
A Causality Analysis Framework for
Component-based Real-time Systems?

Shaohui Wang1, Anaheed Ayoub1, BaekGyu Kim1,
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Abstract. We propose an approach to enhance the fault diagnosis in
black-box component-based systems, in which only events on component
interfaces are observable, and assume that causal dependencies between
component interface events within components are not known. For such
systems, we describe a causality analysis framework that helps us estab-
lish the causal relationship between component failures and system fail-
ures, given an observed system execution trace. The analysis is based on
a formalization of counterfactual reasoning, and applicable to real-time
systems. We illustrate the analysis with a case study from the medical
device domain.

1 Introduction

Component-based design in systems engineering enables independent develop-
ment of system components as well as their incremental construction and modi-
fication. The complexity of systems that are built with component-based design
renders it difficult to determine the culprit components of the system that are
responsible for the discovered system failure on a given system execution. We in
this paper aim to present a formal framework for the analysis of the causal rela-
tion between the faulty components and an observed system failure on a given
system execution.

While this problem is common to all safety-critical domains, our immediate
motivation comes from the domain of medical devices. In the United States,
the Food and Drug Administration (FDA) is responsible for assessing safety of
medical devices and regulating their use in health care. When a system failure
that harms a patient, known as an adverse event occurs, the hospital is required
to report it to the FDA-maintained database [9]. Diagnosis of the root cause
is crucial for the subsequent recovery and follow-up prevention measures. Such
diagnosis requires recording of system executions leading to the failure, as well
as methods for the efficient analysis of the recorded system trace.
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Existing work in fault diagnosis (e.g., [6,21,8,5,23,17] to name only a few)
aims to study (1) the discovery of existence of faults in the system, and (2) the
identification of the types and locations of the faults. A main assumption implic-
itly used in the work of fault diagnosis is that, the computed fault propagation
chain is the actual cause-effect chain [17].

We in this work consider systems whose components are black-boxes, where
only events on component interfaces are observable, and assume that causal
dependencies between component interface events within components are not
known. The presence of uncertainty in computing fault propagation chain in-
side components leads to an over-approximation of the fault propagation chain.
We have shown in our preliminary study [26] that, the precision of this over-
approximation can be improved by causality analysis, i.e., reasoning about whether
a fault inside a component is the cause for system failure.

Causality is commonly defined by the use of counterfactual reasoning [13,16,19].
Some recent work in the engineering domain has discussed several versions of
causality definitions for finite state automata [11] and temporal logics [4,14,15].
In this work, we extend our previous result in [26] to consider the case of real-time
systems where a system execution trace is a sequence of timestamped events,
and the system/component specifications are based on the timing of events.

Contributions. We present a framework for the causality analysis for compo-
nent-based systems. We identify the steps of the analysis and the input and out-
put for each step. We show with a case study from the medical device domain
how to use the proposed framework to establish the causal relationship between
component failures and the system failure. In particular, we extend our approach
presented in [26] to handle the causality analysis for real-time systems.

Paper Organization. We first use a simple example as an illustration to
define the causality analysis problem in Section 2. We then present a proposed
causality analysis framework for component-based systems in Section 3. In Sec-
tion 4, we present the main technique used for causality analysis. We show how
to apply the causality analysis to our case study in Section 5. We discuss some
of the assumptions of our approach in Section 6 and related work in Section 7,
and conclude in Section 8.

2 Motivating Example and Problem Statement

2.1 The Generic Patient-Controlled Analgesia Pump Case Study

The Generic Patient Controlled Analgesic (GPCA) infusion pump project [10]
aims at developing a reference software model for PCA infusion pump systems
with which formal techniques can be performed to ensure the GPCA safety
requirements [12]. We focus on the core safety requirements in this case study
to demonstrate our causality analysis framework:

A bolus dose shall be given when requested by the patient, and when
the drug reservoir is empty and an infusion session is in progress, an
alarm shall be issued and the pump motor should be stopped.



An infusion session is defined as the interval from the start of the pump
motor till its stop.
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Fig. 1. Data flow of the GPCA

We implemented software that cap-
tures the requirements on an Atmel
SAM7X-EK development board [2], run-
ning the FreeRTOS real-time operating
system [3]. The development board is in-
terfaced to the sensors and actuators of
the Baxter PCA infusion pump hardware.
Sensor signals from the bolus request but-
ton and the empty reservoir detection
switch are captured through periodic sam-
pling. Instructions for the pump motor
to start and stop are delivered via pulse
width modulation. Alarms are signaled
with flashing LEDs in our experiments.

The FreeRTOS in our case study runs
a priority-based, preemptive scheduler.
Five tasks, each implemented with an in-
dependent C function, communicate with each other by sending and receiving
messages in three message queues, Q1, Q2, and Q3. Some tasks have individual
local variables, which we deem as unknown to the analysis due to our black-box
assumption, but they do not share global variables in our implementation. In
this case study, we view each task as a component; the terms task and component
are used interchangeably.

The five tasks are summarized in Table 1. The Priority column indicates
the task priorities in addition to the system idle task’s priority of FreeRTOS.
The left (right, resp.) arrow means that the corresponding task reads (sends,
resp.) messages from (to, resp.) the queue. An event in the system is a single
action performed by a task. We attach each event with a timestamp, denoted as
a pair (e, t), where e is the event and t ∈ R≥0 is the timestamp. For example,
(alarm, 9760) represents an event where the AC task has raised an alarm, at
time 9760 ms since the system starts execution. The events we recorded for this
case study is summarized in Table 2. We assume it is known which task produces
which event. In particular, we assume we know whether an instance of the stop
event is produced by AC or PM .

