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ABSTRACT

OPTIMIZING ADAPTIVE MARKETING EXPERIMENTS WITH THE

MULTI-ARMED BANDIT

Eric M. Schwartz

Eric T. Bradlow and Peter S. Fader

Sequential decision making is central to a range of marketing problems. Both firms and

consumers aim to maximize their objectives over time, yet they remain uncertain about the

best course of action. So they allocate resources to explore, to reduce uncertainty (learn-

ing), and also to exploit their current information for immediate reward (earning). This

explore/exploit tradeoff is best captured by the multi-armed bandit, the conceptual and

methodological backbone of this dissertation. We focus on this class of marketing prob-

lems and aim to make the following substantive and methodological contributions. Our

substantive contribution is that we solve an important and practical marketing problem with

challenges that exceed those handled by existing multi-armed bandit methods: sequentially

allocating resources for online advertising to acquire customers. Online advertisers serve

millions of ad impressions to learn which ads work best on which websites. However,

recognizing that ad effectiveness differs by website in unobserved ways creates a method-

ological challenge. Our methodological contribution is that we propose a novel bandit pol-

icy that simultaneously handles attributes of ads and how their importance differs across

websites (heterogeneity) to generate recommended allocations of ad impressions. We not
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only test this in simulation, but we also run a live field experiment with a large retail bank

to improve customer acquisition rates, lowering the firm’s cost per acquisition. Serving

ads across websites is just one of a broader class of problems. Broadening our scope to

that class, we aim to contribute a body of empirical results to better understand how key

managerial issues in marketing experiments affect the performance of bandit methods. As

firms become more sophisticated in their ability to test and adapt quickly, managers and

researchers should understand the empirical realities of the problems and policies, such as,

under what conditions certain methods perform better than other methods. We run a numer-

ical experiment motivated by common managerial issues to learn about these contingencies

of bandit methods. Finally, while the literature spans disparate fields of research, we hope

to organize the various streams of work to better guide future research using multi-armed

bandit methods to solve marketing problems.
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Chapter 1

Introduction

Sequential decision making problems appear across marketing domains. These

problems can look quite different on the surface. For example, firms repeatedly reallo-

cate budgets across ads to acquire customers. Similarly, consumers make repeat purchases

in a product category while learning about product quality to maximize utility. Despite the

superficial differences, these problems center on a dynamic tradeoff between exploration

and exploitation. This tradeoff is best captured by the multi-armed bandit framework.

The multi-armed bandit problem (MAB) is a classic sequential sampling problem

(Robbins 1952; Thompson 1933). It captures the essence of exploration/exploitation ten-

sions in problems ranging from clinical trials and manufacturing to oil drilling and adver-

tising, and it is covered in texts in statistics, operations, economics, and computer science

(Berry and Fristedt 1985; Gittins et al. 2011; Sutton and Barto 1998). In the MAB prob-

lem, the decision maker (e.g., gambler) sequentially chooses an action among a set of
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alternatives (e.g., slot machines, a.k.a. one-armed bandits) to maximize the expected sum

of rewards earned from actions over time. But the actions’ expected rewards are unknown,

and the decision maker can only learn which actions are better than others by repeatedly

selecting different actions and observing the corresponding rewards. While some learn-

ing is necessary, it is not the end goal; instead, learning is a means to an end, maximizing

reward. Therefore, a solution to the MAB problem must balance the tension between explo-

ration and exploitation: learning in order to improve future rewards and earning immediate

rewards based on the current state of information. This explore-exploit tension is funda-

mental to the marketing domains highlighted here and the broader class of problems they

represent.

We argue that there is a need for a closer focus on, and integration of, research

related to multi-armed bandit problems in marketing. The primary reason we focus on this

issue is the proliferation of marketing experiments. Marketers are increasingly running live

experiments as part of routine operations (e.g., A/B and multivariate tests). These tests

are becoming easier to conduct because simple random assignment of treatments of digital

content is straightforward (e.g., randomly deliver different versions of websites, emails, or

online ads). While firms may be adaptive, using what they learn from tests to determine

their next steps, they do this in an ad hoc way. Instead, a principled approach centers on

the MAB problem. MAB methods provide tools for firms to conduct those experiments

as profitably as possible, achieving higher levels of earning during the experiment, and

learning the most profitable action more quickly.
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Each chapter of this dissertation addresses a different conceptual, methodological,

or substantive aspect of multi-armed bandit problems in marketing. In Chapter 2, “Improv-

ing Customer Acquisition through Adaptive Online Display Advertising Experiments,” we

focus on one particular managerial problem, frame it as a bandit problem that does not have

an existing solution framework, propose such a solution (i.e., a policy), and implement it

with a firm in a real-time field experiment. In particular, an online advertiser serves its

online display ads across many websites to acquire customers. We frame this as a compli-

cated bandit problem with many components: attributes (i.e., ads are described by size and

concept attributes), batching (i.e., we cannot allocate ad impressions one-by-one, so we

use decision rules to allocate groups of millions of impressions for each time period), and,

most importantly, hierarchical structure (i.e., the firm delivers the ads on many websites, so

there is a within-website bandit problem but the impact of those same ads may differ across

websites). These three components (attributes, batching, and hierarchical structure) are not

addressed by a single existing bandit method. We fill that gap as we propose a novel MAB

method: a policy comprised of a hierarchical model (continuous unobserved heterogeneity

of ad attribute effects across websites) and a randomized probability allocation rule (within

websites across ads). This is our methodological contribution. We formally define both the

hierarchical model and the allocation rule of randomized probability matching, sometimes

referred to as Thompson Sampling (Thompson 1933).

While many versions of MAB problems and their associated methods are addressed

in the literature, the key novel component of the advertising problem is its hierarchical
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structure with unobserved heterogeneity – the same ads perform differently on different

websites, so each website may have a different “winning” ad that maximizes customer

acquisition rates. However, existing methods have not accommodated this key component.

In addition to proposing a MAB policy for this problem, we implement this policy live with

a large online retail bank over two months and improve the firm’s customer acquisition

rates. Further, we document the value of accounting for these differences in the domain

of customer acquisition through online display ads. We are able to quantify this value by

comparing the performance of our proposed MAB policy to a variety of benchmark MAB

policies, with different combinations of model components and allocation rules. These

policies are relevant to a broader class of interactive marketing problems, which includes

ad serving but also a variety of other adaptive experiments, as addressed in Chapter 3.

In Chapter 3, “Managerial Issues in Implementing Attribute-Based Batched Bandit

Experiments,” we focus on understanding the operational and implementation challenges

of bandit policies for adaptive experiments in marketing. As firms are testing digital content

more frequently and more comfortably, bandit algorithms are becoming popular. Unfortu-

nately, these methods’ empirical performance for the common business settings in which

they are used is not well understood. Among the managerial issues surrounding adaptive

experiments in marketing, we select a subset of these issues to be the dimensions in our

analysis. These dimensions fall into two categories: (i) the sample size of decisions (e.g.,

How many total observations? How many decisions are made? How many observations per

decision? What is the overall incidence rate?) and (ii) the experimental design describing
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actions (e.g., How many attributes describe the actions? What is that attribute structure?

How different are the true mean rewards of the actions anticipated to be?).

In summary, how sensitive are MAB policies to these abovementioned managerial

issues in adaptive experiments? This chapter answers that question with a numerical ex-

periment. We investigate how well-known main effects (bandit methods’ performances)

change under different moderating conditions (bandit problems’ components). Those con-

tingences are business issues that any manager implementing an adaptive content experi-

ment has to handle. In such adaptive and sequential experiments, the manager confronts an

exploration/exploitation tradeoff for allocating resources to different treatments. Therefore,

this commonly-used adaptive marketing experiment is best framed by the attribute-based

and batched MAB problem. As a result, we consider that particular MAB problem and

examine how well (or poorly) a range of MAB policies perform in that problem setting.

Finally in the concluding chapter, we summarize the contribution of the two main

chapters, discuss limitations, and consider four promising avenues of research. One is to

combine recent methodological advances in flexible adaptive allocation rules (e.g., ran-

domized probability matching) with improvements in batched adaptive sampling stopping

rules in operations research (e.g., knowledge gradient approach) (Powell 2011). Another

avenue of integrating distinct research streams is to bring customer lifetime value into a

MAB framework. This is desirable since firms want to “earn and learn” for long term profit

instead of immediate reward, but it also raises methodological challenges never addressed

in a bandit experiment (e.g., each action yields a stream of future observations instead of

5



a single one). Two other avenues of research include incorporating MAB policies into

learning models in consumer psychology and into empirical econometric dynamic discrete

choice models. In total, we hope that the concluding chapter places the particular prob-

lems and methods that are covered into a broader context and describes promising areas of

application.
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Chapter 2

Improving Customer Acquisition

through Adaptive Online Display

Advertising Experiments

2.1 Introduction

Business experiments such as A/B/C or multivariate tests are becoming increasingly

popular (Anderson and Simester 2011; Davenport 2009; Donahoe 2011; Wind 2007). As

a result, interactive marketing firms can be continuously “testing and learning” in their

market environments. But as this practice becomes part of regular business operations,

such sequential testing has to be done profitably – to be “earning while learning.” One

domain using such testing is online advertising. Online advertisers regularly deliver several
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display ad executions in a single campaign across dozens of websites in order to acquire

customers. As the campaign progresses, the advertisers adapt to intermediate results and

allocate more impressions to the better performing ads on each website. But how should

they decide what percentage of impressions to allocate to each ad?

We focus on solving this problem, but it is not unique to online advertisers; it be-

longs to a much broader class of sequential allocation problems that marketers have faced

for years across countless domains. Many other activities – sending emails or direct mail

catalogs, providing customer service, designing websites – can be framed as sequential and

adaptive experiments. All of these problems are structured around this question: which tar-

geted marketing action should we take, when should we take them, with which customers

should we test them, and in which contexts should we test them?

This class of problems can be framed as a multi-armed bandit (MAB) problem. The

MAB problem (defined formally later) is a classic adaptive experimentation optimization

problem. Some challenges of the associated business problems have motivated the devel-

opment of various MAB methods. However, the existing methods do not fully address

the richness of the online advertising problem or many of the aforementioned marketing

problems. That is, the methods for solving the basic MAB problem and even some gener-

alizations fall short of addressing common managerial issues.

The purpose of this chapter is to shrink that gap. We aim to make two contributions,

one substantive and one methodological: substantively, we aim to improve the practice of

testing in online display advertising; methodologically, we aim to extend existing methods

8



to address a more general MAB problem, representative of a class of interactive market-

ing problems. We achieve both contributions by implementing our proposed MAB policy

in real-time, in a large-scale adaptive field experiment in collaboration with ING Direct

(since acquired by CapitalOne), a large retail bank focusing on direct marketing. The field

experiment generated data over two months in 2012, including more than 700 million ad

impressions delivered across 59 different websites, and 12 unique banner ads, described by

three ad sizes and four creative ad concepts. Further, using the data collected, we ran coun-

terfactual policy simulations to understand how benchmark MAB methods would perform

in this setting.

From a substantive perspective, we solve the problem facing firms buying online

display advertising designed to acquire customers. How can you maximize customer ac-

quisition rates by testing many ads on many websites while learning which ad works best

on which website? The key substantive insights include quantifying the value of account-

ing for attributes describing different ads and unobserved differences (across websites) in

viewers’ responsiveness to those ad attributes. We glean these insights by using each web-

site (more specifically, each media placement) as the unit of analysis in a heterogeneous

model of acquisition from ad impressions.

From a methodological perspective, we establish and propose a method for a ver-

sion of the MAB that is new to the literature: a hierarchical, attribute-based, and batched

MAB policy. This extension of MAB methods is motivated by the advertising problem.

The combination of attribute-based actions, unobserved heterogeneity/hierarchical struc-
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ture, and batched decisions makes this a novel bandit problem. However, the unique com-

ponent is unobserved heterogeneity (i.e., hierarchical structure). While recent work has in-

corporated attributes into actions and batched decisions (Chapelle and Li 2011; Dani et al.

2008; Rusmevichientong and Tsitsiklis 2010; Scott 2010), no prior work has considered a

MAB with action attributes and unobserved heterogeneity.

We propose an approach to solve that problem. The approach is based on the prin-

ciple known as randomized probability matching, but we extend existing methods to ac-

count for unobserved heterogeneity in the attribute-based multi-armed bandit problem with

batched decision making. Beyond showing the proposed approach is conceptually different

from prior work (Agarwal et al. 2008; Bertsimas and Mersereau 2007; Hauser et al. 2009),

we also show via numerical experiments that it empirically outperforms existing methods

in this setting (Chapelle and Li 2011; Scott 2010).

Since the component that extends existing attribute-based batched MAB methods

is hierarchical modeling, we illustrate how including unobserved heterogeneity in ad effec-

tiveness across websites improves bandit method performance. In addition, we illustrate

how it leads to substantively different recommended allocations of resources.

The rest of the chapter is structured as follows. Section 2.2 surveys the landscape

of the substantive problem, online display advertising and media buying, from industry

and research perspectives. In Section 2.3, we translate the advertiser’s problem into MAB

language, formally defining the MAB and our approach to solving it with all components

of the problem included. To contrast this problem with existing versions of the MAB,

10



we describe how existing methods would only solve simpler versions of the advertising

problem. In doing so, we trace the history of relevant bandit research and introduce the

benchmark methods that we use in the empirical sections. In Section 2.5, we turn to the

empirical context. We provide institutional and implementation details about the ING Di-

rect field experiment and then discuss the observed results. In Section 2.6, we consider

what would have happened if we had used other MAB methods in the field experiment.

These counterfactual policy simulations reveal which aspects of the novel method account

for the improved performance. Finally, in Section 2.7, we conclude with a general discus-

sion of issues at the intersection of MAB methods, online display advertising, and real-time

optimization of business experiments.

2.2 Online Display Advertising and Bandit Problems

We build on two main areas of the literature: online advertising and multi-armed

bandit problems. Despite the common concerns about the (presumed) ineffectiveness of

display ads, advertisers still use them extensively for the purpose of acquiring new cus-

tomers. In 2012, combining display, search, and video, U.S. digital advertising spending

was $37 billion (eMarketer 2012b). Out of that total, display advertising accounted for

40%. Display advertising’s share of U.S. digital advertising spending is growing and ex-

pected to be greater than sponsored search’s share by 2016 (eMarketer 2012b). Further,

while display advertising can be used just to build brand awareness through impressions,

it is also purchased to generate a direct response from those impressions (e.g., customer
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acquisition). Indeed, direct-response campaigns were the most common purpose of display

advertising campaigns and accounted for 54% of display advertising budgets in the U.S.

and for 67% in the U.K. in 2011 (eMarketer 2012a).

Research in this area has focused on the impact of exposure to ads on purchases

(Manchanda et al. 2006) or on other customer activities like search behavior (Reiley et al.

2011). There is also much evidence, in both the academic literature and industry reports,

that suggests clicks do not indicate more effective advertising (Manchanda et al. 2006). For

a discussion of the complex landscape between a display advertiser and a customer viewing

the ad in a web browser, see Gupta and Davies-Gavin (2012).

In contrast to that previous work (Manchanda et al. 2006; Reiley et al. 2011), we

focus on a different aspect of online display advertising: optimizing allocation of resources

over time across many ad creatives and websites by sequentially learning about ad per-

formance. As advertisers try to maximize their return on investment in purchasing online

media, their challenge is to determine which ads to serve and on which websites (i.e., con-

textual advertising) to deliver them. But how should firms allocate their ad impressions so

that they can simultaneously learn how to grow profits in the future and improve profits

while learning now?

This challenge relates to other work at the intersection of online advertising or on-

line content optimization and bandit problems (Agarwal et al. 2008; Scott 2010). Like

those studies, we downplay what the firm is actually learning (Is one color better than

others for ads? Are tall ad formats better than wide ones?) in favor of emphasizing the

12



challenge of “how to learn profitably,” since this is goal of the MAB problem. So we do

not give a global answer to the question, “What kinds of advertisements are most effective

at acquiring customers?” But we do address the practical concern: how should we learn

the answer to that question as profitably as possible? In our particular setting, we solve the

problem of how to allocate previously purchased impressions (i.e., the firm has bought a

certain number of impressions for each website). But the general approach can be extended

to the problem of where to buy media and other sequential resource allocations common to

interactive marketing problems.

The bandit literature is large and spans many fields, so our aim is not a complete

review like that by Gittins et al. (2011). But as we noted earlier, currently existing MAB

methodologies do not adequately address all of the ad problem’s key components. There-

fore, a new MAB method is needed to address those challenges.

In particular, the setting of online display advertising presents three challenges. (1)

While advertisers often try dozens of different ads, those ads are typically interrelated,

varying by such attributes as creative design, message, and size/format. Thus, observing

one ad’s performance can suggest how similar ads will perform. (2) The way those at-

tributes affect the ad’s performance depends on the context, such as the website on which it

appears. (3) As is common in media buying, the advertiser’s key decision is what percent-

age of the next batch of already purchased impressions should be allocated to each ad (i.e.,

the weights that the publisher uses to rotate the ads). Our MAB method overcomes these

three challenges.
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2.3 Formalizing Online Display Advertising as a Multi-

armed Bandit Problem

We translate the advertiser’s problem into MAB language, formally defining the

MAB and our approach to solving it with all components of the problem included. To con-

trast this problem with existing versions of the MAB problem, we describe how existing

MAB methods would only solve simpler versions of the advertising problem. In doing so,

we trace the history of relevant work in the literature. Later we cover the basic bandit prob-

lem (Robbins 1952; Thompson 1933) and the Gittins index, the exactly optimal solution

of this particular Markov decision problem (MDP) satisfying the Bellman equation (Bell-

man 1957; Gittins 1979). Then we cover the more complicated and already well-studied

versions of the problem involving attributes and batching.

Here, we define the MAB problem in this advertising context. The firm has ads

k = 1, . . . , K each with a different unknown conversion rate µk, that is stationary over time.

The firm serves ads in order to maximize the expected total number of customers acquired

(conversions) by serving impressions. Let impressions be denoted by m and conversions

by y. Then to describe the random variable for number of conversions from ad k through

periods 1, . . . , t, we can say Ykt ∼ binomial(mkt, µk). In general, we can say Ykt ∼ f(µk)

where Ef [Ykt] = µk.
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2.3.1 MAB Problem Component: Learning

If the ads’ conversion rates µk were known, then the optimal policy would be to

select the best ad, k∗ = argmaxkµk. However, we are uncertain about the values of

µ1, . . . , µK . We form beliefs about their values, and make decisions given those beliefs.

The desire to maximize cumulative value over time while facing uncertainty creates value

for learning. That is, we select an action for one of two reasons: either our current beliefs

suggest it is the best ad, on average, or our current beliefs suggest is not the best ad, on

average, but there is some chance that it actually is. While the first reason is purely for

earning, the second reason is important because of learning with the hope of earning. We

can reduce uncertainty, gaining information for the next decision period, so that we can

more accurately identify the best ad, acquiring more customers. This is what we mean by

earning while learning, often called the tension between exploitation and exploration. This

is the central tension of every MAB problem.

2.3.2 MAB Problem Component: Attribute Structure

The ad conversion rates are not only unknown, but they may be correlated since

they are functions of unknown common parameters denoted by, θ, and a common attribute

structure, a K × d matrix X , where the kth row corresponds to action k. Hence we use

the notation, µk(θ). For instance, θ may include a parameter vector β, the coefficients

representing the importance of different ad attributes, denoted by the covariate vector xk,

of length d. This is what we mean when we say the problem is an attribute-based MAB.
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When it comes to specifying a MAB policy for a problem with attributes, we assume

that the impact of the attributes on the mean reward is described by a common generalized

linear model (GLM), µk(θ) = h−1(x′kβ). We let h be the link function (e.g., logit, probit,

log, identity) that relates the linear predictor to the actual mean reward of the action. The

presence of xk is a feature of the problem, but the GLM is not itself a feature of the problem;

rather the model alludes to the MAB methods to be discussed.

2.3.3 MAB Problem Component: Hierarchical Structure

In decision period t = 1, . . . , T of the MAB problem, the firm has the opportunity

to make allocations of allK ads on each of j = 1, . . . , J different websites. This is what we

mean when we say that the problem has a hierarchical structure (i.e., ads within websites).

The implication of this hierarchical structure is that each website may differ from one

another. Broadly speaking, one ad may not be the best ad for all websites; instead, the best

ad for one website may not be the best for another. This difference comes in the form of

different conversion rates for the same set of K ads. In the presence of action attributes,

this means that the importance of ad attributes differs across websites, so each website has

its own set of attribute importance weights, βj .

