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Abstract— In this paper, we present a scheme for
constructing density functions for systems that are almost
globally asymptotically stable (i.e., systems for which
all trajectories converge to an equilibrium except for
a set of measure zero) based on Navigation Functions.
Although recently-proven converse theorems guarantee
the existence of density functions for such systems, results
are only existential and the construction of a density
function for almost globally asymptotically stable systems
remains a challenging task. We show that for a specific
class of dynamical systems that are defined based on
a navigation function, a density function can be easily
derived from the system’s underlying navigation function.

I. INTRODUCTION

For more than a century, Lyapunov’s method

has been the major tool used in stability analysis

of dynamical systems. Recently, however, a new

scheme was proposed by Rantzer [7], which can

be thought of as a “dual” to Lyapunov’s method.

Instead of checking for a positive definite ”energy-

like” function whose directional derivative along

the trajectories of the dynamical system is nega-

tive definite, in Rantzer’s approach, one searches

for a positive “density function” such that the

divergence of the vector field times the density

function is positive almost everywhere. This will

guarantee attractivity of the equilibrium for almost

all initial conditions. This is of course a weaker

result than global asymptotic stability. However, it

is a powerful tool for controller synthesis as well

as controller composition. This is due to the fact

that the synthesis condition for the almost global

stability criterion is convex. As a result, (at least
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in the case of polynomial vector fields) convex

optimization can be used to search for density

functions and the controller simultaneously [6].

Furthermore, the convexity argument allows us to

compose different controllers and be able to find

a density for the composed system [9].

Since the pioneering work of Rantzer, several

authors have been able to prove different results

analogous to the ones available for asymptotic sta-

bility. For example, Rantzer has shown that given a

Lyapunov function which proves global asymptotic

stability, one can construct a density function by

using the powers of the reciprocal of the Lyapunov

function. Also, Monzón [5] and Rantzer [8] have

been able to prove converse theorems for almost

global stability, similar to converse theorems that

guarantee existence of a Lyapunov function for

asymptotically stable systems. In [8], Rantzer has

proven that existence of density functions is a nec-

essary and sufficient condition for systems that are

almost globally stable. Unfortunately, similar to

the converse Lyapunov theorems, such results are

only existential and can not be used to construct

density functions. Some remarks on the structure

of density function candidates are discussed in

[1] where it is pointed out that the C1 continuity

requirements on the density functions by converse

theorems poses strong constraints in the case of

systems with negative divergence in the vicinity of

their saddle points. The purpose of this paper is to

show that in certain special cases, such construc-

tion is indeed possible. Specifically, we show that

for dynamical systems that are constructed using

Rimon Koditschek Navigation Functions [2], one

can readily construct a density function using the

Navigation Function.

Navigation functions have been proven ex-
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tremely useful for rigorously constructing paths

that navigate a kinematic robot in a spherical

workspace while avoiding spherical obstacles. The

constructive procedure utilizes Morse theory [4]

to construct an artificial potential function which

is zero at the goal state, and uniformly maximal

at the boundary of the workspace and obstacles.

Furthermore, all the critical points of this potential

are saddle points except for the goal state where

the critical point is stable. By constructing a gra-

dient flow based on this potential, it is possible

to guarantee that for almost all initial conditions

the trajectories converge to the goal state while

avoiding obstacles.

One can immediately notice parallel’s between

the density function and a Navigation Function.

This similarity leads us to ask whether it is possible

to construct a density function from a Navigation

function. We will show that the answer to this

question is indeed positive.

The rest of the paper is organized as follows:

In Section II we present some preliminary defini-

tions. Section III presents a review of Navigation

Functions while section IV reviews some results

on Dual Lyapunov Techniques. Our main result is

presented in section V. The paper concludes with

section VI.

II. PRELIMINARIES

A. Definitions

Let V : M → R be a smooth function and

M ⊂ Rn a smooth manifold with boundary. A

point p ∈ M is called a critical point of V

if ∇V (p) = 0 where ∇V �
[

∂V
∂x1

. . . ∂V
∂xn

]T

is the gradient of V . The divergence of V is

defined as div(V) ≡ ∇ · V � ∂V
∂x1

+ . . . + ∂V
∂xn

.