Task Name Abbreviation Period Priority Queues Accessed

PumpMotorCtr PM 300 ms +6 ← Q2

PlatformIndependent PI Aperiodic +5 ← Q1, → Q2, Q3

BolusReq BR 500 ms +4 → Q1

AlarmCtr AC 500 ms +3 ← Q3

EmptyRsvDetection ER 1000 ms +2 ← Q3

Table 1. Tasks in FreeRTOS Implementation for GPCA



Event Task Description

start PM The pump motor has been started.

stop PM or AC The pump motor has been stopped.

alarm AC The alarm has been fired.

enq(q, m) BR, ER, or PI Messagem has been put to queue q.

deq(q, m) PI, PM , or AC Messagem has been retrieved from queue q.

Table 2. Events Recorded in GPCA Controller

The data flow of the events in the system is depicted in Figure 1. The Bo-
lusReq (BR) and EmptyRsvDetection (ER) tasks periodically check if there are
patient bolus request or empty/non-empty reservoir signals from sensors, respec-
tively; if there are, they put the messages to Q1. We do not consider faults in
these two tasks in our analysis. The aperiodic PlatformIndependent (PI) task is
triggered whenever there is a message sent to Q1. It moves the bolus request and
empty/non-empty reservoir messages to Q2 and Q3, respectively. The PumpMo-
torCtr (PM) task periodically checks if there are bolus request messages in Q2;
if there are, it will start the infusion session by keeping the pump motor running
for 30 periods (i.e., 9 seconds for each patient bolus request). The AlarmCtr
(AC) task periodically checks if there are empty reservoir messages in Q3; if
there are, it will raise an alarm and stop the pump motor. Each task has a
response time of 10 ms after a message is received. We assume here that the
queues in the system are reliable, i.e., no messages are lost/duplicated/altered
in a queue.

The task behaviors described above reflect our black-box assumption: the two
data flow paths shown in Figure 1 both pass through queue Q1 and the task PI,
yet we do not know whether there is fault propagation from the EMPTY RSV
sensor to the PM task, due to the assumption that PI is a black-box to the
analysis. (The dashed links inside PI in Figure 1 indicate unknown data flows.)
Essentially, this is what we intend to infer from the causality analysis.

With the recorded events, we express the GPCA safety requirement as the
following Metric Interval Temporal Logic (MITL) [1] property:

ϕS := �(0,∞)[enq(Q1, bolus)→ ♦(0,650)[start∧
[�(0,9000)¬enq(Q1, empty) ∧ ♦(8990,9010)stop]∨
[�(0,9000)[enq(Q1,empty)→ [♦(0,1050)alarm ∧ ♦(0,1050)stop]]]]].

(1)

The values in the formula are obtained from the system implementation. For
example, the value 650, indicating the maximal allowed delay (in milliseconds)
from the instance when a bolus is put to Q1 to the instance when the start
message is delivered by PM , is due to that (a) the aperiodic task PI has a worst
case delay of 10 ms to retrieve the message bolus from Q1, plus a possible 10 ms
delay due to preemption by PM ; (b) similarly a 20 ms worst case delay for PI
to move the bolus message to Q2; (c) since PM has a period of 300 ms, in
the worst case, it takes up to two periods of PM to read the message once it is
enqueued in Q2 (see Figure 3 in Subsection 5.2 for details), and (d) the worst
case delay of the PM task is 10 ms. The rest of the time periods are analogously
specified. It is required that the behaviors of the tasks constitute a subset of the



behaviors specified by the system constraint ϕS , which is formally stated later
in Hypothesis 1 in Subsection 2.2.

A system execution is captured by collecting the events with their timestamps
by instrumenting the GPCA implementation. We assume in this paper that
recording is perfect, i.e., no events in the system are missing on a trace, and
each event on a trace actually happened at its recorded timestamp.

A trace is a set of timestamped events. For example, {(enq(Q1, bolus),
8500), (deq(Q1, bolus), 8502), (enq(Q3, empty), 8503), (deq(Q3, empty),
8701), (alarm, 9760), (stop, 9760)} is a trace with six events observed. The
events are naturally ordered by their corresponding timestamps. On this trace,
PI mistakenly put the bolus request message to the wrong queue with the wrong
message. AC reads the empty reservoir message but fails to alarm and stop
within its deadline. The system property ϕS is violated since there is no bolus
dose delivered to the patient after the bolus request event enq(Q1, bolus) (i.e.,
Equation (1)). So two faulty tasks, PM and AC, may have caused the system
property violation.

In the causality analysis problem, we would like to investigate which subset
of the faulty tasks, {PI}, {AC}, or {PI,AC}, caused the system property vio-
lation. We leave the details of the analysis to Section 5 but only show the result
here: both {PI} and {PI,AC} satisfy the counterfactual test for causality, so we
report the minimal subset {PI} as the cause for the system property violation.

2.2 The Causality Analysis Problem Definition

In this subsection, we abstract the problem illustrated by the example in Sub-
section 2.1 and provide the formal definition of the causality analysis problem.

