised in their ability to undergo autophagy under amino 

acid deprivation58. Autophagy can be a pro-survival process in cancer not only by recycling amino 

acids and other nutrients but also by protecting cells from hypoxia and anoikis, maintaining 

cancer stem cell populations, and inducing therapeutic resistance68. GCN2 also promotes tumor 

angiogenesis under amino acid deprivation by inducing vascular endothelial growth factor 

(VEGF). Knockdown of GCN2 reduces VEGF induction in the human head and neck squamous 

cell carcinoma cell line UM-SCC-22B, and xenografts of these tumors contain fewer blood 

vessels than their wildtype counterparts69. 
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Project aims 

 The goals of this project were two-fold. First, we wanted to characterize additional 

pathways downstream of GCN2 that promote cell survival under nutrient stress. For this, we 

focused on how GCN2 regulates cell proliferation during amino acid deprivation. This work 

demonstrates that GCN2-dependent phosphorylation of eIF2α translationally upregulates the cell 

cycle inhibitor p21Cip1 through the presence of uORFs in its 5’ UTR. Induction of p21 under 

nutrient stress results in cell cycle arrest in G1 and enhances clonogenic survival after long-term 

exposure to amino acid deprivation. Secondly, we wanted to better define the role of GCN2 in 

tumorigenesis by using a genetically engineered mouse model of cancer in which tumors arise in 

their native microenvironment and are exposed to physiological levels of nutrient deprivation. The 

LSL-KrasG12D;p53fl/fl model of soft tissue sarcoma was employed for this purpose. In this model, 

we found that loss of GCN2 did not impact tumor growth or animal survival. However, other 

proteins involved in the ISR were overexpressed or activated in the tumors, suggesting that ISR 

signaling is critical for sarcomas, and tumors can adapt to maintain activation of this pathway. We 

also identified that many of the ISR components are overexpressed in human soft tissue 

sarcoma, indicating that the results from the mouse model are clinically significant. Overall, this 

work further supports a pro-survival function for GCN2 in nutrient stressed cells and identifies a 

novel mechanism by which GCN2 protects cells from death during amino acid starvation. 
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CHAPTER II: TRANSLATIONAL UPREGULATION OF AN INDIVIDUAL P21CIP1 
TRANSCRIPT VARIANT BY GCN2 REGULATES CELL PROLIFERATION AND 

SURVIVAL UNDER NUTRIENT STRESS 
 
This chapter contributes to a manuscript of the same title submitted to PLOS Genetics (in press) 
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Introduction 
 

p21Cip1, a member of the CIP/KIP family of cell cycle inhibitors, is known to play a key role 

in regulating the transition from G1 to S phase of the cell cycle. Under normal conditions, 

complexes of cyclin E and CDK2 are active in late G1 phase and phosphorylate the 

retinoblastoma protein (pRb). Phosphorylated pRB dissociates from E2F transcription factors, 

resulting in the transactivation of genes required for progression into S phase. Many different 

stress conditions upregulate p21 expression to inhibit cell proliferation and allow time for recovery 

before cell division. When p21 is induced, it binds to and inhibits cyclin E:CDK2 complexes. This 

prevents full phosphorylation of pRB, resulting in G1/S arrest70. 

 p21 expression must be tightly controlled in order for cells to properly progress through 

the cell cycle. As a result, p21 is regulated at many levels, both transcriptionally and post-

transcriptionally71. At the transcriptional level, p21 was first described as a p53 target and a major 

effector of cell cycle arrest in response to DNA damage72,73. However, many stressors, such as 

oncogenic Ras74 and histone deacetylase inhibition75, upregulate p21 transcription independently 

of p53. A variety of mechanisms regulate p21 levels post-transcriptionally. mRNA binding 

proteins, such as HuD76 and HuR77, bind to the 3’ UTR of the p21 transcript to enhance its 

stability. Both ubiquitin-dependent and independent pathways regulate the stability of p21 

protein78. Phosphorylation events also regulate p21 protein stability, as well as its binding 

partners and subcellular localization79.  

 Interestingly, p21 is encoded by multiple transcript variants in both mice and humans80,81. 

Although much is known about the regulation of p21 expression as a whole, the regulation of the 

individual transcript variants is not understood. These transcript variants differ in the 5’ UTRs but 

are identical in their coding sequence and thus produce the same protein. The 5’ UTR of a 

transcript plays a crucial role in regulating its translation, suggesting that these variants might be 

differentially controlled at the translational level. 
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Here, we demonstrate that upstream open reading frames in the 5’ UTR of an individual 

p21 transcript variant upregulate its translation during amino acid deprivation. This stress 

activates the serine/threonine kinase GCN2, which phosphorylates the eukaryotic translation 

initiation factor eIF2α14. Mutation of the uORFs in the p21 transcript variant or mutation of eIF2α 

preventing its phosphorylation blocks translational induction. Similarly, the translation of a second 

p21 transcript variant that lacks uORFs is not enhanced by eIF2α phosphorylation. Unlike many 

other known mechanisms of p21 upregulation under stress, GCN2-dependent regulation does not 

require p53 or the other p53 family members, p63 and p73. p21 induction is required for optimal 

G1/S arrest and promotes cell survival under conditions of amino acid deprivation. Together, 

these findings uncover a novel mechanism of differential regulation of distinct p21 transcript 

variants at the translational level and establish GCN2 as a critical regulator of the cell cycle and 

cell survival. 

 

Results 

Multiple p21 transcript variants have been identified in mammals, but their significance 

remains unknown. In mice, there are two p21 transcripts generated by alternative promoter usage 

(Figure II-1A). The classical p21 transcript is designated as variant 1. Variant 2 is produced from 

a promoter located 2.8 kilobases upstream from the variant 1 promoter80. Both transcripts are 

ubiquitously expressed throughout mouse tissues80. These variants differ only in their 5’ UTRs, 

suggesting that they undergo differential post-transcriptional regulation. Elements in the 5’ UTR, 

such uORFs and internal ribosome entry sites (IRESes), play a major role in regulating 

translation. Analysis of the known mouse p21 transcript variants revealed that transcript variant 2 

contains 5’ uORFs, while transcript variant 1 does not. A diagram of the 5’ uORFs is depicted in 

Figure II-1B. The first uORF of the transcript overlaps out of frame with the coding region for p21. 

uORFs 2 and 3 are located within the first uORF and are fully contained within the 5’ UTR. 

Human p21 is also encoded by multiple transcripts, some of which contain uORFs in their 5’ 

UTRs81.  
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One of the best studied transcripts translationally regulated by uORFs is ATF4. While 

eIF2α phosphorylation leads to a general downregulation of protein synthesis, the presence of 5’ 

uORFs in ATF4 leads to its translational upregulation under these conditions22,23. Mouse Atf4 

contains two 5’ uORFs. Under normal conditions, translation begins at the first uORF and then 

quickly reinitiates at the second uORF. Since the second uORF overlaps out of frame with the 

ATF4 coding region, no protein is produced. Upon eIF2α phosphorylation, the exchange of GDP 

to GTP on eIF2 is hampered. This delays translation reinitiation, allowing ribosomes to scan 

through uORF2 and begin translation at the ATF4 ORF22. 

To determine if p21 is regulated by eIF2α phosphorylation, SV40 large T antigen 

transformed MEFs were cultured in media lacking leucine to activate GCN2. Previous work has 

demonstrated that amino acid deprivation upregulates p2143,58. Leucine deprivation resulted in 

phosphorylation of eIF2α and induction of p21. This response was strictly dependent on GCN2, 

as GCN2-/- MEFs did not phosphorylate eIF2α or induce p21 under stress (Figure II-1C). MEFs 

containing a knock-in mutation of eIF2α in which serine 51 is converted to alanine to prevent 

phosphorylation were also unable to upregulate p21 under stress, indicating that GCN2-

dependent phosphorylation of eIF2α is necessary for p21 induction upon amino acid starvation 

(Figure II-1C). The experiment was repeated with glutamine deprivation to ensure that these 

results were not specific to leucine deprivation. Similar results were observed in all three cell lines 

(Figure II-1D). 

Next, we wanted to determine if dependence on GCN2 and phospho-eIF2α for p21 

upregulation is a general stress response phenomenon or is restricted to nutrient deprivation. To 

do so, cells were exposed to ionizing radiation, a stress that induces p21 but does not activate 

the ISR. As shown in Figure II-1E, wildtype, GCN2-/-, and eIF2α S51A cells all rapidly increased 

p21 expression in response to DNA damage. These data indicate that GCN2 loss specifically 

renders cells incapable of inducing p21 in response to amino acid deprivation. 

 After resolution of stress, p21 levels return to baseline. GCN2+/+ MEFs were cultured 

without leucine for two days, and then returned to complete media for 16 hours. p21 induction 
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was robust after 48 hours of amino deprivation, but levels were barely detectable after a period of 

recovery (Figure II-1F). This indicates that p21 induction is reversible and cells can adjust p21 

levels in response to their environment. 

 To confirm that these findings were not specific to MEFs, SQ20B cells, a human head 

and neck squamous cell carcinoma cell line, were transfected with non-targeting siRNA or siRNA 

against GCN2 and cultured without leucine. Upon leucine deprivation, the siNT-transfected 

SQ20Bs phosphorylated eIF2α and induced p21. Knockdown of GCN2 prevented eIF2α 

phosphorylation and reduced p21 induction by almost 70% (Figure II-1G). Thus, GCN2 regulates 

p21 in both human and murine cells. 

 It has been reported that amino acid deprivation also induces p27Kip1, a cell cycle inhibitor 

closely related to p2143. To establish if GCN2 and eIF2α phosphorylation are responsible for its 

upregulation under amino acid deprivation, GCN2+/+, GCN2-/-, and eIF2α S51A MEFs cells were 

leucine deprived and immunoblotted for p27. All three cell lines induced p27 (Figure II-1H). The 

p27 5’ UTR does not contain any uORFs, further supporting that eIF2α is not responsible for its 

upregulation under stress. Thus, p21 and p27 are regulated by different mechanisms under 

nutrient stress.  

 

Next page: Figure II-1. p21 induction under amino acid deprivation requires GCN2 and eIF2α 
phosphorylation. (A) Schematic representation of the mouse p21 genomic locus. The gray boxes 
indicate the p21 ORF and the white boxes represent the UTRs. (B) The 5’ regions of the two known 
mouse transcript variants of p21 are shown. The start codon for p21 is indicated in green capital letters. 
Variant 2 contains three 5’ uORFs; the start and stop codons for each are indicated in red, blue, and 
purple, respectively. (C) Western blot analysis of p21 induction in leucine-deprived GCN2+/+, GCN2-/-, 
and eIF2α S51A MEFs. β-actin was used as a loading control. All samples were collected at the same 
time and the blots were run in parallel. (D) Western blot analysis of p21 induction in glutamine-deprived 
GCN2+/+, GCN2-/-, and eIF2α S51A MEFs. β-tubulin was used as a loading control. (E) Western blot 
analysis of p21 induction in irradiated GCN2+/+, GCN2-/-, and eIF2α S51A MEFs. Total eIF2α was used 
as a loading control. (F) Western blot analysis of the reversibility of p21 induction in GCN2+/+ MEFs. β-
tubulin was used as a loading control. (G) Western blot analysis of p21 induction in leucine-deprived 
SQ20B cells. Cells were transfected with either non-targeting siRNA (siNT) or siRNA against GCN2 
(siGCN2). β-tubulin was used as a loading control. (H) Western blot analysis of p27 induction in leucine-
deprived GCN2+/+, GCN2-/-, and eIF2α S51A MEFs. β-tubulin was used as a loading control. 

Data information: Values below blot represent the fold change in total pixel intensity over control of p21, 
GCN2, or p27 normalized to the loading control for each lane.  
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One of the best-known mechanisms of p21 regulation is at the transcriptional level 

through p53, and it has been previously established that p53 regulates both murine p21 transcript 

variants80. To evaluate if any p53 family members contribute to p21 upregulation under amino 

acid deprivation, p21 transcript levels were measured by qPCR in leucine-starved E1A 

transformed wildtype, p53-/-, p63-/-, and p73-/- MEFs. p21 transcript levels were upregulated in all 

cell lines in a time-dependent manner, although loss of any one of the p53 family members 

compromised basal levels of p21 mRNA (Figure II-2A). To confirm these results in a human cell 

line, glutamine-starved p53+/+ and p53-/- HCT116s, a human colorectal adenocarcinoma cell line, 

were analyzed by western blot for p21 induction. Similar to the MEFs, a decrease in basal levels 

of p21 was observed in p53-/- cells, but loss of p53 did not prevent p21 upregulation under stress 

(Figure II-2B). Furthermore, the SQ20B cells shown in Figure II-1E express a nonfunctional 

mutant version of p5382. Overall, these results demonstrate that p53 and other p53 family 

members maintain p21 transcript levels in unstressed cells but are not necessary for p21 

induction upon amino acid deprivation. 

When p21 mRNA levels were measured in leucine-starved GCN2+/+, GCN2-/-, and eIF2α 

S51A MEFs, we observed a time-dependent increase in total p21 transcript in all three cell lines 

(Figure II-2C). Levels of the p21 transcript variants were also measured separately under leucine 

deprivation. Transcript variant 1 was the predominant variant present in the MEFs, with a relative 

abundance of six to eight times more than variant 2 in complete media (Figure II-2D). Under 

amino acid deprivation, increases in variant 1 are primarily responsible for the increase in total 

p21 mRNA (Figure II-2E). Interestingly, variant 2 levels increased modestly in GCN2+/+ and eIF2α 

S51A MEFs under stress, while decreasing by half in GCN2-/- MEFs (Figure II-2F). This indicates 

that GCN2 plays a role independently of eIF2α in maintaining variant 2 mRNA levels under 

conditions of leucine deprivation. 

The increase in p21 mRNA without a corresponding increase in p21 protein in the GCN2-

/- and eIF2α S51A MEFs further supported that p21 is regulated at the translational level by eIF2α 

phosphorylation through GCN2. To directly measure p21 translation, we grew GCN2+/+ and 
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GCN2-/- MEFs with or without leucine for 16 hours, labeled newly synthesized proteins with 35S-

methionine and 35S-cystiene, and immunoprecipitated p21. GCN2+/+ MEFs increased translation 

of p21 by approximately four-fold under leucine deprivation, while GCN2-/- MEFs showed no 

increase in p21 labeling under stress (Figure II-2G). Thus, GCN2 translationally upregulates p21 

under nutrient stress. 

To address the possibility that enhanced protein stability might also contribute to 

increased p21 levels under amino acid deprivation, we leucine starved GCN2+/+ MEFs to initially 

induce p21 protein, and then switched the cells to complete or leucine-free media containing 

cycloheximide to block any new p21 protein synthesis. A time course analysis revealed that p21 

protein half-life was approximately 80 minutes in complete media and 20 minutes in leucine-free 

media (Figure II-2H). Therefore, enhanced protein stability does not contribute to p21 induction 

under nutrient stress. Moreover, this experiment further supports the notion that translational 

control plays a major role in maintaining p21 protein levels under stress. 