A critical point p is called non-degenerate iff the

matrix HV (p) �
[

∂2V
∂xi∂xj

]
is non-singular. The

matrix HV (·) is called the Hessian of V where

(x1, . . . , xn) is a coordinate system. The matrix

HV (·) is symmetric and the non-degeneracy of p
does not depend on the coordinate system [4]. A

smooth function V is called a Morse function if

all its critical points are non-degenerate. Function

V is called polar if it has a unique minimum in M
and admissible if it attains the unit value uniformly

across the boundary of M, that is ∂M = ϕ−1(1).

The boundary of a M is denoted by ∂M. Let the

function f(x) = [f1(x), . . . fn(x)] denote a vector

field. The matrix Jf (x) whose ij’th element is

[Jf (x)]ij = ∂fi

∂xj (x) is called the Jacobian of the

vector field f at x. Given any x0 ∈ R
n, we denote

by φt(x0) for t ≥ 0 the solution of ẋ(x) = f(x(t))
with x(0) = x0.

III. NAVIGATION FUNCTIONS

Navigation Functions (NFs) are a special cate-

gory of Potential Functions. Their negated gradient

vector field is attractive towards the goal configu-

ration and repulsive with respect to obstacles. Con-

sidering a trivial system described kinematically as

q̇ = u the basic idea behind navigation functions

is to use a control law of the form u = −∇ϕ(q)
where ϕ(q) is a navigation function, to drive the

system to its destination.
It has been shown (Koditschek and Rimon [2])

that strict global navigation (i.e. with a globally

attracting equilibrium state) is not possible and a

smooth vector field on any sphere world, which

has a unique attractor, must have at least as many

saddles as obstacles.
Formally a Navigation Function is defined as

follows:
Definition 1: [2] Let F ⊂ En be a compact

connected analytic manifold with boundary. A map

ϕ : F → [0, 1], is a navigation function if it is:

1) Analytic on F
2) Polar on F , with minimum at qd ∈ ◦

F
3) Morse on F
4) Admissible on F
For the intuition behind the definition of navi-

gation functions, the interested reader can refer to

[2].

IV. DUAL LYAPUNOV TECHNIQUES

The dual Lyapunov criterion for convergence

introduced by Rantzer, states that:
Theorem 1: [7] Given the equation ẋ =

f(x(t)), where f ∈ C1(Rn, Rn) and f(0) =
0, suppose there exists a non-negative ρ ∈
C1(Rn\ {0} , R) such that ρ(x)f(x)/ |x| is inte-

grable on {x ∈ R
n : |x| ≥ 1} and

[∇ · (fρ)] (x) > 0

for almost all x. Then, for almost all initial states

x(0) the trajectory x(t) exists for t ≥ 0 and tends
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to zero as t → ∞. Moreover, if the equilibrium

x = 0 is stable, then the conclusion remains valid

even if ρ takes negative values.

The converse result regarding the necessary and

sufficient conditions for almost global stability of

non-linear systems, is stated below:

Theorem 2: [8] Given f ∈ C2(Rn, Rn)), sup-

pose that the system ẋ = f(x) has a stable

equilibrium in x = 0 and no solutions with finite

escape time. Then, the following two conditions

are equivalent:

1) For almost all initial states x(0) the solution

x(t) tends to zero as t → ∞.

2) There exists a non-negative ρ ∈
C1(Rn\ {0} , R) which is integrable

outside a neighborhood of zero and such

that [∇ · (fρ)] (x) > 0 for almost all x.

V. NAVIGATION VECTOR FIELDS

We call Navigation Vector Field (NVF), a vector

field that has navigation like properties. Those

properties are captured in the following:

Definition 2: Let F ⊂ En be a compact

connected analytic manifold with boundary. The

smooth manifold map f : F → TF is a navigation
vector field if:

• The system ẋ = f is almost GAS

• f is transverse across ∂F
The above definition is motivated by the prop-

erties of navigation functions. Clearly the first re-

quirement establishes the almost everywhere con-

vergence of the system ẋ = f while the second

property establishes that the any trajectory will

be safely brought to the origin without collisions.

Our next step is to propose a construction of such

a vector field which we will call a “canonical”

navigation vector field

A. Construction

Let λmin,i(xs,i) to be the minimum eigenvalue

at the saddle point xs,i. The corresponding unit

eigenvector is ui. Let di(x) = ‖x − xs,i‖2
be the

squared metric of the distance of point x from

the saddle point i for i ∈ {1 . . . ns} where ns

is the number of saddle points. Let I denote the

n × n identity matrix where n is the workspace

dimension. We can now define the matrix Ui =
uiu

T
i + εI for i ∈ {1 . . . ns} where 0 < ε ≤ 1.