Definition 1 (Trace). A trace of length n is a set of n timestamped events,
denoted {(e1, t1), . . . , (en, tn)}, such that t1 ≤ · · · ≤ tn.

A trace only contains a finite number of events. For time beyond tn, no events
happen in the system. We use logical formula to express component/system
behaviors. It is assumed that given a trace Tr, the semantics of the chosen logic
is two-valued: for any formula φ, either Tr |= φ or Tr 6|= φ. In this paper, MITL
and first order logic (FOL) are used for component/system specifications.

Definition 2 (Constraint). Given a set E of events, a constraint is a logical
formula defined on E. In details, for MITL, E is the set of atomic propositions;
for an event e ∈ E, (Tr, t) |= e if and only if (e, t) ∈ Tr. For FOL, E is the set
of logical constants.

Definition 3 (Component). A component C = 〈IC , OC , ϕC〉 is a tuple where
the IC and OC are its set of input and output, respectively, such that IC∩OC = ∅,
and ϕC is a constraint defined on IC ∪OC .

The notion of the component input/output is general. In the GPCA case
study, the input and output for each component are the events it could receive
and send through the queues, respectively; in [26], the input and output are
values passing through component data ports.



Definition 4 (System Definition). A system definition S = 〈C1, . . . , CJ〉 con-
sists of a set of components.

The set of all events in the system is defined by ES =
⋃J
j=1 ICj

∪OCj
, where

J is the number of components in the system.

Definition 5 (System Property). A system property ϕS for system definition
S is a constraint defined on the set ES of system events.

Hypothesis 1. There must be at least one component violation for a system
property violation, or equivalently,

∧J
j=1 ϕCj

→ ϕS.

Hypothesis 1 is the basis for the causality analysis. A violation to Hypothe-
sis 1 implies a flawed system design, which is out of the scope of this paper.

Definition 6 (Violation). We say that a property ϕ is violated on trace Tr if
and only if Tr 6|= ϕ. A system property violation is called a system failure. A
component property violation is called a component failure; in such cases, the
component is called faulty.

Definition 7 (Faulty Components). Given an observed trace Tr and a system
definition S on which a system property ϕS is violated, we define

F = {C | C is a component in S and Tr 6|= ϕC} (2)

to be the set of faulty components for the violation of ϕS on Tr.

Consider a suspected subset C ⊆ F of faulty components. Replacing every
component in C with a correct one would result in an alternative system S′. Let

TRC = {tr | tr is a trace for S′, and

tr has the same system input as observed on Tr}
(3)

be the set of possible system traces for S′ when rerunning the system S′ with the
same system input as observed on Tr. The formal characterization of TRC is a
case-by-case analysis, for which we show with the GPCA case study in Section 5.
Based on TRC , several notions of causes can be defined.

Definition 8 (Contributory Cause [22]). A (non-empty) suspected subset C ⊆
F of faulty components is a contributory cause for the violation of a system
property ϕS on an observed trace Tr if and only if ∃tr ∈ TRC .tr |= ϕS.

Definition 9 (Main Contributory Cause/Necessary Cause [26,11]). A (non-
empty) suspected subset C ⊆ F of faulty components is a main contributory
cause for the violation of a system property ϕS on an observed trace Tr if and
only if ∀tr ∈ TRC .tr |= ϕS.

Definitions 8 and 9 bound the two extremes of defining necessary cause. Def-
inition 8 requires there exists at least one alternative system execution trace on
which the system failure disappears while Definition 9 requires so on all alterna-
tive system execution traces. In this work, we do not fix a causality definition,
but take it as a parameter of the causality analysis problem.

Definition 10 (Causality Analysis Problem Definition). Given a system defi-
nition S, a system property ϕS, and a trace Tr such that Tr 6|= ϕS, let F be



as defined in Equation (2). The causality analysis problem with respect to a
causality definition CD, is to identify the set

Culprit = {C ∈ 2F | C is a cause according to causality definition CD,

and no proper subset of C satisfies CD}.
(4)

We call the tuple 〈S, ϕS , T r, CD〉 an instance of the causality analysis prob-
lem. It can be seen from the causality definitions that, the reconstruction of the
set TRC of alternative system execution traces is at the heart of the causality
analysis. In [26] we have proposed an approach based on the transformation of
a causality analysis problem instance into an unsatisfiability checking problem
instance. In this paper we extend the technique to handle real-time systems
where a system execution trace is a set of events ordered by their timestamps,
and the system/component specifications are based on both the occurrences and
timestamps of events. In the following, we first show an overview of the causality
analysis framework in Section 3, and detail the techniques for causality analysis
in Section 4 with a case study in Section 5.

3 The Causality Analysis Framework

In a bird’s-eye view, the causality analysis process is conceptually divided into
four steps, as shown in Figure 2. The shaded ovals System Definition S, System
Property ϕS , observed Trace Tr with system failure, and Causality Definition CD
are the input to the analysis; the output is a set Culprit of Minimal Culprits
for the violation of ϕS on trace Tr with respect to the causality definition CD.
The intermediate artifacts, shown as unshaded ovals, and the four steps of the
analysis, shown as solid boxes, are discussed below.