To assess the effects of amino acid deprivation on the translational efficiency of each p21 

variant, luciferase reporter constructs were created by inserting either the 5’ UTR of p21 variant 1 

or 2 between the HindIII and NcoI restriction sites in a pGL3 reporter vector in which the SV40 

promoter drives expression of luciferase. This produced a construct in which the luciferase coding 

sequence is located directly after the p21 ORF start codon (Figure II-3A). GCN2+/+ MEFs were 

transfected with the p21 variant 1 5’ UTR-luciferase and p21 variant 2 5’ UTR-luciferase 

plasmids, and luciferase activity was measured during a time course of leucine deprivation. No 

change in luciferase activity was observed from the variant 1 construct, while luciferase activity 

from the p21 variant 2 construct increased in a time-dependent manner (Figure II-3B). These 

results indicate that translational upregulation is specific to p21 variant 2. Furthermore, the 

translational regulation was dependent on eIF2α phosphorylation, as there was no statistically 

significant increase in luciferase activity from the variant 2 construct in eIF2α S51A MEFs (Figure 

II-3B).  
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In order to determine if the 5’ uORFs in the p21 variant 2 transcript were responsible for 

translational upregulation under stress, point mutations to disrupt the uORF start codons were 

introduced into the constructs. Constructs were created with deletion of uORF1 (ΔuORF1), 

deletion of both uORFs 2 and 3 (ΔuORF2,3), and deletion of all three uORFs (ΔuORF1,2,3) 

(Figure II-3A). Again, GCN2+/+ MEFs were transfected with these constructs, and luciferase 

activity was measured over a time course of leucine deprivation. Deletion of uORF1 or deletion of 

both uORFs 2 and 3 compromised induction of luciferase activity, demonstrating that all three 

uORFs promote translation under stress. The uORFs appear to be the only 5’ elements 

regulation p21 translation since deletion of all three uORFs essentially blocked the increase in 

luciferase activity (Figure II-3C). Under basal conditions, deletion of either uORF1 or uORFs 2 

and 3 modestly raised luciferase activity, indicating that all three uORFs are inhibitory to 

Previous page: Figure II-2. GCN2 enhances p21 translation independently of p53. (A) qPCR for 
p21 was performed on RNA isolated from wildtype, p53-/-, p63-/-, and p73-/- MEFs deprived of leucine for 
the indicated times. p21 transcript levels were normalized to 18S rRNA. Left: Results are depicted as 
fold change over control for each cell line. Right: Results are depicted as absolute levels of normalized 
transcript. Data represent the average of three independent experiments ± S.E.M. (B) Western blot 
analysis of p21 induction in p53+/+ and p53-/- HCT116s. β-actin was used as a loading control. Values 
below blot represent fold change in total pixel intensity over control of p21 normalized to the loading 
control for each lane. (C) qPCR for p21 was performed on RNA isolated from GCN2+/+, GCN2-/-, and 
eIF2α S51A MEFs deprived of leucine for the indicated times. p21 transcript levels were normalized to 
18S rRNA and are depicted as fold change over control. Data are the average of three independent 
experiments ± S.E.M. (D) qPCR for p21 variants 1 and 2 was performed on RNA isolated from GCN2+/+, 
GCN2-/-, and eIF2α S51A MEFs grown in complete media. Levels of transcript variant 1 relative to 
transcript variant 2 were calculated using the ΔΔCt method using 18S rRNA as the reference gene. Data 
represent the average of three independent experiments ± S.E.M. Results were not statistically 
significant. (E) qPCR for p21 variant 1 was performed on RNA isolated from GCN2+/+, GCN2-/-, and 
eIF2α S51A MEFs deprived of leucine for the indicated times. p21 variant 1 transcript levels were 
normalized to 18S rRNA. Results are depicted as fold change over control for each cell line. Data 
represent the average of four independent experiments ± S.E.M. There was no statistically significant 
difference in variant 1 induction among the three cell types. (F) qPCR for p21 variant 2 was performed 
on RNA isolated from GCN2+/+, GCN2-/-, and eIF2α S51A MEFs deprived of leucine for the indicated 
times. p21 variant 2 transcript levels were normalized to 18S rRNA. Results are depicted as fold change 
over control for each cell line. Data represent the average of four independent experiments ± S.E.M.; 
*p<0.05, **p<0.01. (G) Metabolic labeling of p21 under leucine deprivation. Top: Autoradiograph of 35S-
labeled p21 immunoprecipitated from GCN2+/+ and GCN2-/- MEFs grown with or without leucine for 16 
hours. Bottom: Western blot with cold amino acids to determine immunoprecipitation efficiency and verify 
induction of p21 in total cell lysates. (H) Measurement p21 protein half-life under replete and leucine 
starved conditions. GCN2+/+ MEFs were initially grown in leucine-free media to induce p21 protein levels 
at time 0. Cells were then switched to complete or leucine-free media containing 50 μg/mL 
cycloheximide. Top: Western blot analysis of p21 protein levels during a time course of cycloheximide 
treatment. Total eIF2α was used as a loading control. Values below blot represent fold change in total 
pixel intensity over control of p21 normalized to the loading control for each lane. Bottom: Normalized 
p21 protein values were fit to exponential decay curves to calculate protein half-life. 
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translation under normal, unstressed conditions. The deletion of all three uORFs completely 

rescued basal luciferase activity to levels similar to that of p21 variant 1, which contains no 

uORFs (Figure II-3C). This suggests that under unstressed conditions, ribosomes tend to initiate 

translation at the uORFs instead of the p21 ORF. 

As a positive control, luciferase assays were performed with ATF4 5’ UTR constructs 

(Figure II-3D). In agreement with previous data22, treatment with thapsigargin induced luciferase 

activity from the wildtype construct, and deletion of uORF2 increased basal translation levels 

while preventing induction in response to stress. This response is very similar to that seen with 

the deletion of p21 variant 2 uORFs. To confirm that the changes observed in luciferase activity 

were not due to changes in the transcript levels of the reporters, qPCR for luciferase was 

performed on GCN2+/+ MEFs transfected with the 5’ UTR constructs. No appreciable changes in 

luciferase mRNA were observed (Figure II-3E). 

 

Next page: Figure II-3. GCN2-dependent translational upregulation of p21 is specific to variant 2 
and mediated by the presence of 5’ uORFs. (A) Partial sequence of p21 5’ UTR luciferase reporter 
constructs. The p21 sequence is in lowercase letters, and the luciferase sequence is in capital letters. 
Restriction sites used to insert the p21 5’ UTRs are underlined. The start codon for p21 is indicated in 
green capital letters. The start and stop codons for p21 variant 2 uORFs 1, 2, and 3 are in red, blue, and 
purple letters, respectively. The mutations created to disrupt the uORFs are indicated by arrows. (B) 
Luciferase assay using p21 5’ UTR reporter constructs under leucine deprivation. Top: A schematic 
representation of the p21 variant 1 and 2 luciferase reporter constructs (not drawn to scale). Bottom: 
Luciferase activity from reporter constructs was measured in leucine-deprived GCN2+/+ and eIF2α S51A 
MEFs and normalized to Renilla luciferase. Data are the average of three independent experiments ± 
S.E.M.; *p<0.05. (C) Luciferase assay using mutant p21 variant 2 5’ UTR reporter constructs. Left: A 
schematic representation of the p21 variant 2 luciferase reporter constructs (not drawn to scale). Top 
right: Luciferase activity from reporter constructs was measured in leucine-deprived GCN2+/+ MEFs. 
Bottom right: Relative basal translation levels of mutant p21 variant 2 reporter constructs in untreated 
cells. All results were normalized to Renilla luciferase. Data are the average of three (p21 variant 1 and 
p21 variant 2 ΔuORF1,2,3) or four (remaining constructs) independent experiments ± S.E.M.; *p<0.5, 
**p<0.01. (D) Dual luciferase assay using mutant ATF4 5’ UTR reporter constructs. Top: Luciferase 
activity from reporter constructs was measured in GCN2+/+ MEFs treated with 1 μM thapsigargin for 6 
hours and normalized to Renilla luciferase activity. Bottom: Relative basal translation levels of ATF4 
reporter constructs in untreated cells as measured by luciferase assay. Results are normalized to 
Renilla and depicted as fold change over the wildtype construct. Data represent the average of three 
independent experiments ± S.E.M. (E) qPCR for luciferase was performed on RNA isolated MEFs 
transfected with the p21 5’ UTR reporter constructs. Luciferase transcript levels were normalized to 18S 
rRNA and are depicted as fold change over control. Data represent the average of three independent 
experiments ± S.E.M. No changes in luciferase transcript levels were statistically significant. 
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To ascertain if the two endogenous variants of p21 mRNA were translated with different 

efficiencies under stress, we leucine-starved GCN2+/+ MEFs for 8, 12, 16, 20, and 24 hours and 

analyzed the distribution of the two p21 transcript variants in different polysome fractions. The 

polysome profiles for these time points are shown in Figure II-4A. p21 variant 1 exhibited a strong 

shift from the high to the low molecular weight polysomes at 16 hours, after which it began to 

recover towards its baseline distribution (Figure II-4B). This pattern of translational suppression 

and recovery is similar to that of the housekeeping gene β-actin, as opposed to ATF4, which is 

translationally upregulated under stress (Figure II-4C). The association of p21 variant 2 with 

polysomes changed very little with time. It exhibited slight decrease in association at 16 hours, 

followed by full recovery back to baseline at 24 hours. Thus, by 24 hours, p21 variant 2 is 

translated at its normal efficiency while variant 1 is still suppressed (Figure II-4B). 

To determine the effect of leucine deprivation on global translation, we used the 

polysome profiles shown in Figure II-4A to calculate translational efficiency at each time point as 

previously described83 and normalized to the translational efficiency in complete media. This 

value reflects the fraction of all mRNAs that are associated with polysomes under leucine 

deprivation as compared to complete media. Global translational efficiency reached its nadir of 

approximately 0.75 at 12 hours of leucine deprivation and then recovered to a nearly constant 

level of 0.9 (Figure II-4D). The kinetics of translational efficiency closely correlated with eIF2α 

phosphorylation, which reached its peak at 12 hours of leucine deprivation and then decreased to 

near baseline levels by 24 hours (Figure II-4D). Additionally, leucine deprivation resulted in 

decreased levels of eIF4G and hypophosphorylation of 4E-BP1, which may also contribute to 

translational suppression (Figure II-4D). Leucine deprivation also increased phosphorylation of 

the elongation factor eEF2 (Figure II-4D). However, inhibition of elongation by eEF2 

phosphorylation would not alter mRNA association with polysomes84.  
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 Additional mechanisms of p21 regulation under amino acid deprivation were also 

explored. It has been previously published that amino acid deprivation increases p21 mRNA 

stability43. To determine if this effect was GCN2 dependent, GCN2+/+ and GCN2-/- MEFs were 

glutamine starved overnight, and then switched to complete media containing the transcriptional 

inhibitor 5,6-dichlorobenzimidazole 1-β-D-ribofuranoside (DRB) or glutamine-free media 

containing DRB. Cells were harvested over a time course, and p21 mRNA levels were measured 

by qPCR. In wildtype cells, the half-life of p21 mRNA was 2.84 hours in complete media, which 

increased to 3.47 hours in glutamine-free media. Similarly in GCN2-/- cells, the half-life of p21 

mRNA was 2.73 hours in complete media and 3.49 hours in glutamine-free media (Figure II-5A). 

Thus, it does not appear that GCN2 plays a role in regulating p21 mRNA stability. 

Interestingly, under glutamine or methionine deprivation, GCN2-/- MEFs are unable to 

upregulate p21 transcript levels, unlike GCN2+/+ or eIF2α S51A MEFs (Figure II-5B,C). This may 

suggest that GCN2 is generally required for p21 transcriptional regulation under amino acid 

deprivation, but leucine deprivation specifically regulates another factor that compensates for 

GCN2 loss. Figure II-2A demonstrates that p53 family members are not required for p21 

transcriptional upregulation under leucine deprivation. We further confirmed that they are not 

required for p21 transcriptional induction under glutamine deprivation (Figure II-5D). Therefore, 

p53 is not responsible for the differential ability of GCN2-/- MEFs to induce p21 transcript levels 

under glutamine or leucine deprivation. The role of the transcription factor Myc was also 

Previous page: Figure II-4. Polysome profiling reveals differences between the translational 
efficiencies of p21 variants 1 and 2 under nutrient stress. (A) Polysome profiles of leucine-starved 
GCN2+/+ MEFs over time. Lysates from GCN2+/+ MEFs grown with or without leucine for 8, 12, 16, 20, 
and 24 hours were separated on 10 to 50% sucrose gradients. Polysome profiles of the gradients were 
generated by measuring absorbance at 254 nm. (B) Time course of p21 translational efficiency as 
measured by mRNA association with polysomes. qPCR was performed on fractions pooled from 
sucrose gradients. p21 transcript levels in each group were normalized to total transcript. (C) Time 
course of β-actin and ATF4 translational efficiency as measured by mRNA association with polysomes. 
qPCR was performed on fractions pooled from sucrose gradients. Transcript levels in each group were 
normalized to total transcript. (D) Time course of global translational efficiency in leucine-deprived 
GCN2+/+ MEFs. Top: Time course of translational efficiency in leucine-deprived cells. Bottom: Western 
blot analysis of various components of the translational machinery in leucine-deprived GCN2+/+ MEFs. 
Values below each blot represent the fold change in total pixel intensity over control normalized to β-
tubulin (for eIF4G, eIF4E, p-eEF2), eIF2α (for p- eIF2α), or 4E-BP1 (for p-4E-BP1). 
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analyzed. Myc is a suppressor of p21 transcription71. One possible scenario is that leucine 

deprivation results in derepression of p21 transcription through downregulation of Myc, while Myc 

levels remain high in glutamine-starved GCN2-/- MEFs. Surprisingly, Myc protein levels declined 

much more rapidly in GCN2-/- MEFs than in GCN2+/+ MEFs under both glutamine and leucine 

deprivation (Figure II-5E), so such a scenario is not likely. 

GCN2 has been reported to interact with members of the transforming growth factor 

β/bone morphogenic protein (TGFβ/BMP) signaling pathway85. It is also known that TGFβ 

signaling induces p21 transcription86. Therefore, we tested the possibility that TGFβ/BMP 

signaling induces p21 under amino acid deprivation. To do so, mothers against decapentaplegic 

homolog 4 (SMAD4), the common member of the TGFβ and BMP pathways, was knocked down 

in GCN2+/+ MEFs, which were subsequently glutamine starved. SMAD4 knockdown greatly 

delayed the induction of both p21 transcript and protein levels (Figure II-5F,G), suggesting that 

SMAD4 plays a significant role in regulating p21 under glutamine deprivation. However, the 

mechanism is likely not straightforward since SMAD4 protein levels actually decrease under 

glutamine deprivation (Figure II-5G). Further work is necessary to determine if SMAD4 and GCN2 

cooperate to regulate p21 under amino acid deprivation. 