Since the matrix uiu
T
i is positive semidefinite, the

matrix Ui will be positive definite for positive

ε. Define Uns+1 = Uns+2 = I. A metric of the

distance from the destination configuration can be

encoded by using the navigation function, so we

can define dns+1 = ϕ and since the navigation

function ϕ(∂F) = 1 we can encode a metric of the

distance from the workspace boundary by denoting

dns+2 = 1 − ϕ. Define d̄j =
ns+2∏
i=1
i�=j

di Then Dϕ is

defined as

Dϕ = µ

ns+2∑
i=1

d̄i

d̄i + di

Ui (1)

where µ a positive constant. The function d̄i

d̄i+di

is an analytic switch which takes values between

zero and 1. The properties of the matrix Dϕ are

provided in the following:
Lemma 1: The matrix Dϕ(x) defined in eq. (1)

has the following properties

1) a) Dϕ(xs,i) = µUs,i + εµI
b) Dϕ(∂F) = µI
c) Dϕ(0) = µI

2) a) ∂
∂x

Dϕ(xs,i) = 0
b) ∂

∂x
Dϕ(0) = 0

3) Dϕ > 0
4) qT Dϕq ≤ 2(ns + 2)µ ‖q‖2 ,∀q ∈ R

n

Proof: Property 1: (a) By direct computation

we have that at the saddle point i, di(xs,i) =
0, d̄j = 0 for j �= i hence Dϕ(xs,i) = µUs,i + εI

(b) At the workspace boundary it holds that

ϕ(∂F) = 1 hence dns+2 = 0 and dj = 0,

j �= ns + 2 and Dϕ(∂F) = µI
(c) At the origin ϕ = 0 hence dns+1 = 0 and

dj = 0, j �= ns + 1 so Dϕ(0) = µI
Property 2: (a,b) For this property, observe that

d′
i(xs,i) = 0 for i ∈ {1 . . . ns} where f ′(x) = ∂f(x)

∂x
and d′

ns+1(0) = 0 since ∇ϕ(0) = 0. Also note that
∂
∂x

d̄i

d̄i+di
=

d̄id
′
i−d̄′idi

(d̄i+di)2
so at xs,i and at 0 it will hold

that di = d′
i = 0 and d̄j = d̄′

j = 0 for j �= i since

they will either contain di or d′
i, so Dϕ = 0 at

those locations.
Property 3: Since the matrix uiu

T
i is a matrix

with one eigenvalue equal to unit and the rest

eigenvalues zero it follows that the matrix Ui =
uiu

T
i + εI is positive definite for ε > 0. Since

the matrix Dϕ is the sum of positive definite
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matrices multiplied by positive scalars, it will still

be positive definite.

Property 4: First observe that 0 ≤ d̄i

d̄i+di
≤

1 Multiplying Dϕ left and right with the unit

vectors q̂ we get: q̂T Dϕq̂ = µ
ns+2∑
i=1

d̄i

d̄i+di
q̂T Uiq̂ ≤

µ
ns+2∑
i=1

q̂T Uiq̂ ≤ µ
ns+2∑
i=1

(1 + ε) ≤ 2(ns + 2)µ.

Multiplying both sides by ‖q‖2
we get the result:

qT Dϕq ≤ 2(ns + 2)µ ‖q‖2 , ∀q ∈ R
n

The main feature of the matrix Dϕ is that it

allows for local modifications of the vector field

in the vicinity of the saddle points. Without loss

of generality we assume in the following analysis

that the destination configuration of the navigation

function is the origin.

B. Main Result

The following is the main result of this paper

Proposition 1: Consider the system

ẋ = −Dϕ∇ϕ (2)

with Dϕ(x) constructed according to eq. (1). Then

there exists an a0 > 0 and an ε0 > 0 such that the

function

ρ = ϕ−a

is a density function for system (2) as long as a ≥
a0 and 0 < ε ≤ ε0.