On the other hand, this hierarchical structure suggests that all websites are coming

from the same broader population. Intuitively, we can think of each website as just a

different slice of the population of all Internet traffic. This translates to saying βj is a

draw from a population-level distribution. Again, we distinguish between the component
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of the MAB problem (hierarchical structure) and components of the MAB method (e.g.,

hierarchical model with unobserved heterogeneity). While this distinction is obvious in

standard data analysis and model selection, it is not made as clearly in the bandit literature.

2.3.4 MAB Problem Component: Batching

For each decision period and website, the firm has a budget of Mjt =
∑

kmjkt

impressions. In the problem we address, this budget constraint is taken as given and ex-

ogenous due to previously arranged media contracts, but the firm is free to decide what

proportion of those impressions will be allocated to each ad. This proportion is wjkt, where∑
k wjkt = 1. This is what makes the problem batched (i.e., many impressions to allocate

at once).

To clarify notation over different units, we denote M = (M1, . . . ,MT ) to be a

schedule of impressions per website per period, where each Mt = (M1t, . . . ,MJt). We

control a schedule of weights expressed as w = (w1, . . . ,wT ), where for each period, wt =

(w1t, . . . ,wJt) and each website, wjt = (wj1t, . . . , wjKt). Equivalently, we determine the

number of impressions for each ad on each website per period since the following holds,

mjt = (mj1t, . . . ,mjKt) ∼ multinomial(Mjt;wj1t, . . . , wjKt). Note that in practice Mjt is

so large that the resulting values of each mjkt is approximately equal to its average value,

Mjtwjkt.
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2.3.5 MAB Optimization Problem

More generally, let K,X, J, T and M be given and exogenous. We define a MAB

policy, π to be a decision rule for sequentially setting wt+1 each period based on all that

is known and observed through periods 1, . . . , t. That is, π maps information onto alloca-

tion of resources across actions. We select a policy, π, that corresponds to an allocation

schedule, w, to maximize the cumulative sum of expected rewards, as follows,

max
w

Ef

[
T∑
t=1

J∑
j=1

K∑
k=1

Yjkt

]
subject to

K∑
k=1

wjkt = 1,∀j, t. (2.3.1)

Note that Ef [Yjkt] = wjktMjtµjk(θ).

Equation 2.3.1 lays out the undiscounted finite-time optimization problem, but we

can also write the discounted infinite-time problem as follows: assume a geometric discount

rate 0 < γ < 1, let T =∞, and maximize the expected value of the summations of γtYjkt.

However, we will continue on with the undiscounted finite-time optimization problem,

except where otherwise mentioned, without loss of generality in understanding π.

Ordinarily at this point in framing a dynamic optimization problem, one expects to

see a Bellman equation and a corresponding value function. However, the current problem

suffers from an extreme case of the curse of dimensionality (Powell 2011), and the current

problem does not correspond to an exact value function satisfying the Bellman equation.

Nevertheless, we illustrate the basic MAB problem, which does have a corresponding value

function satisfying the Bellman equation, and an exactly optimal solution: the Gittins index.
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However, we show this only to illustrate how much simpler the basic MAB problem is

compared to our advertising allocation problem of interest in this chapter.

The basic MAB problem is quite restrictive in contrast to the problem that we ad-

dress. To understand how restrictive it is, we have to suppose there are no ad attributes

X and just one single website J = 1, and each batch contains only one observation,

Mt = 1. In this basic MAB problem, we select from independent and uncorrelated ac-

tions, k = 1, . . . , K, with Ef [Ykt] = µk, for each k. The objective is to maximize the

expected infinite discounted sum of rewards. Therefore,

max
k∈1,...,K

∫
µ1

· · ·
∫
µK

Ef

{
∞∑
t=1

γtYkt

}
p(µ1) . . . dp(µK)dµ1 . . . dµK (2.3.2)

because the joint prior p(θ) = p(µ1) . . . p(µK) is separable into the priors p(µk) for all k,

and 0 < γ < 1 is a discount factor.

To demonstrate a simple and the canonical example of Equation 2.3.2 with standard

priors, consider f(Y |µk) = Bernoulli (µk), and prior, p(µk) = beta(a0, b0), for all k. Then

Bayes updates are made sequentially after each Bernoulli trial. If there is a success, the re-

ward is ykt = 1, otherwise ykt = 0. So after period t, the beta distribution shape parameters

are akt = ak0 +
∑t

τ=1 ykτ and bkt = bk0 +
∑t

τ=1(mkτ − ykτ ), incorporating the number

of successes and trials for each arm k. Then the information gain (state transition) occurs

with the outcome of each trial, so the state transition probabilities can be fully described by
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the likelihood of a successful trial based on current beliefs,

Pr(Ykt = 1|akt, bkt) = Ep(µk)(µ|akt, bkt) =
akt

akt + bkt
. (2.3.3)

The reward distribution and the transitions are intricately linked because this is a “learn-

ing by doing” MDP. State transitions occur only when we take an action and observe a

Bernoulli reward. As a result, the state space is described simply by pairs of non-negative

integers.

Each action corresponds to its own MDP. Each is its own “one-and-a-half-armed”

bandit problem. The “one” arm is the action of continuing to play the arm and learn about

it. The “half” arm can be interpreted as “retiring” to receive an annuity or exploiting a

known stream of rewards. The key insight is that each of these can be solved as an optimal

stopping problem (i.e., when to stop exploration and begin exploitation). This optimization

problem can be described by a Bellman equation, and the value function satisfying it is,

V (akt, bkt, γ) = max

{
Gkt

1− γ
, (2.3.4)

[1 + γV (akt + 1, bkt, γ)]
akt

akt + bkt

+ [0 + γV (akt, bkt + 1, γ)]
bkt

akt + bkt

}
= max

{
Gkt

1− γ
,

akt
akt + bkt

+ γ

[
V (akt + 1, bkt, γ)

akt
akt + bkt

+ V (akt, bkt + 1, γ)
bkt

akt + bkt

]}
.

For any values of (akt, bkt, γ), there is an exactly optimal value of Gkt; for this
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Bernoulli K-armed bandit problem, that value of Gkt is the Gittins index (dynamic alloca-

tion index). This is demonstrated in the original derivation (Gittins 1979) and reviewed in

various applications, e.g., Hauser et al. (2009). The term,Gkt/(1−γ), can be interpreted as

the present value of the discounted infinite sum of future rewards from an action while tak-

ing into account the value of reducing uncertainty. It is the exact solution to a quintessential

learning problem. There are tables showing the values of the Gittins index for different val-

ues of beta distribution shape parameters and discount factors, as well as parameter values

for other distributions in the exponential family and easy-to-compute closed-form approx-

imations of the Gittins index (Chick and Frazier 2012; Brezzi and Lai 2002; Gittins et al.

2011).

The work of Gittins is seminal because it solved a classic sequential decision mak-

ing problem that attracted a great deal of attention (Berry 1972; Bradt et al. 1956; Robbins

1952; Wahrenberger et al. 1977) and was previously thought to be intractable (Berry and

Fristedt 1985; Gittins et al. 2011; Whittle 1980). The Gittins index itself has attracted many

alternative proofs (Tsitsiklis 1986, 1994).

While the Gittins index has been applied in marketing and management science

(Hauser et al. 2009; Bertsimas and Mersereau 2007), these same applications note that

computing the Gittins index cannot be done in closed-form and that the index only solves

a narrow set of problems with restrictive assumptions. We echo those sentiments and reit-

erate that the Gittins index is inappropriate for the ad allocation problem of interest in this

chapter. Again, while this problem does not have an exact solution, we can still evaluate the
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performance of different policies. In theoretical research and some simulation studies, per-

formance of any MAB method is compared to a hypothetical policy known to be optimal,

which is called the oracle policy.

Let π∗ denote this ideal policy that can be followed if we had full knowledge

of θ, hence also full knowledge of µjk(θ). A priori, the oracle policy knows k∗j =

argmaxkµjk(θ), for each j (i.e., the truly best ad for each website). Therefore, for each

j, the policy sets wjkt = 1 for k∗j , and wjkt = 0 for all other k (i.e., only allocates im-

pressions to the truly best ad). Therefore, on average, the oracle policy earns a reward of

µjk∗j(θ)Mjt for each period on website j. We return to the oracle policy later in a discussion

of evaluating MAB policies.

2.4 MAB Policies

2.4.1 Randomized Probability Matching with a Generalized Linear

Mixed Model

Now that we have described the advertising allocation problem as a hierarchical,

attribute-based, batched MAB problem, we can focus on our MAB solution approach. We

can call this a solution, but it is a methodology, or more precisely, a policy which manages

a bandit problem. The term “solution” connotes an exactly optimal policy, but no such

policy exists for the problem that we address or, as mentioned, most MAB problems. In

fact, the only exactly optimal policy that exactly solves a MAB problem is the Gittins index
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(Gittins 1979).

We now describe our proposed bandit policy. The policy is a combination of a

model and an allocation rule: a logistic regression model with varying parameters across

websites (also known as hierarchical, multilevel, partially pooled, or heterogeneous model)

and randomized probability matching (RPM). The principle of RPM is simply stated: the

current proportion of resources allocated to a particular action should equal the current

probability that the action is optimal (Thompson 1933). We discuss other applications of

RPM and related literature later, but first we describe the model of display ad conversions

accounting for ad attributes and unobserved heterogeneity across websites.

Let the data at each time t be fully described by the cumulative number of conver-

sions per ad, yjkt, out of impressions, mjkt, delivered cumulatively per ad for each of the

J websites (contexts) and K ads (actions). The design matrix X = (x′1, . . . , x
′
K) is of size

K × d. Then we can summarize our hierarchical logistic regression with covariates and

varying slopes,

yjkt ∼ binomial (µjk|mjkt)

µjk = 1/ [1 + exp(−x′kβj)]

βj ∼ MVNormal(β̄,Σ)

θ = ({βj}J1 , β̄,Σ)

xk = (xk1, . . . , xkd), (2.4.1)
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where {βj}J1 = {beta1, . . . , βJ}, and the hyperpriors p(β̄) and p(Σ) are set to be slightly

informative conjugate multivariate normal and inverse-Wishart distributions, respectively.

We note that in the optimization problems (Equations 2.3.1 and 2.3.2), we let ykt denote the

number of conversions per ad per period. To simplify notation, in subsequent descriptions

of the models and allocation rules, we let yjkt denote the cumulative sum of conversions

through periods 1, . . . , t for ad k on website j. Then we denote all of conversions and

impressions we have observed through time t as, {yt,mt} = {yjk1,mjk1, . . . , yjkt,mjkt :

j = 1, . . . , J ; k = 1, . . . , K}. To include the attribute design matrix, we denote all data

through t as, Dt = {X,yt,mt}.

Suppose that we have obtained the joint posterior distribution p(β1, . . . , βJ , β̄,Σ|Dt)

via MCMC sampling (or approximate Bayesian methods, as we discuss later). Then the

posterior beliefs of βj can be characterized by p(βj|β̄,Σ, Dt), which in general, does not

have a closed-form expression. Using the updated beliefs of the coefficient vector, βj ,

and the design matrix, X , we easily obtain the joint predictive distribution of conver-

sion rates (expected rewards), µj(θ) = µj1(θ), . . . , µjK(θ). Then this website-specific

K-dimensional vector µj has the following posterior distribution,

p(µj|Dt) ∝ p(βj|β̄,Σ, Dt)p(β̄,Σ|β1, . . . , βJ) (2.4.2)

This distribution encodes the uncertainty for parameters at both the website-specific

and population levels. Although we express the mean reward of each action, it is important

to note that the reward distributions of the actions are not independent; instead, even within

24



any context, j, the reward distributions of the actions are correlated through the common

set of attributes X and common context-specific parameter βj . This is essential because

the uncertainty around the expected rewards µjk(θ) are transformations of the uncertainty

around the parameters βj , the context-specific attribute coefficients.

In the preceding paragraphs we have covered the hierarchical logistic regression

model, or more generally, the generalized linear mixed model (GLMM). This is one piece

of the proposed MAB policy. The other is the allocation rule: randomized probability

matching (RPM). Hence, we refer to the proposed MAB policy as RPM-GLMM. The RPM

allocation rule works with the GLMM as follows. In order to translate the predictive distri-

bution of βj into action allocations probabilities in each context, wjt, we apply the principle

of RPM. This requires computing the probability that an action is optimal for any context

and assigning that probability to be the allocation weight. Once we obtain the distribution

p(µj|Dt), we can just carry through our subscript j and then follow the RPM / Thompson

Sampling literature (Chapelle and Li 2011; Granmo 2010; May et al. 2011; Scott 2010).

For any context, j, we let the optimal action’s mean be µj∗ = max{µj1, . . . , µjK} (e.g.,

highest true conversion rate for that website). Then we can define the set of allocation

probabilities, wjt, as,

wjkt = Pr (µjk = µj∗|Dt) (2.4.3)

wjkt =

∫
µj

1 {µjk = µj∗|µj} p(µj|Dt)dµj (2.4.4)

where 1 {µjk = µj∗|µj} is simply an indicator function of which ad has the highest conver-
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sion rate for website j.

The key to computing this probability is conditioning on our beliefs about the vector

µj for all J contexts. Again, we note that by capturing all uncertainty in our current be-

liefs about the conversion rates, we are balancing exploration and exploitation in the MAB

problem, which we explain further below.

We also note that these allocations are based on a partially pooled model. While

our notation shows separate wjt and µj for each j, recall that they are computed from the

parameters βj , which are partially pooled. This means that websites with little data (or more

within website variability) are shrunk towards the population mean parameter vector β̄,

representing ad attribute importance, on average, across all websites. This is the case for all

hierarchical models with unobserved parameter heterogeneity (Gelman et al. 2004; Gelman

and Hill 2007). We are sharing information across websites. We are not obtaining the

distribution of βj separately for each website; instead, we leverage data from all websites to

obtain each website’s parameters. Given those parameters, we use the observed attributes

X to determine the predictive distribution of the ad conversion rates, p(µj|Dt). For this

particular model, the integral above can be rewritten as,

wjkt =

∫
Σ

∫
β̄

∫
β1,...,βJ

1
{
βjxk = max

k
βjxk|βj, X

}
p(βj|β̄,Σ, X,yt,mt)p(β̄,Σ|β1, . . . , βJ)dβ1 . . . dβJdβ̄dΣ (2.4.5)

However, it is much simpler to interpret the posterior probability, Pr (µjk(θ) = µj∗(θ)|Dt),
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as a direct function of the joint distribution of the means, µj(θ).

It is natural to compute allocation probabilities by sampling from the predictive

distribution p(µj|Dt). We can simulate G independent draws of βj . Each β
(g)
j can be

combined with the K × d design matrix to form µ
(g)
j = h−1(X ′β

(g)
j ). Again, conditional

on the gth draw of the K predicted conversion rates, the optimal action is to select the ad

with the largest predicted conversion rates, µ(g)
j∗ = max{µ(g)

j1 , . . . , µ
(g)
jK}.

Across G draws, we approximate wjkt by computing the fraction of times each ad

k is predicted to have the highest conversion rate.

wjkt ≈ ŵjkt =
1

G

G∑
g=1

1
{
µ

(g)
jk = µ

(g)
j∗ |µ

(g)
j

}
(2.4.6)

Across all K ads, based on the weights, ŵjkt, computed from the data through

periods 1, . . . , t, andMj,t+1, the total number of pre-determined impressions to be delivered

across allK ads on website j in period t+1, the allocation is aK-dimensional multinomial

random variable:

(m1,j,t+1, . . . ,mK,j,t+1) ∼ multinomial(Mj,t+1; ŵj1t, . . . , ŵjKt), (2.4.7)

so the expected allocation is (ŵj1tMj,t+1, . . . , ŵjKtMj,t+1).

As a result, we have the allocations of our ad impressions for each ad within each

website for the next period, hence solving the optimization problem of interest. We reiterate

there is no true optimal solution, so our policy using a heterogeneous regression model with
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RPM is a heuristic. While it is not guaranteed to maximize total expected reward optimally,

in the absence of an exact solution, we demonstrate that this heuristic (policy) is a good one.

Later we can show this numerically: in simulations based on our field experiment, we will

show it achieves higher average reward than a set of benchmark policies.

First, we briefly illustrate some of the analytical results from the literature that

demonstrate the good performance of RPM as a bandit policy. The key to analyzing bandit

policy performance is to quantity how far off a policy is from an optimum, even though

no realistic policy could achieve that optimum. However, we suppose it is achieved by the

hypothetical oracle policy, as mentioned earlier. The oracle policy, π∗, always allocates all

resources to the truly optimal arm in every context. Both theoretical and numerical analyses

define “loss” to be the difference in total reward accumulated between any policy, π, and

the oracle polic,y π∗. A common measure is “regret,” which is the expected value of that

loss. Since expectation is linear, the regret of policy π through T periods is expressed as

the sum of per period expected loss,

Regret(π, T ) =
T∑
t=1

J∑
j=1

Mjt

(
µj∗(θ)−

K∑
k

wjktµjk(θ)

)
, (2.4.8)

where each wjkt is determined by π, the policy being evaluated. This implicitly defines

a linear loss function (i.e., opportunity cost). Finite-time regret is the most common for-

mal criterion for evaluating bandit policies in the reinforcement learning community (Auer

2002; Lai 1987). It has theoretical appeal, and is considered a frequentist quantity. How-

ever, it can be used to analyze MAB policies using RPM, which is Bayesian in nature
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(Agrawal and Goyal 2012; Kaufmann et al. 2012).

We also note that if wjkt is the current allocation probability then ŵjkt denotes the

current estimate from the sample. It can be estimated in a variety of ways from the data. If

the problem is simple enough (e.g., the previously described two-armed Bernoulli bandit,

assuming beta distributions for beliefs) this can be computed exactly since there is a closed-

form expression for the inequality of two beta random variables (Thompson 1933). Such

random inequalities and order statistics have been studied for simple bandit problems like

Bernoulli bandits (Berry 1972). For more general cases, it is appropriate to compute the

allocation probabilities using quadrature or sampling. If the model estimation is the result

of MCMC samples, from a stationary distribution, then ŵjk → wjk as G → ∞ by the

ergodic theorem since we have a stationary Markov chain (Scott 2010). But the sampling

method to obtain a stationary distribution need not be MCMC. Any method of obtaining

draws from a posterior distribution or its approximation (e.g., Laplace approximation) still

works well in the RPM procedure (Chapelle and Li 2011).

While RPM is a heuristic, it does in fact trade off exploration and exploitation

and provides a good performing MAB policy. This may be surprising for those expecting

optimality guarantees, but RPM does not explicitly optimize any objective function. In fact,

only one bandit policy explicitly and exactly optimizes an objective function, the Gittins

index, but it is the solution for only the basic bandit problem.

It may even be surprising that a RPM policy strikes a balance between the dynamic

explore/exploit tradeoff that produces theoretically asymptotically optimal or even numer-
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ically good performance. However, recall that the dynamics in the MAB are purely due

to learning. Given the joint distribution of predicted means for all actions, the uncertainty

about which action is the optimal action can be characterized by computing the posterior

probability that an action has the highest expected reward.

We can characterize RPM as drawing appropriate quantities from a posterior pre-

dictive distribution in the presence of remaining uncertainty. So, consider the case when

there was no uncertainty remaining and we had perfect knowledge of all expected rewards

µj for all J . If we knew all conversion rates µj1, . . . , µjK in a context, j, then we would

simply only play the winner, the one with the highest posterior mean of expected reward.

Therefore, our allocation across K actions should be wjk = 0 for all k except that of µj∗,

where wj∗ = 1. This would be optimal no matter how close the second largest conver-

sion rate is since we know with certainty that µj∗ is maximal. Of course, we are facing

uncertainty in µj . Any practical problem may contain a great deal of uncertainty. In order

to obtain each allocation probability, ŵjk, we need to integrate over the that uncertainty

encoded by the predictive distribution p(µj1, . . . , µjK |Dt).

Recent theoretical analysis supports the preceding intuition (Agrawal and Goyal

2012). Although the existing proofs are obtained for the basic MAB (without attributes,

batching, or hierarchy), they show that the regret for RPM applied to solve the K-armed

Bernoulli bandit problem using one-at-a-time actions through T periods can be bounded
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above by,

Regret(π, T ) =

(
K∑
k=2

1

∆2
k

)2

log T, (2.4.9)

up to a function of constants, where ∆k = µ1 − µk and µ1 = µ∗ = max{µ1, . . . , µK}.