Next page: Figure II-5. Additional mechanisms of p21 regulation under stress. (A) Measurement 
of p21 mRNA half-life under replete and glutamine starved conditions. GCN2+/+ and GCN2-/- MEFs 
were initially grown in glutamine-free media to induce p21 mRNA levels at time 0. Cells were then 
switched to complete or glutamine-free media containing 100 μg/mL DRB. p21 transcript levels were 
normalized to 18S rRNA and are depicted as fold change over control. mRNA levels were fit to 
exponential decay curves to calculate half-life. (B) qPCR for p21 was performed on RNA isolated from 
GCN2+/+, GCN2-/-, and eIF2α S51A MEFs deprived of glutamine for the indicated times. p21 transcript 
levels were normalized to 18S rRNA and are depicted as fold change over control. Data are the 
average of three independent experiments ± S.E.M. (C) qPCR for p21 was performed on RNA isolated 
from GCN2+/+, GCN2-/-, and eIF2α S51A MEFs deprived of methionine for the indicated times. p21 
transcript levels were normalized to 18S rRNA and are depicted as fold change over control. Data are 
the average of three technical replicates ± standard deviation. (D) qPCR for p21 was performed on 
RNA isolated from wildtype, p53-/-, p63-/-, and p73-/- MEFs deprived of glutamine for the indicated times. 
p21 transcript levels were normalized to 18S rRNA. Results are depicted as fold change over control 
for each cell line. Data represent the average of three independent experiments ± S.E.M. (E) Western 
blot analysis of myc levels in leucine or glutamine deprived GCN2+/+ and GCN2-/- MEFs. PARP and 
Ku80 were used as loading controls. (F) qPCR for p21 was performed on RNA isolated from glutamine-
deprived GCN2+/+ MEFs transfected with non-targeting siRNA (siNT) or siRNA against SMAD4 
(siSMAD4). p21 transcript levels were normalized to 18S rRNA. Results are depicted as fold change 
over control for each cell line. Data represent the average of three technical replicates ± standard 
deviation. (G) Western blot analysis of p21 levels in glutamine-deprived GCN2+/+ MEFs transfected with 
siNT or siSMAD4. Total eIF2α was used as a loading control. 
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Next, we sought to determine the functional consequences of p21 upregulation under 

amino acid starvation. We hypothesized that wildtype cells would undergo G1/S arrest in 

response to amino acid deprivation, while cells lacking p21 would continue to proliferate. To this 

end, GCN2+/+ MEFs were stably transfected with either non-targeting shRNA (shNT) or shRNA 

directed against p21 (shp21). The knockdown efficiency of two independent shp21 clones is 

shown in Figure II-6A. Leucine starvation resulted in a time-dependent increase in the G1/S ratio 

of GCN2+/+ shNT MEFs (Figure II-6B), as measured by flow cytometry. Knockdown of p21 

resulted in a statistically significant decrease in the G1/S ratio in both clones, indicating that p21 

promotes cell cycle arrest under amino acid deprivation.  

To confirm these results in a human cell line, SQ20B cells were transfected with either 

non-targeting siRNA (siNT) or siRNA against p21 (sip21). The knockdown efficiency of p21 is 

shown in Figure II-6C. An increase in the G1/S ratio was observed in siNT transfected cells at 32 

hours of leucine deprivation, while no appreciable change in the G1/S ratio was detected in sip21 

transfected cells (Figure II-6D). Thus, p21 regulates G1/S arrest under amino acid deprivation in 

both murine and human cells. 

To directly assess the role of GCN2 in cell cycle arrest, the degree of G1/S cell cycle 

arrest was measured by flow cytometry in leucine-starved GCN2-/- MEFs. The phenotype was 

even stronger in these cells, as they did not undergo any measurable degree of G1/S arrest by 32 

hours of leucine starvation (Figures II-6E). This indicates that GCN2 is critically required for the 

induction of G1/S arrest in response to leucine deprivation and likely regulates other factors that 

promote cell cycle arrest under stress. These results were also confirmed in SQ20B cells 

transfected with siNT or siGCN2 (Figure II-6F). 

Previous findings showed that ER stress-induced phosphorylation of eIF2α by PERK and 

GCN2 in NIH 3T3 cells resulted in translational suppression of cyclin D1 and subsequent G1 

arrest37,87. To determine if a similar scenario occurred in this system, cyclin D1 protein levels were 

measured in leucine-starved GCN2+/+ and GCN2-/- MEFs. Figure II-6G shows that cyclin D1 levels 

decreased over time in both cell lines. Therefore, under these study conditions, GCN2 does not 
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contribute to cell cycle regulation by modulating levels of cyclin D1. The GCN2-independent 

decrease in cyclin D1 and increase in p27 may explain why knockdown of p21 does not 

completely abolish the ability of MEFs to undergo G1/S arrest in response to amino acid 

deprivation. 

Next, we wanted to determine if p21 contributes to cell survival under amino acid 

deprivation. To do so, the shNT and shp21 MEF clones were cultured in complete media or 

media lacking leucine. After 72 hours, the viable cells were re-plated at low density in complete 

media. Virtually all shNT cells were able to recover from nutrient stress and form colonies. 

However, clonogenic survival was significantly reduced by approximately 40-50% in the two 

shp21 MEF clones after leucine deprivation (Figures II-6H). These results demonstrate that p21 is 

dispensable for cell growth under nutrient replete conditions but is critical for cell survival during 

the recovery from amino acid starvation. Furthermore, these results are consistent with another 

study which showed that p21 promotes cell survival under the combined stresses of complete 

amino acid and serum starvation independently of p5388. 

 

Next page: Figure II-6. p21 regulates G1/S arrest and cell survival under conditions of amino acid 
deprivation. (A) Western blot analysis of the MEFs used in (B) to determine p21 knockdown efficiency. 
Values below blot represent the fold change in total pixel intensity over control of p21 normalized to the 
loading control for each lane. β-tubulin was used as a loading control. (B) G1/S ratio of leucine-starved 
GCN2+/+ MEFs stably transfected with non-targeting shRNA (shNT) or shRNA against p21 (shp21). DNA 
content was measured by propidium iodide staining and flow cytometry analysis. Data are the average of 
three independent experiments ± S.E.M.; * p<0.05, ** p<0.01. (C) Western blot analysis of the SQ20Bs 
used in (D) to determine p21 knockdown efficiency. Values below blot represent the fold change in total 
pixel intensity over control of p21 normalized to the loading control for each lane. β-tubulin was used as 
a loading control. (D) G1/S ratio of leucine-starved SQ20Bs transfected with non-targeting siRNA (siNT) 
or siRNA against p21 (sip21). DNA content was measured by propidium iodide staining and flow 
cytometry analysis. Data are the average of four (siNT) or five (sip21) independent experiments ± 
S.E.M.; * p<0.05, ** p<0.01. (E) G1/S ratio of GCN2-/- MEFs starved of leucine for the indicated times. 
DNA content was measured by propidium iodide staining and flow cytometry analysis. Changes in G1/S 
ratio were not statistically significant. Data represent the average of three independent experiments ± 
S.E.M. (F) G1/S ratio of leucine-starved SQ20Bs transfected with non-targeting siRNA (siNT) or siRNA 
against GCN2 (siGCN2). DNA content was measured by propidium iodide staining and flow cytometry 
analysis. The knockdown efficiency of siGCN2 is demonstrated in Figure II-1G. Data represent the 
average of three independent experiments ± S.E.M.; ** p<0.01. (G) Western blot analysis of cyclin D1 in 
leucine-starved GCN2+/+ and GCN2-/- MEFs. Ku80 was used as a loading control. (H) Top: Clonogenic 
survival of control and p21 knockdown GCN2+/+ MEFs exposed to long-term leucine starvation. Data are 
the average of three independent experiments ± S.E.M; *p<0.05, **p<0.01. Bottom: Representative 
picture of control and p21 knockdown MEFs from the clonogenic survival assay after one week of colony 
formation. 



33 

 

 
  



34 

 

Discussion 
 

Cells have evolved multiple mechanisms to regulate p21 at the post-transcriptional level. 

However, translational regulation of p21 has been largely unexplored. Here, we demonstrate a 

novel mechanism of translational control of a specific p21 transcript variant that regulates cell 

proliferation and survival under nutrient stress. GCN2 activation and subsequent phosphorylation 

of eIF2α translationally upregulates a p21 mRNA variant with 5’ uORFs. Many genes are 

upregulated by eIF2α phosphorylation indirectly through activation of the ATF4 transcriptional 

program26,89. However, the number of genes known to be directly translationally upregulated by 

eIF2α phosphorylation is much smaller. In addition to ATF4, several other genes, such as 

ATF525, GADD3424, CCAAT/enhancer-binding protein homologous protein (CHOP)90, inhibitor of 

Bruton’s tyrosine kinase α (IBTKα)91, and protein kinase C η (PKCη)92, are also translationally 

upregulated by eIF2α phosphorylation due the presence of uORFs in the 5’ UTR. These studies 

into p21 regulation expand on the known targets of translational upregulation by phosphorylation 

of eIF2α and provide greater understanding of the functional outcomes of ISR activation. 

These results suggest a model in which under normal, unstressed conditions, translation 

typically initiates at the uORFs in the p21 variant 2 transcript, resulting in very little production of 

p21. Initiation at uORF1 would fail to produce a protein because it overlaps out of frame with the 

p21 coding sequence. Initiation at uORFs 2 and 3 likely do not produce a protein because they 

are located very close to the p21 coding sequence, which does not provide ribosomes sufficient 

time to reinitiate translation at the p21 ORF. When GCN2 phosphorylates eIF2α, translation 

initiation is delayed. This promotes leaky scanning through the uORFs and increases the 

likelihood that ribosomes will begin translation at the p21 ORF (Figure II-7).  

This mechanism of translation regulation also offers an explanation for the existence of 

multiple p21 transcript variants that encode for the same protein. While this work focused on the 

two mouse p21 mRNA variants, humans also have multiple p21 mRNA variants that are likely 

regulated in a similar manner81. Some of these variants contain an overlapping 5’ uORF, while 

the others contain none. We speculate that p21 transcript variants with 5’ uORFs provide an 
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advantage to cells by allowing them to upregulate p21 under stress conditions that would 

normally repress translation. Translation is one of the highest energy consuming processes in the 

cell, which is why it is often suppressed to conserve resources under stress. Under these 

conditions, proliferation is not favored and upregulation of p21 provides an advantage to cells by 

promoting cell cycle arrest. However, the variants without 5’ uORFs ensure that cells are not 

Figure II-7. Model of p21 translational regulation. Upon amino acid deprivation, GCN2 
phosphorylates eIF2α, which delays translation initiation. This results in ribosomes bypassing 5’ 
uORFs in the p21 variant 2 transcript and beginning translation at the p21 ORF, resulting in p21 
upregulation under stress. This pathway is distinct from p53-dependent transcriptional upregulation of 
p21. Induction of p21 upon nutrient deprivation leads to G1/S arrest and promotes cell survival. 
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restricted to express p21 only when eIF2α is phosphorylated. Other stresses, such as DNA 

damage, do not suppress translation but still require cell cycle arrest to allow time for recovery. In 

these cases, cells could still translate p21 efficiently to respond to stress even though eIF2α 

remains unphosphorylated. 

From a functional standpoint, this study provides a link between the nutrient-sensing 

capabilities of GCN2 and the mammalian cell cycle. Many proteins that respond to nutrient levels 

impinge upon the cell cycle. Amino acids are also sensed by mTOR, one of the master metabolic 

switches of the cell. mTOR activity is inhibited upon amino acid deprivation, resulting in G1 arrest 

through decreased production and increased turnover of cyclin D193,94 and upregulation of the cell 

cycle inhibitor p2795. Amino acid starvation also increases the half-life of both p21 and p27 

mRNA43. Glucose deprivation activates AMPK, a major cellular energy regulator, which 

phosphorylates and stabilizes p53, resulting in p21 induction42. Glucose deprivation also perturbs 

protein folding and activates the ISR initiator and endoplasmic reticulum resident kinase PERK, 

which induces G1 arrest by suppressing cyclin D1 translation87. Here, we provide additional links 

between the cell’s nutrient sensing and cell cycle machinery by demonstrating that GCN2 directly 

links amino acid availability with cell cycle progression by translationally upregulating a transcript 

variant of p21.  

The induction of p21 promotes cell cycle arrest when nutrients are scarce and conditions 

are not favorable for division. As a likely consequence of continued proliferation in a nutrient-poor 

environment, cells lacking p21 exhibit decreased survival after exposure to amino acid 

deprivation. These findings may have important implications for cancer. Tumor cells often exist in 

a nutrient-poor microenvironment due to inadequate tumor perfusion and increased metabolic 

demands of tumor cells1. Our lab has previously shown that GCN2 is overexpressed in human 

tumors, and loss of GCN2 slows or inhibits tumor growth in mouse xenograft models of cancer58. 

Downstream of GCN2, p21 may serve to promote tumor cell survival in areas where nutrients are 

limiting. This fits with observations that p21 has both pro- and anti-tumorigenic properties96. In 

general, limiting cell division would slow tumor growth. However, in areas lacking adequate 
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nutrient supply, p21-dependent cell cycle arrest would allow tumor cells to remain dormant and 

survive adverse conditions that would otherwise lead to cell death. Understanding the mechanism 

of p21 regulation and its function will greatly enhance the development of targeted therapeutics 

against the GCN2-eIF2α-p21 pathway. 



38 

 

CHAPTER III: SIGNALING THROUGH ALTERNATIVE INTEGRATED STRESS 
RESPONSE PATHWAYS COMPENSATES FOR GCN2 LOSS IN A MOUSE MODEL 

OF SOFT TISSUE SARCOMA 
 

This chapter contributes to a manuscript of the same title submitted to Scientific Reports (in 
revision). 
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Introduction 
 

Many of the stressors that activate the ISR are encountered in the tumor 

microenvironment. Tumor vasculature is often poorly constructed, resulting in leaky, tortuous 

vessels that cannot deliver nutrients efficiently to tumor cells. The high metabolic rate of tumor 

cells also leads to rapid consumption of nutrients that are available to the cells. This results 

oxygen, glucose, and amino acid deprivation in areas of the tumor1. Hypoxia and glucose 

deprivation both interfere with proper protein folding, resulting in endoplasmic reticulum (ER) 

stress and PERK activation59,60, while amino acid deprivation activates GCN22,3. The cell 

autonomous stress of oncogene activation through c-Myc places high demands on protein 

synthesis and can also activate PERK97. 

 Previous research from many groups, including our own, has shown that ISR activation 

promotes tumor cell survival. In vitro, cells lacking PERK exhibit decreased clonogenic survival 

after exposure to hypoxia63. PERK-/- cells with activated c-Myc also have greatly reduced 

clonogenic survival97. In vivo, PERK-/- cells injected into the flanks of nude mice form much 

smaller tumors than their wildtype counterparts63,98. Additionally, hypoxic and apoptotic areas of 

PERK null tumors overlap, indicating that PERK supports tumor cell survival under hypoxia in 

vivo63. Similarly, cells lacking GCN2 undergo apoptosis when grown in media lacking an amino 

acid. Loss of GCN2 in xenograft models of cancer greatly inhibits or even prevents tumor 

growth58. 

 While these results are promising, it is necessary to test the role of ISR kinases in 

genetically engineered mouse models (GEMMs) of cancer. The majority of conditions known to 

activate the ISR in tumor cells, such as hypoxia and low nutrient levels, are non-cell autonomous 

and dictated by the tumor microenvironment. Cells grown subcutaneously in mice as xenografts 

are not exposed to physiological levels of microenvironmental stress. Many important 

components of the tumor microenvironment, such as stromal cells, immune cells, and blood 

vessels, are altered or absent in xenograft models99. GEMMs provide the benefit of modeling the 
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growth of tumors in their native microenvironment, which allows for a more accurate assessment 

of the contribution of these kinases to tumor growth. 