Proof: Our analysis will be performed for

the two dimensional case but the results can be

readily extended to higher dimensions. The first

observation is that the proposed density function

is integrable outside a neighborhood of zero. By

construction ρ is positive definite. Setting f =
−Dϕ∇ϕ from the divergence criterion, we get:

∇ · (ρf) = ∇ρf + ρ∇ · (f). We have that ∇ρ =
− a

ϕa+1∇ϕ. Hence

∇ · (ρf) =
1

ϕa+1

(
a∇T ϕDϕ∇ϕ − ϕ∇ · (Dϕ∇ϕ)

)
(3)

Expanding the term ∇ · (Dϕ∇ϕ) we get: ∇ ·
(Dϕ∇ϕ) = ∇ ·

([
d11ϕx + d12ϕy

d21ϕx + d22ϕy

])
where the

notation fx and fxx denotes the first and second

derivatives of f wrt x and dij is the ij’th element

of Dϕ. For a navigation function all critical points

except the origin are saddle points [2]. At a saddle

point xs,i we have that ∇ϕ(xs,i) = 0 hence the

terms that contain derivatives of ϕ are zeroed out.

Also ϕxx + ϕyy = λmin + λmax since the trace

of the Hessian is invariant. Thus we have that:

∇ · (Dϕ∇ϕ) (xs,i) = uT
i Hϕ(xs,i)ui + εµ(λmin,i +

λmax,i) = µλmin,i + εµ(λmin,i + λmax,i)

By setting ε <
∣∣∣ λmin,i

λmin,i+λmax,i

∣∣∣ � ε0,i we get that

∇ · (Dϕ∇ϕ) (xs,i) < 0.

Since xs,i is a saddle point, the minimum eigen-

value of the Hessian is necessarily negative (exis-

tence of the unstable submanifold).

Hence we have that exactly on the saddle points

∇ · (ρf)(xs) = −λmin(xs)
ϕa(xs)

> 0

Close to the destination configuration we have

that both ∇ϕ(0) = 0 and ϕ(0) = 0 hence we need

to analyze both terms of eq. 3 to understand its

behavior. Noting that (see [2], Proof of Proposition

3.2) Hϕ(0) = 2β−1/k(0)I and from Lemma 1,

property 1, we have that Dϕ(0) = µI and from

property 2 that ∂
∂x

Dϕ(0) = 0, the Taylor expan-

sions of ϕ and Dϕ around the origin are as follows:

ϕ(x) = β−1/k(0) ‖x‖2 + O
(‖x‖3)

, Dϕ(x) = µI +

O
(‖x‖2)

. For the term ∇T ϕDϕ∇ϕ we have that

∇T ϕDϕ∇ϕ = 4µβ−2/k ‖x‖2+O(‖x‖3) and for the

term ϕ∇· (Dϕ∇ϕ) we have that: ϕ∇· (Dϕ∇ϕ) =
4µβ−2/k ‖x‖2 + O(‖x‖3) Hence from eq. (3) we

get that: ϕa+1∇ · (ρf) = (a − 1) 4µβ−2/k ‖x‖2 +
O(‖x‖3) So choosing a > 1 will render ∇·(ρf) >
0 in a neighborhood of zero.

We have until now established the positivity of

eq. (3) in the vicinity of critical points. To establish

the global positivity of eq. (3), since Dϕ is positive

definite (property 3 in Lemma 1), we require that:

a >
max
x∈F

ϕ∇·(Dϕ∇ϕ)

min
x∈{F−Bε(C)}

{∇T ϕDϕ∇ϕ‖ � a1, where C is the set

of critical points.

Since the workspace is bounded and the func-

tions Dϕ and ϕ are smooth, the existence of a

finite a1 is guaranteed. Let ε1 = min
i∈{1,...ns}

ε0,i. The

positivity of the divergence criterion of Theorem

1 is satisfied by choosing a0 = max {1, a1} and

ε0 = min {1, ε1} which completes the proof.