Without loss of generality, we can assume the first arm is the unique optimal arm. These

performance bounds are considered theoretical evidence that RPM is asymptotically opti-

mal since cumulative regret grows at the slow rate of log T . Other analyses aim to do the

same for an attribute-based RPM policy (May et al. 2011).

Theoretical analysis of randomized probability matching is limited but an active

area of research (Agrawal and Goyal 2012; Granmo 2010; Kaufmann et al. 2012; May

et al. 2011). The key calculations in the proofs in Agrawal and Goyal (2012) are based

on random inequalities (e.g., probability that one arm’s expected reward is greater than

another arm’s expected reward). The optimal expected reward would be achieved by only

playing the optimal arm, receiving µ1, in expectation. Then the analysis focuses on the ex-

pected number of times the optimal arm is played compared to how many times other arms

are played, which is common in similar proofs of finite-time regret bounds (Auer 2002).

According to RPM, the expected number of times that the optimal arm is played is a func-

tion of the probability that current beliefs suggest that the optimal arm’s expected reward

is indeed the maximum, Pr(µ1 > max{µ2, . . . , µK}|Dt). The key analytical techniques

in Kaufmann et al. (2012) build on these ideas in Agrawal and Goyal (2012) to prove the

stronger result: RPM is asymptotic optimal, as defined by Lai (1987).
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One benefit of RPM is that it is compatible with any model. RPM is an allocation

heuristic that can be layered on top of a model. Given a model’s predictive distribution of

the arm’s expected rewards, it is straightforward to compute the probability of each arm

having the highest expected reward. This means that we can examine a range of model

specifications, just as we would ordinarily do in analyzing a dataset, and we can still apply

the RPM allocation rule to those policies. We now discuss the results from a variety of

bandit algorithms all using RPM but with different models, decreasing in complexity. In

particular, we consider RPM for different versions of a binomial model.

With the proposed policy, RPM-GLMM, now fully discussed, in the remainder of

Section 2.4, we review a series of benchmark MAB policies. Each one lacks one or more

components present in the proposed policy. We follow the following roadmap: we begin

with a different form of unobserved heterogeneity (e.g., latent-class logistic regression),

next remove unobserved heterogeneity (e.g., homogeneous logistic regression), and then re-

move action attributes (e.g., action-specific binomial models). After these binomial-based

models, we discuss policies with simpler allocation rules (e.g., different than RPM).

2.4.2 RPM-LC: Latent-Class GLM with RPM

While the GLMM model exhibits partial pooling through a single continuous (mul-

tivariate normal) distribution for parameter heterogeneity, an alternative form of hetero-

geneity is latent classes. In the latent-class model that we employ empirically, we assume

that the within-class GLM is homogeneous and that there are two classes. In this two-
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segment model, the distribution of heterogeneity for each parameter consists of two point

masses. The locations and relative size are estimated. While we could implement a model

with any number of classes, we only use the two-segment model in our empirical analysis

to follow in order to show the performance of this type of policy (e.g., latent-class GLM

with RPM) in comparison to the other policies.

The desirable features of the latent-class model in an RPM policy are its interpre-

tation and its implementation. The standard interpretations of latent-class models nicely

reflect the online display advertising context. Each website is really an unknown mixture

of different types of visitors. Each type (latent class) may respond to ads differently. We

allow types to correspond to different allocations of impressions across ads. We cannot

distinguish between these two typical interpretations: a website’s visitors come from a

mixture of latent segments versus a website belongs to one of those latent segments yet

we are uncertain about which one it belongs to. The interpretation of discrete unobserved

heterogeneity is natural, and implementing it also fits naturally into the bandit framework

using RPM. In a data-augmentation framework, within each posterior draw, every website

is stochastically assigned to a latent class. Given the class membership, we know which

allocation rule to apply. Then, following RPM, we assign impressions for that website in

proportion to the allocation weights. As a result, the whole posterior contains a distribution

of latent-class membership labels for each website as well as an allocation rule reflecting

both forms of uncertainty, i.e., which ad is the best if we knew the class membership and

which class best describes the website.
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2.4.3 RPM-GLM: Homogeneous GLM with RPM

We refer to a logistic regression with homogeneity as a homogeneous or a pooled

regression model. In this model, we remove unobserved heterogeneity entirely. In terms of

the ad allocation problem, if there were no differences across websites, then we would as-

sume an ad’s performance rate is the same regardless of the placement. In a pooled regres-

sion, however, we still account for the attribute structure of ads (e.g., sizes and concepts).

Using an attribute-based approach, or linear combination of attributes, was first brought

into the bandit literature using an upper confidence bound (UCB) algorithm (Ginebra and

Clayton 1995). The literature first showed a linear bandit with normally distributed reward

(Dani et al. 2008; Rusmevichientong and Tsitsiklis 2010) and then a version allowing for a

generalized linear model in the UCB algorithm (Filippi et al. 2010).

While we could elaborate on these so-called linear UCB algorithms, we simply

point out that the structure of these MAB policies is straightforward although the exact

constants that yield good empirical performance are problem-dependent. The UCB-GLM

algorithm values each action as the sum of the predicted mean and an exploration bonus,

where the exploration bonus is a proportional to the standard error of that predicted mean.

In this manner, it is similar in spirit to an upper quantile of the predictive distribution of the

action’s mean reward. However, the functional form of that exploration bonus, involving

the standard error of the mean, depends on constants and, in some cases, tuning parameters

that must be set a priori by the experimenter (Filippi et al. 2010). For these reasons, we do

not employ UCB-based MAB policies in this dissertation.
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The same homogeneous regression model has been combined with an RPM allo-

cation policy (Granmo 2010). Scott (2010) illustrates this innovation and emphasizes this

marriage of classical (frequentist) experimental design and Bayesian data analysis. More

broadly, the link stems from the following. A regression model aims to explain variation

across many observations using a smaller number of parameters. This leads to benefits

from a bandit problem perspective. Given the attribute structure, instead of initially test-

ing all actions, you only need to initialize with a subset of actions – specifically a set that

spans the space of covariates. Then the regression allows you to predict the effectiveness of

actions never taken. This is analogous to the marketing insight that an attribute-based ap-

proach (like conjoint) is useful in projecting sales for new SKUs before they are launched

(Fader and Hardie 1996). In other words, information is shared across similar ads based on

the attribute structure. Again for a bandit algorithm, this is desirable because observations

do not need to be wasted to learn how precisely inferior an action is if it is already believed

to be sufficiently far from the best action.

The regression model and RPM frameworks blend nicely. For any generalized

linear model, it is easy to obtain a distribution of parameters. Although the underlying

assumptions differ between frequentist and Bayesian modeling approaches, one can still

obtain a distribution of model parameters. As a result, one can quantify the uncertainty

around the linear prediction (mean conditional on attributes). The joint distribution of the

actions’ linear predictors is the input for RPM. With each draw from that joint distribution,

a winning action is selected (i.e., indicator for having the highest mean, even before the
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monotonic inverse-link function is applied). Again, the allocation rule is merely the pro-

portion of draws each action is the winner. Compared to a heterogeneous regression (either

continuous or discrete mixture), this homogeneous regression averages across website dif-

ferences. It provides a single allocation rule for all websites.

2.4.4 RPM-Binomial

We can also use a RPM policy without a binomial regression by ignoring the at-

tribute structure, and we refer to this a binomial RPM policy. If we remove the attribute

structure from the regression, then we are left with a MAB problem with independent ac-

tions. That means learning about one action does not provide any information about any

others. In classical experimental design language, we can consider this a flat experiment

with a one-factor design (as if it were analyzed in a one-way ANOVA) or in online experi-

ments industry language, this is an A/B/n test. To obtain allocations with RPM, we model

the data with a simple binomial distribution and characterize our changing beliefs about

the mean response (probability of success in a Bernoulli trial) with a beta distribution. The

whole RPM algorithm becomes as simple as counting successes and failures, drawing from

a beta distribution, and identifying which action has a maximum value for each draw. This

policy algorithm is considered the canonical version of RPM because the most common

(batched) bandit problem corresponds exactly to its assumptions. Because of the corre-

spondence to the A/B/n test, this independent-action version of RPM has been introduced

into Content Experiments in Google Analytics (Google 2012).
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2.4.5 Test-Rollout Policy

The “test-rollout” policy is the simplest adaptive policy that we examine. This pol-

icy captures the intuitive practice of using a randomized control test with balanced design,

and then a rollout period allocating all impressions to the treatment that performed best in

the test periods. Formally, for all k, set wjkt = 1/K during periods t = 1, . . . , Ttest. Then

using all data, we run a pooled logistic regression obtaining point estimate, β̂. We then

identify the ad with the highest predicted conversion rate, k∗ = argmaxkh
−1(β̂xk). We

note that it is only necessary to compute each action’s linear predictor β̂xk since the logit

and other GLM link functions are monotonic. Given the identity of the best performing

ad, k∗, we allocate impressions only to that ad for the remaining time periods. That is, for

all j and for remaining periods t = Ttest + 1, . . . , T , set wjk∗t = 1 and for all other k, set

wjkt = 0.

This policy is intuitive and simple. It addresses the explore/exploit tension with

two phases: explore then exploit. But how long should you test before deciding on the

winner? This question is an optimal stopping problem, and it is exactly the optimization

problem which the Gittins Index solves. However, that solution only holds under the basic

bandit assumptions, and our problem violates most of those assumptions (due to attributes,

heterogeneity, and batching).

The test-rollout policy is a winner-take-all policy. A winner-take-all policy ignores

the fact that there are many observations in the batch, and allocates all observations to the

action believed to be the best or “winner” (Agarwal et al. 2008).
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In our study we try a range of test period lengths (Ttest= 1, 2, 3, 4, 5, and 6 periods

out of 10). We show how the length of the test period affects performance. Of course,

in practice you only get one chance. The need to pre-set a parameter is not desirable.

This policy does “nest” a basic balanced design, if you set the test period to be the entire

observation period, and there is never a change in allocation. At the other extreme, this is a

special case of a more flexible policy known as greedy, described next.

2.4.6 Greedy Policy

The greedy policy identifies the best action based on the observed mean and al-

locates all observations to that action. After the first period, the greedy policy allocates

all impressions next period to the best ad and no impressions to the other ads. For-

mally, it identifies the best overall action, k∗, across contexts through t periods based

on cumulative number of impressions conversions yjkt and impressions mjkt. Therefore,

k∗ = argmaxk
∑J

j=1 yjkt/
∑J

j=1mjkt, and then wj,k∗,t+1 = 1 and wj,k,t+1 = 0 for all other

k.

The greedy policy exhibits only exploitation and is myopic since it does not con-

sider any exploration or uncertainty around observed means. However, it is adaptive. That

is, unlike the test-rollout policy, it continues to adapt after the first allocation, recalculating

the observed mean, and reallocating impressions (if the winner changes). That is, after each

subsequent period, ads are ranked by observed means, and the best one is selected for the

next period. Therefore, it is possible that an ad seemed best after the initial period, but after
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allocating all of the impressions to it in the second period, the cumulative observed rate

is worse than the rate of another ad initially tested (but not selected in the second period).

The policy would then switch allocations to this other ad. Since this policy makes a large

investment (goes all or nothing) into a selected ad, it can perform well when it correctly

identifies the best ad, or it can perform quite poorly when it is fooled by random variabil-

ity. We say “fooled” because the policy may select an inferior ad (i.e., its true mean is

not the best), but by chance that ad seemed to be the best earlier in the test. As a result,

performance of greedy algorithms typically exhibit relatively high variability.

Like the test-rollout policy, the greedy policy is also a winner-take-all policy. That

is because in the presence of batching, it allocates all observations to one action, whichever

one has the best observed mean.

2.4.7 Epsilon-Greedy Policy

The epsilon-greedy policy is a stochastic policy that randomly mixes both pure ex-

ploration and pure exploitation simultaneously. It is a standard benchmark in the literature

and is useful to examine. The variability of a greedy policy (pure exploitation) can be con-

trolled by introducing an extra parameter to ensure no ads are ever entirely ignored (always

some exploration). The policy randomly mixes exploration and exploitation: epsilon deter-

mines the proportion of observations to be uniformly split across all ads (equal allocation)

and the remaining observations are allocated to the best ad (greedy). Formally, with proba-

bility ε set wj,k,t+1 = 1/K and with probability 1− ε, follow a greedy policy based on data
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through t periods, where wj,k∗,t+1 = 1 only for the action with the largest observed mean

and set wj,k,t+1 = 0 for all other actions.

Like a greedy policy, the epsilon-greedy policy continues to adapt as it reallocates

1 − ε of the observations each period if needed. While the test-rollout policy uses time to

split the two phases (explore then exploit), epsilon-greedy uses randomization to simulta-

neously mix the two. As a result, the policy continues gaining information about all ads,

and “hedges its bets” more than the greedy policy. So its mean performance may be worse

than greedy, but the variability in performance is typically smaller than that of greedy. We

also note that in the presence of batching, the actual allocations for any j and t across all

K are wj,k,t+1 = ε/K for all k except for k∗ which has wj,k,t+1 = ε/K + (1− ε).

One downside to the epsilon-greedy policy is that it also requires the researcher

to set an a priori tuning parameter, ε, which completely controls the balance between

exploration and exploitation. In fact, it allows the epsilon-greedy policy to nest both a

pure exploration, equal allocation policy (ε = 1) and a pure exploitation, greedy policy

(ε = 0). This is quite different from the data-driven way that RPM adaptively manages the

explore/exploit tradeoff.

Another downside is that even if an action is clearly the winner, the maximum al-

location for that action will be ε/K + (1 − ε), due to the fixed amount of exploration.

One particular way to make the epsilon-greedy policy perform better is to allow a de-

creased amount of exploration over time by setting a time-varying parameter, εt. Then,

instead of determining the value of the epsilon parameter the researcher must determine
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the “schedule” of its decreasing pattern. A common so-called exploration decay schedule

is εt = 1/ log t (Sutton and Barto 1998). However, we will not employ the time-varying

version of epsilon-greedy in the empirical context, since these decay schedules are well-

calibrated for batched MAB problems and they still require other tuning parameters to be

set before the experiment starts.

There is another common stochastic heuristic that attempts to slowly decrease ex-

ploration as it tends towards allocating all resources to one action: softmax policy. The

softmax policy, also known as the Boltzman distribution, sets the action allocation proba-

bilities to the inverse-logit transformation of the observed means (Sutton and Barto 1998).

That is,

wj,k,t+1 =
exp(Vjkt/τ)∑K
k=1 exp(Vjkt/τ)

, (2.4.10)

where Vjkt =
∑J

j=1 yjkt/
∑J

j=1 mjkt, and τ is a tuning parameter. In this case, like in the

greedy algorithm, we use a conversion rate for ad k that is cumulative through t periods

and aggregated across all J websites.

A benefit of the softmax policy is that it directly transforms any set of actions’

means into actions’ allocation probabilities. However, the tuning parameter also needs

to be set by the researcher a priori, and again, this completely determines the amount of

exploration and exploitation in the policy. In the limit, the softmax policy nests a pure

exploration policy by eliminating the differences among Vjkt (as τ → ∞) and a pure

exploitation policy exaggerating the differences among Vjkt (as τ → 0).
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We do not employ the softmax policy in the analysis, for the same reason we do not

employ the UCB policies. We exclude these policies because tuning parameters need to be

set a priori by the experiments, and those parameters do not correspond to a clear manage-

rial interpretation, unlike the parameters of the test-rollout and epsilon-greedy policies.

2.5 Field Experiment

2.5.1 Design and Implementation

We implemented an experiment by collaborating with ING Direct and an online

media buying agency. Together they were planning to test new creative concepts for their

display ads. The ads came from a multi-factor experimental design with three different ad

sizes (160x600, 300x250, and 728x90) and four different ad concepts (Figure 2.1).

The goal of the test was to increase customer acquisition rates during the campaign.

The main questions of interest for the test included: “Which ad is the winner?” and “When

can we declare a winner?” Previously they would run a test for a decided-upon period

of time (e.g., two months) and afterwards, measure performance using click-through rate

in aggregate, across all media placements. However, we change this in three ways: we

measure performance using customer acquisition (not clicks), we look at a more disaggre-

gate level by analyzing ad performance website-by-website, and we change the allocations

adaptively based on performance throughout the campaign period (e.g., two months).

The goal is simply stated: maximize customer acquisition. This involves learning,
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Figure 2.1: These 12 ads were delivered in the field experiment. They represent the four
ad concepts and three ad sizes (160x600 is tall, 300x250 is almost square, and 728x90 is
wide).
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for each media placement (e.g., website), which ad has the best acquisition rate. ING

Direct had already decided on a set of J media placements and budget of Mjt impressions

for each website and period to be allocated across these K ads. That meant they had

already decided on the schedule of how many impressions to deliver on each website over

the next two months. We use the terms website and media placement interchangeably for

simplicity of exposition. We also use acquisition and conversion from visitor to customer

interchangeably.

The field experiment with ING Direct can be viewed as two parallel and identical

hierarchical attribute-based batched MAB problems. There were two experimental groups

and their only difference was the policy used to solve the same bandit problem. There was

a static policy group and an adaptive policy group. In the static group, we used an equal

allocation policy across ads (e.g., experiment with balanced design). In the adaptive group,

we ran the proposed algorithm, RPM with a heterogeneous logit model (RPM-GLMM).

The groups were separate because we wanted to demonstrate a true live test of RPM against

a balanced design. The same ads were served over all of the same websites over the same

time period. The only difference was how we allocated impressions between ads within

any website for each time period.

The groups were separated as follows. We effectively created doubles of each ad,

one for each group, so we could track impressions and conversions separately. That enabled

us to only use the adaptive group’s data when running the model for the RPM-GLMM

policy. On the other hand, the data for the static group showed the results of a balanced
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design with a different subset of data. In the initial period, both groups (adaptive and static)

had an equal allocation policy, a balanced design. So any differences between the groups’

acquisition rates in the initial period can be attributed to random binomial variation.

2.5.2 Field Experiment Results

To compare the two groups, we see how the overall acquisition rate improved

over time. We expect the static group’s aggregate acquisition rate to remain flat, on av-

erage. By contrast, we expect the rate for the adaptive (RPM-GLMM) group to increase

on average over time. Figure 2.2 confirms those expectations, showing the results of the

experiment involving 700 million impressions over the span of two months. We com-

pare the cumulative conversion rates, aggregated across all ads and websites, computed

as
∑J

j=1

∑K
k=1 yjkt/

∑J
j=1

∑K
k=1 mjkt, where yjkt and mjkt are already defined to be the

cumulative conversions and impressions for ad k on website j through periods 1, . . . , t.

Note, throughout this empirical portion of this chapter, all conversion rates reported are

rescaled versions of the actual data from ING Direct, at the request of the firm to mask the

exact customer acquisition data. We performed this scaling by a factor, so it has no effect

on the relative performance of the policies. The scaling factor is small enough so that al-

most all values of interest are within the same order of magnitude as their actual observed

counterparts.

Compared to the static balanced design, the RPM-GLMM policy improves overall

acquisition rate by 8%. For instance, due to this policy, we achieved approximately 240
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Figure 2.2: The actual field experiment results show the RPM-GLMM (adaptive group,
solid line) achieves a higher cumulative improvement than the balanced design (static
group, dashed line), relative to the cumulative conversion rate after the initial period. The
cumulative conversion rate is the cumulative conversions per cumulative impressions. The
impressions were delivered continuously over time (two months). For the adaptive policy,
the circles indicate when reallocations occurred (every five to seven days).
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extra new customers out of approximately 3000 new customers acquired.

From a substantive perspective, we note that these extra conversions come at no

additional cost because the total media spend does not increase. They are the direct result

of adaptively reallocating already-purchased impressions across ads within each website.

Therefore, the cost per acquisition decreases (CPA = total media spend / by total number of

acquisitions). In essence, we increased the denominator of this key performance metric by

8%. The new CPA has consequences beyond the gains during the experiments; it provides

guidance for future budget decisions (e.g., how much the firm is willing to spend for each

expected acquisition). We return to this in the general discussion, when we discuss potential

linkage to post-acquisition activities like customer lifetime value.

We note that we have not changed the actual conversion rate of any ad. Instead, we

assume each ad on a website has a constant conversion rate, but the aggregate conversion

rate of ads, which is a weighted average, does increase due to our adaptive allocation. This

is because we have allocated more impressions to better performing ads on each website

by controlling wjkt. The expected aggregate conversion rate for ad k across all J websites

in period t is
∑J

j=1

∑K
k=1wjktMjtE[µjk(θ)]/

∑J
j=1Mjt.