Loop for each 
non-empty 

element in 2F

Minimal 
Culprits

Powerset 2F of 
Faulty Components
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Set of Traces

Set of 
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 & Collecting Causes
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Trace with 
System Failure

System 
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System 
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Causality 
Definition

Causality Analysis Framework Overview

Fig. 2. The Causality Analysis Framework Overview

Step 1. Offline Analysis & Powerset Construction. In this step, a sanity check
of whether a system property violation occurs is first performed. If not,



then there is no need for the causality analysis. Otherwise, we check
Hypothesis 1 defined in Subsection 2.2. When Hypothesis 1 holds, we
gather the set F of faulty components for the violation of ϕS on trace
Tr, and construct the powerset 2F of F .

Step 2. Trace Reconstruction. The trace reconstruction for the causality analysis
is based on the system specification, and parametric to the suspected
subset C ⊆ F of faulty components and the causality definition. This
step is at the core of the causality analysis, and we will discuss it in
Section 4.

Step 3. Causality Analysis & Collecting Causes. For each suspected subset C ⊆
F of faulty components, the causality analysis checks whether C is a
culprit according to the chosen causality definition CD. If yes, it is
collected for the subsequent culprit minimization; otherwise C is not a
cause for the violation of system property ϕS according to CD.

Step 4. Culprit Minimization. The last step of causality analysis is to check
the minimality of each collected culprit, according to Definition 4. Non-
minimal culprits are pruned for precise results of causality analysis.

4 Trace Reconstruction and Causality Analysis

The trace reconstruction step in the causality analysis is to identify the set TRC
of traces when the suspected subset C of faulty tasks in system S are replaced
with correct ones and the system is rerun with the same input as observed on
trace Tr. The main idea in obtaining TRC is to specify the logical constraint
ψ that exactly the traces in TRC satisfy. The constraint ψ is composed based
on (1) task constraints for correct tasks, (2) tasks constraints for faulty tasks,
(3) constraints on values observed on trace Tr, and (4) trace reconstruction rules.
With the constructed logical constraint ψ, the problem of checking of causality
based on Definition 8 (Definition 9, resp.) can be transformed into the problem
of satisfiability (unsatisfiability, resp.) checking, for which state-of-the-art solvers
exist [26].

In this section, we show the extension of the work presented in [26] to the case
where real-time systems are considered, i.e., traces are sequences of timestamped
events as in Definition 1, and system/task specifications are given as logical
constraints in either temporal logics or first order logic on events.

Given a causality analysis problem instance 〈S, ϕS , T r, CD〉, Step 1 of the
causality analysis framework is to identify the set F of faulty tasks according to
Definition 2. In Step 2, for each non-empty suspected subset C ⊆ F , a set TRC
of system traces is reconstructed, given that the faulty tasks in C are replaced
with good ones and the system S is rerun with the same input events. Each
task’s behavior in the system is determined by the trace reconstruction rules,
which indicate what constraint must be put on each task Cj in S, according to
whether the task is (1) non-faulty, (2) faulty but not suspected, and (3) faulty
and suspected. Informally, the three rules are summarized as follows.



(R1) If Cj 6∈ F , then it is deemed as a good task. In the trace reconstruction,
Cj ’s behavior is constrained by ϕCj

, i.e., a correct task’s constraint.
(R2) If Cj ∈ F \ C, i.e., Cj is faulty but not in the consideration of being

suspected, then all output events produced by Cj on trace Tr are preserved
on any reconstructed traces.

(R3) If Cj ∈ C ⊆ F , then Cj is a faulty task that is replaced by a good one. In
this case, the trace reconstruction “removes” the events that should not
have occurred on the trace Tr, and “adds” those which must be produced
by Cj .

The logical constraint to express that an event e is observed at time t on the
trace Tr is expressed as

onTr(e, t) := ∃(e′, t′) ∈ Tr.e′ = e ∧ t′ = t. (5)

The constraint that all events task Cj produced on Tr are preserved on
reconstructed traces is specified with

κCj
:= ∀e ∈ OCj

.∀t ∈ R≥0.[onTr(e, t)→ ∃(e′, t′).e′ = e ∧ t′ = t]. (6)

The constraint κCj means that, any execution trace that satisfies κCj must
have an event e′ which is the same as the e delivered at time t′ = t, for any
timestamped event (e, t) on Tr.

The task constraint of “removing” events from a trace in the trace reconstruc-
tion is done by adding more constraints to rule out traces where the events that
have to be removed occur. An event e must be removed in the trace reconstruc-
tion if (1) e is produced by a suspected faulty task Cj , and (2) there is no other
event on the trace that triggers the event e. The task constraint of “adding”
events that a faulty task Cj must have produced is specified by augmenting the
task constraint ϕCj

to specify the allowed time ranges for output events from
Cj . The definitions of the “removing” and “adding” constraints are application
dependent. We defer the details to Subsection 5.3, and use ρCj and αCj for now
to represent the two constraints for “removing” and “adding”, respectively.

The conditions for the rules (R1)–(R3) are defined as

ξCj ,1 := ¬in(Cj ,F). (7)

ξCj ,2 := in(Cj ,F) ∧ ¬in(Cj , C). (8)

ξCj ,3 := ¬in(Cj , C). (9)

Here the in is the set membership relation defined as in(Cj ,F) :=
∨
C∈F C = Cj .

The task constraint for Cj in the trace reconstruction is then specified as

ψCj
:=


ϕCj , if ξCj ,1,

κCj
, if ξCj ,2,

αCj
∧ ρCj

, if ξCj ,3.