We can now state some properties of the pro-

posed vector field:

Proposition 2: The vector field

f = −Dϕ∇ϕ
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defined in Proposition 1 with 0 < ε < ε0, where

ε0 is defined in the proof of Proposition 1, is a

navigation vector field
Proof: By Proposition 1, choosing an a ≥ a0

the function ρ = ϕ−a is a density function for

(2). Application of the dual Lyapunov criterion

(Theorem 1) establishes the almost GAS property

of ẋ = f .
For the transversality property we have that by

property 1 of Lemma 1 it holds that Dϕ(∂F) = µI.
Hence eq. (2) becomes: ẋ = −µ∇ϕ since µ > 0
and by property 4 of Definition 1 we have that

the vector field on the workspace boundary is

transverse
Some additional properties of the vector field

−Dϕ∇ϕ, are provided by the following
Corollary 1: The navigation vector field es-

tablished in Proposition 2 assuming appropriate

choice of parameters, vanishes only at the critical

points of ϕ while its Jacobian is non-degenerate

over the critical set of ϕ
Proof: Since by property 3 of Lemma 1

Dϕ > 0 the vector field vanishes only when

∇ϕ = 0, which is true only at the set of critical

points of ϕ.

We have that Dϕ∇ϕ =

[
d11ϕx + d12ϕy

d21ϕx + d22ϕy

]
.

Taking the Jacobian at a critical point, since

ϕx = ϕy = 0 we have that: ∂
∂x

(Dϕ∇ϕ) =[
d11ϕxx + d12ϕxy d11ϕxy + d12ϕyy

d21ϕxx + d22ϕyx d21ϕxy + d22ϕyy

]
=

= DϕHϕ. We know by the Morse property

of ϕ that det(ϕ) �= 0 at every critical point. By

using the relation det(AB) = det(A) det(B) we

only need to prove that det(Dϕ) �= 0 at the critical

points. But from property 3 of Lemma 1 Dϕ > 0
hence the determinant is always positive and the

Jacobian is non-degenerate at the critical points.

Due to the similarities of −Dϕ∇ϕ with ∇ϕ we

will call the first a “canonical” navigation vector

field and the system that this vector field is applied

to a “canonical” navigation system.
A comparison of the convergence properties of

canonical navigation systems with navigation func-

tion based systems is provided by the following

result which will allow us to reason about the

navigation function based system by examining the

canonical system:

Proposition 3: Consider the system

ẋ = −K∇ϕ (4)

where K a positive gain. Then there exists a 0 <
µ ≤ µ0 such that for almost all the same initial

conditions x(4)(0) = x(2)(0) the trajectories of (4)

are bounded by the trajectories of (2) as follows:

ϕ
(
x(4)(t)

) ≤ ϕ
(
x(2)(t)

)
, ∀t ≥ 0 Moreover there

exist a spherical neighborhood B(0) around the

origin for which for all x(4)(0) = x(2)(0) ∈ B(0)
it holds that

∥∥x(4)(t)
∥∥ ≤ ∥∥x(2)(t)

∥∥ , ∀t ≥ 0
Proof: See Appendix A

VI. CONCLUSIONS

We have successfully derived a density function

for a navigation function based system. The den-

sity function is applicable to a transformed smooth

vector field which enjoys the navigation properties

of the original navigation function vector field.

Under several assumptions, the convergence results

derived on the transformed vector field are propa-

gated to the original vector field. This result will

enable the exploitation of several features of dual

Lyapunov techniques to robotic navigation. Initial

results from the application of this approach to

robotic navigation are reported in [3].

Further research includes finding density func-

tions that are directly applicable to the primary

navigation system.
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APPENDIX

A. Proof of Proposition 3

Proof: Taking the time derivative of ϕ across

the trajectories of system (4) we get:

ϕ̇(4) = −K
∥∥∇ϕ(4)

∥∥2
(5)

The time derivative of ϕ across the trajectories of

system (2) is ϕ̇(2) = −∇ϕT Dϕ∇ϕ ≥ −2(ns +
2)µ ‖∇ϕ‖2

by use of the property 4 of Lemma 1.

Setting µ = µ1
K

2(ns+2)
with 0 < µ1 < 1 we get

ϕ̇(2) > −µ1K
∥∥∇ϕ(2)

∥∥2
(6)

To prove the first part of the Proposition we need

to establish that ϕ̇(4)(x(4)(t)) ≤ ϕ̇(2)(x(2)(t)) for all

t ≥ 0 given that x(4)(0) = x(2)(0). By equations

(5) and (6) we have for t = 0 that

ϕ̇(2)(x(2)(0)) > −µ1ϕ̇(4)(x(4)(0)) (7)

By smoothness arguments, there exists a neigh-

borhood of Bε(x(2)(0)) around x(2)(0) such that

the inequality (7) still holds as long as the ini-

tial conditions are not exactly on the saddle

point. So in this neighborhood we have that

ϕ
(
x(4)(t)

) ≤ ϕ
(
x(2)(t)

)
, t ∈ [0, δ(ε)] for some

increasing function δ(·). By the selection of µ1

we have that ‖Dϕ∇ϕ‖ ≤ K ‖∇ϕ‖ hence we

can assert that x(4) will exit exit Bε(x(2)(0)) first.