One may ask a range of questions regarding stationarity. First, is it reasonable to

assume that each ad within a website has a constant conversion rate? Second, assuming

they are truly stationary, why does the aggregate conversion rate for the static group us-

ing a balanced design appear non-stationary (i.e., not a perfectly flat line)? The aggregate

conversion rate varies slightly over time, but any sources of its variation seem to be uncor-
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related with our effects of interest.

While we observe the adaptive RPM group improve by 8% over a baseline, are

those results really meaningful in a statistical sense? While the above results are aggregate,

they do not reflect any uncertainty in performance. That is because we only observe one

realization of a stochastic process. However, we can compute the implied distribution of

performance through Monte Carlo simulation. The static group’s balanced design sets the

number of impressions for each website and ad within each website. Keeping that constant

across simulated “worlds,” we generate simulated conversions. The data-generating pro-

cess is binomial with the constant probability set to equal the long-run probability actually

observed using all data from the experiment. We compute 100 worlds in parallel applying

the same balanced design in each world. We further detail this process for all other policies

in Section 2.6.

Figure 2.3 shows observed results for RPM-GLMM and the observed results for

the balanced design, compared to a predictive distribution of results for a balanced design.

The interval of performance over time (upper and lower bounds and mean) for the balanced

design remains lower than the RPM-GLMM policy, beginning after about 350 million im-

pressions were delivered. That is, the RPM-GLMM policy achieves levels of improvement

that are outlying with respect to a null distribution, but it takes time for the policy to learn

and reach that higher level of performance.
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Figure 2.3: The actual cumulative performance of RPM-GLMM (adaptive group is dark
solid line) is even better than the simulation-based predictive distribution’s 95% interval
for balanced design performance, at the end of the experiment. This variability around
the actual performance of the balanced design is summarized as the predictive distribu-
tion’s mean, 2.5% quantile, and 97.5% quantile (middle, low, and high, light dashed lines,
respectively). By the end of the experiment, the predictive performance distribution for
the balanced design is centered near the actual performance of the balanced design (static
group is dark dashed line). For the RPM-GLMM policy, reallocations occurred every five
to seven days (circles).
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2.5.3 A Closer Look at the RPM-GLMM Policy

We now look in more detail at how the RPM-GLMM policy works. We examine

three aspects of the policy: (1) the average impact of ad attributes, such as ad concept

and ad size (i.e., the population-level parameters of the hierarchical model), (2) how the

allocations across ads within a website change over time (i.e., learning parameters), and (3)

how allocations differ across websites (i.e., unobserved heterogeneity).

The average effects of ad attributes (ad concept, ad size, and their interactions) are

captured by distributions of population-level parameters. Each parameter corresponds to

the effect of ad size, ad concept, or their interactions. They are close to zero, suggesting the

conversion rates of the ads do not differ greatly. However, truly small effects are common

in real-world tests unlike the size of effects seen in some toy bandit problems. Figure 2.4

shows the belief distributions of the parameters, at the end of the experiment using all of the

data through all 10 periods. The key takeaway from those parameter densities is that many

of them include zero, but they are still shifted slightly away from zero. Also note that since

ad size and ad concept are categorical variables represented by dummy variables, one level

is left out as a reference level. The intercept, not shown in Figure 2.4, has mean −12.19

and its 95% interval is (−12.70,−11.67) on the logit scale, corresponding to a conversion

rate of 5.08 (3.04, 8.58) per million impressions.

While β̄ shown in Figure 2.4 are parameters representing population-level effects

averaged across J websites, we also examine the impact of the attributes within a given

website. To do this, we examine the posterior distributions of conversion rates, µjk(θ), of
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Figure 2.4: The simple effects of ad concepts and ad sizes and their interactions have
density close to zero (θ except for intercept).
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all ads k = 1, . . . , K, for a given website, j. The 12 ads (three sizes x four concepts) have

different average conversion rates on a given website, but there is a lot of uncertainty around

each ad’s average. The different conversion rates are harder to visualize as probabilities

than as log-odds. The density of each of the 12 conversion rates is shown in Figure 2.5,

separating by ad size since the scale differs substantially. It is easy to see that by looking

at the conversion rates, it is hard to glean insights about the differences among the ads;

instead, it is preferable to look at a transformation, such as log-odds (Figure 2.6). The

densities represent model-based beliefs, predictive distribution of µj for website j = 103

through t = 6 periods.
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Figure 2.5: Density of conversion rate for one website’s 12 ads.

To better visualize these important differences in predictive distributions of conver-

sion rates, we consider two representative websites highlighted in Figure 2.7 as horizontal

boxplots. The lines show the predictive distributions of µjk(θ) for all k and two j. All of

the underlying key values in the panels of Figure 2.7 are reported in Tables 2.1, 2.2, and

2.3, for ad sizes 160x600, 300x250, and 728x90, respectively.
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Figure 2.6: Density of log-odds of conversion rate for one website’s 12 ads.

We see the attribute importance by noting the differences in the µjk(θ) distributions

across the ad concepts and ad sizes. In particular, it is clear that the interactions are mean-

ingful: the rank order of the ad concepts’ conversion rates varies for different ad sizes. For

instance as one illustration, consider the snapshot of how the RPM-GLMM policy evalu-

ated ads and allocated impressions for website j = 114 using data through t = 6. This is

shown as one row of three panels in Figure 2.7, which we continue to refer to throughout

this subsection. For ad size 160x600, the ad concept with the best predicted mean con-

version rate is ad concept 4 (14 acquisitions per million), but that same concept is neither

the best on the ad size 300x250 (mean conversion rate is 131 per million) nor on 728x90

(mean conversion rate is 47 per million). In fact, the best predicted ad concept for sizes

300x250 and 728x90 is ad concept 3. Figure 2.7 also reports the allocation probabilities

wj,k,t+1 within each ad size, website, and time period for all ad concepts (right side of each

panel). These allocation percentages are computed based on the data and predictive dis-

tributions through the t periods and then implemented in period t + 1. Looking at those
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allocation probabilities for j = 114 using data through t = 6, we see that for sizes 300x250

and 728x90 ad concept 1 is hardly given any impressions in the next period. However, for

size 160x600, ad concept 1 is actually predicted to be just as good as ad concept 3. The

GLMM-based predicted values underlying these recommendations are shown in Tables 2.1

(ad size 160x600), 2.2 (300x250), and 2.3 (728x90), as well as the observed data of cumu-

lative conversions and impressions broken down by each website (j = 103 and 149), ad

size, ad concept, and time period (t = 1 and 6).

size 160x600

website time concept wj,k,t+1 µjk Mean µjk 2.5% µjk 97.5% yt mt

j103 1 1 0.30 4.76 0.42 43.70 0 13086
2 0.27 3.99 0.36 46.47 0 13086
3 0.19 2.81 0.19 40.03 0 13086
4 0.23 3.64 0.25 43.96 0 13086

6 1 0.24 12.99 4.52 35.13 1 96415
2 0.17 9.94 2.71 36.93 1 78776
3 0.26 12.73 3.84 44.13 1 86540
4 0.33 13.88 4.23 41.37 2 97296

wj,k,t+1 µjk Mean µjk 2.5% µjk 97.5% yt mt

j149 1 1 0.27 5.83 0.55 64.33 0 3572
2 0.25 4.84 0.34 64.83 0 3572
3 0.22 3.99 0.19 79.68 0 3572
4 0.27 4.70 0.29 85.16 0 3572

6 1 0.30 6.08 1.09 33.82 1 48028
2 0.16 3.43 0.47 22.71 0 38914
3 0.28 5.61 0.82 37.47 0 40281
4 0.27 5.05 0.66 37.00 0 48360

Table 2.1: Values from Figure 2.7 for ad size 160x600. The predictive distribution of each
µjk based on the model and data through t periods, is summarized by its mean (column
labeled “µjk Mean”) and 95% interval (columns labeled µjk 2.5% and µjk 97.5%). The
predictive distributions are based on the actual cumulative number of conversions and im-
pressions (columns labeled yt and mt, respectively). The subsequent allocation weights
are for period t + 1 (column labeled wj,k,t+1) The above descriptions apply to here and to
Tables 2.2 and 2.3.

54



 conversion rate (log−odds)

ad
 c

on
ce

pt

size_160x600

●

●

●

●

30%

27%

19%

23%

●

●

●

●

24%

17%

26%

33%

●

●

●

●

27%

25%

22%

27%

●

●

●

●

30%

16%

28%

27%

−16 −14 −12 −10 −8

size_300x250

●

●

●

●

1%

22%

41%

37%

●

●

●

●

1%

30%

52%

18%

●

●

●

●

16%

33%

27%

23%

●

●

●

●

21%

22%

41%

15%

−16 −14 −12 −10 −8

size_728x90

●

●

●

●

10%

8%

26%

57%

●

●

●

●

2%

31%

39%

28%

●

●

●

●

23%

18%

22%

37%

●

●

●

●

25%

20%

22%

33%

−16 −14 −12 −10 −8

j103_t1
j103_t6

j149_t1
j149_t6

Figure 2.7: The lines represent the belief distributions of conversion rates, based on predic-
tive distributions of parameters from the GLMM (heterogeneous hierarchical logit model).
Within each panel of a website j, time period t, and an ad size, there are four ad concepts
(horizontal lines, ordered from top to bottom, ad concepts 1 to 4). The allocation probabil-
ities based on that model are printed (and shown by level of transparency of shading, from
invisible 0% to opaque 100%). The four vertical panels show two different websites at two
different time periods. Heterogeneity is shown through differences across the two websites
(j) for the same time period. Learning is shown through the two time periods (t) for the
same website. Both heterogeneity and learning cause allocations to differ across ads. The
three panels in each row show the different ad sizes.
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size 300x250

website time concept wj,k,t+1 µjk Mean µjk 2.5% µjk 97.5% yt mt

j103 1 1 0.01 76.05 28.40 210.40 1 18215
2 0.22 165.29 56.90 492.54 5 18215
3 0.41 210.07 78.38 662.32 5 18215
4 0.37 206.97 75.22 554.49 3 18215

6 1 0.01 88.70 44.36 171.69 2 24814
2 0.30 147.29 71.24 303.86 14 88826
3 0.52 167.57 89.55 299.38 36 207258
4 0.18 131.02 61.53 294.88 8 61298

wj,k,t+1 µjk Mean µjk 2.5% µjk 97.5% yt mt

j149 1 1 0.16 5.69 1.07 36.85 0 28356
2 0.33 9.03 1.41 63.44 1 28356
3 0.27 7.35 0.92 56.65 0 28356
4 0.23 6.81 1.03 56.76 0 28356

6 1 0.21 2.35 0.76 7.41 0 295132
2 0.22 2.17 0.59 8.67 1 404384
3 0.41 2.93 0.82 10.31 2 403467
4 0.15 1.87 0.52 7.18 0 302950

Table 2.2: Values from Figure 2.7 for ad size 300x250.
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size 728x90

website time concept wj,k,t+1 µjk Mean µjk 2.5% µjk 97.5% yt mt

j103 1 1 0.10 27.48 6.68 116.32 2 17439
2 0.08 21.36 4.27 93.26 1 17439
3 0.26 40.23 8.58 190.65 0 17439
4 0.57 61.37 14.87 256.00 1 17439

6 1 0.02 26.28 12.08 58.81 3 43323
2 0.31 45.15 17.26 119.30 4 40787
3 0.39 50.49 20.97 121.70 5 102441
4 0.28 47.01 19.73 111.75 3 115023

wj,k,t+1 µjk Mean µjk 2.5% µjk 97.5% yt mt

j149 1 1 0.23 3.31 0.29 31.32 0 14059
2 0.18 2.78 0.29 31.35 0 14059
3 0.22 2.98 0.20 42.94 0 14059
4 0.37 5.01 0.50 75.27 0 14059

6 1 0.25 1.63 0.36 6.97 0 186382
2 0.20 1.34 0.23 8.13 0 157923
3 0.22 1.53 0.32 6.60 0 222576
4 0.33 1.90 0.33 9.14 1 288744

Table 2.3: Values from Figure 2.7 for ad size 728x90.
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Figure 2.7 not only shows the importance of attributes (within website, across ads),

but it also shows time dynamics (within website, over time) and heterogeneity (across web-

sites). The allocations across ads within a website do change over time. In the bandit prob-

lem, the dynamics over time are from learning. The bandit policy aims to earn as much

reward as it can, and to do so, it learns parameters. This has been documented in the litera-

ture by showing how the belief distribution about the values of coefficients in homogeneous

GLM change over time when using the RPM-GLM policy (Scott 2010). In our case, instead

of examining all coefficient vectors, we illustrate how the RPM-GLMM policy updates its

beliefs about µjk(θ). Figure 2.7 highlights this for two websites and two points in time.

Naturally, the distributions are wider after the initial period (t = 1) than they are after more

data have accumulated (t = 6). But there is still plenty of uncertainty around those means,

so the winner is not clear. RPM reflects this with the width of the distribution around the

expected value of each mean.

We note that the observed rates can be misleading especially early on in the ex-

periment. Tables 2.1, 2.2, and 2.3 show that for website j = 149 after the initial period,

there were zero conversions in total, except for some customer acquisition from ad concept

2 on ad size 300x250. That would be rated the best ad concept and ad size combination

if we were only using the observed conversion rate for evaluating the ads. But can we

really trust that signal given the rare incidence rate in the environment? Trusting that data

alone, without leveraging other information, would be problematic and typically leads to

very large variability in performance of any policy that relies heavily on observed data (e.g.,
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greedy policy) and independently on each unit’s observations (e.g., policies that lack partial

pooling across websites).

We now look at the same set of ads on that website using the inferences and alloca-

tions from the RPM-GLMM. Due to partial pooling, the model leverages the information

across all websites and ads to come up with a predictive distribution for the ads on the

website in question. These predictive distributions are shown visually in Figure 2.7 and the

mean and 95% interval are shown in Tables 2.1, 2.2, and 2.3. For the ad size 300x250 and

ad concept 3, after the initial period, the predicted distribution of the conversion rate has

a 95% interval of (0.92, 56.65) with a mean of 7.35 per million. The probability that it is

optimal is 27%. Looking further in time, t = 6, we see that the interval not only shrinks

(0.82, 10.31) but it also shifts its mean to 2.93 customers per million impressions. This

leads to the MAB policy assessing a higher probability of this ad concept being optimal,

hence allocating 41% of impressions for the next period.

The unobserved heterogeneity in the hierarchical model leads allocations to differ

across websites. While dynamics exist for each website, they also differ across websites.

This is the key aspect of the online advertising problem that a hierarchical model brings to

an allocation policy.

The focus here is not to talk about which particular types of ads performed better

on which websites (after all, the identity of each ad concept is masked). Instead, the fo-

cus here is to show that ads perform differently on different websites, and show how the

bandit approach that we employ captures those differences and leverages them to generate
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website-specific ad allocations.

Figure 2.7 and its associated tables show how the allocations differ across two dif-

ferent websites. We show two snapshots of the allocation after t = 1 and t = 6 for website

j = 114 and j = 149. First, looking at the panels for website j = 103 after t = 6 periods,

we note that the predicted winners for each ad size (160x600, 300x250, and 728x90) are

ad concepts 4, 3, and 3, respectively. But the predicted winners for website j = 149 after

t = 6 periods, are different: ad concepts 1, 3, and 4, respectively, for the three ad sizes.

Declaring these as winners may be a stretch for these two websites at that time point, since

there is still a great deal of uncertainty around the conversion rates µ(θ) as seen by the

length of the lines in Figure 2.7. That is why most allocations are not extreme deviations

from equal allocation. Nevertheless, the patterns of these deviations differ from website

to website, and those deviations are captured by the hierarchical model (i.e., unobserved

parameter heterogeneity across websites), enabling the proposed policy to leverage these

differences to reach greater improvement than other bandit policies that ignore them. In the

next section, we examine counterfactual policy simulations, i.e., how other policies would

have performed if we would have implemented them.

2.6 Policy Simulations Based on Field Experiment Data

How would a bandit policy perform if we were to ignore the hierarchical structure

but only account for the attribute structure using a homogeneous binomial regression (e.g.,

RPM-GLMM)? What if we ignore both the hierarchical and attribute structure, just treating
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this as A/B/n test with a binomial model without a regression (e.g., RPM-Binomial)? What

if we simply stopped the experiment after five periods and just selected the best ads for

each size and served that on every website (e.g., test-rollout)? This section considers what

would have happened if we used other MAB methods in the ING Direct experiment. These

counterfactual policy simulations reveal which aspects of the method are accounting for

improved performance. First, we detail how these simulations are constructed.

2.6.1 Performing Policy Simulations

To run these counterfactual policy simulations, we have to decide on the “truth,”

i.e., specify the data generating process. In particular, we need to set the true conversion

rates for each ad on each website. To come up with these conversion rates we consider two

options: a fully model-based approach and a semi-parametric approach.

The fully model-based approach uses the exact model (e.g., GLMM) from our pro-

posed MAB policy. This means using the model parameters (mean of distributions) ob-

tained from the actual experimental data through all periods. By construction, this favors

the proposed policy because it would mean that we generate data form a hierarchical lo-

gistic regression model and estimate a hierarchical logistic regression model with RPM to

show this policy performs best. This can be misleading, yet it is often unquestioned in

the practice of evaluating bandit policies (Filippi et al. 2010; Hauser et al. 2009). Instead

of validating MAB policy performance in a realistic setting, this type of policy simulation

quantifies how model misspecification is translated into relative loss of bandit performance.
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We therefore utilize a semi-parametric approach instead. Like the model-based

approach, it also uses all of the data across time. However, we compute the observed

conversion rates (e.g., conversions divided by impressions) for each combination of website

and ad at the end of the experiment (the non-parametric part). Those conversion rates are

then used as the binomial success rates (the parametric part). In simulation, the conversions

(successes) are generated, fixing the number of impressions (trials) to the observed count

in each decision period for each place (summing across ads). Since we do this separately

for each ad-website combination, our data generating process does not assume there is any

particular structure in how important ad attributes are or how much websites differ from

one another.

Given a true conversion rate, the key assumption is that the truth is a stationary

binomial model, so each website-ad combination has a conversion rate, and it is stationary

through all periods. In addition, we assume that the conversion rate of any ad on a website is

unaffected by the number of impressions of that ad, that website, or any other ad or website.

This assumption is known as the Stable Unit Treatment Value Assumption (SUTVA; Rubin

1990).

We obtain all of the empirical results in this section using this same data-generating

process and same truth. These true parameters define our MAB problem. In addition to

selecting the data-generating process for the policy simulations, we need to decide how we

will measure performance. Our main measure of performance is the total number of cus-

tomers acquired, averaged across replications. We scale this to be the aggregate conversion
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rate of customers per million of impressions. We use a measure commonly seen in industry,

which is expected “lift” above the expected reward earned during the experiment, if the firm

were to run a balanced design. An equal allocation policy (static experiment with balanced

design) earns an average reward equal to the average of the actions, 1
K

∑K
k µk(θ). Intuitive

to a manager and useful from a practical perspective, lift captures the improvement of any

bandit policy over commonly-practiced static A/B/n or multivariate tests.

For clarity, since we will discuss a variety of MAB policies as benchmarks, we ana-

lyze the performance in groups. The first counterfactual simulation we perform is intended

to show consistency with the field experiment on which all the subsequent analyses are

based.

2.6.2 Replicating the Field Experiment

In the ING Direct field experiment we implemented two policies: RPM-GLMM

and equal allocation. We replicate this experiment via simulation to capture the uncertainty

around the observed performance of these two policies. This simulation is designed to

serve as 100 replications of the field experiment. As expected, these results match the

actual relative performance of the two methods: RPM-GLMM achieves 8% higher mean

performance than equal allocation (4.717 versus 4.373 conversions per million) (Table 2.4).

This consistency gives validity to the counterfactuals to follow. In effect, this shows that

our data generating process and implementation of these two policies can recover the actual

performance. The key benefit of looking at simulated versions of the same policies that
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we implemented in the field experiment is that it enables us to examine the variability

in performance and then turn off components of these policies to motivate other policies

(which we do for the rest of this section).

First, however, we note that while there is substantial variability in performance,

the distributions of performance for these two policies hardly overlap. The 95% intervals

are (4.052, 4.569) for equal allocation and (4.560, 4.900) for RPM-GLMM (Table 2.5 and

Figure 2.9). This is not very surprising: the equal allocation policy is a weak benchmark

policy for comparison. Although the balanced design was the firm’s previous plan for

running the multivariate test, it is not a strong enough benchmark for evaluating MAB

policies.