 The ISR kinase PERK has been studied in GEMMs. PERKfl/fl;MMTV-cre mice crossed to 

MMTV-neu mice resulted in the specific deletion of PERK in the mammary glands of tumor-prone 

MMTV-neu mice. Results from this study showed that loss of PERK in mammary carcinomas 

slowed tumor growth and reduced the number of metastases to the lungs64. In a second model, 

mice expressing SV40 large T antigen specifically in the beta cells of the pancreas were crossed 

to PERK-/- mice. Loss of PERK resulted in the formation of fewer and smaller insulinomas in 

mice65. In general, the results of PERK loss in GEMMs recapitulate the observations made in 

xenograft models. 

 Although the role of PERK in tumorigenesis has been characterized in both xenograft and 

genetically engineered mouse models of cancer, GCN2 has yet to be studied in a GEMM. Our 

lab’s previous studies in the HT1080 human sarcoma cell line revealed that knockdown of GCN2 

completely blocked tumor growth in a xenograft model58. Here, these studies are expanded to 

GCN2 null mice crossed to genetic model of soft tissue sarcoma developed by Kirsch and 

colleagues100. Surprisingly, in autochthonous tumors, loss of GCN2 did not affect tumor initiation 

or progression and did not increase the lifespan of tumor-bearing mice. Analysis of the tumors at 

the molecular level revealed several mechanisms of compensation for GCN2 loss. Mice on a 

C57BL6 background exhibited increased signaling through PERK to maintain levels of 

phosphorylated eIF2α in tumors, while mixed background mice upregulated ATF4 independently 

of eIF2α phosphorylation levels to maintain ISR signaling. Overall, this study reveals the 

importance of ISR signaling in tumorigenesis and defines mechanisms by which sarcomas can 

become resistant to ISR inhibition. As small molecule inhibitors of the ISR kinases are currently 

under development, this study has clinical relevance to their testing in animal models and insight 

into ways tumor cells may circumvent their effects. 
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Results 
 

To study the role of GCN2 in tumorigenesis, GCN2-/- mice were crossed to LSL-

KrasG12D/wt;p53fl/fl mice to obtain GCN2 wildtype, heterozygous, and null mice on an LSL-

KrasG12D/wt;p53fl/fl background (Figure III-1A). Sarcoma formation was induced in these mice by 

injection of adenovirus expressing cre recombinase (Ad-cre) into the right leg muscle. This 

resulted in the formation of soft tissue sarcomas in nearly 100% of mice. Grossly, the sarcomas 

grew rapidly and essentially took over the normal muscle tissue in the leg (Figures III-1B,C). At 

the microscopic level, the tumors were highly dedifferentiated with complete loss of normal tissue 

architecture (Figure III-1D). To determine if the tumors were undergoing oxygen and nutrient 

deprivation, hypoxia levels were assessed by performing immunohistochemistry for the hypoxia 

marker carbonic anhydrase 9 (CA9). Tumors demonstrated extensive areas of hypoxia (Figure III-

1E). 

To determine if the GCN2 arm of the ISR was activated in the sarcomas in response to 

stress, tumors and normal muscle from GCN2+/+, GCN2+/-, and GCN2-/- mice were homogenized 

and immunoblotted for total and phosphorylated GCN2. As previously observed in human patient 

samples58, GCN2 was overexpressed in tumor tissue as compared to normal tissue in wildtype 

and heterozygous mice. Phosphorylation of GCN2 was detected in the wildtype and 

heterozygous mice, indicating that GCN2 was activated in the tumors (Figure III-1F). Since GCN2 

in normal muscle tissue could not be detected by western blot, its overexpression at the mRNA 

level was confirmed by qPCR (Figure III-1G).  

Next page: Figure III-1. Development of a genetically engineered mouse model to study the role 
of GCN2 in sarcomagenesis. (A) Breeding scheme to generate GCN2+/+, GCN2+/-, and GCN2-/- mice 
on an LSL-KrasG12D/wt;p53fl/fl background. (B) Gross morphology of sarcomas compared to normal leg. 
The right leg was injected with Ad-cre, while the left leg served as a normal tissue control. (C) Gross 
morphology of sarcomas compared to normal leg. The size of a typical sarcoma (left) is compared to 
size of the normal leg (right) from the same mouse. (D) Typical histology of normal muscle (top) and soft 
tissue sarcoma (bottom) stained with hematoxylin and eosin. Magnification is 40X. Normal muscle and 
tumor shown are from the same animal. (E) Immunohistochemistry for CA9 in two sarcomas, along with 
the no primary antibody control. Tissue sections were counterstained with hematoxylin. Magnification is 
100X. (F) Western blot analysis of phosphorylated and total GCN2 in homogenized normal muscle 
tissue (N) and soft tissue sarcomas (T). β-tubulin was used as a loading control. (G) qPCR analysis of 
GCN2 levels in sarcoma and muscle tissue. GCN2 levels were normalized to the geometric mean of the 
reference genes β-actin and 18S rRNA. Data are represented as the average value for each genotype ± 
S.E.M.;*p<0.05, **p<0.01 
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Tumor volume was measured in the mice over time. As shown in Figure III-2A, palpable 

tumors formed in most mice between 50 to 80 days post-injection. Tumor measurements were fit 

to exponential growth curves, and doubling times were calculated from the growth curves to 

determine the tumor growth rates. Loss of GCN2 did not affect tumor growth. Regardless of the  

GCN2 status of the mice, all tumors had a doubling time of three to four days, and the differences 

among the three genotypes were not statistically significant (Figure III-2B). 

Kaplan-Meier curves were generated for both time to tumor formation after Ad-cre 

injection and time to death after tumor detection. There were no statistically significant differences 

in survival among the three genotypes, indicating that GCN2 did not affect tumor initiation or 

tumor progression in this model (Figures III-2C,D). To ensure that using both male and female 

mice did not obscure the effects of GCN2, survival curves based on the sex of the mice were 

generated. These data show that tumor initiation and progression were identical in males and 

females (Figure III-2E,F). 

 The GCN2-/- mice used in this study were on a C57BL6 background, while the LSL-

KrasG12D/wt
;p53fl/fl mice were on a mixed background. To determine if genetic heterogeneity of the 

mixed background mice masked the effects of GCN2, we obtained C57BL6 LSL-KrasG12D/wt;p53fl/fl 

mice to carry out the experiments on a uniform genetic background. While tumors initiated in the 

C57BL6 mice within a much narrower window (40 to 50 days for most mice), loss of GCN2 still 

had no effect on tumor growth rate, tumor free survival, or overall survival of the mice (Figure III-

3A-D). There was no difference in survival between C57BL6 males and females (Figure III-3E,F). 

Next page: Figure III-2. GCN2 does not affect tumor growth or survival of sarcoma-bearing mice 
on a mixed background. (A) Measurements of tumor volume over time in GCN2+/+, GCN2+/-, and 
GCN2-/- mixed background mice. The line through the set of measurements for each mouse represents 
the best fit exponential growth equation of the tumor. (B) Tumor doubling time was calculated from the 
best fit exponential growth equations shown in (A). The average doubling time ± standard deviation is 
depicted for each genotype. Results were not statistically significant. (C) Kaplan-Meier curves depicting 
the time from Ad-cre injection to tumor formation for each GCN2 genotype. Results were not statistically 
significant. (D) Kaplan-Meier curves depicting the time from tumor detection to euthanasia for each 
GCN2 genotype. The major euthanasia criterion was a tumor volume exceeding 1000 mm3. Results 
were not statistically significant. (E) Kaplan-Meier curves depicting the time from Ad-cre injection to 
tumor formation for males and females. Results were not statistically significant. (F) Kaplan-Meier 
curves depicting the time from tumor detection to euthanasia for males and females. Results were not 
statistically significant. 
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Next, we wanted to determine if loss of GCN2 affected downstream signaling through the 

ISR in tumor tissue. Western blot analysis of tumor lysates revealed that loss of GCN2 did reduce 

levels of eIF2α phosphorylation in mixed background mice. A repeat of the analysis on a small, 

independent sample of tumors produced similar results (Figure III-4A). Quantification of the p-

eIF2α to total eIF2α ratio showed that GCN2-/- mixed background sarcomas had a statistically 

significant decrease in eIF2α phosphorylation (Figure III-4B). Signaling through other branches of 

the ISR was examined by measuring PERK and PKR phosphorylation in the tumors. PERK 

phosphorylation was detected in almost all tumors to varying degrees, while PKR was 

phosphorylated rather uniformly in all tumors (Figure III-4C). These data indicated that all relevant 

branches of the ISR are activated in this sarcoma model and that PERK and PKR are responsible 

for the residual eIF2α phosphorylation detected in GCN2-/- tumors. An analysis of normal muscle 

tissue indicated that, similar to GCN2, the sarcomas had overexpressed and activated PERK and 

PKR. Total eIF2α and phospho-eIF2α were also increased in tumors as compared to normal 

tissue controls (Figure III-5A). Staining of the membrane with Ponceau revealed that, overall, 

normal muscle tissue and sarcoma tissue have very different patterns of protein expression 

(Figure III-5B). 

 

  

  

Previous page: Figure III-3. GCN2 does not affect tumor growth or survival of sarcoma-bearing 
mice on a C57BL6 background. (A) Measurements of tumor volume over time in GCN2+/+, GCN2+/-, 
and GCN2-/- C57BL6 mice. The line through the set of measurements for each mouse represents the 
best fit exponential growth equation of the tumor. (B) Tumor doubling time was calculated from the best 
fit exponential growth equations shown in (A). The average doubling time ± standard deviation is 
depicted for each genotype. Results were not statistically significant. (C) Kaplan-Meier curves depicting 
the time from Ad-cre injection to tumor formation for each GCN2 genotype. Results were not statistically 
significant. (D) Kaplan-Meier curves depicting the time from tumor detection to euthanasia for each 
GCN2 genotype. The major euthanasia criterion was a tumor volume exceeding 1000 mm3. Results 
were not statistically significant. (E) Kaplan-Meier curves depicting the time from Ad-cre injection to 
tumor formation for males and females. Results were not statistically significant. (F) Kaplan-Meier 
curves depicting the time from tumor detection to euthanasia for males and females. Results were not 
statistically significant. 



47 

 

 

 

 

 

  

Figure III-4. Loss of GCN2 reduces eIF2α phosphorylation in mixed background sarcomas. (A) 

Western blot analysis on two independent samples of tumor homogenates for levels of phosphorylated 
and total eIF2α in mixed background tumors. The ratio of phosphorylated to total eIF2α is displayed 
below each blot. (B) Graphical representation of the phosphorylated to total eIF2α ratios calculated from 
the blots in (A). Data are represented as the average value for each genotype ± S.E.M.; *p<0.05. (C) 

Western blot analysis on two independent samples of tumor homogenates for levels of phosphorylated 
and total PERK and phosphorylated and total PKR in mixed background tumors. β-tubulin was used as 
a loading control. 
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The examination of ISR signaling was repeated in the C57BL6 tumors. Interestingly, the 

GCN2 status of these mice did not affect levels of eIF2α phosphorylation in the sarcomas (Figure 

III-6A). There was no statistically significant difference in the p-eIF2α to total eIF2α ratio in GCN2-

/- mice as compared to the other genotypes (Figure III-6B). As observed in the mixed background 

tumors, PKR was phosphorylated in all C57BL6 tumors. However, substantially increased PERK 

phosphorylation was detected almost exclusively in GCN2-/- tumors (Figure III-6C). This suggests 

that in the C57BL6 tumors, PERK compensates for loss of GCN2, resulting in maintenance of 

eIF2α phosphorylation levels. To determine if other arms of the Unfolded Protein Response 

Figure III-5. ISR proteins are overexpressed and activated in sarcomas. Western blot analysis for 
various ISR proteins and their phosphorylated, active forms in both normal muscle tissue and tumor 
tissue. β-tubulin was used as a loading control. (B) Ponceau staining of total tissue lysates from normal 
muscle and tumor tissue. 
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(UPR) were activated in addition to PERK, we performed PCR on RNA isolated from normal 

muscle and tumor for X-box binding protein 1 (XBP1) splicing. Similar basal levels of spliced  

XBP1 were observed in normal muscle tissue, regardless of GCN2 status. However, enhanced 

XBP1 splicing in tumors was only observed in GCN2-/- mice, suggested that loss of GCN2 

sensitizes cells to ER stress in the disease state only (Figure III-6D). Intriguingly, in a mouse 

model of Alzheimer’s disease, another pathological condition that activates the ISR, knockout of 

GCN2 also results in compensatory activation of PERK in the brains of affected animals, leading 

to no improvements in memory decline101. 

 



50 

 

 

 Next, ISR signaling downstream of eIF2α phosphorylation was analyzed by 

immunoblotting for ATF4 in tumors. As expected from the similar levels of eIF2α phosphorylation, 

GCN2 status did not affect ATF4 protein levels in C57BL6 tumors (Figure III-7A,B). However, in 

the mixed background GCN2-/- tumors, in which there was a significant decrease in eIF2α 

phosphorylation, ATF4 protein levels were minimally affected (Figure III-7C). While there was a 

small decrease in ATF4 in both GCN2+/- and GCN2-/- tumors, it was not statistically significant 

(Figure III-7D). To further confirm that ATF4 was expressed similarly regardless of GCN2 status, 

mRNA levels of the ATF4 target genes ASNS, ATF3, and ULK1 were measured by qPCR. All 

three genes were expressed at the same level in GCN2+/+ and GCN2-/- tumors (Figures III-7E-G). 

This suggested that the mixed background tumors compensated for GCN2 loss by upregulating 

ATF4 independently of eIF2α phosphorylation status. 

Previous page: Figure III-6. Loss of GCN2 does not reduce eIF2α phosphorylation in C57BL6 
sarcomas, potentially due to compensation by PERK. (A) Western blot of tumor homogenates for 
levels of phosphorylated and total eIF2α in C57BL6 tumors. The ratio of phosphorylated to total eIF2α is 
displayed below each blot. (B) Graphical representation of the phosphorylated to total eIF2α ratios 
calculated from the blots in (A). Data are represented as the average value for each genotype ± 
standard error of the mean. Results are not statistically significant. (C) Western blot analysis of tumor 
homogenates for levels of phosphorylated and total PERK and phosphorylated and total PKR in C57BL6 
tumors. β-tubulin was used as a loading control. (D) PCR analysis of XBP1 splicing in normal muscle 
and tumor tissue. The tumor sample below each muscle sample is from the same mouse. Mouse 
embryonic fibroblasts treated with 500 nM thapsigargin (Tg) for 8 hours were used as a positive control 
for XBP1 splicing. 

