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Fig. 6. (a) Measured and computed magnitudes of E), just above a 20 percent
wet soil containing a flush-buried dielectric cylinder (10.8 cm diameter and
4.78 cm high, ¢, = 2.61) at 500 and 600 MHz. (b) Measured and computed
phases of E, for the flush-buried dielectric cylinder at 500 and 600 MHz.

from stray fields, so it is only noticeable in the phase measurement
because of the small scattering from the objects.

CONCLUSION

An experiment has been devised to measure the magnitude and
phase of the scattered fields due to flush-buried objects in order to
check the associated computed results. In particular, the fields have
been compared for the cases of a metal disk on the surface of the
ground and more importantly for that due to a flush-buried dielectric
cylinder whose dimensions are comparable to the wavelength.
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dielectric cylinder at 700 and 800 MHz.
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Abstract—The one- and two-dimensional dyadic Green’s functions are
calculated for the one- and two-dimensional electric sources in an
unbounded, lossless chiral medium that is electromagnetically described
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by the constitutive relations D = ¢E + iyB and H = iyE + (1/p)B. The
constants ¢, u, 7y are real and have values that, in general, depend on the
signal frequency and the size, shape, and spatial distribution of the
elements that collectively compose the medium. The results obtained in
this note complement the previous work by the authors on a three-
dimensional dyadic Green’s function in such media.

I. INTRODUCTION

It has been shown [2] that in the case of a chiral medium composed
of lossless, short wire helices, all of the same handedness, the
constitutive relations for time-harmonic fields (e~*‘) have the form

D=¢E+iyB 1)
H=ivE+(1/u)B 1))

where ¢, p, v are real constants and represent the dielectric constant,
permeability, and chirality admittance of the chiral medium, respec-
tively. Moreover, it has been conjectured that (1) and (2) apply not
only to chiral media composed of helices but also to any lossless,
reciprocal chiral media composed of chiral objects of arbitrary shape
[2]. A chiral object is a three-dimensional body that cannot be
brought into congruence with its mirror image by translation and
rotation. An object of this sort has the property of handedness and
must be either left-handed or right-handed. Many of naturally
occurring and man-made objects fall into the category of chiral
objects. For instance a diverse array of sugars, amino acids, DNA
and certain mollusks and winding vegetation are among the natural
chiral objects while such common objects as wire helices, the Mobius
strip and the irregular tetrahedron are considered the man-made
chiral objects. This form of symmetry, or lack of bilateral symmetry,
has been of interest to the scientific community since its discovery by
Arago [3] in the early nineteenth century and subsequent experimen-
tation by Biot [4] and Pasteur [5] in the mid-1800’s. These
researchers were concerned with the rotation of the plane of
polarization of optical waves due to interaction with certain crystals
and liquids. Since then, this phenomenon has been of interest to those
in the electromagnetics’ community starting with the simple but
important microwave experiments of Lindman [6, 7] and Pickering
[8] performed in the early and midpart of the twentieth century,
respectively.

Of more recent work are papers by Bohren on the reflection of
electromagnetic waves from chiral spheres and cylinders [9], [10], a
paper on light reflection from chiral surfaces by Bokut and Federov
[11] and the book by Kong {12] and numerous references therein
regarding general bianisotropic media. Shortly thereafter was the
research by Jaggard et al. on relating the interaction of electromag-
netic waves with chiral stuctures and the relation of microscopic and
macroscopic chiral media [2]. In the most recent past, the following
papers are among those on wave propagation in chiral media: the
work on transition radiation at a dieletric-chiral interface by Engheta
and Mickelson [13], the reflection of waves from archiral-chiral
interfaces by Silverman [14], [15] and Lakhtakia et al. [16], the
electromagnetic wave propagation through a chiral slab by the
authors [17], the scattering of waves from nonspherical chiral objects
by Lakhtakia ef al. [18], light propagation through an infinite chiral
medium by Silverman and Sohn [19], the three-dimensional dyadic
Green’s function and dipole radiation in an unbounded, isotropic
lossless chiral medium by the authors [1] and the canonical sources
and duality in chiral media by Jaggard et al. [20].

In a previous paper [1], we derived from the above constitutive
relations and from the time-harmonic Maxwell equations

VxE=iwB 3)

VxH=J—iwD “)
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the wave equation for a chiral medium. That is
VXVXE—w?ueE - 20puyV XE=iwpd (&)

where the source term J is the electric current density and where E is
the electric vector of the radiated field. The desired solution of this
wave equation was found by using the Green’s function method, that
is, by first constructing the dyadic Green’s function I' and then
evaluating the expression

E(r)=iwp SV’ P, 1) - J(e)) dv’ ©)

where T is a function of the coordinates of the observation point r and
of the source point r’, and where the integration with respect to the
primed coordinates extends throughout the volume V' occupied by
J(r’). We obtained in closed form the three-dimensional dyadic
Green’s function for the three-dimensional electric sources.