2.6.3 Benchmark MAB Policies

We now examine a range of MAB policies from complex to simple, from the hier-

archical generalized linear model with RPM by shutting off this MAB policy’s components

one at a time. Figure 2.8 shows the boxplots for each policy’s distribution of total reward

accumulated by the end of the experiment. This provides a bird’s eye view of all of the

policies that we will discuss further. We use the following naming scheme for the poli-

cies assessed here: randomized probability matching with generalized linear mixed model

with continuous heterogeneity (RPM-GLMM), RPM with GLM with two latent classes

(RPM-LC), RPM with GLM with homogeneity (RPM-GLM), RPM without a regression

just independent binomial models (RPM-binomial), the greedy policy that only uses an
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aggregate observed mean based on all cumulative data (greedy), epsilon-greedy policies

also using the same aggregate observed mean with exploration parameter ε set to 10%

and 20% (epsgreedy10 and epsgreedy20), test-rollout policies using a logit after the test to

select the action with the number of initial test periods set to 2 and 5 periods (testrollout-

t2, testrollout-t5), the equal allocation policy (balanced), and the hypothetical ideal policy

always playing the truly best ad on each website, the oracle policy (best).

The results for these RPM-based policies suggest that the hierarchical/partially-

pooled (continuous parameter heterogeneity) aspect of our proposed policy is important.

To summarize the detailed results to follow, we find that the RPM-GLMM policy yields an

8% increase in mean above a balanced design. The RPM-GLM policy and RPM-binomial

policy each yields a 3% improvement above a balanced design. The RPM-LC policy falls

between those but only at 4%.

The results of the RPM with the partially pooled / heterogeneous regression (RPM-

GLMM), latent-class regression (RPM-LC), pooled / homogeneous regression (RPM-GLM),

and binomial (RPM-binomial) policies are all compared to the equal allocation policy (bal-

anced) and the oracle policy (best) in Table 2.4, Table 2.5, and Figure 2.9. These confirm

that the inclusion of partial pooling (hierarchical model) is a major driver of performance.
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Figure 2.8: The distributions of total conversions for a variety of policies are compared. The
boxplots show the median value (center line), interquartile range (box), and the asymptotic
95% interval of the median (whiskers). The figures and tables to appear later will zoom in
on these differences by highlighting subsets of these policies distributions of rewards.

66



 conversion rate (per million)

de
ns

ity

0

1

2

3

4

4.2 4.4 4.6 4.8

policy

balanced

RPM−binomial

RPM−GLM

RPM−GLMM
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Improvement Efficiency Improvement Relative Relative

Mean SD above balanced to best balanced to best Mean Precision
balanced 4.373 0.138 0% 74% 0% -7% -58%

RPM-binomial 4.493 0.087 3% 76% 8% -5% 5%
RPM-GLM 4.493 0.091 3% 76% 8% -5% -3%

RPM-LC 4.527 0.088 4% 76% 10% -4% 4%
RPM-GLMM 4.717 0.090 8% 80% 22% 0% 0%

best 5.932 0.078 36% 100% 100% 26% 33%

Table 2.4: The policy RPM-GLMM is the best performing policy, and it is compared to
other RPM-based policies. The “balanced” policy is equal allocation, and the “best” policy
refers to the (hypothetical and ideal) oracle policy. They are shown in subsequent tables to
show the lower and upper end of policies.

Quantiles of performance

0% 2.5% 25.0% 50.0% 75.0% 97.5% 100%
balanced 4.030 4.052 4.315 4.408 4.467 4.569 4.621

RPM-binomial 4.260 4.340 4.430 4.495 4.542 4.666 4.690
RPM-GLM 4.290 4.334 4.425 4.494 4.567 4.662 4.692

RPM-LC 4.318 4.353 4.475 4.521 4.588 4.682 4.815
RPM-GLMM 4.482 4.560 4.656 4.713 4.773 4.900 4.934

best 5.739 5.785 5.878 5.937 5.976 6.080 6.120

Table 2.5: The quantiles of the total rewards for distributions of RPM-based policies are
shown.

Before Rollout

Initial Periods Mean SD 2.5% 50% 97.5%
1 4.453 0.155 4.157 4.466 4.721
2 4.479 0.128 4.194 4.494 4.700
3 4.463 0.108 4.243 4.477 4.631
4 4.463 0.099 4.242 4.481 4.610
5 4.446 0.098 4.216 4.452 4.591
6 4.450 0.085 4.284 4.444 4.610

Balanced 4.373 0.138 4.052 4.408 4.569
Best 5.932 0.078 5.785 5.937 6.080

Table 2.6: The test-rollout policies are run for various lengths of the initial test period.
The test-rollout policy with two initial test periods performs best. The balanced design is
equivalent to a test-rollout policy with all 10 initial test periods.
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Mean Mean Mean

Improvement Efficiency Improvement Relative Relative
Mean SD above balanced to best balanced to best Mean Precision

balanced 4.373 0.138 0% 74% 0% -7% -58%
test-rollout(2) 4.479 0.128 2% 76% 7% -5% -51%
test-rollout(5) 4.446 0.098 2% 75% 5% -6% -16%

greedy 4.520 0.115 3% 76% 9% -4% -39%
epsgreedy(10) 4.489 0.094 3% 76% 7% -5% -9%
epsgreedy(20) 4.504 0.089 3% 76% 8% -5% 2%
RPM-GLMM 4.717 0.090 8% 80% 22% 0% 0%

best 5.932 0.078 36% 100% 100% 26% 33%

Table 2.7: Various simple heuristics are compared to the RPM-GLMM policy. The poli-
cies labeled “test-rollout(2)” and “test-rollout(5)” refer to using two and five initial test
periods, respectively, in the test-rollout policy. The policies labeled “epsgreedy(10)” and
“epsgreedy(20)” refer to epsilon-greedy policies with the exploration variable ε set to 10%
and 20%, respectively.

Quantiles of performance

0% 2.5% 25.0% 50.0% 75.0% 97.5% 100%
balanced 4.030 4.052 4.315 4.408 4.467 4.569 4.621

test-rollout(2) 4.128 4.194 4.404 4.494 4.568 4.700 4.775
test-rollout(5) 4.161 4.216 4.404 4.452 4.515 4.591 4.646

greedy 4.128 4.274 4.464 4.531 4.593 4.726 4.756
epsgreedy(10) 4.223 4.276 4.439 4.499 4.552 4.654 4.712
epsgreedy(20) 4.294 4.348 4.444 4.490 4.581 4.663 4.711
RPM-GLMM 4.482 4.560 4.656 4.713 4.773 4.900 4.934

best 5.739 5.785 5.878 5.937 5.976 6.080 6.120

Table 2.8: The quantiles are shown for various simple heuristics in addition to the RPM-
GLMM, balanced, and best policies. The policies labeled “test-rollout(2),” “test-rollout(5),’
“epsgreedy(10),” and “epsgreedy(20)” are defined in the previous table.

We implement the test-rollout (explore-then-exploit) heuristic with six different

lengths of the initial (pure exploration) period. While the average performance for dif-

ferent amounts of initial learning does not change substantially (all are still approximately

a 2% improvement above keeping a balanced design (pure exploration) for all of the periods

(Table 2.6 and Figure 2.10), the results provide some interesting points. First, the extent
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Figure 2.11: The distributions of total conversions for epsilon-greedy policies are compared
to greedy policy and a balanced design. Setting epsilon to 20% is better than setting it to
10%.
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to which mean performance varies across policies has an “interior” solution: picking the

winner after the initial testing period with a balanced design lasts for 2 periods yields better

performance than when it lasts for 1, 3, 4, 5, or 6 periods. The fact that an initial test period

of 2 periods is best may be idiosyncratic to this MAB problem, but it does confirm that

such a test-rollout policy is quite sensitive to the choice of the test period length. Second,

the variability in performance is asymmetric. The upper tails of policies’ performance dis-

tributions do not vary as much as their lower tails. It suggests that a longer test-period in a

test-rollout policy is not always better in terms of mean (i.e., there is an interior solution),

but the longer the test period the smaller the variability around performance because the

potential downside is reduced. At the extreme, considering a balanced design, even the

potential upside of the performance distribution would diminish.

The greedy and epsilon-greedy policies perform as expected. We implemented two

versions of epsilon greedy, with the amount of pure exploration set to ε =10% and 20%.

The greedy policy has a higher mean and more variability than both policies of epsilon-

greedy (Table 2.7, Table 2.8, and Figure 2.11). The epsilon-greedy policies with 10% and

20% perform very similar. The only difference is that with ε ==20%, the variability on the

downside is reduced, leading to a better “worst case” performance.

2.7 General Discussion

In this chapter, we focused on improving the practice of experiments with online

display advertisements to acquire customers. We achieved this by identifying the compo-
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nents of the online advertiser’s problem and mapping it onto the existing MAB problem

framework. The component missing from existing MAB methods is a way to account for

unobserved heterogeneity (ads differ in effectiveness when they appear on different web-

sites) in the presence of a hierarchical structure (e.g., ads-within-websites). We extended

the existing MAB policies to form a RPM-GLMM policy, a natural marriage of hierarchi-

cal regression models and randomized allocation rules. In addition to testing this policy

against benchmarks in simulation, we implemented it in a live field experiment with ING

Direct. The results were encouraging. We not only demonstrated an 8% increase in cus-

tomer acquisition rate by using the RPM-GLMM policy instead of a balanced design, but

we also showed that benchmark MAB policies, on average, only reached a level of a 4%

increase.

Nevertheless, there are some limitations to our field experiment and simulations,

overcoming some of these limitations would be promising future directions for research.

We conclude with a discussion of issues at the intersection of MAB methods, online display

advertising, and real-time optimization of business experiments.

We acknowledge that acquisition from a display ad is a complex process, and our

aim was not to capture all aspects of that process. One particular aspect that we did not

address is multiple ad exposures. It is natural to consider the reality that an individual saw

more than one of the K ads during the experiment or had multiple exposures to the same

ad creative. Our data do not contain individual-level (or cookie-level) information, but

this could be an interesting area of research to combine ad attribution models with bandit
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policies. For now, we point out how bandit policies are already quite robust to the currently

not-modeled issues, such as, repeat ad exposure. For there to be a serious concern about

our inference and bandit policy performance, the repeated viewing of particular types of

ads would have needed to make a different impact than the repeated viewing of other types

of ads. This difference would have needed to be so strong that it changes the identity of the

best ad. This switch over time due to repeated exposures would have had to have occurred

for many of the larger websites. We find this to be an unlikely scenario, but it is possible.

Another limitation of our field experiment and simulations is our lack of usage

of time horizon. We only used 10 periods, but we did not use this time horizon while

making allocations for periods 1 through 9. In a typical dynamic programming solution,

one considers either backward induction from the end point or an infinite horizon. If the

bandit experiment actually occupies a managerially insignificant amount of resources, then

there would be little gained from optimizing during that period. In fact, this reduces to

a test-rollout setting where it is best to learn-then-earn. By contrast, if there is always

earning to be gained from learning (and that learning takes a long time), then it is useful

to consider a bandit experiment for an infinite horizon. However, most bandit experiments

fall somewhere between those two extremes. Perhaps the length of the bandit experiment

is a decision that the experimenter should optimize. This extra “optimal stopping problem”

is the focus of a family of methods known as “expected value of information gained” and

knowledge gradient methods (Chick and Inoue 2001; Chick and Gans 2009; Powell 2011).

While we have utilized the fact that batch size was exogenous and given to us for
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each website and each period (Mjt), we could generalize our problem to a setting where

we had control of the batch size and were making allocations of impression volume across

websites. While some media contracts may restrict the advertiser from changing an agreed-

upon impression volume on a website, this is not the case across the online display ad in-

dustry, as real-time bidding on ad exchanges and automated programs of ad buying become

more popular. The ability to reallocate impressions across websites introduces complexities

to the MAB problem, such as, correlations among impression volume, cost per impression,

and expected conversion rate. In addition, there would be a need to consider methods that

explicitly consider the batch size, which also relate to the family of methods mentioned

above (Chick and Gans 2009; Chick et al. 2010; Frazier et al. 2009)

Finally, we see the bandit problem as a powerful framework for optimizing a wide

range of business operations. This broader class of problems centers on the question: which

targeted marketing action should we take, when, with which customers, and in which con-

texts? As we continue equipping managers and marketing researchers with these tools

to employ in a wide range of settings, we should have a more systematic understanding

of the robustness and sensitivity of these methods to common practical issues. For that

systematic investigation of how managerial issues affect adaptive experimentation and the

performance of MAB policies, we turn to Chapter 3.
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Chapter 3

Managerial Issues in Implementing

Attribute-Based Batched Bandit

Experiments

3.1 Introduction

Recent advances in digital content delivery enable firms to run controlled experi-

ments more easily than ever before. As a result, firms have become increasingly interested

in learning through experimentation as a way to earn more profit. This idea of “earning

while learning” is captured by the multi-armed bandit problem. The multi-armed bandit

(hereafter, MAB) problem is a sequential experiment with the goal of maximizing an ex-

pected outcome by selecting among actions with unknown average rewards. In marketing,
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MAB problems are emerging as important in both research (Hauser et al. 2009) and prac-

tice, such as Content Experiments in Google Analytics (Google 2012). Firms run so-called

A/B/n tests (one-factor design) or multivariate tests, in which each marketing action is de-

scribed by multiple attributes. Unlike typical experiments where the goal is to learn about

effects (e.g. parameters), the goal of the bandit experiment is to improve some business

objective (e.g., profit).

The MAB problem differs from the well-studied paradigm in marketing, adaptive

conjoint analysis, because the goal in conjoint is to improve learning about parameters.

While the two goals (parameter learning and profit earning) are partially aligned in a ban-

dit experiment, there is a tradeoff when it comes to sequential resource allocation. For

instance, firms may test different versions of emails to different customers seeking an im-

provement in conversion from trial to repeat purchasing or from free trial to paying cus-

tomers. Those early test results guide future resource allocation to the best performing

experimental treatment. But how should the observed results translate to resource realloca-

tion in a principled manner? This is the essential question answered by MAB methods, as

we discuss in this research.

Managers come to this adaptive testing opportunity and find themselves facing

many challenges. They may hope to use bandit methods to yield better performance (“ex-

pected reward” earned, e.g., conversions) than simpler testing practices. Despite a range of

theoretical work analyzing stylized bandit problems and extensions inspired by managerial

issues, existing work does not provide sufficient guidance to the manager asking fundamen-
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tal questions related to their business goals and the operational issues of the experiment.

We introduce the attribute-based batched bandit problem (and its associated MAB

methods) to the marketing literature because this problem matches the adaptive experiment

commonly used by marketers in practice: a multivariate test (hence, attribute-based) in

which the firm updates their resource allocations at regular time intervals to apply to the

next group of observations (hence, batched). But how amenable are available MAB meth-

ods (policies) to managerial issues in experimentation? That is the focal question we will

address in this chapter.

We investigate how bandit policy performance changes under different MAB prob-

lem conditions. Instead of doing what much of the extant literature has done, which typ-

ically focuses on those “main effects” (e.g., one MAB policy is better than others), this

chapter is about “moderating” conditions (e.g., the dimensions of the MAB problem). The

contingences we investigate emerge directly from the business issues that managers imple-

menting an adaptive content experiment have to handle:

• How many total observations will we have in the experiment?

• How many resource allocations decisions will we make?

• How frequently (after how many observations) will we make decisions?

• How complicated is the experimental design (e.g., A/B/C test or a multivariate test)?

• How rare is the event of interest?

• How large of a difference between the actions do we anticipate?

• Do we anticipate a true difference between the best and next-best actions or is there
a ‘tie for the winner’?
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The contribution of this chapter is to provide insights into the impact of these man-

agerial issues on the performance of bandit policies and to produce a body of numerical

results quantifying those effects. We do this by conducting a numerical experiment, in

which we manipulate dimensions of the MAB problem, and run an array of MAB policies

in parallel, to analyze the impact of those changes on the performance of different bandit

methods. In particular, for each problem-policy pair, we run many simulated replications

to obtain a full distribution of outcomes, which serve as the basis of the results.

The results suggest that bandit performance is largely affected by the design of the

experiment. The results also highlight the limits of what a bandit policy can do. The level

of performance is restricted by the range of true average reward of the tested actions. The

bandit policy can only be as good as the best action; after all, by playing a mixture of

actions, on average, it earns a weighted average of those actions rewards, with the aim of

allocating all weight to the action with the highest average reward.

The rest of this chapter builds up to those results. Next, in Section 3.2, we provide

an example of the bandit problem of interest (i.e., the attribute-based batch bandit) to illus-

trate the focal dimensions of the MAB problem in the context of a retailer sending emails

to its customers. Then, in Section 3.3, we examine what the existing literature tells us (or

fails to tell us) about how sensitive existing bandit policies are to the managerial issues in

adaptive experiments. We provide some conjectures and expectations about the results. We

then formalize the attribute-based and batched bandit problem in Section 3.5. Together,

the managerial issues, the literature, and the formal statement of the problem inform the

79



design of our numerical experiment, described in Section 3.6. Finally, after Section 3.7,

which contains the results, we conclude with thoughts on areas that remain unexplored.

3.2 Illustration of a Marketing Experiment

Through an example, we illustrate the decisions managers have to make about their

experiments, and the business implications of these issues. We do this to bring key di-

mensions of the bandit problem “to life” concretely. Suppose an online retailer wants to

optimize how it manages relationships with newly acquired customers, to improve con-

version rates from trial to repeat purchase. Under the current policy, they always send

customers the same email one week after a customer’s first purchase. So they propose a

test to redesign that email with the goal of generating another purchase in the next month.

There are four binary factors that they vary to form 16 different emails in a 2x2x2x2 design,

e.g., 2 (promotional discount or not) x 2 (personalized or not) x 2 (thank you message or

not) x 2 (customer service link or not). One of the 16 conditions is actually not sending an

email, to serve as a control. Another of the 16 conditions is the email they currently use.

Before the test launches, the firm considers a few issues for planning. The goal is to

maximize the number of customers making their second purchase within a month after the

first purchase (i.e., conversion from trial to repeat; for this illustration, we do not consider

profit contribution from purchase or future customer value). With the existing email, the

firm has observed that 5% of its customers convert from trial to repeat. They hope to

increase that percentage with a better email follow-up.
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But the firm is uncertain about the impact on conversion rate that each email may

have in total, and each email attribute may have separately. While the firm hopes to find an

email that dramatically increases trial to repeat conversion rate, it is unclear how much lift

the best email will really bring. They are conservative and believe that the improvement is

going to be modest, such as a 10% increase over the current email (raise conversion rate

from 5.0% to 5.5%) as opposed to a large lift, like a 100% increase (5% to 10%). The firm

is also interested in how each email attribute affects that conversion rate, but they don’t

believe there are interaction effects between those attributes. So the firm will analyze the

attributes in the multivariate test, and even though the full-factorial data are available, the

firm believes that only the four attributes’ main effects will be sufficient to include in their

regression-based model of conversions.

The firm would typically run the experiment as a balanced design, with equal allo-

cation of customers to all 16 emails for 10 weeks. Now, however, the firm’s email marketers

plan to run an adaptive experiment, changing the allocation of new customers to emails as

soon as they start seeing results. Further, they plan to do this using an attribute-based and

batched multi-armed bandit policy. But how frequently should they adapt and send emails

in different proportions to another batch of newly acquired customers? In particular, how

many initial customers should they observe during an equal allocation policy before making

their first adjustment? And how many customers should be in each subsequent batch?

The question underlying all of these questions is: how robust is the adaptive exper-

iment policy they are going to use? That is, how many more (or fewer) conversions will
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they get if they use 7,000 customers, but make either 10 weekly updates of 700 new cus-

tomers each week, or make 70 daily updates of 100 customers each day? Or should they

be using more than 7,000 total customers, e.g., 21,000 customers, even though it will take

three times longer?

Certain dimensions of the problem are either under the firm’s control or already

predetermined (e.g., design of experiment / attribute structure, number of total observations,

number of decision periods, batch size). Other dimensions are definitely preset (e.g., true

distribution of means) or definitely controllable by the experimenter (e.g., model to use,

allocation rule to use). But we will consider all of these to be predetermined before the

experiment begins.