Next page: GCN2-/- mixed background sarcomas do not express lower levels of ATF4, in spite of 
reduced eIF2α phosphorylation. (A) Western blot analysis on tumor homogenates for levels of ATF4 
in C57BL6 tumors. β-tubulin was used as a loading control. The ratio of ATF4 to β-tubulin is displayed 
below each blot. ATF4 was probed on the same blot as total and phospho-PERK and total and 
phospho-PKR (Figure III-6C), so the β-tubulin loading control is the same in both figures. (B) Graphical 
representation of the ATF4 to β-tubulin ratios calculated from the blots in (A). Data are represented as 
the average value for each genotype ± standard error of the mean. Results are not statistically 
significant. (C) Western blot analysis on two independent samples of tumor homogenates for levels of 
ATF4 in mixed background tumors. β-tubulin was used as a loading control. The ratio of ATF4 to β-
tubulin is displayed below each blot. (D) Graphical representation of the ATF4 to β-tubulin ratios 
calculated from the blots in (C). Data are represented as the average value for each genotype ± 
standard deviation. Results are not statistically significant. (E) qPCR analysis of ASNS levels in GCN2+/+ 

and GCN2-/- sarcomas. ASNS levels were normalized to the geometric mean of the reference genes β-
tubulin, β-actin, and 18S rRNA. Data are represented as the average value for each genotype ± 
standard deviation. Results are not statistically significant. (F) qPCR analysis of ATF3 levels in GCN2+/+ 

and GCN2-/- sarcomas. ATF3 levels were normalized to the geometric mean of the reference genes β-
tubulin, β-actin, and 18S rRNA. Data are represented as the average value for each genotype ± 
standard deviation. Results are not statistically significant. (G) qPCR analysis of ULK1 levels in GCN2+/+ 

and GCN2-/- sarcomas. ULK1 levels were normalized to the geometric mean of the reference genes β-
tubulin, β-actin, and 18S rRNA. Data are represented as the average value for each genotype ± 
standard deviation. Results are not statistically significant. 
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One mechanism by which GCN2-/- tumors could maintain ATF4 protein levels under 

conditions of reduced eIF2α phosphorylation is by increasing levels of ATF4 transcript. This could 

be accomplished directly through transcriptional upregulation or indirectly through an increase in 

ATF4 copy number. First, ATF4 copy number was measured in GCN2+/+ and GCN2-/- sarcomas 

with a TaqMan copy number assay. Normal muscle tissue was used as a copy number control. 

ATF4 amplification was observed in two GCN2+/+ tumors, but no GCN2-/- tumors (Figure III-8A). 

qPCR analysis of ATF4 mRNA in GCN2+/+ and GCN2-/- tumors demonstrated equal levels of 

transcript in both genotypes (Figure III-8B). Thus, GCN2-/- sarcomas do not directly or indirectly 

upregulate ATF4 transcript levels.  

A second mechanism by which GCN2-/- tumors could maintain ATF4 levels is through 

mutations in the protein that enhance its expression. For example, mutations of the 5’ uORFs 

could uncouple ATF4 expression from eIF2α phosphorylation, and mutations in the beta 

transducin repeat containing ubiquitin protein ligase (β-TrCP) recognition motif or the oxygen 

dependent degradation (ODD) domain could enhance ATF4 protein stability. To assess this 

possibility, the three exons of ATF4 were sequenced in both GCN2+/+ and GCN2-/- tumors. De 

novo mutations were not detected in either GCN2+/+ or GCN2-/- tumors. However, there were 

differences in previously known ATF4 SNPs. Five SNPs clustered into two distinct groups, which 

we designated as SNP Profile A and B (Figure III-8C). The majority of mice were heterozygous at 

all five loci, although both GCN2+/+ and GCN2-/- mice homozygous for either SNP Profile A or B 

were identified. Four of the five SNPs are located in the 5’ UTR of ATF4, but they do not interfere 

with the 5’ uORFs. The remaining SNP in the coding region results in a synonymous codon 

change. Thus, it does not appear that these SNPs would affect ATF4 expression levels. The lack 

of substantial differences in ATF4 copy number, transcript levels, and coding sequence between 

GCN2+/+ and GCN2-/- mixed background sarcomas suggests that another factor is regulating 

ATF4 protein expression in trans to maintain levels ATF4 levels in GCN2-/- tumors.  
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 The results in this mouse model demonstrate that ISR signaling is an important 

component of sarcoma biology. To determine if there is evidence of enhanced ISR signaling in 

human sarcomas, the online database Oncomine (www.oncomine.org, Compendia Bioscience, 

Ann Arbor, MI) was used to compare the expression of ISR-related genes in sarcoma samples 

and normal tissue controls using the Detwiller sarcoma dataset102. We chose to focus on 

undifferentiated pleomorphic sarcoma (UPS), also known as malignant fibrous histiocytoma 

(MFH), since the LSL-KrasG12D/wt;p53fl/fl model most closely resembles this sarcoma subtype at 

Figure III-8. Maintenance of ATF4 protein expression in mixed background GCN2-/- sarcomas 
likely occurs in trans. (A) Copy number analysis of ATF4 in normal muscle tissue, GCN2+/+ sarcomas, 
and GCN2-/- sarcomas in mixed background mice. Copy number increases were detected in two 
GCN2+/+ sarcomas (normal muscle n=3, GCN2+/+ sarcoma n=10, GCN2-/- sarcoma n=7). (B) qPCR 
analysis of ATF4 levels in GCN2+/+ and GCN2-/- sarcomas. ATF4 levels were normalized to the 
geometric mean 3of the reference genes β-tubulin, β-actin, and 18S rRNA. Data are represented as the 
average value for each genotype ± standard deviation. Results are not statistically significant. (C) ATF4 
SNPs detected in mixed background sarcomas. Two variations of ATF4 alleles were found in the mice, 
with five SNPs clustering in distinct patterns. These are designated as SNP Profile A and SNP Profile B. 
The nucleotide position of each SNP in the mRNA is indicated, along with the region of the mRNA in 
which the SNP is located. 
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the genetic level103. Both PKR (EIF2AK2) and PERK (EIF2AK3) were overexpressed in UPS 

samples, along with eIF2α (EIF2S1). Unfortunately, GCN2 (EIF2AK4) expression was not 

measured in this study (Figure III-9A).  

ATF4 mRNA levels were the same in normal tissue and tumor tissue. However, this is not 

surprising since ATF4 is primarily regulated at the translational level. As an indirect way to 

examine ATF4 expression, a number of ATF4 transcriptional targets were analyzed in the same 

dataset. To assemble an unbiased list of ATF4 targets, we utilized published microarray data to 

identify genes whose expression was reduced by at least two-fold in ATF4-/- cells treated with the 

ER stress inducing agent tunicamycin as compared to tunicamycin-treated ATF4+/+ cells26. To 

ensure only direct ATF4 transcriptional targets were analyzed, we used a published ChIP-seq 

study to exclude genes whose promoters were not bound by ATF4 during tunicamycin 

treatment89. This resulted in a list of 26 ATF4 targets, which included genes such as amino acyl 

tRNA synthetases, amino acid transporters, and enzymes regulating redox balance. Of the 26 

ATF4 target genes, 15 were significantly overexpressed in human UPS samples as compared to 

normal tissue. All but two of these genes were expressed in sarcomas at levels at least two-fold 

higher than normal tissue. Only one gene of the 26 was significantly underexpressed, and one 

gene from the list was not measured in this study. The remaining genes did not show evidence of 

differential expression (Figure III-9B). This analysis reveals that many ATF4 target genes are 

overexpressed in human patient samples, indicating that ISR activation in sarcomas is a clinically 

relevant phenomenon and not just restricted to mouse models. 
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Figure III-9. Many genes involved in ISR signaling are overexpressed in human undifferentiated 
pleomorphic sarcoma. (A) Analysis of overexpression of ISR-related genes in human undifferentiated 
pleomorphic sarcoma using the Detwiller dataset in Oncomine. Data are represented as fold change 
over normal tissue control; **p<0.01, ***p<0.001, NM=not measured. (B) Analysis of over- and 
underexpression of ATF4 target genes in human undifferentiated pleomorphic sarcoma using the 
Detwiller dataset in Oncomine. Data are represented as fold change over normal tissue control; *p<0.05, 
**p<0.01, ***p<0.001, NM=not measured. 
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Discussion 
 

This study demonstrates the role of GCN2 in a genetically engineered mouse model of 

soft tissue sarcoma. Although GCN2 was both overexpressed and activated in the sarcomas, loss 

of GCN2 had no significant overt effect on tumor growth or animal survival. It appears that the 

tumors acquired various mechanisms to compensate for GCN2 loss, resulting in maintenance of 

ISR signaling. Sarcomas derived from GCN2-/- C57BL6 mice utilized PERK to sustain eIF2α 

phosphorylation, while sarcomas derived from GCN2-/- mixed background mice upregulated ATF4 

regardless of reduced eIF2α phosphorylation. Although loss of GCN2 did not slow tumor growth, 

the development of these alternative signaling mechanisms indicates that the ISR is crucial for 

tumor cell survival. Additionally, many ISR-related genes are overexpressed in human sarcoma 

samples, indicating our observations in the mouse model are clinically relevant. 

These experiments highlight the importance of using genetically engineered mouse 

models of cancer to study the tumor microenvironment. Our lab previously utilized flank xenograft 

models to study the role of GCN2 in tumorigenesis and found that Ras transformed GCN2-/- 

MEFs formed extremely small tumors, while stable knockdown of GCN2 in the HT1080 human 

sarcoma cell line completely blocked tumor growth58. These results can most likely be attributed 

to the subcutaneous microenvironment of the xenograft model. When tumor cells are injected 

beneath the skin, they initially lack a blood supply to provide them with oxygen and nutrients. 

Loss of GCN2 renders cells extremely sensitive to amino acid deprivation58, and thus they 

probably undergo apoptosis before they can establish vasculature to deliver nutrients to the tumor 

site. In autochthonous tumor models, tumors are exposed to physiologically relevant levels of 

nutrients as they develop, which helps to support their initial growth. 

 Genetically engineered mouse models are not without their limitations, however. One 

caveat of this particular model is that GCN2 is absent from the very beginning of tumor formation. 

A more clinically relevant approach would be to block GCN2 activity after initial tumor 

development. In this type of model, GCN2 inhibition may slow tumor growth since the tumors 

have time to become reliant upon GCN2 to survive nutrient stress. This could be modeled 
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genetically by utilizing dual recombinase technology104,105 to excise GCN2 after activation of 

KrasG12D and deletion of p53 to initiate sarcomagenesis. Moreover, our results do not exclude a 

potential role of GCN2 in tumor growth in other settings or tissue of origin, such as epithelial 

tumors. 

 The ultimate goal of studying the roles of ISR kinases in mouse models is to determine 

the therapeutic efficacy of kinase inhibition on tumor growth. Several specific small molecule 

inhibitors of PERK have been identified106-108, while the currently known GCN2 inhibitors are non-

specific and require further development109. Of these drugs, the PERK inhibitor GSK2656157 has 

been tested in xenograft models, with promising results110. However, this work suggests that 

testing small molecule inhibitors of the ISR will yield more accurate results in GEMMs, rather than 

xenograft models. As the characterization of ISR inhibitors continues, GEMMs should become an 

important tool to evaluate their effects. 

 A second clinically relevant finding from this study is the mechanism by which tumors 

compensate for GCN2 loss, as tumors treated with small molecular inhibitors of ISR kinases may 

rely on similar pathways to become drug resistant. In this study, PERK activation was observed in 

the absence of GCN2. This suggests that combining inhibitors against multiple ISR kinases might 

effectively combat drug resistance. ATF4 upregulation independent of eIF2α phosphorylation 

status was also observed. ATF4 is more difficult to directly target because it is a transcription 

factor. However, the downstream processes that ATF4 regulates, such as autophagy, amino acid 

biosynthesis, and redox signaling, are more amenable drug targets. Combination treatment with 

an ISR inhibitor and inhibitors of ATF4-regulated processes may also be an effective method to 

block signaling through this pathway. Continued studies with genetically engineered mouse 

models will provide insights into useful therapies to target this pathway in cancer.
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CHAPTER IV: CONCLUSIONS AND FUTURE DIRECTIONS
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GCN2-dependent translational regulation of p21 

 Chapter II describes a novel mechanism of p21 regulation at the translational level, which 

is regulated by GCN2. Under normal conditions when abundant nutrients are present and eIF2α 

is not phosphorylated, translation initiates at the upstream open reading frames in p21 transcript 

variant 2, resulting in no p21 protein production. Under conditions of amino acid deprivation, 

GCN2 is activated and phosphorylates eIF2α. This delays translation initiation and results in 

ribosomes beginning translation at the open reading frame for p21. p21 induction results in cell 

cycle arrest and prevents cells from proliferating when sufficient nutrients to do so are not present 

in the environment. Therefore, p21 exerts pro-survival functions under conditions of nutrient 

stress. In cells that lack p21, clonogenic survival is reduced after exposure to long-term amino 

acid deprivation.  

 This work offers greater insight into how GCN2 exerts its pro-survival function in amino 

acid starved cells. GCN2 is typically thought to promote survival through translational suppression 

and initiation of the ATF4 transcriptional program. However, as this study shows, other proteins, 

such as p21, can be translationally upregulated by eIF2α phosphorylation and contribute to the 

protective functions of the ISR. Future studies are needed to fully determine the whole range of 

proteins that are translationally upregulated by eIF2α phosphorylation. Attempts to identify these 

proteins have centered on performing microarrays on mRNA obtained from polysome 

profiles91,111. One drawback of this approach is that it is limited by the probes used in the arrays. 

In the case of p21, current microarray probes only recognize the coding region of the transcripts 

and do not distinguish between the variants. Thus, the translational upregulation of p21 variant 2 

likely could not be identified by this method because variant 1 is more abundant and its 

translational suppression masks the upregulation of variant 2. One way to obtain a more 

complete picture would to be to take the less biased approach of RNA-Seq on mRNAs obtained 

from polysome profiling. Another helpful tool would be a publicly available program designed to 

identify upstream open frames in transcripts. NCBI offers a program called ORF Finder 

(http://www.ncbi.nlm.nih.gov/gorf/gorf.html) which identifies ORFs in a given sequence. This tool 
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is limited by a minimum ORF size of 50 nucleotides. However, much smaller uORFs can affect 

translation, as seen with both p21 and ATF4. The ideal program for this purpose would focus on 

the 5’ UTR and identify all uORFs with no size limits. 

 In this study, several methodologies were used to measure p21 translation, each with 

their own advantages. 35S labeling of newly synthesized proteins is useful in that it provides a 

direct measurement of translation. However, in the case of p21 translation, it is limited by the fact 

that both variants encode the same protein, and, therefore, their individual contributions to 

translation cannot be studied. The 5’ UTR-luciferase reporter assays are one method that can 

distinguish the translational regulation of each p21 variant. The constructs are also easily 

genetically manipulated, which helps to provide a mechanistic understanding of translational 

control. Here, the upstream uORFs in the luciferase reporters were mutated to demonstrate that 

these elements promote p21 variant 2 translation under conditions of eIF2α phosphorylation. 