(10)

Finally, it is required that exactly the set of observed system input events on
Tr occur in reconstructed traces. The set I of possible system input events is ap-
plication dependent. For example, for the GPCA case study, I = {enq(Q1, bolus),



enq(Q1, empty), enq(Q1, non-empty)}. This constraint is defined as

ι := ∀e ∈ I.∀t ∈ R≥0.[onTr(e, t)↔ ∃!(e′, t′).e′ = e ∧ t′ = t]. (11)

Here, the ∃! quantifier means “there exists one and only one.” The behavior of
the reconstructed system is then specified with the formula

ψ := ι ∧ ψC1 ∧ . . . ψCJ
. (12)

Proposition 1. The formula ψ defined in Equation (12) defines the set TRC
of the possible system behaviors with the same input as observed on Tr, after
suspected tasks in C are replaced with correct ones. That is, TRC = {tr | tr |= ψ}.

The construction in this section is a combination of Steps 2 and 3 in the
causality analysis framework (cf. Figure 2) for a given suspected faulty subset
C. The formula ψ in Equation (12) characterizes the set of reconstructed traces,
whereas the satisfiability (unsatisfiability, resp.) result corresponds to whether
the subset C is a cause with respect to Definition 8 (Definition 9, resp.). Due to
Proposition 1, to check that the subset C is a cause according to Definition 8,
it suffices to check that ψ ∧ ϕS is satisfiable. To check that the subset C is a
cause according to Definition 9, it suffices to check that ψ∧¬ϕS is unsatisfiable.
State-of-the-art SAT/SMT solvers, e.g., Z3 [7], can be leveraged in solving the
causality analysis problem, as shown in our previous work [26].

5 The GPCA Case Study

ID Task Event Time (ms)

1 BR enq(Q1, bolus) 8500

2 PI deq(Q1, bolus) 8502

3 PI enq(Q2, bolus) 8503

4 PM deq(Q2, bolus) 8701

5 PM start 8702

6 ER enq(Q1, empty) 17000

7 PI deq(Q1, empty) 17004

8 PI enq(Q3, empty) 17005

9 AC deq(Q3, empty) 17007

10 AC alarm 17008

11 AC stop 17008

12 PM stop 17701

Table 3. A Sample Trace for GPCA

In this section, we use the GPCA case
study to illustrate how the causality
analysis problem is solved. We first
show a few informal examples, then
the formal definitions of the GPCA
system, and finally the analysis using
the causality analysis framework and
trace reconstruction techniques from
Sections 3 and 4.

A sample trace we will analyze
is shown in Table 3. The ID column
is added for the convenience of ref-
erence. The Task column indicates
which task has produced the corre-
sponding event. The Time column is
the timestamp for the corresponding
event. On this trace, a bolus request is detected at 8500 ms, and an infusion
session starts at 8702 ms. An empty reservoir is detected at 17000 ms, and an
alarm is raised at 17008 ms, together with a stop event from AC which ends the
infusion session. The stop event from PM does not affect the pump operation
in this case.



5.1 Informal Causality Analysis Examples

It can be easily verified that the trace shown in Table 3 satisfies the GPCA
safety property in Equation (1). Now we show the causality analyses via a series
of examples, based on variants of the trace observed in Table 3.

Example 1 (Faulty tasks, no system failure). Given a trace as observed in Ta-
ble 3, with Event 12 missing. In this case, PM is faulty by not sending the stop
event. However the system property is not violated since the AC task detects
an empty reservoir message and alarms and stops the pump motor.

According to Step 1 of the causality analysis framework, there is no need for
subsequent causality analysis.

Example 2 (Single faulty task caused system failure). Consider a trace where
only Event 1 and Event 2 in Table 3 are observed. In this case, the PI task
fails to move the bolus request event from Q1 to Q2, read by the PM task.
Subsequently the PM task does not perform any actions, since it does not know
there is a bolus request. In this case the PI task is faulty while PM is not.

Example 3 (Multiple faulty tasks jointly caused system failure). Consider the
trace in Table 3 with Events 3–5 and Events 10–12 missing. In this case, the PI
task is faulty by not moving the bolus request message to Q2. The AC task is
faulty by not delivering the alarm and stop events. However, replacing neither
the PI nor the AC task individually could make the system failure disappear.
Both PI and AC must be replaced with good ones for the system failure to
disappear.

Example 4 (Multiple faulty tasks, but only one caused system failure). In the
example in Subsection 2.1, a trace with six events {(enq(Q1, bolus), 8500),
(deq(Q1, bolus), 8502), (enq(Q3, empty), 8503), (deq(Q3, empty), 8701),
(alarm, 9760), (stop, 9760)} is shown. In this example, both PI and AC are
faulty. However AC’s faulty behavior would not have been triggered in the first
place if PI were not faulty, and thus should not be considered as a cause for
system failure. In the meanwhile, although it is the PM task’s job to send the
start event, it should not be the cause of system failure in this case either since
it is not a faulty task: it does not receive the bolus request message in the first
place, due to PI’s fault.

Example 5 (Multiple faulty tasks, but only one caused system property violation).
Consider the trace in Table 3 with only Events 1–9 observed. In this case, both
the AC and the PM tasks are faulty by not delivering the corresponding events.
In this case, if the AC task were not faulty, the system failure would disappear.