The key decision always under the manager’s control is: which bandit policy should

be used? A balanced design (equal allocation across all actions) will yield, on average, a

number of conversions proportional to the average of all actions’ conversion rates. So any

reasonable bandit policy should be better than that. On the other hand, the best hypothetical

policy would be to send only the truly optimal email to everyone all of the time, yielding

a total reward proportional to the conversion rate of the best email. Of course, the identity

of the truly best email is unknown (and this is what needs to be learned). However, the

average and the maximum of those conversion rates (the actions’ mean rewards) establish

the range of performance of any bandit policy. Since all other policies fall in that range, we

keep this in mind for the empirical results. While this is intuitive, it provides better framing

of the results and when/why different policies may perform well. For instance, one simple
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heuristic is a test-rollout policy. Suppose the firm runs a balanced design test for 20% of the

planned experimental period. They identify a winner with the highest observed mean, and

then they only use that winning treatment for the remaining 80% of the time. We anticipate

this policy will be most effective when there is enough information revealed in the results

during the first 20% of the test, so best action can be correctly identified and used for the

remaining 80% of the test. One obvious case of this occurs when the sample size is large

enough, given the incidence rate, for even a simple ANOVA for proportions to uncover a

significant difference between the best performing action and all others.

The reason we review a variety of MAB policies is because choosing a “good” one

is important. When a manager faces a MAB bandit problem, she selects a MAB policy to

follow. This is similar to the way a manager faces a dataset and chooses a model to analyze

it. In the literature, however, the bandit problem and policy are often stated together. This

confound is problematic because the lines between the challenges of the problem and fea-

tures of the solution are blurred. We will not only disentangle MAB problem from MAB

policy, but we will also further breakdown each MAB policy into its model (if it has one)

and its allocation rule.

Further, while the model and allocation are typically tied together, even those two

ingredients of the bandit policy can be chosen as “almost independent” decisions. Given a

bandit problem, described by the above dimensions, different bandit policies yield different

results, and the relative improvement of one policy over another is moderated by those

dimensions.
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We also note that bandit policies are not solutions that exactly optimize an objective

function, since no such exact solution exists for the common problem; rather the policies are

better called algorithms, heuristics, or decision rules for managing the challenging problem.

For each bandit problem that we create in the numerical experiment, we run several

bandit policies: from simple heuristics to more sophisticated policies. This includes: the

standard benchmarks like greedy and epsilon-greedy algorithms in reinforcement learn-

ing (Auer et al. 2002; Sutton and Barto 1998); slightly more advanced heuristics, such as

randomized probability matching, assuming actions are independent without an attribute

structure (Thompson 1933; Berry 1972, 2004); and versions of those allocation methods

with appropriate binomial regression models accounting for attributes (Chapelle and Li

2011; Scott 2010).

3.3 Existing Evidence

We briefly review the attribute-based bandit, some of its relevant dimensions, and

evidence in the literature about how those MAB problem dimensions affect MAB policy

performance. While simply stated, the attribute-based MAB problem does not have an

exact solution. This is because its actions are not separable. The exact solution for the

basic MAB problem relies on the strict assumption that nothing is lost by separating the

K-armed bandit into K one-armed bandit problems. In reality, only the one-armed bandit

has an exact solution, which is the Gittins index (Gittins 1979; Gittins and Jones 1974). But

the very feature of interest here (attribute-based structure) violates the assumptions that are
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required for the Gittins index to be optimal. In the presence of attributes, learning about one

arm can help learn about “similar” arms based on attributes. So any policy that ignores that

will perform worse than one that explicitly learns the impact of attributes on the expected

rewards (Dani et al. 2008).

The literature refers to two different bandit problems involving linear combinations

of observed variables with several different names. The terms “contextual bandit” and

“bandit with side information” typically refer to a setting where the manager observes an

attribute in the environment, but does not have control over it, yet can use that information

to select an action (Langford and Zhang 2008). We will refer to this kind of attribute as

“observed context,” but do not address these kinds of bandits in this chapter. By contrast,

we do address the bandit problem called a “linear bandit” problem, which typically refers to

a setting where the manager can select one of several possible actions and knows how these

actions are described by observed attributes (Ginebra and Clayton 1995). Typically, each

action is a treatment in the firm’s experimental design. This MAB problem is of particular

interest because of its relation to the literature on experimental design and regression mod-

els (Mersereau et al. 2009; Rusmevichientong and Tsitsiklis 2010). The term “covariate”

is used for both the “contextual” bandit (Woodroofe 1979) and the “linear” bandit, so we

avoid using the term “covariate” in this chapter.

What does the literature tell us about how sensitive these policies are to managerial

issues? Surprisingly, there are few answers because most research involving MAB prob-

lems is not focused on the question we are asking. Instead, empirical bandit research uses
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synthetic problems to illustrate how a proposed bandit policy shows improvement over ex-

isting ones. This is a proof of concept, not a demonstration of robustness. Further, the

data-generating process for the simulation is often set to be exactly the model used in the

proposed policy (Chapelle and Li 2011; Filippi et al. 2010; Hauser et al. 2009; Scott 2010).

In short, not only have questions about moderating conditions not been asked thoroughly,

but the existing literature provides little evidence other than intuition about how policies

work as algorithms.

With only one exception (Bertsimas and Mersereau 2007), there is little work that

systematically illustrates the impact of problem components driving bandit algorithm per-

formance. That is because any single paper only considers a small number of bandit prob-

lem settings. Even papers showing a few different MAB problem instances simply illus-

trate MAB policies on toy problems. For instance, three problems in Scott (2010) and

seven problems in Auer et al. (2002) could be considered toy problems because the condi-

tions of the MAB problems do not reflect real-world challenges. By contrast, other papers

that illustrate MAB policies on more realistic problems only have one or two problem set-

tings. This is because the papers use parameters obtained from estimating a model on a real

dataset as the true values for the data-generating process and perform ”what if” analyses or

counterfactual simulations (Agarwal et al. 2008; Filippi et al. 2010; Hauser et al. 2009).

The one notable exception is a paper that covers 13 synthetic MAB problems, which

differ by batch size and number of time periods (Bertsimas and Mersereau 2007). However,

there are details unique to that setting not shared in other MAB problems, and, again,
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these are also toy problems. Nevertheless, two insights are relevant to this chapter: batch

size does affect relative policy performance; and a simple upper confidence bound policy

(Lai 1987) often performs as well as a near-optimal approximate dynamic programming

solution (Bertsimas and Mersereau 2007). It is shown that, holding the total number of

observations constant, a smaller batch size leads to better average performance, especially

so for the upper confidence bound and Gittins index policies. The results also show that

when a single action is applied to the whole batch, the policy performs notably worse than

the upper confidence bound policy. This is also the case when the upper confidence bound

policy uses an ad hoc adjustment for allocating observations across batches (Bertsimas

and Mersereau 2007). The allocations are made for batches by simulating an allocation of

each observation, one-by-one, to infer a reasonable proportional allocation. For a batched

bandit, it is important to use a policy that uses some method of generating proportional

allocation of observations across actions in a more principled manner. In short, batching

of observations can lead the Gittins index to perform worse than other policies. Finally, no

prior literature considers the impact of true differences in expected rewards in an attribute-

based MAB method. Yet this is an important dimension to consider since the method

centers on a regression model.

Even if we collected all of the above papers in a meta-analysis, they would not pro-

vide sufficient systematic variation for meaningful inferences. That is why our numerical

analysis spans over 25 bandit problem settings and we provide the required variation to

understand these unstudied relationships.
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3.4 Managerial Issues Involved in Bandit Problems

Whether the manager has to decide between using an A/B/C test or a multivariate

test, or she simply wants to know what to expect for each type of test, it is useful to know

how discrepancy in performance is affected by the experimental design. Previous work

confirms intuition that, for a bandit where attributes truly matter, the policy explicitly mod-

eling the impact of attributes performs better than one ignoring it (Filippi et al. 2010; Scott

2010). But how does that discrepancy in performance grow or shrink under different ex-

perimental designs? To address this, we consider a range of possible experimental designs,

such as: 10 independent actions, 3x3 full factorial, 2x2x2x2 full factorial, and 2x3x4x5

fractional factorial with only main effects.

We also provide some hypotheses and intuition about the issues we examine. Con-

sider the case where there are truly large differences between actions (i.e., attributes have

large effects). On the one hand, a bandit policy using a linear model should perform very

well, since it can quickly learn those attribute effects. Therefore, an attributed-based MAB

policy should outperform simpler MAB policies. On the other hand, if the effects are so

large, then it seems reasonable that a simple greedy policy (treating actions as independent

and using each action’s observed mean reward) would also quickly identify the action with

the highest mean reward. In this case, a greedy policy and an attribute-based MAB policy

may have similar performance.

Now consider the other extreme case of differences in actions’ true means: there

are no actual differences between the actions. In this case, no policy can be better than
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any other; they all achieve the same reward on average. All cases are between these two

extremes. In fact, most real-world content optimization problems are likely to have small

effects and some attributes without any actual effect. So we test these extreme cases and a

few intermediate ones, too, covering different scenarios of the differences in actions’ true

means.

Most applications have much lower incidence rate than the binomial success rate

shown in toy problems. For instance, the literature shows a low end of incidents rates

around the order of magnitude of 1 in 100 or 1 in 10 (Auer et al. 2002; Bertsimas and

Mersereau 2007; Scott 2010). While the conversion of existing customers to repeat buyers

may be in that range, other events are much less common. Display ad click through rates

are around 1 in 1,000, and display ad conversion rates for customer acquisition are around 1

in 1,000,000. So how do such extremely rare incidence rates impact bandit policies? On the

one hand, the binomial variance is smaller for extreme rates (far from 0.5), but on the other

hand, there will be high uncertainty in beliefs surrounding the binomial mean probability

due to sparse data. For instance, even though an ad optimization bandit experiment for

customer acquisition may have a sample size of 100,000,000 observations, there may be

merely 100 to 1,000 new customers; and even those successes are spread across ads and

over time. Intuition would say this problem is tougher than a problem with higher incidence

rate, even adjusting sample size to hold the expected number of successes constant across

settings.

While the above seems to suggest that toy problems are always simpler than real-
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world problems, it may not be the case. Even sophisticated firms employing multivariate

tests typically do not use complicated experimental designs with many attributes and many

levels. This is driven by the organizational complexity of producing different creative ver-

sions of ads, websites, or emails, and a fear of rendering the experiment useless by spread-

ing observations too thinly across experimental conditions. As a result, it is less likely for

a firm to consider a 2x3x4x5 design with 120 actions (Scott 2010) and more likely to for

them to consider a 3x3 design with 9 actions or a 2x2x2x2 design with 16 actions. Intu-

ition may suggest that the simpler the problem, the better the regression-based policy will

perform. Yet, in the simpler the problem, the more the regression-based policy and the pol-

icy ignoring the attributes may have similar performance. Therefore, facing a complicated

design, one can anticipate the regression-based policy will perform much better than its

alternatives.

With a review of existing evidence and some expectations of what to look for in the

empirical results, we formally state the attribute-based batched bandit before proceeding to

the numerical experiment.

3.5 Formalizing the Attribute-Based Batched MAB Prob-

lem

We define the general form of multi-armed bandit problem we consider. It is a

MAB with Bernoulli rewards, linear attribute structure, and batched updating. The firm
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has actions k = 1, . . . , K each with a different unknown mean reward µk. The cumulative

sum of rewards for any action k is denoted by ykt out of mkt cumulative observations

through t periods. The random variable for number of “successes” from action k through

t periods is denoted by Ykt ∼ binomial(mkt, µk). In general, we say Ykt ∼ f(µk) where

Ef [Ykt] = µk for any t and k, and f is the binomial distribution probability mass function.

Note that µk is the time-invariant binomial “success” probability.

The MAB is a sequential learning problem because there are repeated decisions

over time in the presence of uncertainty around mean rewards. In each decision period

t = 1, . . . , T , the firm reallocates resources (a fixed set of Mt observations) across its K

actions. If the actions mean rewards µk were known, then the optimal policy would be

simply select the best one, k∗ = argmaxkµk. However, we are uncertain about the values

of µ1, . . . , µK , but we can form beliefs about their values and make decisions given those

beliefs.

The desire to maximize cumulative value over time with uncertainty present creates

value for learning. That is, we select an action because our beliefs about its unknown mean

suggest it is the best action in expectation, or because it has a chance of being the best

action even if it does not appear to be the best as of now. This is earning while learning.

This is what we mean by the tension between exploration and exploitation. It is the central

tension of every MAB problem.

The mean rewards are not only unknown, but they may be correlated since they

are functions of unknown common parameters θ. Hence, we use the notation, µk(θ). For
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instance, θ may include a parameter vector β, the coefficients representing the importance

of different ad attributes denoted by an observed attribute vector xk. This is what we mean

when we say the problem is an attribute-based MAB.

When it comes to specifying a MAB policy for a MAB problem with attributes, we

assume that the impact of the attributes on the mean reward is described by a generalized

linear model (GLM), µk(θ) = h−1(x′kβ) (Filippi et al. 2010). We let h be the link function

(e.g., logit, probit, log, identity) that relates the linear predictor to the actual mean reward

of the action. The presence of xk is a feature of the problem, but the GLM is not itself

a feature of the problem; rather, the model alludes to the kinds of MAB methods to be

discussed.

For each decision period, the firm has a budget of Mt =
∑

kmkt observations. The

firm needs to decide what proportion will be allocated to each action. This proportion is

wkt, where
∑

k wkt = 1. This is what makes the problem batched (i.e., many observations

to allocate at once).

To clarify notation, M = (M1, . . . ,MT ) is a schedule of observations to allocate per

period. The firm controls the allocation weights each period, which are denoted by wt =

(w1t, . . . , wKt). As a consequence, mt = (m1t, . . . ,mKt) ∼ multinomial(Mt;w1t . . . , wKt),

represents the number of observations allocated to each of the K actions in period t.

We define a MAB policy, π, to be a decision rule for sequentially setting wt+1 each

period based on all that is known and observed through periods 1, . . . , t. That is, π maps

information onto allocation of resources across actions. The objective is to maximize an
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expected reward, which we can express as,

Ef [Ykt] = wktMtµk(θ). (3.5.1)

Now we can write the optimization problem. Let K,X, T and M be known. We

select a policy π, which controls w, in order to maximize the cumulative sum of expected

rewards, as follows,

max
w

Ef

[
T∑
t=1

K∑
k=1

Ykt

]
subject to

K∑
k=1

wkt = 1,∀t. (3.5.2)

With the problem formalized, we turn to the empirical sections.

3.6 Design of Numerical Experiment

The design of the numerical experiment centers on the motivating managerial is-

sues. Each managerial issue corresponds directly with a constant, a parameter, or an ex-

pression in the formal statement of the attribute-based batched MAB problem just formal-

ized.

• How many total observations will we have in the experiment? (N )

• How many resource allocations decisions will we make (i.e., time periods)? (T )

• How frequently (after how many observations) will we make decisions? (Mt =

N/T )
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• How complicated is the experimental design (e.g., A/B/C test or a multivariate test)?

(X , the K × d design matrix)

• How rare is the event of interest? (E[µ])

• How large a difference between the actions do we anticipate? (e.g., how much better

is the best versus average action, on average, maxµ − E[µ] as a percentage of E[µ]

?)

• Do we anticipate a true difference between the best and next-best actions or is there a

‘tie for the winner’? (e.g., does a particular attribute level have a value in β coefficient

vector equal to 0?)

We provide the full design of the experiment in Table 3.1. This spans over 25 unique

bandit problems. For batching, we consider a range of combinations of time, batch size,

and, hence, total sample size: T = {10; 100} , Mt = {100; 1, 000; 100, 000; 1, 000, 000},

and N = {10, 000; 100, 000; 1, 000, 000; 10, 000, 000}. Naturally, we only have two de-

grees of freedom since these three constants are related and we do not have a fully-crossed

design, since N = T ·Mt.

With respect to the attribute structure of the each bandit experiments, we consider

four design matrices, each with a different K and each with a different number of parame-

ters in the implied linear predictor. The one 10-level factor has K = 10 and 10 parameters.

The 3x3 design has K = 9 and 9 parameters, but the 2x2x2x2 design has K = 16 and 5

parameters. Finally, as a reference level, we use the complicated design of 2x3x4x5 with
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K = 120 and 11 parameters.

We vary the true spread of mean rewards with three dimensions. We let the average

incidence rate, E[µ], be either 5/100 or 5/100, 000. These two points were chosen because

they correspond roughly to real-world incident rates. The relatively “high” incidence rate

approximately corresponds to click-through rates for online advertising (e.g., sponsored

search) and the proportion of users in a firm’s database purchasing. The relatively “low”

incidence approximately corresponds to conversion rates for online search or display ad

(i.e., percent of impressions converting to new customer acquisitions).

For each location of the scale of incidence rate, µ, we also manipulate the range

within the problem. We consider either a narrow range with a small possible maximal

improvement above the mean, (maxµ− E[µ]) /E[µ] = 10% (or 20%) or a wide range

with a large possible maximal improvement above the mean of 100% (or 300%). For a few

designs we consider the possibility that there is a “tie for the winner,” which creates two

actions with identical means where both are the highest.

Given the above design, one may ask the following: does this design comprehen-

sively cover all possible aspects of the attribute-based batched bandit problem? When

designing simulation studies like this, two conditions are ideal: construct dimensions that

are bounded between 0 and 1 (like ratios of key parameters) to ensure we cover the whole

range within each dimension; and show that those dimensions are mutually exclusive and

comprehensively exhaustive. That is not realistic here. It is nearly the equivalent of saying,

“Show me a simulation studying all of the dimensions of a regression analysis, with full
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range of each dimension.” To illustrate this complexity, consider the distribution of the

arms’ true means. How can we characterize it with a finite set of bounded dimensions?

We can use the mean, the range, and distance from first (best arm) to second place. These

are all intuitive and important, but they fail to satisfy the two ideal conditions stated above.

Nonetheless, they correspond to distinct issues managers face when running bandit experi-

ments.

Since we are not satisfying those ideal conditions, here is what we do: we have

motivated the key dimensions from the managerial issues and quantified them in ways that

are linked to those issues. Then, we will empirically show that the various points along

each dimension that we are using generate meaningful variability in the performance of

different policies.

Now that we have described the design of the numerical experiment, we can turn to

the empirical results. Before proceeding to the results, we make two points. First, the MAB

policies that we will employ are defined in Chapter 2. Refer to that chapter for a detailed

discussion of the generalized linear models (GLM) used and the allocation rules, such as

randomized probability matching (RPM). We make a slight change to the MAB policy us-

ing a homogeneous binary regression with randomized probability matching (RPM-GLM)

because we use a probit link in this chapter to be consistent with the literature we tightly

focus on (Scott 2010). Second, we call extra attention to the relationships among exper-

imental design, the number of actions, a “fractional factorial” design, the data-generating

model, and the terms included in linear predictor of the models.
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case design lift (%) E[µ] initial T Mt N E[Y ]

1 10 ind 10 0.01 1 100 100 10,000 100
2 10 ind 10 0.01 1 100 1,000 100,000 1000
3 10 ind 100 0.01 1 100 100 10,000 100
4 10 ind 100 0.01 1 100 1,000 100,000 1000
5 3x3 tie 100 0.01 1 100 100 10,000 100
6 3x3 tie 100 0.01 1 10 1,000 10,000 100
7 3x3 100 0.01 1 100 100 10,000 100
8 3x3 100 0.01 1 10 1,000 10,000 100
9 2x3x4x5 10 0.01 1 100 100 10,000 100

10 2x3x4x5 10 0.01 1 10 1,000 10,000 100
11 2x3x4x5 100 0.01 1 100 100 10,000 100
12 2x3x4x5 100 0.01 1 10 1,000 10,000 100
13 10 ind 10 0.00001 1 100 100,000 10,000,000 100
14 10 ind 10 0.00001 1 10 1,000,000 10,000,000 100
15 10 ind 100 0.00001 1 100 100,000 10,000,000 100
16 10 ind 100 0.00001 1 10 1,000,000 10,000,000 100
17 2x2x2x2 tie 100 0.00001 1 10 1,000,000 10,000,000 100
18 2x2x2x2 100 0.00001 1 10 1,000,000 10,000,000 100
19 2x3x4x5 20 0.00001 1 10 1,000,000 10,000,000 100
20 2x3x4x5 300 0.00001 1 10 1,000,000 10,000,000 100
21 2x3x4x5 300 0.00001 1 100 1,000,000 100,000,000 1000
22 2x3x4x5 300 0.00001 3 10 1,000,000 10,000,000 100
23 2x3x4x5 300 0.00001 2 10 1,000,000 10,000,000 100
24 2x3x4x5 100 0.01 2 10 1,000 10,000 100
25 2x2x2x2 tie 100 0.00001 1 100 1,000,000 100,000,000 1000
26 2x2x2x2 tie 100 0.00001 1 10 100,000 1,000,000 10
27 2x2x2x2 100 0.00001 1 100 1,000,000 100,000,000 1000
28 2x2x2x2 100 0.00001 1 10 100,000 1,000,000 10

Table 3.1: The numerical experiment design includes a wide range of bandit problems.
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3.6.1 Fractional Factorial Designs and Bandit Policies

We clarify how the design of experiments (e.g., fractional factorial) and the multi-

armed bandit can be combined. The term “fractional factorial bandit” in Scott (2010) may

be misleading since that bandit problem does not include a fractional factorial design of

an experiment. A fractional factorial design only has to do with the MAB problem’s X

matrix, which in this problem has 120 unique rows. That number of rows is the number

of actions, K = 120, and therefore indicates that this is not a fractional factorial; rather, it

is a full factorial 2x3x4x5 experimental design. Whether it is a fractional factorial or full

factorial design is reflected in the number of rows in that design matrix.