Polysome profiling is the only technique that can measure the translation of endogenous 

transcript variants. Although we clearly saw enhanced translation of p21 under leucine 

deprivation by 35S labeling and specific translational upregulation of variant 2 by the 5’ UTR-

luciferase reporter assays, we were unable to detect greater association of p21 variant 2 with 

polysomes under stress. One potential explanation for these differing results is that the number of 

total ribosomes associated with variant 2 may not change under stress, but the number of 

ribosomes associated with the p21 ORF increases. For example, the majority of variant 2 may be 

associated with four ribosomes, but under normal conditions three ribosomes are associated with 

the uORFs and one is associated with the ORF, while all four ribosomes are associated with the 

ORF under stress. This would not alter the transcript’s position in the gradient, but it would 

enhance its translational efficiency. Ribosomal profiling112,113 would be required to test this 

hypothesis in order to determine the exact sequences that ribosomes are associated with in 

complete media versus leucine deprivation. 
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 This work also suggests that any stressor that activates the ISR will induce p21 because 

phosphorylation of eIF2α is the upstream event that promotes p21 translation. Future studies 

should focus on analyzing p21 induction in response to the full range of stressors that activate the 

ISR kinases in order to determine if this is indeed the case. We performed a preliminary study to 

investigate if ER stress upregulated p21 through eIF2α phosphorylation. In PERK+/+ MEFs, 

thapsigargin (Tg) treatment induced p21, while this response was absent in PERK-/- MEFs and 

eIF2α S51A MEFs (Figure IV-1). Thus, it appears that p21 induction is a more universal part of 

the ISR and not specific to GCN2 activation. This increases the physiological relevance of this 

p21 regulatory mechanism since a variety factors, such as UV irradiation, glucose deprivation, 

viral infection, proteosome inhibition, heat shock, and oxidative stress, signal through the ISR16. 

 

 

In addition to the mechanism of p21 translational regulation, the functional consequences 

of p21 upregulation under amino acid deprivation are also important. Nutrient availability is critical 

for proliferation, as cells must synthesize proteins and membranes and replicate their DNA in 

order to divide. This work establishes GCN2 as an important regulator of the cell cycle under 

nutrient stress. One observation of note is that loss of p21 partially inhibits G1/S arrest under 

leucine deprivation, while cells lacking GCN2 completely fail to undergo G1/S arrest (Figures II-

6B,E). This suggests that GCN2 controls other proteins involved in cell cycle regulation besides 

p21. We subsequently analyzed all known mouse transcripts of the Ink4 and Cip/Kip families of 

Figure IV-1. ER stress induces p21 through PERK-dependent phosphorylation of eIF2α. Western 
blot analysis of p21 induction in thapsigargin (Tg) treated PERK+/+, PERK-/-, and eIF2α S51A MEFs. β-
tubulin was used as a loading control 
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cell cycle inhibitors for the presence of uORFs (Table IV-1). Like p21, mouse p18Ink4c is encoded 

by two transcript variants that are generated by alternate promoters and differ only in their 5’ 

UTRs, but unlike p21, both transcript variants contain multiple uORFs. p18 variant 1 contains five 

uORFs, while p18 variant 2 contains three uORFs (Table IV-1). These two variants are conserved 

in humans. We also found that the only known mouse transcript for p19Ink4d contains one uORF 

(Table IV-1). However, in humans, p19 is encoded by two transcripts, neither of which contains 

uORFs. Based on this analysis, future experiments should address if GCN2 translationally 

upregulates p18 and if p18 upregulation contributes to cell cycle arrest under amino acid 

deprivation. In addition to translationally upregulating cell cycle inhibitors, GCN2 activation may 

also lead to transcriptional upregulation of cell cycle inhibitors or transcriptional or translational 

suppression of cell cycle activators to induce cell cycle arrest. 

Table IV-1. Mouse cell cycle inhibitor transcripts analyzed for uORFs 

NCBI Reference Sequence Gene uORF Position(s) ORF Position 

NM_007670.4 Cdkn2b (p15Ink4b) NA 236-628 

NM_001040654.1 Cdkn2a (p16Ink4a) NA 82-588 

NM_009877.2 Cdkn2a (ARF) NA 97-606 

NM_001301368.1 Cdkn2c (p18Ink4c) 
33-92, 92-148, 668-706, 

773-904, 1081-1155 
1159-1665 

NM_007671.3 Cdkn2c (p18Ink4c) 11-43, 138-194, 146-160 227-733 

NM_009878.3 Cdkn2d (p19Ink4d) 133-180 261-761 

NM_009875.4 Cdkn1b (p27Kip1) NA 520-1113 

NM_001161624.1 Cdkn1c (p57Kip2) NA 208-1254 

NM_009876.4 Cdkn1c (p57Kip2) NA 209-1216 

 

Interestingly, several studies have shown that Gcn2 regulates a G1 checkpoint in the 

fission yeast Schizosaccharomyces pombe in response to stressors such as nitrogen starvation40 

and UV irradiation41. As there is no homologue of p21 in fission yeast, cell cycle arrest 

downstream of Gcn2 in S. pombe must occur through a different factor. Based on this work, it 
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would be interesting to determine if the S. pombe CDK inhibitor Rum1 contributes to this 

response because there are two transcript variants of rum1, one of which contains 5’ uORFs and 

one which does not114. This would establish the translational upregulation of cell cycle inhibitors 

as an evolutionarily conserved stress response. 

Furthermore, GCN2’s ability to control cell proliferation may play a role in pulmonary 

hypertension in humans. One subtype of pulmonary hypertension known as pulmonary capillary 

hemangiomatosis (PCH) is characterized by the hyperproliferation of capillaries in the interstitial 

tissue, blood vessels, and airways of the lungs. This disease has an extremely high rate of 

mortality, and the only known cure is lung transplantation115. Recently, loss-of-function mutations 

in GCN2 have been identified in both familial autosomal recessive cases and sporadic cases of 

PCH116. The pathways downstream of GCN2 that regulate capillary function are not known. This 

study suggests the uncontrolled proliferation of capillaries in PCH may be due loss of GCN2-

dependent regulation of the cell cycle inhibitor p21 

In the case of GCN2 activation, p21 likely promotes cell survival through its ability to 

suppress cell proliferation under nutrient stress. Here, we showed that knockdown of p21 leads to 

decreased clonogenic survival after exposure to leucine deprivation. One attractive direction for 

future studies would be to elucidate the contribution of each p21 transcript variant to cell survival 

and cell cycle arrest under amino acid deprivation. Based on our model, loss of p21 variant 2 

should decrease cell survival under leucine deprivation, while loss of p21 variant 1 should have 

little effect. Similarly, loss of p21 variant 2 should have a much greater effect than variant 1 on 

preventing cell cycle arrest in response to leucine deprivation. This experiment offers some 

intriguing technical challenges. p21 variants 1 and 2 could be individually targeted by siRNA or 

shRNA that bind to unique sequences in their 5’ UTRs, but knockdown efficiency would be 

difficult to assess because both transcripts produce the same protein. Another possibility is to use 

genome editing to target either variant 1 or variant 2, but the unique region of variant 2 is located 

within the p21 promoter, specifically between the two p53 binding sites (Figure II-1A). Thus, 

regulation of p21 variant 1 may also be disrupted by this method. A combination approach using 



64 

 

genome editing to eliminate p21 variant 1 and siRNA or shRNA against variant 2 may be best. 

Based on our model, cells lacking variant 1 should be able to undergo G1/S arrest and survive 

exposure to leucine deprivation. Knockdown of variant 2 in these cells should then inhibit these 

effects. 

One of the most intriguing findings of this study that requires further investigation is the 

ability of GCN2 to regulate p21 transcription independently of eIF2α phosphorylation. GCN2-/- 

MEFs were incapable of inducing p21 transcription under glutamine and methionine deprivation 

(Figure II-5B,C). Moreover, GCN2-/- MEFs were unable to maintain levels of p21 variant 2 mRNA 

under leucine deprivation (Figure II-2F). In contrast, eIF2α S51A MEFs were able to induce p21 

mRNA levels under all conditions tested. These results were unexpected because GCN2 is only 

known to phosphorylate itself and eIF2α. Therefore, kinase screens should be performed to 

identify additional targets of GCN2 phosphorylation in order to explain the phenotype of GCN2-/- 

MEFs. One particular family of potential targets is the TGFβ/BMP signaling pathway. GCN2 was 

found to interact with SMAD4, mothers against decapentaplegic homolog 1 (SMAD1), and 

transforming growth factor beta receptor 1 (TGFBR1) in a high throughput screen85. In this study, 

we found that knockdown of SMAD4 significantly blocked p21 transcriptional upregulation under 

glutamine deprivation. Future work should confirm these interactions, determine if these 

interaction partners are GCN2 phosphorylation targets, and elucidate the signaling pathway 

through which GCN2 and TGFβ/BMP signaling regulate p21 transcription under nutrient stress 

In conclusion, Chapter II describes the mechanism by which GCN2 translationally 

upregulates the cell cycle inhibitor p21 under nutrient stress. Upregulation of p21 leads to 

decreased cell proliferation under stress and contributes to the pro-survival function of GCN2 

signaling. This work opens avenues for many future studies, including identifying novel targets of 

translational upregulation by eIF2α phosphorylation, establishing p21 induction as a general 

consequence of ISR signaling, demonstrating translational upregulation of cell cycle inhibitors as 

an evolutionarily conserved stress response mechanism, and discovering additional targets of 

GCN2 phosphorylation. Overall, this model of GCN2-dependent translational regulation solidifies 
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our current understanding of translational regulation under stress, but also provides many new 

opportunities to explore the pathways that interconnect nutrient sensing with the cell cycle and 

GCN2’s role in regulating this process, both transcriptionally and translationally, across species.  

 

The role of GCN2 in tumorigenesis 

 Chapter III describes the use of the LSL-KrasG12D/wt;p53fl/fl mouse model of soft tissue 

sarcoma to study the role of GCN2 in an autochthonous tumor model. Although prior studies in 

xenograft models indicated that GCN2 supported tumor growth, no difference in tumor growth or 

animal survival was observed between GCN2+/+ and GCN2-/- mice on a mixed or C57BL6 

background. However, the tumors developed compensatory mechanism to maintain ISR signaling 

in the absence of GCN2, indicating that this pathway is important for tumor cell survival. These 

findings are relevant to human soft tissue sarcoma, as overexpression of ISR-related genes was 

also observed in clinical patient samples. 

 The major conclusion from this work is that loss of GCN2 does not affect tumor growth in 

soft tissue sarcoma. A second significant finding is that tumors were able to compensate for 

GCN2 loss through other ISR pathway members. Sarcomas from mixed background mice 

upregulated ATF4 in spite of reduced eIF2α phosphorylation, and sarcomas from C57BL6 mice 

displayed activation of PERK. Since the sarcomas developed mechanisms to sustain ISR 

signaling, it suggests that this pathway is essential for tumor cell survival. However, at this point, 

these data are only correlative. The next important step for this work is to block signaling through 

these compensatory pathways to demonstrate the ISR truly is critical for tumor cell survival. 

Ideally, the best method to block ISR signaling is to prevent eIF2α phosphorylation, as this is the 

hub of the ISR. However, mice homozygous for the eIF2α S51A mutation die shortly after birth117, 

and therefore cannot be crossed to a tumor model. One way to circumvent this issue is to 

generate cell lines from the soft tissue sarcomas, introduce the eIF2α S51A mutation via CRISPR 

and a template containing the mutation for homologous repair, and inject the eIF2α S51A 

sarcoma cells orthotopically into the leg muscles of syngeneic mice. Another option using genetic 
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models is to cross mixed background GCN2-/-;LSL-KrasG12D/wt;p53fl/fl mice to ATF4fl/fl mice to 

generate GCN2-/-;ATF4fl/fl;LSL-KrasG12D/wt;p53fl/fl mice in order to test the combined deletion of 

GCN2 and ATF4 on tumor growth and animal survival upon sarcoma initiation. Similarly, C57BL6 

GCN2-/-;LSL-KrasG12D/wt;p53fl/fl mice can be crossed to PERKfl/fl mice to generate GCN2-/-

;PERKfl/fl;LSL-KrasG12D/wt;p53fl/fl mice. PERK inhibitors are now commercially available, so tumor-

bearing C57BL6 GCN2-/-;LSL-KrasG12D/wt;p53fl/fl mice could also be treated with one of these 

compounds to test the combined inactivation of GCN2 and PERK on tumor growth. Experiments 

such as these can definitively determine the role of the ISR in sarcoma growth. 

 The compensatory ISR signaling in GCN2-/- tumors poses interesting mechanistic 

questions. These are very important to address because small molecule inhibitors of ISR kinases 

are currently in development and may enter clinical trials in the future. In the C57BL6 mice, the 

activation of PERK in the absence of GCN2 is a relatively straightforward method to sustain ISR 

signaling. However, it is not clear what is activating PERK and why this is nearly exclusive to 

GCN2-/- tumors. One potential explanation is that GCN2 is the primary ISR kinase responsible for 

eIF2α phosphorylation in the tumors. When GCN2 is not present, tumor cells lose their ability to 

suppress translation under stress, causing them to deplete their ATP supplies. The drop in ATP 

levels would affect chaperone activity, resulting in the accumulation of unfolded proteins and 

PERK activation. Although such an experiment would be difficult to carry out in vivo, cell lines can 

be generated from C57BL6 GCN2+/+ and GCN2-/- sarcomas and cultured without amino acids. 

Based on the observations in the animal model, one would expect that only GCN2-/- tumor cells 

would activate PERK in response to amino acid deprivation. Since this is thought to occur through 

the accumulation of unfolded proteins, treating the cells with a chemical chaperone, such as 4-

phenylbutric acid (4-PBA) should block PERK activation. ATP levels can be measured throughout 

a time course of amino acid deprivation by high performance liquid chromatography (HPLC) to 

ascertain if ATP levels change over time, and, if so, how this correlates with the timing of PERK 

activation. 
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 In the GCN2-/- mixed background mice, the maintenance of high ATF4 levels despite a 

substantial decrease in eIF2α phosphorylation also requires mechanistic explanation. Based on 

the observations that ATF4 copy number or mRNA levels were not increased in GCN2-/- tumors 

and that there were no mutations detected in ATF4, we concluded that another factor must be 

regulating ATF4 expression in trans in GCN2-/- mice. This could be achieved by GCN2-/- tumors 

downregulating proteins responsible for ATF4 degradation, such as β-TrCP118 or egl-9 family 

hypoxia-inducible factor 3 (PHD3)119, or upreguating proteins that stabilize ATF4, such as 

p300120. In the Detwiller data set utilized in this study to examine gene expression in human UPS, 

β-TrCP expression is decreased in UPS by 3.48 fold with a p-value of 7.33x10-5, and PHD3 

expression is decreased in UPS by 1.71 fold with a p-value of 0.03. p300 expression levels were 

not significantly different between UPS and normal tissue. These data suggest that β-TrCP would 

be a logical candidate for follow up. Decreased expression of β-TrCP needs to be confirmed in 

the mouse model of UPS, specifically in GCN2-/- tumors as compared to GCN2+/+ tumors. Then, β-

TrCP can be re-expressed to wildtype levels in GCN2-/- mixed background sarcoma cell lines to 

determine if this reduces ATF4 protein levels and tumor growth in an orthotopic model. 

Phosphorylation of ATF4 is also required for interaction with β-TrCP118, so decreases in this post-

translational modification could also stabilize ATF4 levels in GCN2-/- tumors. Comparing levels of 

phosphorylated ATF4 between GCN2+/+ and GCN2-/- tumors by immunoblot would help to address 

if GCN2-/- tumor cells utilize the mechanism of reducing ATF4 phosphorylation to maintain its 

expression. 