Examples 4 and 5 show the improvement in precision that we have achieved
using causality analysis: not all of the identified faulty tasks are the culprits for
the system failure. By ruling out the tasks which are not culprits, the subsequent
analysis for the system failure can be focused on the identified minimal culprits.



5.2 Formal Definitions for GPCA System

We first define constraints ϕAC , ϕPI , and ϕPM for the three tasks that can fail.
We do not consider faults in BR and ER in this paper. The constraint for each
task consists of two parts:
(1) what would a task do when it reads a message from a queue, and
(2) when would a task read a message if there is one in the corresponding queue.

For Part (1), the AC task’s constraint is specified with

τAC := ∀(e, t).[e = deq(Q3, empty)→∃!(e′, t′).[e′ = stop ∧ t′ ≤ t+ 10] ∧

∃!(e′′, t′′).[e′′ = alarm ∧ t′′ ≤ t+ 10]].
(13)

It is interpreted as, as long as there is a deq(Q3, empty) event on the trace,
there must be a stop event within 10 ms and an alarm event within 10 ms.
Similarly, the PI task’s constraint is specified with

τPI := ∀(e, t).[[e = deq(Q1,bolus)→ ∃!(e′, t′).[e′ = enq(Q2, bolus) ∧ t′ ≤ t+ 10]] ∧

[e = deq(Q1, empty)→ ∃!(e′, t′).[e′ = enq(Q3, empty) ∧ t′ ≤ t+ 10]] ∧

[e = deq(Q1, non-empty)→ ∃!(e′, t′).[e′ = enq(Q3, non-empty) ∧ t′ ≤ t+ 10]]].

(14)

The PM task’s constraint is specified with

τPM := ∀(e, t).[e = deq(Q2,bolus)→ ∃!(e′, t′).[e′ = start ∧ t′ ≤ t+ 10 ∧

∃!(e′′, t′′).[e′′ = stop ∧ 8990 ≤ t′′ − t′ ≤ 9010]]].
(15)

For Part (2), the aperiodic task PI and the two periodic tasks PM and AC
have different behaviors when a message the task should read is present in the
corresponding queue. In the GPCA implementation, PI is set to preempt lower
priority tasks to process the message and put it to the corresponding queues.
This behavior is specified with the constraint γPI in Equation (16). The value
20 ms is due to the possible preemption of PI by the even higher priority PM .

γPI := ∀(e, t).[[e = enq(Q1,bolus)→ ∃!(e′, t′).[e′ = deq(Q1, bolus) ∧ t′ ≤ t+ 20]] ∧

[e = enq(Q1, empty)→ ∃!(e′, t′).[e′ = deq(Q1, empty) ∧ t′ ≤ t+ 20]] ∧

[e = enq(Q1, non-empty)→ ∃!(e′, t′).[e′ = deq(Q1, non-empty) ∧ t′ ≤ t+ 20]]].

(16)

For periodic tasks AC and PM , when a message is present in a queue, it
may be processed nearly two periods later as illustrated in Figure 3 (for AC).
AC is dispatched at the beginning of each period, but can only execute in boxed
durations where the FreeRTOS schedules AC by switching it in and out. Sup-
pose there is a check function in the AC’s implementation to check if there is
an empty message in Q3. It may happen that the check function is executed at
the very beginning of one period, slightly before the message empty is put to
Q3 (in which case AC does not know there is a message empty during the rest
of the period); in the following period, the check function may be executed at
the very end of the period.

This scenario is the worst case for a periodic task to detect a message in a
queue. Therefore, the constraints for AC and PM are respectively:

γAC := ∀(e, t).[[e = enq(Q3, empty)→ ∃!(e′, t′).[e′ = deq(Q3, empty) ∧ t′ < t+ 1000]] ∧

[e = enq(Q3, non-empty)→ ∃!(e′, t′).[e′ = deq(Q3, non-empty) ∧ t′ < t+ 1000]]].
(17)
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γPM := ∀(e, t).[e = enq(Q2, bolus)→ ∃!(e′, t′).[e′ = deq(Q2, bolus) ∧ t′ < t+ 600]]. (18)

Notice that we have asymmetric treatments on the response time requirements
for Part (1) and Part (2) of a task’s constraint. For Part (1), a hard response
time of 10 ms is imposed; for Part (2), the task scheduling in FreeRTOS is
considered. This is due to the view that for Part (1), a task knows that a message
has arrived and is thus required to deliver the corresponding event within the
imposed response time; Part (2) of the constraint reflects the fact that a task’s
worst case delay to detect a message in a queue.

With Equations (13)–(18), the complete task constraints are defined as:

ϕAC := τAC ∧ γAC , (19)

ϕPI := τPI ∧ γPI , (20)

ϕPM := τPM ∧ γPM . (21)

The GPCA system is then defined as S = 〈BR,ER,AC,PI, PM〉. For each task
C, its sets IC and OC of input/output events, as well as its constraint ϕC , are
shown in Table 4.

Task C Input IC Output OC ϕC

BR {enq(Q1, bolus)} True
ER {enq(Q1, empty), enq(Q1, non-empty)} True
AC {deq(Q3, empty), deq(Q3, non-empty)} {alarm, stop} ϕAC (19)

PI {deq(Q1, *)} {enq(Q2, bolus),
ϕPI (20)

enq(Q3, empty), enq(Q3, non-empty)}
PM {deq(Q2, bolus)} {start, stop} ϕPM (21)

Table 4. Tasks in GPCA Case Study

5.3 Formal Causality Analysis

An instance of the causality analysis problem is defined by a tuple 〈S, ϕS , T r, CD〉.
Now we show the application of the causality analysis framework and trace re-
construction technique to solve the causality analysis problem in Example 4.