The confusion arises because experimental design and the model used in the ban-

dit policy are often tied together, when, in reality, they are separate. The MAB problem

in question (Scott 2010) is a 120-armed bandit problem, and its actions are described by

four attributes from a 2x3x4x5 design. However, the researcher selects a particular MAB

policy. This policy includes a binomial regression (probit link) with 11 parameters to cap-

ture only the main effects of the attributes’ levels, assuming all interactions among the

attributes have no impact. Because this is a simulation study, the researcher also sets the

true data-generating model, and, in this case, the true parameters that represent the inter-

actions among the four attributes are all indeed set to zero. So the truth is a 120-armed

attribute-based bandit, with a full factorial design, where the true impact of attributes is

strictly additive (i.e., linear as opposed to non-linear). This is not a fractional factorial

design; rather, it is an assumption to exclude interactions from the model.
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In fact, if the bandit problem were to involve a fractional factorial design with only

main effects for its action attributes, then there would be only 11 actions. Those particular

actions would be selected via a design-of-experiments algorithm for fractional factorial

designs, so that exactly 11 parameters are identifiable, and the X would be an 11 × 11

matrix. Again, this is not the case for the problem described as a “fractional factorial

bandit” (Scott 2010). If it were, the researcher could then select which model to use in

the bandit policy: a model with 11 separate binomial models that ignores the attribute

structure or a binomial regression model using the attribute structure but only estimating

main effects (since the data do not allow any more parameters to be estimated). If the

managerial problem at hand only was concerned with those 11 actions, then there is no

difference in total reward (on average or in distribution) between those two bandit policies.

However, there is a managerial problem where a fractional factorial design is quite

useful in a bandit setting. Suppose the managerial problem included a constraint so that the

first phase of the test could only include 11 actions, but in the second phase, any of the other

109 actions could also be tested. Then utilizing the attribute structure in a generalized linear

model in the bandit policy is tremendously valuable. After only observing the 11 actions

from the fractional factorial design, the generalized linear model can predict performance

of any of the other 109 actions not yet tested. Using the predictive distributions of all

120 actions, the RPM rule generates recommended allocation probabilities across all 120

actions. Therefore if enough learning has taken place after observing the initial 11 actions,

then the moment this bandit policy is able to allocate observations to all actions, it may
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end the test by allocating all observations to an action never tested. This would be a real

mixture of fractional factorial design of experiments and the multi-armed bandit.

With this clarification of terminology and with the design of our numerical experi-

ment already discussed, we can turn to the results. We narrate one particular path through

the cells of our numerical experiment, but we acknowledge there are many ways to slice

this body of empirical results.

3.7 Empirical Results

For every unique bandit problem, we implement a variety of policies discussed be-

low, in parallel. We also run each policy 100 times for replication to obtain a predictive

distribution. Other MAB simulation studies indicate that they generate worlds using pa-

rameters drawn from a particular distribution (Bertsimas and Mersereau 2007; Scott 2010).

As a result, the true mean rewards of actions differ across simulated problems, but are

drawn from a common distribution. While this type of simulation design provides robust-

ness around the values of that common distribution, we do not know the exact values of

the true parameters used for any particular MAB problem. As a consequence, for any

MAB problem replication , we do not see the particular values or summary statistics of

the actions’ true mean rewards (e.g., average across actions, range from best to worst, or

difference between best and second-best actions).

Instead of doing this, we explicitly show such summary statistics of the actions’ true

means that we actually use in each of the 28 MAB problems, and we keep the exact same
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values of the true means across 100 replications of each of those problems. We do this for

transparency and so that we can more precisely quantify the impact different dimensions

of the MAB problem on MAB method performance.

Like the literature, our main performance measure is the cumulative reward aver-

aged across those replications. Providing even the full summary statistics of the distribution

of performance for each MAB problem-policy pair would be overwhelming. Such variabil-

ity is provided in more depth in Chapter 2 because there is only one MAB problem instead

of 28 MAB problems as we have here.

Throughout this section we refer to unique bandit problems as cases with their

case number (e.g., case 11). We also group the analysis and comparison by dimension of

the problem. As we progress, we discuss interactions of those dimensions and their joint

impact on relative bandit policy performance.

Before proceeding we discuss the various MAB policies used for every MAB prob-

lem. The “RPM-GLM” label, which we also call the “probit with RPM,” denotes a policy

using a binomial regression with a probit link and the randomized probability matching

allocation rule. The “RPM-binomial” label, which we also call “binomial with RPM,”

denotes a policy using separate binomial models for each action and the randomized prob-

ability allocation rule. The RPM-GLM and RPM-binomial correspond exactly to the two

policies featured in Scott (2010). The “greedy” label denotes a policy that follows the stan-

dard adaptive greedy bandit heuristic, allocating all observations to the action with largest

cumulative observed mean (Sutton and Barto 1998). The “epsgreedy10” label denotes a
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so-called ε-greedy policy that follows the greedy policy for a random 1 − ε = 90% of

observations but keeps ε = 10% of observations always allocated equally across all K ac-

tions. The “testrollout-t02” label denotes a policy of testing for 2 initial periods of equal

allocation, run a probit regression to identify the winner with the highest predicted mean,

then rollout all resources to the winner for all remaining periods. While we only show the

policies with ε = 10% for epsilon-greedy policy and 2 initial periods for the test-rollout

policy, we have tested various parameter values to vary the degree of exploration, but we

just report the policies with these values as an illustration of how each of the policy family

performs.

3.7.1 Reference Case

To start, we illustrate the already well-documented improvement of an attribute-

based policy over a policy ignoring the attributes. We consider a world [case 11] with 120

arms from a 2x3x4x5 fractional factorial design with only main effects and all interactions

have zero impact. We chose this design so we can replicate an already published simulated

experiment (Scott 2010) and show convergent results. In this problem, the distribution of

true means is quite wide: the best arm is about 100% greater than the value of the average

of all arms. The number of decision periods is 100 with a batch of 100 to be allocated each

period. We run the range of policies on this bandit problem.

The probit with RPM (with 11 = 1 + 1 + 2 + 3 + 4 parameters), outperforms

all of other policies tested. Capturing the true attribute structure certainly makes a large
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difference since only 11 parameters are learned in the probit instead of 120 parameters in

the binomial when the true world was generated with 11 parameters. While the binomial

with RPM only achieves an average reward 14% better than equal allocation (balanced

design), the probit with RPM does 72% better than equal allocation. With respect to the best

possible policy’s average reward, the binomial with RPM suffers an average loss (regret)

of 599 conversions versus only 214 conversions lost on average by using the probit with

RPM. Equivalently, we can claim ignoring the attributes worsens regret by a factor of 2.7.

For sense of scale, the average of the best policy is 1367 conversions gained from 10,000

observations. These are similar to the example presented in the paper we replicate (Scott

2010); the key difference is that many of the true worlds had a larger range of true mean

rewards, creating a larger gap between the probit and binomial using RPM (as seen by a

factor of 4.5 difference in regret).

But what is missing here? Is a binomial with RPM a fair benchmark? What about

other managerially relevant and intuitive heuristics? Under what conditions will this sub-

stantial improvement gap of shrink? To start, we consider the decision schedule and batch

size.

3.7.2 Batch Size and Time

Intuitively, we know that as we increase the total number of observations, all MAB

policies perform better, on average. With enough observations, all MAB policies, in the-

ory and on average, allocate as many resources as possible to playing the truly best arm.
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But holding the same number of total observations constant (e.g., 10,000 observations),

how does changing the current number of time periods and batch size (100 periods x 100

observations per periods) affect performance?

We repeat the above analysis changing only the following in the bandit problem: 10

decision periods and 1000 observations per period [case 12]. The results for the binomial

with RPM (13% improvement above balanced) and probit with RPM (66% improvement

above balanced) hardly change compared to the above problem [case 11]. However, the

performance of the other heuristics in this problem [case 12] do change quite a bit across

the two types of problems, and some reach better levels of average performance than the

RPM policies.

For instance, the test -rollout policy is a simple one. For this policy, we run a bal-

anced design test for, say, two periods, and then we estimate a probit regression leveraging

the known attribute structure. We use the model to identify a winner, and then play that

action for the remaining eight periods. We refer to this as an test-rollout(2) since it tests

for two periods. Unfortunately, the key decision variable (how long should equal allocation

last) is precisely the issue every bandit policy attempts to optimize in a principled manner.

That is how long to test (explore) before selecting a winner for the rest of the experiment

(exploit). But for a batch size that contains enough information (e.g., 1,000 observations

with an average of 50 successes), it is possible that after only a few initial periods, all

learning is done and there is no need to continue adapting. This is the case in the bandit

problems described above.
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Consider the test-rollout(2) policy where we use a probit (or logistic) regression to

identify the best arm among the 120 tested uniformly for two periods. For the problem

with T = 10 and Mt = 1000, this policy achieves an average of 62% improvement over

balanced: almost as good as probit with RPM (66% better than balanced) and much bet-

ter than binomial with RPM (13%). The performance is similar but not as stark for the

problem with T = 100 and Mt = 100, where the test-rollout(2) policy reaches an average

improvement over balanced of 35%, still better than a binomial RPM policy.

case E[µ] init T Mt tr2 greedy eg10 RPM-binom. RPM-GLM best

11 0.01 1 100 100 1.35 1.50 1.40 1.14 1.72 2.04
12 0.01 1 10 1,000 1.62 1.17 1.17 1.13 1.66 2.03
24 0.01 2 10 1,000 1.62 1.20 1.23 1.14 1.63 2.03

9 0.01 1 100 100 0.99 1.01 1.01 0.99 1.00 1.09
20 0.00001 1 10 1,000,000 3.35 2.50 2.58 2.55 3.59 4.03
21 0.00001 1 100 1,000,000 3.80 3.62 3.54 3.81 3.95 4.00
23 0.00001 2 10 1,000,000 3.31 2.85 2.65 2.59 3.35 4.02
22 0.00001 3 10 1,000,000 3.35 2.69 2.53 2.54 3.05 4.00
19 0.00001 1 10 1,000,000 1.04 1.00 1.01 1.00 1.04 1.19

Table 3.2: The results for bandit problems with actions from a 2x3x4x5 design. All rewards
are averaged over 100 replicates and indexed so that 1.00 is the mean reward of a balanced
design for that bandit problem. The policy labeled “tr2” is short for “test-rollout(2)” de-
scribed in the text, and the policy labeled “ eg10” is short for “epsilon-greedy(10)” in the
text.

3.7.3 Initial Period Length

We further examine the basic question, how long should we force the equal allo-

cation before letting the policies adapt? The effect of increasing batch size has a lot do

to with the initial period when all the adaptive policies employ an equal allocation across

arms (unless otherwise specified). So we also manipulate the number of observations in
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that special first period. We change the previous world (T = 10,Mt = 1000) by only al-

lowing the policies to begin adapting after two periods (e.g., 2,000 observations) [case 24].

The results suggest that the policies do not need that extra second period for initialization;

average performance hardly changes for both binomial with RPM and probit with RPM.

Performance does not change for the heuristics either. On the other hand, if the extra period

did not provide any additional informational value (e.g., reducing uncertainty), we would

expect the average performance to decrease since an extra period is wasted on pure explo-

ration when it could have been spent deviating from an equal allocation. Adding an extra

initial period provides extra information in one more period for exploration but removes

one period to use that information for exploitation. However, the net effect of that extra ini-

tial period is minimal. The reason is that when the policies are free to make any allocations

in period two, those allocations are not extreme deviations from an equal allocation.

Table 3.2 presents the patterns in performance (for the three above problems [cases

11,12,24]) of the various policies, including the test-rollout policies for different lengths

of the initial test period as well as greedy policies and epsilon-greedy policies. Many fall

between binomial with RPM and probit with RPM, and some surprisingly close to probit

with RPM.

So why bother with the complexity if these simpler policies can perform so well?

First, the variability around the mean performance is substantially greater for these heuris-

tics. The greedy heuristics (and hence, test-rollout policy too) are known to have a higher

upside and a worse downside (Sutton and Barto 1998). Second, they require the manager
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to set tuning parameters before the experiment begins. While we are judging which value

of the tuning parameter fits best in an after-the-fact manner, it is nonetheless informative

because it helps us better understand algorithm performance relative to benchmarks.

3.7.4 Distribution of True Means

While we manipulated the schedule of decisions and batch sizes, we kept all other

dimensions of the MAB problem identical to the reference case. Now we will turn our

attention to the arms’ true mean rewards. The best bandit policy can perform only as well

as its best arm; the worst that any sensible bandit policy can perform, on average, is the

average of the arms’ true mean rewards. Therefore the best arm’s mean relative to the

average of arms’ means establishes the range of relative performance of any policy.

We manipulate this range by creating a different world that has a narrower range

compared to the relative wide range. While the wide distribution of true means has a

maximum value 100% larger than the average true mean, we set the narrow distribution

of true means to have a maximum value only 10% larger than the average true mean. We

actually manipulate this range by using a coefficient vector randomly drawn from a normal

distribution with variance smaller than in the other case.

Consider the tighter range [case 09]. While we may have anticipated this to slightly

moderate the performance gap among the various policies, the results are far more dramatic:

this condition entirely removes the differences in performance across policies. The probit

with RPM, binomial with RPM, and all heuristics achieve average reward within 1% of the
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average of a balanced design. This suggests that if the attributes of the arms tested combine

for only a maximum of a 10% lift above the average of 0.05, then the bandit policies add

little value and neither an adaptive bandit policy nor a static balanced design will be able to

detect such a small difference. Why does this happen? Just consider testing the difference

between two binomial distributions both with T ·Mt/K = 10000/120 trials with different

Bernoulli success probabilities of 0.050 versus 0.055. With a difference that small and that

sample size, even a two-way test will have trouble detecting a true difference of that size,

and trying to find the maximum among 120 actions at that scale in a narrow range seems

less likely.

This issue resembles the classical design of experiments sample size calculation.

However, there is no analogous “calculator” for a bandit problem. In a classical sample

size formula, the experimenter must specify the desired level of confidence and size of

desired effect to detect. While false positives (type I error) are not a concern, and false

negatives (type II error) are the primary concern in bandit experiments (Scott 2010), the

question of detecting a true difference is still a relevant issue. Therefore, just like a test

of the difference in means between independent binomial populations, bandit policies are

highly sensitive to the true difference in arms’ means.

3.7.5 Incidence Rate

Continuing with the 2x3x4x5 fractional factorial world, we examine the impact of

the order of magnitude of the true means in the problem. Consider a problem dealing with
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an event of interest with a much lower incidence rate. Instead of an incidence rate of 5 in

100, which may correspond to visitors to a retailer’s website converting to make purchase,

we examine an incidence rate of 5 in 100,000, which is close to corresponding to online

advertising customer acquisition rates, i.e., people who view ad impressions converting to

new customers. Naturally, any firm would have some knowledge of the general order of

magnitude of this event, so the experiment would be designed with a correspondingly large

number of observations (but we will manipulate this too).

We consider five types of worlds with the same 2x3x4x5 fractional factorial design

and each set of true means with an average of approximately 5 in 100,000. We manipulate

the same dimensions as the higher incidence case: number of decision periods, batch size,

size of initial period, and range of true means. To keep this set of problems comparable to

the same corresponding higher incidence case, we keep the expected total reward earned

from a balanced design to be the same. In particular, we use either 10 or 100 decision

periods with the batch sizes of 1,000,000. Since the scale is small, we also consider a

‘’wide” range of true means to be wider from a relative perspective than in the higher

incidence worlds. In this low incidence environment, the “wide” range has the best arm

300% better than the average of all arms and the “narrow” range has the best arm 20%

better than average. Again for each of the types of worlds, we simulate 100 worlds with

the same exact true values, and apply all of the policies independently in parallel to each

simulated world.

Table 3.2 displays these results [cases 19, 20, 21, 22, and 23]. In summary, for
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the base case [case 20] with T = 10,Mt = 1,000,000, “wide” range of means, and only

one initial period of equal allocation, the probit with RPM achieves an average reward

259% better than the average of balanced design where the binomial with RPM has an

average reward 155% better than a balanced design. With respect to the best possible

(optimal) policy, regret of binomial with RPM is more than a factor of 3 worse than regret

of probit with RPM. However, the binomial with RPM again is a weak benchmark. In fact,

the test-rollout(1) with probit regression achieves an average reward 248% better than a

balanced design, a level similar to that of the probit with RPM policy. This small gap is

noteworthy because the probit with RPM nests this simple heuristic of equal allocation for

one period, run a probit regression to identify the best arm, and allocate all resources to

that arm for the rest of the experiment. This suggests that beyond taking into account the

attribute structure, there is little additional learning about the importance of each attribute in

subsequent periods. Therefore, by forcing the adaptive policies to have more observations

in the initial equal allocation phase, the expected reward benefit decreases considerably

[cases 22 and 23]

There is one aspect of this problem that greatly improves the performance of a

policy ignoring the attributes, like binomial with RPM: adding more time. Not surprisingly,

as time increases with the same batch size, policies have more similar performance [case

21].

We summarize the results for the bandit problems with a 2x3x4x5 design and vari-

ous levels of other dimensions. Accounting for attributes is critical, even if a policy is not
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sequentially adapting. This is because ignoring attributes causes excessive exploration and

wasting time on inferior actions. But the one factor that shrinks this gap is increasing the

total number of observations. In terms of quantitative differences, whether it is a low or

high incidence rate, the key driver has to do with the differences in true means. When the

range is small (a maximum of 10% or 20% lift), the differences between policies diminish

dramatically. But when that range is large (a maximum of 100% or 300% lift), there are

much greater benefits of an attribute-based RPM policy. This holds true as long as there is

not too much information early on for a naı̈ve policy based on observe means (e.g., greedy)

to quickly and correctly identify the best arm.

3.7.6 Design Matrix with Intermediate Complexity

The preceding 2x3x4x5 experimental design is a rather extreme one: there are more

than 10 times more actions than parameters, yet those parameters completely describe the

actions’ true differences. Those 120 actions are truly described by 11 parameters, so we

cannot gain any additional benefits by learning more parameters (e.g., 120 separate means

as in the binomial RPM). Additionally, such an experimental design is more complex than

more commonly-used designs. We consider a few other designs, such as 2x2x2x2 (frac-

tional factorial, main effects only) and 3x3 (full factorial), even including the case of 10

truly independent actions.

Consider a bandit problem with 16 arms described by a 2x2x2x2 experimental de-

sign. This is a common experiment in practice since using binary factors and using no more
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than four factors are reasonably easy to handle. For this fairly simple design we manipulate

the three dimensions dealing with batching (number of periods, batch size, and total num-

ber of observations), and we also manipulate one extra dimension about the distribution

of true means: how much better is the best arm’s mean than the second-best? We create a

condition where there is a two-way tie for best arm. To do this we ensure that the parameter

value of the coefficient vector responsible for the difference between those two arms has

a true value of zero, but we have non-zero values for the other coefficients. We also keep

the mean and range constant across types of worlds with the best arm’s mean about 100%

better than the average of arms (about 5 in 100,000). For each set of true parameters, we

test three different patterns of batching by manipulating time, T = 10 or 100, and batch

size, Mt=100,000 or 1,000,000.

case T Mt greedy RPM-binomial RPM-GLM best

One best arm
27 100 1,000,000 1.93 1.98 2.00 2.03
18 10 1,000,000 1.80 1.73 1.86 2.04
28 10 100,000 1.36 1.24 1.54 2.05

Two-way tie for best arm
25 100 1,000,000 1.93 1.93 1.98 2.00
17 10 1,000,000 1.75 1.62 1.80 1.99
26 10 100,000 1.52 1.20 1.45 2.02

Table 3.3: The results for bandit problems with actions from a 2x2x2x2 design. All rewards
are averaged over 100 replicates and indexed so 1.00 is the mean reward of a balanced
design for that bandit problem.

To start, the probit with RPM performs better on average than binomial with RPM

in these six types of worlds. But the gap in performance varies considerably across those

six conditions. By simply adding more information, we see that all of the policies not only
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improve, but they get quite close to the ideal performance of playing only the best arm(s).