In this note we shall follow a procedure similar to the one used in
our previous work in order to find the two- and one-dimensional
dyadic Green’s functions for a chiral medium described by (1) and

).
II. THE TWO-DIMENSIONAL CASE

Let us assume that the electric current density in (5) is a two-
dimensional current density. Hence J is a function of two space
variables. Without loss of generality, these two space variables can be
taken to be x and y. Therefore J is a function of x and y but not z.

That is

I(M)=J(p)=J(x, »). O]

Consequently, the radiated electric field E in (5) and the other
radiated fields D, B, and H are all independent of z.

By substituting (6) into (5) and considering (7) we see that I' must
satisfy the differential equation

_ - 1
(V2+k)T(p, p') +20pyVXT'(p, p')= <ﬁ+P VV> é(p-p')

®)

where 1 is the two-dimensional unit dyadic, £ = w?ue and 8(p —
p’) = 8(x — x")o(y — y') is the two-dimensional Dirac delta
funciton. T'(p, p’) can be generally written as a two-dimensional
Fourier integral, viz.

- 1 ot - ; ’
P(p, p)=Gys || AlRIEP @07 dp ©

—o

where p is the two-dimensional position vector and d?p is the surface
element in the two-dimensional p-space, and where A(p) is a dyadic
function of p. By substituting (9) into (8), the following equation can
be obtained for A(p):

. _ 1
(k*—p*)A+2iwpypx A= — (ﬁ—P pp) ) (10)

Following a procedure similar to the one used in [1], we find that

A(p)=[(K2=p?)? +o?p?] ~ ' {(k*—pP)(k “*pp—1)
+(apXi—alk~2pp)} (11)

where a = 2iwpy and p? = p-p. Substituting (11) into (9) we obtain
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the following expression for I'(p, p’):

I, )= - (m) "> {(ﬁ+k-2w) [} we-prearpn

—

- (k2=pP)e o) de} +@m?

+ o

. {aZk—ZVV SS [(kz_p2)2+a2p2]—l

-0

. e (p-p’) dzp} —(21r)‘2

. {iaVX(l‘l N [(k*—p?)2+a?p?]!

—

. eirle-p’) d2p>} .

In reducing these two-dimensional integrals to one-dimensional
integrals, we follow the method used in our previous paper [1]. The
one-dimensional integrals so obtained can then be evaluated by
contour integration (theorem of residues). Care must be taken in
choosing the path of integration in order to satisfy the physically
required radiation condition [21]. Finally, the desired two-dimen-
sional dyadic Green’s function can be written as follows:

12

T'(p, o) =(I/H{(a+kVV)aHP (M |p—p')
+BHY (hy|p—p' D~ (H3—h}) !
(—iaaxV+a2k-2VV) - [HO(h|p—p'))
—HP(hlp—p' D1} 13)

where H{)(+) is the zeroth order Hankel function of the first kind and
where

_(K—hd)
a—m (14)
(k*—hY)
T (ki -h2) as
{Z;}m«ﬁm )
k=wVpe amn
n="ple. (18)

The result expressed in (13) can also be obtained using an alternative
method which follows. Since (8) is a result of integration of its three-
dimensional counterpart given in 1] with respect to the coordinates,
say z’ from —oo to +oo, the two-dimensional dyadic Green'’s
function I'(p, p’) can also be found through integration of the three-
dimensional Green’s function I' (r, r’) reported in [1] over z* from —
o to + oo,

Recailing that

teexp (ylr=x’)) , i ,
g_w 4x|r—r'| dz _4H°(hj|p_p b

which is an identity for any h;, the integration of the three-
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dimensional T'(r, r’) over z’ from —o to + oo yields the two-
dimensional T'(p, p’) expressed in (13).

Similar to the way the three-dimensional dyadic Green’s function
was written by Jaggard ef al. in a compact and more instructive form
in terms of two eigenmodes of propagation {20], (13) can also be
expressed in the following manner:

T'(p, p’)=aBi(1)G\(p, p’) + bB2(h2)Ga(p, p")

where B;(h;) where j = 1, 2 is an operator defined in [20] and can be
written as

(19)

Bi(h)={axh 'axV+h;2VV},  wherej=1,2 (20)

and where G;(p, p’),j = 1, 2 is the two-dimensional scalar Green’s
function in an unbounded medium and is expressed as

Gi(p, p")=(/4)HP (hilp—p'])s where j=1,2. (21)
We note that
hy<k<h, for y>0 22)
and
h<k<h,, for y<O0. (23)

The eigenmode amplitudes a and b, which were defined in [1] and
[20] have positive values less than unity. The two modes, denoted by
subscripts 1 and 2, correspond to waves propagating with two
different wavenumbers. It can be demonstrated that the former
produce right-handed circularly polarized waves while the latter
produce left circularly polarized waves in the far field.