 Since the LSL-KrasG12D/wt;p53fl/fl soft tissue sarcoma model is intrinsically resistant to ISR 

inhibition through GCN2, it is a good model to study the efficacy of combination therapy. While 

GCN2 loss on its own does not affect tumor growth in this model, GCN2 inhibition may synergize 

with another therapeutic modality to slow or prevent tumor growth. The current mainstays of 

cancer therapy are surgery, chemotherapy, and radiation therapy. All three modalities are 

currently used clinically to treat and manage sarcoma121,122. Future work should focus on 

determining if GCN2 loss improves outcomes in LSL-KrasG12D/wt;p53fl/fl mice treated with these 
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currently used methods. Another interesting study would be a combination of GCN2 loss and 

treatment with pazopanib, a small molecule inhibitor of several tyrosine kinases involved in 

angiogenesis, which recently received FDA approval in 2012 for the treatment of advanced soft 

tissue sarcoma123. Blocking tumor angiogenesis may result in more nutrient deprivation in the 

tumor microenvironment, and thus greater sensitivity to GCN2 loss, resulting in greater tumor 

control than with either therapy alone. 

 One observation in this study that is consistent with previous work is that GCN2 is 

overexpressed in tumors as compared to normal tissue. Our lab has previously observed 

increased GCN2 expression in human lung, liver, breast, and colon cancer and in mammary 

tumors from MMTV-neu mice by immunohistochemistry and western blot58. Here, we 

demonstrate that GCN2 is also overexpressed at the mRNA and protein level in the LSL-

KrasG12D/wt;p53flfl mouse model of soft tissue sarcoma. Very little is known about the regulation of 

GCN2 itself, so this model provides a system to study how GCN2 is upregulated in cancer. Since 

GCN2 upregulation at the mRNA level was observed in sarcoma, PROMO124,125 was used in a 

preliminary analysis to identify transcription factor binding sites in the first 2000 bases of the 

mouse and human GCN2 promoters. Using the most stringent search conditions, yin yang 1 

(YY1) was identified as a common GCN2 transcription factor in both species. YY1 is of interest 

because it has been shown to be upregulated in many different cancer types126. Studies into YY1 

and other potential oncogenic transcription factors will lead to greater insight into the regulation of 

GCN2 itself in tumors and may lead to additional therapeutic opportunities to inhibit the ISR in 

cancer. 

Although blocking ISR signaling through GCN2 did not affect tumor growth in the LSL-

KrasG12D/wt;p53fl/fl model of soft tissue sarcoma, inhibiting GCN2 may be an effective therapy in 

other cancer types. The role of GCN2 in cancers of epithelial origin should also be investigated 

because carcinomas comprise the vast the majority of cancers in the humans. The LSL-

KrasG12D/wt;p53fl/fl model could easily be repurposed to study the role of GCN2 in carcinomas by 

changing the tissues exposed to cre recombinase. For example, intranasal administration of Ad-
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cre induces lung adenocarcinomas127, and crossing LSL-KrasG12D/wt’p53fl/fl mice to mice 

expressing cre under the control of the pancreas-specific Pdx1 promoter results in pancreatic 

adenocarcinoma128. We have also observed GCN2 overexpression in human breast cancer and 

the MMTV-neu mouse mammary adenocarcinoma model58, so it may also be worthwhile to cross 

MMTV-neu mice to GCN2-/- mice to study the effects of GCN2 loss in this particular type of 

cancer. Another cancer of interest is acute lymphoblastic leukemia (ALL). One common treatment 

for ALL is asparaginase, which hydrolyzes circulating asparagine. Leukemia cells are particularly 

sensitive to asparaginase treatment because they synthesize very little of their own asparagine, 

and are thus dependent on high levels of circulating asparagine to maintain their growth. It has 

been previously demonstrated that GCN2 promotes the survival of normal lymphocytes during 

asparaginase treatment129, but it has yet to been determined if inhibition of GCN2 will enhance 

cancer cell death in a mouse model of ALL treated with asparginase. 

In conclusion, Chapter III demonstrates that loss of GCN2 does not impact tumor growth 

or animal survival in the LSL-KrasG12D/wt;p53fl/fl mouse model of soft tissue sarcoma. 

Compensation by other ISR signaling proteins is observed, indicating that the ISR is important for 

tumor cell survival and that tumor cells are able to adapt to maintain ISR signaling. This is 

supported clinically by the observation that many ISR proteins are upregulated in human 

sarcoma. This model offers many opportunities for further study, including demonstrating the 

requirement for the ISR in sarcomagenesis, analyzing the molecular mechanisms behind the 

development of resistance against ISR inhibition, testing synergy between GCN2 inhibition and 

other therapeutic modalities, and elucidating how GCN2 itself is regulated in cancer. Overall, this 

study expands upon the current xenograft and genetically engineered mouse models to study the 

role of the ISR in cancer. Although, to our knowledge, this is the first report that inhibition of one 

ISR signaling protein has no apparent effect on tumor growth, this model will be a valuable 

resource to begin to understand how tumors can adapt to ISR inhibition, which is highly clinically 

relevant, given the current development of small molecule inhibitors of the ISR kinases as cancer 

therapeutics. 
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The connection: a potential role for GCN2-dependent regulation of p21 in cancer 

The role of GCN2 in p21 regulation and the role of GCN2 in tumorigenesis may 

potentially be linked. When tumor cells are exposed to nutrient stress in the tumor 

microenvironment, GCN2 is activated, as shown by our laboratory’s previous work and in Chapter 

III58. Activated GCN2 phosphorylates eIF2α, leading to translational upregulation of p21, as 

demonstrated in Chapter II. Cancer is a disease of uncontrolled proliferation, and at first, 

upregulation of a cell cycle inhibitor appears to be counterintuitive in the context of a tumor cell. 

However, in order for cells to proliferate, sufficient nutrients must be available. In a local context, 

cell cycle inhibition is favorable if the microenvironment is nutrient deprived and the resources to 

proliferate are not available. Our lab’s previous work showed by IHC that activated GCN2 is 

present in patches throughout the tumor, as opposed to global activation in the whole tumor58. 

This suggests that if GCN2 does induce p21 in tumor cells, its expression would be restricted to 

areas of stress only. Moreover, p21 variant 2 is translated inefficiently under nutrient replete 

conditions (Figure II-3C), which would further restrict p21 expression to areas of stress. This 

would specifically allow stressed tumor cells to remain dormant until conditions improve and then 

resume division once the microenvironment is more favorable for growth. Indeed, several lines of 

evidence from this study support this view. First, cells exposed to leucine deprivation upregulate 

p21 and then are able to downregulate it again when supplied with complete media (Figure II-1F). 

Furthermore, wildtype cells show complete recovery from long-term amino acid starvation, as 

measured by clonogenic survival, while cells lacking p21 are compromised in their ability to form 

colonies after exposure to long-term nutrient stress (Figure II-6H). This indicates that induction of 

p21 in response to amino acid deprivation does not induce permanent growth arrest. Rather, cells 

are able regulate their p21 levels in response to nutrient levels in their environment and 

proliferate again once the stress is removed.  

GCN2-dependent regulation of p21 agrees with the currently accepted model that p21 

can function as both an oncogene and a tumor suppressor96. In the context of p21 upregulation in 

a nutrient-deprived local microenvironment, inhibition of proliferation promotes tumor cell survival 
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by allowing cells to evade death from nutrient stress. However, in the context of a nutrient replete 

local microenivronment, induction of p21 would inhibit the proliferation of cells that are 

metabolically able to divide, and thus slow tumor growth. p21 was first identified as a 

transcriptional target of p5372, and thus thought to act as a classical tumor suppressor. However, 

spontaneous tumors arise in p53-/- mice at an average age of 4.5 months130, while spontaneous 

tumors do not arise in p21-/- mice until an average age of 16 months131. This large disparity in 

tumor onset suggests that p21 does not function purely as tumor suppressor downstream of p53. 

Furthermore, in human cancers, p21 loss-of-function mutations are rarely found, as opposed to 

the high frequency of p53 loss and mutation132. In support of a tumor suppressor role, in some 

human cancers, high p21 levels are correlated with a favorable prognosis, and p21 suppression 

is associated with increased metastasis and poor survival. However, in other cancers, p21 has an 

oncogenic role as evidenced by its overexpression associating with poor prognosis, poor survival, 

and increased recurrence and metastasis96. Previously, the opposing functions of p21 have been 

associated with its subcellular localization. In the nucleus, p21 can suppress proliferation by 

binding to and inhibiting cyclin:CDK complexes and proliferating cell nuclear antigen (PCNA). In 

the cytoplasm, p21 binds to and inhibits various proteins that regulate apoptosis, including 

procaspase 3, caspase 8, caspase 10, and apoptosis signal regulating kinase 1 (ASK1)133. The 

cytoplasmic activities would allow tumor cells to evade apoptosis and contribute to tumor 

progression. GCN2-dependent regulation of p21 offers another explanation for why p21 is 

oncogenic in some cases, especially in cancers, such as multiple myeloma, in which nuclear 

localization of p21 correlates with poor survival134. 

 To begin to address a potential oncogenic role of p21 through the ISR, we immunoblotted 

for p21 in normal muscle and sarcoma tissue from the mixed background LSL-KrasG12D/wt;p53fl/fl 

mice. Increased expression of p21 was observed in tumor tissue concomitant with activation of 

the ISR (Figure IV-2). p21 was still induced in GCN2-/- sarcomas, likely because these tumors still 

have some phosphorylated eIF2α due to PERK and PKR activation (data not shown). 

Importantly, p53 is deleted in these tumors, which agrees with our experiments in cell culture that 
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p53 is not required for p21 induction in response to amino acid deprivation. Since p53, but not 

p21, is typically mutated in cancers, this type of mechanism would allow most tumors to regulate 

their proliferation in response to nutrient levels in the microenvironment regardless of their p53 

status. In human soft tissue sarcoma, previous work demonstrated that 53% of tumors were 

positive for p21 staining in the absence of p53 staining. Overall, 76% of soft tissue sarcomas 

stained positive for p21, indicating that this protein may play a significant role in sarcoma 

biology135. To further associate p21 induction in tumors with activation of the ISR, 

immunohistochemistry can be used to determine if p21 and phospho-eIF2α colocalize in 

sarcomas, both in humans and in the mouse model. It would also be interesting to determine if 

tumors specifically upregulate p21 transcript variants that can be translationally upregulated by 

eIF2α phosphorylation since the model put forth in this work predicts that these will provide a 

survival benefit under stress. 

 

 

 In summary, translational regulation of p21 through eIF2α phosphorylation may have 

physiological significance in the context of cancer, including the soft tissue sarcoma model 

studied in this work. Upregulation of p21 in areas of the tumor experiencing nutrient stress would 

allow cells to survive under conditions that cannot support the high rate of proliferation typically 

exhibited by cancer cells. This idea is supported by numerous studies demonstrating that p21 has 

Figure IV-2. p21 is upregulated concomitantly with the ISR in LSL-KrasG12D/wt;p53fl/fl sarcomas. 

Western blot analysis of ISR proteins and p21 in normal muscle (N) and tumor (T) from mixed 
background GCN2+/+ mice. β-tubulin was used as a loading control. These panels were from the same 
blot shown in Figure III-1F, so the GCN2 and β-tubulin panels are identical between these two figures. 
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oncogenic functions in particular contexts. Moreover, we have demonstrated that p21 is induced 

in LSL-KrasG12D/wt;p53fl/fl sarcomas in the absence of p53, which indicates that this mechanism 

can operate nearly universally in tumors, even the majority that have mutated or inactive p53. 

Future studies will be necessary to determine if ISR signaling is required for the p21 upregulation 

observed in sarcomas to firmly place this novel mechanism of p21 regulation in a physiological 

context. Doing so would expand our understanding of the outcomes of ISR signaling both in vitro 

and in vivo, allowing us to develop better targeted therapies against the ISR for cancer patients.
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CHAPTER V: MATERIALS AND METHODS 
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Cell culture, transfection, and plasmids. All MEF cell lines and SQ20B cells were maintained 

in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 

penicillin, and streptomycin. GCN2-/- and eIF2α S51A MEFs were additionally grown with 

nonessential amino acids and 55 μM β-mercaptoethanol. HCT116 cell lines were maintained in 

McCoy’s 5A media supplemented with 10% FBS, penicillin, and streptomycin. GCN2+/+ MEFs 

were stably transfected with pSM2-shNT (Open Biosystems) or pLKO-shp21 (Sigma) plasmids 

using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol. SQ20B cells 

were transfected with ON-TARGETplus SMARTpool siNT, siGCN2, sip21, or siSMAD4 (Thermo 

Scientific) using Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer’s protocol. 

 

Western blotting on cell lysates. Cells were lysed in Nonidet P-40 (NP-40) buffer (1% NP-40, 1 

mM phenylmethylsulfonyl fluoride, 1X Complete Mini protease inhibitor cocktail [Roche], 1X 

phosphatase inhibitor cocktail 2 [Sigma] in PBS). Protein concentrations of lysates were 

determined using 660 nm Protein Assay Reagent (Thermo Scientific), according to the 

manufacturer’s protocol. Equal amounts of protein were resolved on sodium dodecyl sulfate 

polyacrylamide gels and transferred to polyvinylidene fluoride membranes. Membranes were 

blocked with 5% non-fat dried milk in TBS-T (20 mM Tris, 137 mM NaCl, 0.1% Tween-20; pH 7.6) 

and then incubated in primary antibody. Following primary antibody incubation, membranes were 

washed three times with 1% non-fat dried milk in TBS-T, incubated in secondary antibody, and 

then washed three more times with 1% non-fat dried milk in TBS-T. Proteins were visualized by 

incubating membranes in ECL chemicals and exposing to film. Bands were quantified using 

ImageJ software. The following primary antibodies were used for western blotting: 4E-BP1, β-

tubulin, cyclin D1, eIF2α, eIF4E, eIF4G, GCN2, Ku80, p27, p-4E-BP1, PARP, p-eEF2, p-eIF2α, p-

p53, SMAD4 (all from Cell Signaling); β-actin (Sigma), c-myc (Santa Cruz), and p21 (BD 

Pharmigen). The secondary antibodies used were anti-rabbit HRP and anti-mouse HRP from 

Thermo Scientific. 
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Metabolic labeling. GCN2+/+ and GCN2-/- MEFs were grown in complete or leucine-free media 

for 16 hours. To label newly synthesized proteins, cells were methionine and cysteine starved for 

30 minutes and then labeled with 75 μCi/mL of Easy Tag Express Protein Labeling Mix (Perkin 

Elmer) for 30 minutes. Cells were washed with PBS and lysed in NET-2 lysis buffer (50 mM Tris, 

75 mM NaCl, 1% NP-40, 1 mM phenylmethylsulfonyl fluoride, 1X Complete Mini protease 

inhibitor cocktail [Roche], 1X phosphatase inhibitor cocktail 2 [Sigma]; pH 7.4). Lysates were 

precleared with protein A/G agarose beads. 300 μg of lysate was incubated with 1 μg of p21 

antibody or 1 μg of mouse IgG conjugated to protein A/G agarose beads overnight at 4 °C with 

end-over-end tumbling. Beads were washed four times with NET-2 wash buffer (50 mM Tris, 75 

mM NaCl, 0.05% NP-40; pH 7.4) and one time with PBS. Immunoprecipitates were resolved on 

sodium dodecyl sulfate polyacrylamide gels. Gels were incubated in fixing solution (10% glacial 

acetic acid, 20% methanol, 3% glycerol), washed in deionized water, and incubated in 

Enlightening Autoradiography Enhancer (Perkin Elmer). Gels were air-dried overnight and 

exposed to film at -80 °C. 