Table 3.3 summarizes these results.

What is particularly interesting is the way a greedy policy achieves better average

reward than a binomial with RPM policy in the information poor conditions. At first glance,

this may seem surprising since the binomial with RPM is considering the relative strength

of information in a Bayesian fashion instead of jumping to conclusions to identify the best

arm by allocating all observations to the arm with the highest observed mean (greedy).

However, greedy seems to be jumping to the right conclusions, or at least, identifying an

arm that is good enough.

This pattern is even greater in the condition where there is a two-way tie for the

best arm. The pattern is so strong that the greedy policy even outperforms the probit with

RPM policy in the presence of a two-way tie and weak information. This suggests that the

greedy policy is at least finding one of those two best arms quickly and often. In partic-

ular, when there is weak information, the RPM policies continue exploring by allocating

some observations to other arms, but the greedy policy latches onto whatever information

it has. With a two-way tie for best arm, its chances of finding the best arm are even higher.

Therefore, that is also why the greedy policy does better in the case of a tie than in the

case of a single best arm. By contrast, the RPM policies perform similarly across the two

conditions. If anything, RPM policies do worse in the case of a tie, and here’s why. The

lack of difference between the two best arms obviously leads to increased total uncertainty

(50-50 allocation) between the two winners. That uncertainty spills over into beliefs each
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of the arm’s performance relative to other arms since each winning arm will receive only

half the allocations it would receive if it were alone in the set of arms.

If we compare the 2x2x2x2 and 2x3x4x5 fractional factorial designs, we see that

the relative improvement of an attribute-based policy over one that ignores attributes dra-

matically decreases for the 2x2x2x2 relative to the 2x3x4x5. Why is that? One is not only

smaller (K = 16 versus K = 120), but more importantly, the relative ratio of number of

actions to parameters that truly describe the worlds has increased (5 parameters for 16 arms

versus 11 parameters for 120 arms).

At first glance, saying performance is worse with a smaller number of arms design

sounds counterintuitive. However, we are talking about the relative gap in performance

between a simple policy (binomial with RPM) and the more sophisticated policy (probit

with RPM). The probit excels relative to a binomial in a world with 120 arms because the

probit model can identify the winner quickly using the attribute structure. But the binomial

with RPM policy is stuck wasting observations excessively exploring many of the 120 arms

to learn their means because it does not share information across the arms. By contrast, in

the case of 16 arms, the binomial with RPM does not suffer to the same extent. While the

probit with RPM can find the best arm quickly using the attribute structure, the binomial

with RPM can find it pretty quickly too even without the attribute structure. This leads us

to a final group of results, which we describe next.
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3.7.7 Simple Experimental Designs

In many cases a firm may only experiment with one factor (using a so-called A/B/n

test) or it may only manipulate two-factors but be interested in all interactions. These ex-

perimental designs are less complex than the 2x3x4x5 and 2x2x2x2. How differently do

the bandit policies perform here? One would imagine that the gap between a probit and

binomial with RPM should disappear entirely for the one-factor design, since the attribute

structure is literally an identity matrix of dummy variables, so the models are nearly identi-

cal. For the other design, even though a 3x3 full factorial is not an identity matrix, a probit

with RPM and a binomial with RPM using learning the same number of parameters should

also perform similarly.

Indeed that is exactly what happens (Table 3.4). No matter how we manipulate

the bandit problems, the RPM policies perform almost identically. The surprising part is

that the epsilon greedy (always exploring 10% of observations) also performs about as

well as the two RPM-based policies across the range of bandit problems in this group.

Nevertheless, as discussed, these patterns of performance are also a function of the sample

sizes.

3.8 General Discussion

In summary, we examine the state-of-the art bandit policies from the perspective

of a marketer interested in running an adaptive experiment. We systematically study di-
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case design E[µ] T Mt greedy epsgreedy10 RPM-binomial RPM-GLM best

7 3x3 0.01 100 100 1.66 1.81 1.84 1.83 2.01
8 3x3 0.01 10 1,000 1.87 1.78 1.81 1.80 2.01
5 3x3 tie 0.01 100 100 1.85 1.82 1.82 1.78 1.98
6 3x3 tie 0.01 10 1,000 1.82 1.74 1.78 1.71 1.98
1 10 ind 0.01 100 100 1.00 1.00 1.01 1.00 1.08
2 10 ind 0.01 100 1,000 1.03 1.04 1.03 1.03 1.09
3 10 ind 0.01 100 100 1.46 1.63 1.62 1.63 1.82
4 10 ind 0.01 100 1,000 1.78 1.72 1.78 1.78 1.81

13 10 ind 0.00001 100 100,000 1.00 1.01 1.00 1.01 1.09
14 10 ind 0.00001 10 1,000,000 1.00 1.01 1.01 1.01 1.09
15 10 ind 0.00001 100 100,000 1.41 1.61 1.61 1.59 1.81
16 10 ind 0.00001 10 1,000,000 1.58 1.57 1.58 1.57 1.81

Table 3.4: The results for bandit problems with actions from a 3x3 design and bandit
problems with 10 independent actions. All rewards are averaged over 100 replicates and
indexed so 1.00 is the mean reward of a balanced design for that bandit problem.

mensions of the attribute-based batched bandit problem that affect performance of bandit

policies. In doing so, we reveal when and how certain policies, like randomized probability

matching with a generalized linear model, outperform or collapse to simpler heuristics.

The body of numerical results can be a guide for practice. Table 3.5 summarizes

these recommendations. For each bandit problem in the numerical design, we describe its

features and indicate the policy with the best average performance. For instance, for the

bandit problem with the 2x3x4x5 design, 100 decision periods, 1,000,000 observations per

decision period, a true incidence rate of 5 conversions per 100,000 observations, and the

truly optimal action was 300% better than the average of all actions, the best performing

policy, on average, was the probit with RPM. This is just one data point, so we cannot draw

any general conclusions about the relationship between dimensions of bandit problems and

policy performance. That is why we have manipulated those problem dimensions and have

studied them systematically in this chapter. For the remainder of our general discussion we
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walk through Table 3.5 and make some generalizations from the data.

In the presence of attributes, not surprisingly, a policy with an attribute-based model

typically performs best. In our numerical study, these policies are the probit with RPM and

the test-rollout based on a probit. The probit with RPM is the best policy in all of the

attribute-based problems except under the following conditions. With a “large amount

of early information” (based on the true incidence rate, batch size, and number of initial

periods), the simpler heuristics can perform at least as well as the probit with RPM. For

instance, when the probit with RPM is forced to stick to a balanced design for two or three

periods (instead of just one) in the 2x3x4x5 design, then it performs no better, on average,

than the test-rollout policy selecting a single action after two periods.

In the cases where there is a small number of actions (and the true data-generating

process does contain interaction effects between attributes), then the probit with RPM can

actually perform, on average, slightly worse than a simple greedy policy. This is the situa-

tion in our 3x3 design with larger sample sizes.

When there is no attribute structure describing the 10 actions, both RPM-based

policies perform identically, as we would expect, since the separate binomial models and

probit regression models are identical. Interestingly, however, these two policies perform

nearly identically to the epsilon-greedy policy in the relatively smaller sample size problem

and nearly identically to the greedy policy in the relatively larger sample size problem.

In short, the simpler the experimental design, the more the regression-based policy

and the policies ignoring the attributes will have similar performance. Therefore, facing
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a complicated design, one can anticipate the regression-based policy will perform much

better than its alternatives. However, the mere presence of attributes does not guarantee

this: there has to be enough information in the data and sample size to detect the impact of

those attributes.

Across all experimental designs, when there is a “weak signal” in an attribute-based

problem or a problem with an overall “small amount of total information” due to sample

size and incidence rate, all bandit policies that we test on average look like a balanced

design. In these problem settings, these results suggest there is not enough information in

the data to learn the identity of the best action and leverage that for earning higher reward.

The extent to which all bandit policies collapse to a balanced design is naturally moderated

by sample size. Comparing two problems with 10 independent actions, a 10-fold increase

in batch size led to an increase in average performance for all of the bandit policies between

2% and 4% above that of the balanced design (when the truly optimal action’s mean was

only 10% greater than the average of all actions’ means).

The presence of a tie for the best action has more of an effect on bandit policies in

the presence of “small amount of total information.” In such cases, a tie for the best action

can result in the greedy policy outperforming the probit with RPM, but the reverse is true

when there is not a tie between the two best actions (e.g., 2x2x2x2 and 3x3 designs). This

suggests that if a manager anticipates a “flat” maximum, then a greedy policy is not as risky

as it would be if there really was just a single winning action.

Overall, we would not want to suggest that RPM with an appropriate GLM is a bad
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choice of policy. If anything, it is the most robust policy across all of the problems. We

note that when other policies perform worse than the probit with RPM, they can perform

much worse. However, when the probit with RPM performs worse than another policy, it

is by a small margin. This asymmetry reflects the robustness of this policy across a range

of bandit problems.

The results highlight the limits of what a bandit policy can do. The level of perfor-

mance is restricted by the range of true average reward of the tested actions. The bandit

policy can only be as good as the best action; after all, playing a mixture of actions, on av-

erage, earns a weighted average of those actions’ rewards. Naturally, the aim is allocating

all weight to the action with the highest true average reward.

The numerical experiment in this chapter has its limitations. The current results

could be used as a basis for study for other bandit problem dimensions. One extension

would be to examine the impact of allowing for unobserved heterogeneity in an attribute-

based bandit policy. While a general rule may be difficult to obtain, it would be useful

to disentangle the relative importance of accounting for a linear attribute structure and

accounting for unobserved heterogeneity.

While these results are purely numerical, the results could be strengthened with

theoretical analysis. Typically those analyses analyze one dimension: allowing the total

number of observations to go to infinity. Therefore it seems promising to imagine a more

systematic analytical look at other structural properties of the bandit policy based on real-

world managerial considerations.
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Finally, while we attempt to reflect the real-world bandit problem of marketing

experiments, there is no substitute for the real thing. Assembling a representative sample of

experiments from a range of business domains differing along bandit problem dimensions

could provide a rich setting for testing bandit policies.
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design T ∗ M∗
t E[µ]∗ lift note tr2 greedy eg10 RPM-Bi RPM-GLM case

2x3x4x5 2 2 -2 100 X 11
2x3x4x5 1 3 -2 100 X 12
2x3x4x5 1 3 -2 100 init2 X X 24
2x3x4x5 2 2 -2 10 9
2x3x4x5 1 6 -5 300 X 20
2x3x4x5 2 6 -5 300 X 21
2x3x4x5 1 6 -5 300 init2 X 23
2x3x4x5 1 6 -5 300 init3 X 22
2x3x4x5 1 6 -5 20 X X 19

2x2x2x2 2 6 -5 100 X X 27
2x2x2x2 1 6 -5 100 X 18
2x2x2x2 1 5 -5 100 X 28
2x2x2x2 2 6 -5 100 tie X 25
2x2x2x2 1 6 -5 100 tie X 17
2x2x2x2 1 5 -5 100 tie X 26

3x3 2 2 -2 100 X X 7
3x3 1 3 -2 100 X 8
3x3 2 2 -2 100 tie X 5
3x3 1 3 -2 100 tie X 6

10 ind 2 2 -2 10 1
10 ind 2 3 -2 10 2
10 ind 2 2 -2 100 X X X 3
10 ind 2 3 -2 100 X X X 4
10 ind 2 5 -5 10 13
10 ind 1 6 -5 10 14
10 ind 2 5 -5 100 X X X 15
10 ind 1 6 -5 100 X X X X 16

Table 3.5: The table summarizes which MAB policy performed best under different MAB
problem conditions. A checkmark indicates the winning MAB policy (column) for that
MAB problem (row). If there is no checkmark in a given row, this indicates that all of
the policies shown had an average performance within 2% of the balanced design’s aver-
age performance. If there are multiple checkmarks per row, this indicates those policies
performed approximately equally well (within 2% of the balanced design’s average perfor-
mance). We shorten the names of the test-rollout(2) policy to “tr2”, epsilon-greedy(10) to
“eg10”, and RPM-Binomial to “RPM-Bi”. The * indicates that the log10 is used for trans-
forming values of T , Mt and E[µ], so the values just express the orders of magnitude of the
dimensions. The “lift” is the value of maxµ expressed as a percent increase above E[µ] for
each problem based on the true values of µ.
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Chapter 4

Conclusion

We have covered a fair amount of ground in the terrain of multi-armed bandits and

marketing, but there is much more to explore. This dissertation makes contributions to

by extending bandit methods to solve a hierarchical bandit problem using a heterogeneous

generalized linear model with randomized probability matching. That new bandit problem

only comes about because of the desire to make a substantive contribution to the area of

optimizing online advertising spending.

We also make contributions by documenting the impact of experimental design is-

sues and sample size issues when implementing bandit policies in practice for adaptive ex-

periments. Again, this only comes about because of the common issues facing any manager

who begins to plan an adaptive marketing experiment. In short, we provide a systematic

analysis to a range of bandit policies in a range of settings managers may encounter, to

remove some of the guesswork of which types of policies to use and how much better will

122



they perform than simple decision rules.

While that is what we have accomplished in this dissertation, we take the rest of this

concluding chapter to reflect on what remains to be done. Looking towards future research,

we discuss four promising avenues of research. One is to combine recent methodological

advances in flexible adaptive allocation rules (e.g., randomized probability matching) with

improvements in batched adaptive sampling stopping rules in operations (e.g., knowledge

gradient approach) (Powell 2011).

A second avenue of research would bring customer lifetime value together with a

MAB framework. While this is desirable since firms want to “earn and learn” for long

term profit instead of immediate reward, it also raises methodological challenges never

addressed in a bandit experiment (e.g., each action yields a stream of future observations

instead of a single one). Two other avenues of research include incorporating MAB policies

into learning models in consumer psychology and empirical econometric dynamic discrete

choice models. We now briefly touch on these four avenues of research extending the work

in this dissertation.

4.1 Hierarchical Models, RPM, Optimizing Batch Size, and

Expected Value of Information

There is a clear gap in the methodology for “batch size-aware” and “horizon-aware”

policies with hierarchical models. We can fill this gap by combining the streams of work
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of RPM (Granmo 2010; Scott 2010) and knowledge gradient/expected value of informa-

tion approaches (Chick and Inoue 2001; Powell 2011). We see a promising possibility of

combining advances in flexible adaptive allocation rules (e.g., RPM) with improvements

in batched adaptive sampling stopping rules in operations (e.g., knowledge gradient ap-

proach). The latter methods explicitly optimize the sample size by considering the expected

value of information. That is, these methods not only consider how the next batch of obser-

vations should be allocated, but also how many observations should be used in total. Even

for some methods that automatically generate a proportion for allocation, like RPM, the

proportion is not related to the future batch size. While this is not discussed as a disadvan-

tage in recent work applying RPM (Chapelle and Li 2011; Granmo 2010; Scott 2010), it

may in fact be one.

In the “expected value of information” frameworks, however, batching is a central

issue that is directly accommodated into the solution approach, making these ‘batchsize-

aware’ problems and policies. Notably a knowledge gradient approach considers the ex-

pected value of information of each additional observation (Chick and Gans 2009). These

methods are popular in applied problems in management science and operations research

(Bertsimas and Mersereau 2007; Caro and Gallien 2007), and come from a strong theo-

retical background exploring the properties of these batched adaptive sampling rules for a

variety of settings (Chick et al. 2010; Chick and Inoue 2001; Frazier et al. 2009).
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4.2 Bandit Problems Throughout the Customer Life Cy-

cle

As firms continue optimizing their testing procedures, they ought to be cautious

about optimizing short-term metrics instead of (or at the expense of) long-term value. One

could imagine simple exploratory analysis to follow up on the long-run consequences of

adaptive experiments using bandit policies. However, a more comprehensive and system-

atic approach would be to incorporate the long-run value (e.g., multiple observations of

reward per action) into the bandit procedure. This would be a promising avenue for sub-

stantive marketing issues like customer acquisition and relationship management to maxi-

mize customer lifetime value.

Solving problems in this domain presents several methodological challenges. To

start, each action yields a stream of future observations instead of a single one. For in-

stance, for firms managing relationships with customers via email, their goal is not simply

to maximize the reward that comes from an email only in the next week just after someone

becomes a customer. Instead, it would be ideal to consider the reward to be the firm’s action

on lifetime customer value, or at least long-run customer value. Therefore, the reward is not

a single observation of one purchase, rather the entire stream of future customer purchases.

As a result, as one week passes after taking action with the first cohort of customers, we

learn about the one-week impact of the email. So we apply what we have learned to re-

allocate resources to the next new cohort. But after two weeks, we not only learn again
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about the one-week impact of the email, we also learn about the two-week impact of that

email. We continue to maintain two-levels of learning: we gain more observations by tak-

ing actions (in the usual bandit with scalar reward) but we also gain more observations from

actions we have already taken (since the reward is a set of values, e.g., repeat purchases).

This is unexplored territory for bandits but seems like a promising area for leveraging

customer lifetime value models in marketing to motivate methodological advancements in

multi-armed bandit policies.

The other methodological challenge when considering bandits and the customer

lifecycle is repeated interactions with the same customer. While the reward is no longer

a single observation, the additional challenge is that the action is no longer a single inter-

vention. The firm may want to learn about the best way to continue interacting in different

ways instead of simply finding the one action to take for that customer. This may be due

to beliefs about ad wearout or other forms of non-stationarity. It seems reasonable that if

the space of actions explodes, a bandit framework may not be appropriate. In such cases,

it would be interesting to pursue another form of adaptive experimentation, namely, se-

quential multiple assignment randomized trials (SMART). These designs have emerged in

clinical trials for treatment of chronic illness where the goal is to discover an optimal dy-

namic treatment regime (Murphy 2003, 2005). Such experimental methods are also closely

linked to methods for modeling observational data to extract the partial effects in sequences

of treatments and observed rewards.
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4.3 Consumer Learning Models: Psychological Perspec-

tive

Observational or historical data more generally may be filled with observations that

were generated by agents (firms or consumers) trying to solve a bandit problem. While

learning models are important in consumer psychology, the bandit framework has had lim-

ited use (Gans et al. 2007; Meyer and Shi 1995), so there are promising opportunities to

consider a range of more modern MAB methods as explanations or benchmarks of con-

sumer behavior. The current body of work explores how consumers play (or do not play)

bandit policies in their repeated decision making (Hutchinson and Meyer 1994). This builds

on a body of work in psychology (Erev and Barron 2005), where other links between the

terms “reinforcement learning” and “probability matching” exist, but carry different conno-

tations. The question of whether consumer behavior is well described by bandit heuristics,

such as index strategies, is an interesting consideration and only recently examined (Lin

et al. 2012).

4.4 Consumer Learning Models: Econometric Perspec-

tive and Dynamic Discrete Choice Models

Finally, the other way in which bandit heuristics would be useful for observational

data is naturally econometric models of dynamic discrete choice. There is now a long tra-
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dition of such structural models starting with the assumption that consumers are Bayesian

learners and making explore/exploit tradeoffs through a random utility model and approxi-

mate dynamic programming (Erdem and Keane 1996). The major limitation of these mod-

els is that they can lack a flexibility to capture variation in the data due to computationally

demanding methods. The core challenge in these methods is to approximate the value func-

tion. For instance, if such a model is to be estimated through MCMC, the time-consuming

approximate dynamic programming method must occur in each iteration. This has attracted

attention and methodological developments (Imai et al. 2009).

But there is little consideration of explicitly using bandit methods as approxima-

tions. The exception is a working paper (Dickstein 2012), which utilizes the inverse-logit

transformation of a Gittins index to form conditional choice probabilities in a logit model.

While this is an ad hoc marriage of bandit methods and structural models, the idea is quite

promising. Fortunately, randomized probability matching provides a natural way to ob-

tain conditional choice probabilities because it generates allocation probabilities. These

allocation probabilities are posterior probabilities, so they are consistent in the context of

the underlying story of a random utility model with Bayesian learning. Therefore, the mar-

riage of RPM allocation rules with dynamic discrete choice models in a typical econometric

framework is a promising direction. A simple demonstration of consistency of parameter

estimates and minimal bias on smaller problems where known value function approxima-

tion methods work well would be a natural starting point. Beyond that, such approxima-

tions could open the door for less focus on computational limitations and more focus on
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capturing the behavior of interest.

In summary, this dissertation has just scratched the surface of ways the multi-armed

bandit framework can be used to solve marketing problems. We can only hope that after

reading this it is clear that, as we look around the field of marketing, we are really living in

a “bandit’s paradise.”
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