III. THE ONE-DIMENSIONAL CASE
In this case the electric current density in (5) is a one-dimensional
current density. Therefore J is a function of space variable x. That is

J(r)=J(x). (24)

Consequently the radiated electric field E in (5) and the other radiated
fields B, H, and D are independent of y and z.

Foliowing a procedure similar to that in Section II, we can derive
the one-dimensional dyadic Green’s function for the electric sources
in an unbounded reciprocal lossless chiral medium. That is

T(x, x)=(i/2){(a+k~2VV)[(a/h) exp (ih|x—x"])
+(b/hy) exp (ihy|x—x"|)]— (h3—h%) !
- (— i XV +a2k2VV)[ At exp (il |x=-x'])

—hy'exp (iha}x—x'D1}. 25)
The above equation can be rewritten in the following form:
T(x, x)=aBi(h)G(x, x') + bBa()Ga(x, X') (26

where B;(k;) where j = 1, 2 is defined in (20) and

G(x, x")=(i/2) [exp (ihjlx—x")/h;, where j=1,2 (27)
which is the one-dimensional scalar Green’s function in an un-
bounded medium. Equation (25) can also be viewed as a result of
integration of the two-dimension I'(p, p ") given in (13) over y’ from
— 0010 + oo,

As can be observed from the foregoing analysis, the dyadic
Green’s function for electric sources in an unbounded lossless,
reciprocal chiral medium can, in general, be expressed in the
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following form:

P(r, 1')=aBi(h)Gi(r, £') + bBa(h)Go(r, x')  (28)
where a, b and Bj(h_,-) for j = 1, 2 are defined earlier and G;(r, r’)
for j = 1, 2 depends on the dimension of the dyadic Green’s function
under study. That is

Gj(x, x')=(i/2) [exp (ih;|x—x'|)V/h;, Jj=1and 2

for one-dimensional case (29)

Gi(p, p')=(/HHP(hjlp—p’]), j=1and2

for two-dimensional case (30)

_exp [ihj|r—1’|]

Gi(r, 1) . j=land2

E2))

for three-dimensional case.

IV. SUMMARY

In this note we have obtained the one-dimensional and two-
dimensional dyadic Green’s functions in an unbounded, lossless,
reciprocal chiral medium which is electromagnetically described by a
set of symmetric constitutive relations. This work complements the
authors’ previous work on the three-dimensional dyadic Green’s
function in such media.

‘We have shown that in the two- and one-dimensional cases, similar
to the three-dimensional case, the medium supports two eigenmodes
of propagation with two different wavenumbers. One of them
corresponds to the right-circularly polarized wave and the other one
to the left-circularly polarized wave. The eigenmode amplitudes a
and b are similar to those of the three-dimensional case.
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Wide-Band Microwave Diffraction Tomography Under
Born Approximation

TAH-HSIUNG CHU AND KEN-YU LEE

Abstract—Studies of the diffraction tomography of dielectric objects
in forward and backward scattering using a frequency diversity technique
in the microwave region are presented. Numerical results show that the
image reconstructed in the backward scattering case is better than that
obtained in the forward scattering case. This shows that this cost-effective
technique has potential in medical and nondestructive testing applica-
tions.

I. INTRODUCTION

It was shown that under Born approximation and plane wave
illumination, a two-dimensional object function (or dielectric tomo-
graphic image) can be reconstructed from the scattering data
collected by a linear array using angular diversity techniques in
forward scattering [1]. This is known as the Fourier diffraction
projection theorem [2]-[4], and has been extensively applied in the
area of acoustical imaging [5]-[7]. In this communication, we present
studies of microwave diffraction tomography using frequency diver-
sity techniques in forward and backward scattering, and numerical
results obtained in the frequency range (1-6) GHz. It is shown that
this technique in backward scattering can appreciably reduce the
number of views and has potential in medical and nondestructive
applications.

II. THEORETICAL ANALYSIS

A weakly scattering two-dimensional object (see Fig. 1), possess-
ing a nondispersive refractive index n(x’, y’) in a lossless medium
assumed air here, is illuminated by a monochromatic plane wave
propagating in the x-direction. The scattered field Us(kg, x = +d,
») accessed by a linear array located at x = d (forward scattering) or
x = —d (backward scattering) satisfies the scalar Helmholtz
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