 

Plasmid construction and luciferase assay. p21 5’ UTR luciferase reporter constructs were 

generated by inserting the 5’ UTR sequences of the two known mouse p21 mRNA variants 

between the HindIII and NcoI restriction sites in the pGL3-Promoter vector (Promega). The 5’ 

UTRs were purchased as oligonucleotides from Integrated DNA Technologies. Dual luciferase 

assays (Promega) were performed according to the manufacturer’s instructions. Cells were co-

transfected with Renilla luciferase (pRL-TK vector, Promega) for normalization. 

 

Polysome extraction. Polysome extractions were performed as previously described136. Briefly, 

cells were treated with 0.1 mg/mL cycloheximide for three minutes at 37 °C to halt translation. 

Cells were washed twice with ice-cold PBS containing 0.1 mg/mL cycloheximide and then 

harvested in polysome extraction buffer (0.3 M NaCl, 15 mM MgCl2, 15 mM Tris-HCl, pH 7.6; 1% 

Triton X-100, 0.1 mg/mL cycloheximide, 1 mg/mL heparin). Lysates were cleared by 
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centrifugation and loaded onto 10-50% sucrose gradients. Gradients were spun at 35,000 rpm for 

190 minutes in a SW41Ti rotor. 1 mL fractions were collected from the gradients using the 

Brandel density gradient fractionation system. Fractions were brought to two mL with water. 3 mL 

of 8 M guanidine HCl was added to fractions, followed by extensive vortexing. One volume of 

100% ethanol was added to fractions. The fractions were vortexed and incubated overnight at -20 

°C. Fractions were spun at 10,000 x g for 45 minutes at 4 °C. RNA pellets were washed with ice-

cold 75% ethanol and spun again at 10,000 x g for 30 minutes at 4 °C. RNA pellets were air-

dried, resuspended in 400 μL TE buffer, pH 7.5 (10 mM Tris, 1mM EDTA). RNA was precipitated 

overnight in 0.3 M sodium acetate, pH 5.5 and 2.5 volumes 100% ethanol. Fractions were spun at 

10,000 x g for 20 minutes at room temperature. The RNA pellet was washed with 400 μL ice-cold 

75% ethanol and spun again at 10,000 x g for 20 minutes at room temperature. RNA pellets were 

air-dried and resuspended in 50 μL water. 25 μL from each fraction was pooled according to the 

following scheme: nonpolysomal- fractions 4, 5, 6, and 7; low molecular weight polysomal- 

fractions 8, 9, and 10; high molecular weight polysomal- fractions 11 and 12. LiCl was added to 

the pooled fractions at a final concentration of 2.5M. RNA was precipitated at -20 °C for 30 

minutes. Pooled fractions were spun at 10,000 x g for 30 minutes at 4 °C. The RNA pellet was 

washed with 75% ethanol and spun again at 10,000 x g for 15 minutes at room temperature. The 

RNA was resuspended in 100 μL water, and the LiCl precipitation and ethanol wash was 

repeated. The resulting RNA was purified over RNeasy columns (QIAgen), according the 

manufacturer’s protocol. RNA eluted from the column was used for qPCR analysis.  

 

Cell cycle analysis. Cells were harvested, washed with 1% FBS in PBS, resuspended in PBS, 

and fixed in ice-cold ethanol. The fixed cells were washed with 1% FBS in PBS, resuspended in 

PBS, and treated with phosphate citric acid buffer (192 mM Na2HPO4; 4 mM citric acid, pH 7.8). 

Cells were resuspended in PI/Rnase buffer (50 μg/mL propidium iodide, 267 μg/mL Rnase A, 1% 

FBS in PBS) to stain DNA. DNA content was measured using a FACSCalibur flow cytometer on 
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populations of 20,000 cells per sample. The percentage of cells in each phase of the cell cycle 

was calculated using Flo Jo software. 

 

Clonogenic survival assay. Cells were grown in media with or without leucine. After 72 hours, 

viable cells were replated at low density in complete media and incubated for one week. Colonies 

were fixed with a solution of 10% methanol and 10% acetic acid and then stained with 0.4% 

crystal violet in 20% ethanol. 

 

Mice and soft tissue sarcoma generation. GCN2-/- mice (Jackson Laboratories), LSL-

KrasG12D/wt mice, and p53fl/fl mice were previously described30,137,138. LSL-KrasG12D/wt;p53fl/fl mice 

were injected with 2.5 x 107 PFU of Ad5CMVcre (University of Iowa Gene Transfer Vector Core) 

in the upper leg muscle to induce sarcomas. Adenovirus was prepared by diluting in MEM media, 

adding CaCl2 to a final concentration of 9.6 mM, and incubating for 15 minutes to allow calcium 

phosphate precipitates to form. Animals were monitored three times weekly for tumor formation 

by palpitation. Once detected, tumors were measured three times weekly by calipers. The tumor 

volume was calculated for each individual mouse as [(tumor leg length x tumor leg width2 x 0.52) 

– (normal leg length x normal leg width2 x 0.52)]. Mice were euthanized once the tumor volume 

met or exceeded 1000 mm3. Tumor tissue and normal muscle tissue were harvested from mice 

and either snap-frozen in liquid nitrogen for western blot and qPCR analysis or fixed overnight in 

10% neutral buffered formalin for histopathological analysis. All animal experiments were 

performed in accordance with the “Guide for the Care and Use of Laboratory Animals” of the 

National Research Council of the National Academies and approved by the University of 

Pennsylvania Institutional Animal Care and Use Committee. Use of recombinant virus in animals 

was approved by the University of Pennsylvania Institutional Biosafety Committee. 

 

Histopathology. Tumors were rinsed in PBS and fixed in 10% neutral buffered formalin 

overnight. Fixed tumors were washed with a series of PBS, 50% ethanol, 70% ethanol, 95% 
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ethanol, and 100% ethanol for one hour each. Tissues were then embedded in paraffin, 

sectioned, and stained with hematoxylin and eosin or used for immunohistochemistry. 

 

Immunohistochemistry. Paraffin embedded tissues were dewaxed with a series of xylene, 

100% ethanol, 95% ethanol, 80% ethanol, 70% ethanol, and distilled water washes. Antigen 

retrieval was carried by incubating slides for 10 minutes at 95 °C in universal antigen retrieval 

solution (R&D Systems). Endogenous peroxidases were quenched with a 15 minute incubation in 

2.25% hydrogen peroxide. Endogenous avidin and biotin were blocked using an avidin/biotin 

blocking kit (Vector Laboratories). Tissue sections were blocked using normal goat serum, and 

then incubated in CA9 antibody (Millipore) diluted 1:50 overnight at 4 °C. Sections were washed 

twice with PBS for five minutes each. Tissue sections were then incubated in biotinylated rabbit 

IgG (Vector Laboratories) for 30 minutes at 37 °C. Sections were washed twice in PBS for five 

minutes each. Slides were incubated in Vectastain Elite ABC solution (Vector Laboratories) for 30 

minutes at 37 °C, and then washed twice in PBS for five minutes each. Signal was developed 

using 3,3’-diaminobenzidine (DAB) peroxidase substrate (Vector Laboratories). Slides were 

washed in water and counterstained with hematoxylin. Tissues were dehydrated with a series of 

water, 70% ethanol, 95% ethanol, 100% ethanol, and xylene washes and then mounted. 

 

Western blotting on tissue lysates. 50 mg pieces were cut from snap-frozen tumors or normal 

muscle and placed on ice in tissue lysis buffer (50 mM HEPES, pH 7.4; 150 mM NaCl, 1.5 mM 

MgCl2, 1 mM EGTA, 1% Triton X-100, 1 mM phenylmethylsulfonyl fluoride, 1X Complete Mini 

protease inhibitor cocktail [Roche], and 1X phosphatase inhibitor cocktail 2 [Sigma]). Tissues 

were homogenized on ice by electric homogenizer and then incubated on ice for 10 minutes. 

Lysates were cleared by centrifugation at maximum speed for 10 minutes. Protein concentrations 

of lysates were determined using 660 nm Protein Assay Reagent (Thermo Scientific), according 

to the manufacturer’s protocol. Equal amounts of protein were resolved on 4-15% gradient Tris-

HCl polyacrylamide gels and transferred to polyvinylidene fluoride membranes. Membranes were 
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blocked with 5% non-fat dried milk in TBS-T (20 mM Tris, 137 mM NaCl, 0.1% Tween-20; pH 7.6) 

and then incubated in primary antibody. Following primary antibody incubation, membranes were 

washed three times with 1% non-fat dried milk in TBS-T, incubated in secondary antibody, and 

then washed three more times with 1% non-fat dried milk in TBS-T. Proteins were visualized by 

incubating membranes in ECL chemicals and exposing to film. Bands were quantified using 

ImageJ software. The following primary antibodies were used: β-tubulin, eIF2α, GCN2, p-eIF2α, 

PERK, p-PERK (all from Cell Signaling), ATF4, PKR (both from Santa Cruz), p-GCN2 (Bioss), 

and p-PKR (Millipore). The secondary antibodies used were anti-rabbit HRP and anti-mouse HRP 

from Thermo Scientific. 

 

qPCR. RNA isolated from polysome fractions, total RNA harvested from cells using TRIzol 

(Ambion), and RNA isolated from homogenized snap frozen tissue using an Rneasy Mini Kit 

(QIAgen) were subjected to qPCR analysis. RNAs were reversed transcribed using AMV reverse 

transcriptase (Promega) and random hexamer primers (Invitrogen). The resulting cDNAs served 

as templates for qPCR using Power SYBR Green PCR Master Mix (Applied Biosystems). Data 

were analysed using the Applied Biosystems 7300 System Software. PCR reaction conditions 

were 50 °C for two minutes, 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 seconds and 

60 °C for one minute. A list of primers used is in Table V-1. 

  



81 

 

Table V-1. Primer sequences used for qPCR analysis 

Primer Name Sequence (5’ to 3’) 

18S forward CAATTACAGGGCCTCGAAAG 

18S reverse AAACGGCTACCACATCCAAG 

ASNS forward CAATTACAGGGCCTCGAAAG 

ASNS reverse TCTTATCGGCTGCATTCCAAAC 

ATF3 forward GAGGATTTTGCTAACCTGACACC 

ATF3 reverse TTGACGGTAACTGACTCCAGC 

ATF4 forward CCTGAACAGCGAAGTGTTGG 

ATF4 reverse TGGAGAACCCATGAGGTTTCAA 

β-actin forward GGCTGTATTCCCCTCCATCG 

β-actin reverse CCAGTTGGTAACAATGCCATGT 

β-tubulin forward GATCGGTGCTAAGTTCTGGGA 

β-tubulin reverse AGGGACATACTTGCCACCTGT 

Luciferase forward CTCACTGAGACTACATCAGC 

Luciferase reverse TCCAGATCCACAACCTTCGC 

p21 total forward CGAGAACGGTGGAACTTTGAC 

p21 total reverse CCAGGGCTCAGGTAGACCTT 

p21 var 1 forward TCCAGACATTCAGAGCCACAG 

p21 var 1 reverse ACGGGACCGAAGAGACAAC 

p21 var 2 forward AGGAGGAGCATGAATGGAGAC 

p21 var 2 reverse GGACATCACCAGGATTGGAC 

ULK1 forward ACATCCGAGTCAAGATTGCTG 

ULK1 reverse GCTGGGACATAATGACCTCAGG 

 

Copy number analysis. Genomic DNA was isolated from snap frozen tumor or normal muscle 

tissue using a DNeasy Blood and Tissue Kit (QIAgen). DNA was digested with RNase A to 

remove any contaminating RNA. Copy number analysis on genomic DNA was performed using a 

TaqMan copy number assay with primers recognizing exon three of mouse ATF4 (Applied 

Biosystems, assay ID Mm00618542_cn), according to the manufacturer’s protocol. The ATF4 

copy number assay was duplexed with a TaqMan copy number reference assay against TRFC 

(Applied Biosystems) for normalization. Data were analyzed using Copy Caller software. 

 

XBP1 splicing assay. RNA was isolated from normal muscle and tumor tissue and reversed 

transcribed into cDNA as described in the above qPCR section. To detect XBP1 splicing, PCR 

was performed with primers that flank the splice site in the XBP1 transcript, resulting in the 
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amplification of both spliced (368 bp) and unspliced (394 bp) transcript variants. PCR reaction 

conditions were 95 °C for one minute; 40 cycles of 95 °C for 20 seconds, 50 °C for 20 seconds, 

and 68 °C for one minute; and 68 °C for four minutes. Primer sequences are available in Table V-

2. Spliced and unspliced XBP1 were resolved on a 3% agarose gel and visualized with ethidium 

bromide under UV light. 

Table V-2. Primer sequences used for XBP1 splicing assay 

Primer Name Sequence (5’ to 3’) 

XBP1 forward AAGTGGTGGATTTGGAAGAAGA 

XBP1 reverse GGAGTTCCTCCAGACTAGCAGA 

 

ATF4 sequencing. Genomic DNA was isolated from tumors as described under “copy number 

analysis.” Exons 1, 2, and 3 of ATF4 were individually amplified by PCR using Herculase II high 

fidelity DNA polymerase (Agilent Technologies). PCR reaction conditions were 95 °C for two 

minutes; 30 cycles of 95 °C for 20 seconds, 55 °C for 20 seconds, and 72 °C for 30 seconds; and 

72 °C for three minutes. A list primers used is Table V-3. PCR products were purified using a 

QIAquick PCR Purification kit (QIAgen). Purified PCR products were sequenced at the University 

of Pennsylvania Genomics Analysis Core. 

Table V-3. Primers for ATF4 sequencing 

Primer Name Sequence (5’ to 3’) 

ATF4 exon 1 forward GTGATAACCTGGCAGCTTCG 

ATF4 exon 1 reverse CAGGCAACGCAAACAAGG 

ATF4 exon 2 forward TCCAGGCTCTTCACGAAATC 

ATF4 exon 2 reverse CCATATGAAAAGGGCACACC 

ATF4 exon 3 forward TTCTGCCTCCCGAATATGAC 

ATF4 exon 3 reverse CAAGCACAAAGCACCTGACT 

 

Statistical analysis. All statistical analyses for p21-related experiments were performed using a 

two-tailed Student’s t test assuming homoscedasticity. Survival data were analyzed using the log-

rank (Mantel-Cox) test. In Oncomine, differential expression analysis is performed using an 

independent, two-sample, one-tailed Welch’s t-test. All other sarcoma experiments were analyzed 

using a two-tailed Welch’s t-test. A p-value less than 0.05 was considered statistically significant 

for all analyses. 
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