The system property is defined as in Equation (1). The trace is Tr =
{(enq(Q1, bolus), 8500), (deq(Q1, bolus), 8502), (enq(Q3, empty), 8503),
(deq(Q3, empty), 8701), (alarm, 9760), (stop, 9760)}. The causality defini-
tion CD is the main contributory cause in Definition 9. In Step 1 of the causal-
ity analysis frame work, the set F = {PI,AC} of faulty tasks is identified. In



Step 2, for each non-empty subset C ⊆ F , the formula ψ in Equation (12) is con-
structed according to the Equations (5) through (12) and information from S,
Tr, C and F . We now discuss the construction for the two application dependent
constraints ρCj and αCj not discussed in Section 4.
Defining “Removing” and “Adding” Constraints. As discussed in Sec-
tion 4, one condition for an event to be removed from a trace is that it is not
triggered by any other events. The trigger relation between timestamped input
and output for a task is derived from the task’s constraint. For example, the
constraint for AC specifies that the stop event and alarm event must be de-
livered within 10 ms once the enq(Q3, empty) event is read from queue Q3,
as defined in Equation (13). In this case, the trigger relation is expressed as

trigAC := {((deq(Q3, empty), t), (stop, t′)) | for all t′ ≤ t+ 10}
∪ {((deq(Q3, empty), t), (alarm, t′)) | for all t′ ≤ t+ 10}.

(22)

Similarly, the trigger relations for PI and PM are defined as follows.

trigPI := {((deq(Q1, bolus), t), (enq(Q2, bolus), t′)) | ∀t′ ≤ t+ 10}
∪ {((deq(Q1, empty), t), (enq(Q3, empty), t′)) | ∀t′ ≤ t+ 10}
∪ {((deq(Q1, non-empty), t), (enq(Q3, non-empty), t′)) | ∀t′ ≤ t+ 10}.

(23)

trigPM := {((deq(Q3, empty), t), (start, t′)) | ∀t′ ≤ t+ 10}. (24)

The constraint for traces where the events produced by a faulty task Cj are
removed is specified with

ρCj := ∀e ∈ OCj .∀t ∈ R≥0.[[¬∃(e′, t′).((e′, t′), (e, t)) ∈ trigCj ]→
¬∃(e′′, t′′).e′′ = t ∧ t′′ = t].

(25)

Informally, this constraint means that if there is no trigger for event e at time
t, then it should not occur on any reconstructed traces.

For “adding” events to a trace, a task must only deliver output events when it
is activated by the FreeRTOS scheduler. This piece of information is unavailable
to offline analysis. We assume that the FreeRTOS scheduler would schedule each
task the same as on the observed trace Tr. The instance at which an event can
be produced on a reconstructed trace is then limited both by the task response
time and its activation time. For example, if AC reads the empty message at
time 8701 ms, and it is observed on Tr that AC is active in time ranges [8700 ms,
8703 ms], [8709 ms, 8712 ms], etc., then in addition to the 10 ms deadline to
deliver the events alarm and stop in the range [8701 ms, 8711 ms], AC can
only produce the events during the ranges of [8701 ms, 8703 ms] or [8709 ms,
8711 ms]. The constraint for this requirement is obtained by augmenting the task
constraint with the time information. For example, for AC, the specification is

αAC := γAC ∧ ∀(e, t).[e = deq(Q3, empty)→ ∃(e1i , t
1
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(26)



The third and fourth lines of Equation (26) constraint the pairs (e1i , e
1
o) and

(e2i , e
2
o) to bound single time chunks of execution for task AC (i.e., a single box

in Figure 3). The constraint αAC means, if an event e = deq(Q3, empty) at
time t is on the reconstructed trace, then its corresponding events (stop and
alarm) must be produced by AC within the 10 ms deadline, as well as when
AC is active. αPM and αPI can be similarly defined.
Causality Analysis Result. For the constructed constraint ψ for each case, we
have manually proved that ψ∧¬ϕS is unsatisfiable for the cases when C = {PI}
or C = {PI,AC}, while it is satisfiable for C = {AC}. This result shows that
both {PI} and {PI,AC} are culprits, according to the main contributory cause
definition (Definition 9). These two subsets are collected as the set of culprits
in Step 3 of the causality analysis framework. In Step 4, the two culprits {PI}
and {PI,AC} are minimized to be {PI} only. This result is consistent with our
intuition in that it is the PI task’s fault in the first place to put a bogus empty
reservoir message to Q3, which triggers AC’s fault.