Let gmax(a) = max
x∈ϕ−1(a)

‖∇ϕ(x)‖ and gmin(a) =

min
x∈{ϕ−1(a)−Bε(S)}

‖∇ϕ(x)‖ where S the set of saddle

points. Since the reachable set of initial condi-

tions, excluding the set Bε(x(2)(0)) is bounded

away from saddle points, gmin is non zero. Since

the workspace is bounded, and ϕ is smooth, the

maximum value of ∇ϕ is finite, hence the function

r(a) = gmin(a)
gmax(a)

is well defined everywhere except

at a = 0 where the limit exists and is lim
x→0

r(x) =
λmin(0)
λmax(0)

, where λmin and λmax are the minimum

and maximum eigenvalues of the Hessian of ϕ.

This can be verified by considering that the origin

is a non-degenerate critical point and hence a

quadratic one so for appropriate coordinates near

the origin ϕ(x) = λminx
2
1 + λmaxx

2
2 By setting

µ1 ≤ min
a∈(0,1]

r(a) � µ2 we have that whenever

ϕ(x(4)(t)) = ϕ(x(2)(t)) system (4) will have a

higher velocity than system (2), hence ϕ̇(x(4)(t)) <
ϕ̇(x(2)(t)). This means that as long as at some

t it is true that ϕ(x(4)(t)) < ϕ(x(2)(t)) then

it be true for all t′ ≥ t. But since x(4) will

exit first Bε(x(4)(0)) we have that ϕ
(
x(4)(t)

) ≤
ϕ

(
x(2)(t)

)
, ∀t ≥ 0.

Now let ρmax be the maximum radius of a disk

centered at the origin which has no intersections

with obstacles. Then this circle contains no saddle

points, since saddles occur between the workspace

boundary and the obstacles. Alternatively the ra-

dius ρmax can be fixed so that the circle is bounded

away from saddle points and obstacles. Moreover

we constrain the ρmax even more such that the Hes-

sian of ϕ in the disk defined by ρmax is everywhere

positive definite and its minimum eigenvalue is

greater than an λ0 > 0. Now since the Hessian

is positive definite, the level sets of ϕ inside the

circle are convex. Moreover the non-zero minimum

eigenvalue establishes that the intersections of the

level sets of ϕ with circles centered at the origin

will be performed at obtuse angles, hence the unit

vector of the gradient −∇̂ϕ will have a posi-

tive projection on the inside pointing unit vector

that is perpendicular to the circle’s circumference.

Denote the value of this projection by p(x). For

ρ ≤ ρmax define g′
max(ρ) = max

‖x‖=ρ
‖∇ϕ(x)‖ and

g′
min(ρ) = min

‖x‖=ρ
‖p(x)∇ϕ(x)‖. Obviously g′

max(ρ)

and g′
min(ρ) are non-zero except at the origin and

are bounded due to smoothness and compactness

arguments. Hence the function r′(ρ) =
g′min(ρ)

g′max(ρ)
is

well defined, finite and nonzero everywhere except

at a = 0 where the limit exists and is lim
x→0

r′(x) =
λmin(0)
λmax(0)

. By setting µ1 ≤ min
ρ∈(0,ρmax]

r′(ρ) � µ3 we

have that whenever
∥∥x(4)(t)

∥∥ =
∥∥x(2)(t)

∥∥ system

(4) will have a velocity whose projection on the

perpendicular of the circle’s circumference will

be higher than the velocity of system (2). This

means that as long as at some t it is true that∥∥x(4)(t))
∥∥ ≤ ∥∥(x(2)(t))

∥∥ then it will be true for

all t′ ≥ t. But since the initial conditions are the

same we have that
∥∥x(4)(t)

∥∥ ≤ ∥∥x(2)(t)
∥∥ , ∀t ≥ 0.

Choosing µ0 = K
2(ns+2)

min {1, µ2, µ3} com-

pletes the proof.
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