6 Discussion

FreeRTOS Scheduling in Trace Reconstruction. When defining the “adding”
constraint, we have assumed that the FreeRTOS scheduler would schedule all
the tasks the same as on the observed trace during trace reconstruction. This
assumption must be made due to the unavailability of FreeRTOS scheduling in-
formation should the system be rerun. Without this assumption, the analysis
would have to include the FreeRTOS scheduler as part of the system and model
it (or even the entire FreeRTOS operating system) as a component too. This is
by itself a challenging task and is beyond the scope of this paper.
Causality Analysis vs. Fault Diagnosis. Unlike many approaches to fault
diagnosis, we address the case of black-box components [25], in which internal
flows of information between component input and output are unknown. In this
case, techniques based on computing fault propagation paths lead to an over-
approximation of cause-effect chains. The causality analysis we proposed in the
paper improves the precision of this over-approximation.
Alternative Ways to Trace Reconstruction. Our causality analysis is based
on counterfactual reasoning [16], where the system behavior is reevaluated on
the possible alternative traces. A commonly used criterion for constructing al-
ternative traces is to measure the similarity between the reconstructed traces
and the actual observed one. Causality analysis is only performed on alternative
traces which are similar to the observed trace. However, the notion of similarity
is subjective, reflected by the rules used for the trace reconstruction.

In our approach, the trace reconstruction rules (R1)–(R3) represent a view at
the task level : a faulty task is replaced with a good one, and all its events, except
for system inputs, are reconstructed via the “removing” and “adding” operations.
In contrast, one could perform trace reconstruction at the finer grained event
level : the trace under analysis is scanned through until the first occurrence ef of
an event that leads to task failure is found, and trace reconstruction is started



only from that particular occurrence; every event that happens before ef is kept
the same as observed.

Compared to the set TRtC of reconstructed traces produced by task-level trace
reconstruction, the event-level trace reconstruction could produce a smaller set
TReC ⊆ TRtC of traces more similar to the observed trace. Using the finer-grained
event-level trace reconstruction, it is comparatively more likely to establish a
necessary cause (Definition 9), since less traces have to be examined for the
“for all” quantification to be satisfied. On the other hand, it is comparatively
less likely to establish a contributory cause (Definition 8), since less possible
alternative traces can be used to satisfy the “exists” quantification.
Full Observability. Full observability involves two assumptions: (1) we are able
to put probes at the interfaces of components so that each event is observable,
and (2) the recording facility is capable of capturing all events at component
interfaces. The first assumption is by our consideration of black-box components,
where internal events within a component is not observable, but the events at
its interface are observable. Violations to the second assumption may lead to
undetected faulty components, yielding a smaller set F of faulty components.
This may possibly lead to spuriously identified culprits.
Causality Definitions. Several causality definitions have been discussed in
previous work [13,24,11,15,4,26], all based on the notion of counterfactual rea-
soning [16]. We in this work used the main contributory cause (Definition 9),
but showed that the causality analysis framework is parametric to the causal-
ity definition of choice. The capability of using different causality definitions
in the analysis increases the flexibility for the investigator to make reasonable
arguments.

The definitions of contributory and main contributory causes express different
levels of necessity needed to judge for the cause. If the sufficiency of causality
definition is of concern, one could use alternative trace reconstruction rules and
causality definitions.
Scalability. While we are working on larger case studies to gain empirical results
on the scalability of our approach, we foresee two limitations. First, for a given
subset C of suspected faulty components, the complexity of computing whether C
is a necessary cause is coNP-complete for propositional logic [26] and undecidable
in general for first order logic [18]. This limits the scalability of our approach
to the capability of state-of-the-art SAT/SMT solvers, such as Z3 [7]. Second,
we have shown in the paper the direct computation of the minimal culprit,
which requires the explicit generation of the powerset of F , limiting the possible
number of faulty components that can be analyzed practically. Further studies
on algorithms exploiting the underlying structure of the sets of reconstructed
traces could potentially speed up the explicit computation.

7 Related Work

Halpern and Pearl [13] were among the first to introduce the counterfactual rea-
soning for causes into the engineering domain. Some later development [15,4] is



based on the notions in [13]. In this work, we formally characterized the set of
reconstructed traces, and showed that causality can be defined based on the set
of reconstructed traces. One advantage of our work is the explicit treatment of
real-time systems, which is not presented in previous work on causality analy-
sis. Timestamps are considered as variables so that constraints on timestamped
events symbolically characterize sets of traces that satisfy the constraints.

The treatment of trace reconstruction is another difference between our work
and previous ones [15,11]. In [15], each occurrence of an event on a trace is
represented by a boolean variable e, indicating whether the event is present on
the trace (e is true) or not (e is false). The underlying component behaviors
are not considered in [15]. Similarly, in [11], the trace reconstruction rules place
a more rigid requirement than in this paper, which may occasionally lead to
undesired analysis result, as we have discussed in [26]. On the other hand, the
work in [11] in addition defines horizontal causality between one component’s
failure and another’s, which is not discussed in any other work in causality
analysis. Also, our Hypothesis 1 is due to [11].

The result of causality analysis naturally provides an explanation to the
system failure: which components’ faulty behaviors are the causes to the sys-
tem property violation. The work in [4] provides an application in explaining
counterexamples from formal verification of system properties specified in linear
temporal logics (LTL) [20]. We believe the approach in [4] can be extended to
the setting in this paper.

8 Conclusion

We proposed the causality analysis problem for black-box component-based sys-
tems. By using causality analysis we are able to establish causal relationship
between component failures and system failure. We provided a formal analysis
framework to solve the causality analysis problem, and detailed the trace recon-
struction rules for the analysis for real-time systems. We illustrated our approach
with the GPCA case study. In the future, we are planning to enhance the ap-
plication of the analysis by providing tool support for safety-critical systems in
the medical device domain.
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