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ABSTRACT

MULTISCALE MODELING OF CELL FATE SWITCHING TO
PREDICT PATIENT -SPECIFIC RESPONSE TO COMBINATION

CANCER THERAPY

Lindsey R. Fefndez

Ravi Radhakrishnan

All cells in the human body share the same DNA sequence, but differ in their functional
identity, guided by a wide array of regulatory mechanisms controlling cellular lineage
commitment and encoded in the unique epigenome of each cell type. Recenttakperime
studies with induced pluripotent stem cells have allowed researchers to investigate the
dynamic nature of cell identity and relationships between gene regulation and differentiation.
These studies have major implications for our understanding ofyrtatrman

development, but also disease as cancers, and some neurological diseases, arise in part due t
inappropriate persistence of cells in immature differentiation states. These studies have
proliferated massive mudtinics databases as next genersgignencing (NGS)

technologies are applied to extensively profile stermogtisglifferentiated cell

populations, and cancer patient cohorts. As these data accumulate, important unanswered
guestions remain, including to what extent do physicab$ig¢ess change in

development and disease, and how do these changes meaningful alter cell signaling pathways
and clinically impact individual patients. To address these questions, new computational

tools are needed to 1) rigorously assess epigenaribatafes captured with NGS
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modalities in the course of lineage specification, and to 2) integrate models of patient (epi
genomic states with those of diseaseciated cell signaling pathways and clinical

outcomes. This thesis describeslthelopment and applications of computational methods
to help address these needs. First described is a statistical tool for classigymgg long

looping interactions that change across developmental models and disease states from data
captured with NG&chnologies. Its application is demonstrated for study of chromatin
looping state changes in the course of neural lineage commitment and neuronal activation.
Then a multiscale framework is described that integrates patjgen@pic profiles with
meclanistic models of signaling pathways critical to decision making to enter tumorigenic
states. The framework is demonstrated in a clinical setting to prediespetiéat

responses to different specific treatment combinations in nephroblastoma. ffush met

have great potential to advance our understanding of the determinants of cellular identity

and its loss in cancer, and in turn our ability to personalize patient care.
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Partl. Introduction and
Preliminary Concepts



1 Introduction
All cells in the human body share the same DNA sequence, but differ in their functional
identity, guided by a wide array of regulatory mechanisms controlling cellular lineage
commitment anéncoded in the unique epigenome of each celHiyyea stem cell
commits to one particular lineage ordatr another is determined by many interlinked
regulatory layers atitese must be maintained to achieve healhyissue, and organ
function throughout lifg1] Cellular programmingpnstitute®ne suchiegulatoryeveland
shapes cell fate decision makngugh transcriptional regulati@arried out by
transcription factors (TFs) and chromatin regujatodspostranscriptional regulation,
carried out by microRNAs (mMiRNAR] At a broader scale, cglinaling pathwagsable
celk torespond tastress, infection, and other external,@refare necessarily interlinked
with gene regulatory machinergetermineellulaidentity.[2] Understanding the
mechanistic relationshipsh at est abl i sh and maisapursaiiatn a
the heart of biologyesearcHJnraveling these mystefii@smajor implications for our
understanding of not only human development, but also disgasstance, many cancers,
and some neurological diseases, arise in part due to inappropriate persistence of cells in
immature differentiation states or loss of the abildgdpcells in greviously established
differentiation stat3][4] [5] [6] Determining the regulatory relationshipsexidrnal cues
thatunderliespecialized cellular functi@rsl their loss in diseasrild provide a road map
for creatingherapies thaptimallycontrol cell fatelecisiormakingto reestablishealthy

tissue functior{7]



Recentechnological advances have fueteadmous progress in decodiey fate
decision makindpevelopment of stem ceflodelsand induced pluripotent stem (iPS) cell
modelshave allowed researchers to investigate the dynamic nature of cell identity and
relationships between gene regulation and differen{@it[@hWith these cellular models,
researchesan f ol |l ow changes in a differentiatir
dynamic®ver time identify key regulators, andestigate theiole in determining cell fate
Tools have proliferated to alloggearchers conduct these studies in different litreages,
perturbspecific regulatory elements with genome editsitgncingand to compare
observations acrodsvelopmental stagiseages, perturbations, and disease. Jtaése
studies have proliferated massive fomiics databases as next generation sequencing
(NGS) technologiesuch agvhole genome sequencilagge scaleNA seaqiencing (RNA
seq)chromatin immunoprecipitatioreguencinggGhlP-seq, andchromatinconformation
capture sequencir@(Xseq, are applied to extensively profile stem cells, in vitro
differentiated cell populations, and cancer patient cdh0{f$1][12][13][14]

As thesempiricatlata accumulatiépecomes increasingly clear thast diseases,
including cancer, involvdaage and diverse setetdments that interact via complex
networks[15] These networks complicate the work of desiginangpies as cetlften find
alternative molecular routelsen the action of individual targehes omolecules are
perturbated14]Keyto progressing in the eralafgescale biology reseaislkhe
development aihathematical and computational tools for idemgibonafide bblogical
statechangesr molecular mechaniswif$en buried in the noisd large scakend/or
genomewide data setfl6][17]HoweverasnewNGStechniqueare developed so to must

the tools used to procemsd interpret the resulting dateolve and he development of



these tools has long represented a bettkin biomedical researdti4] Eventhese data
aregatheredandprocessingechniques developetiemains challengingaaswemany
fundamentajuestionsn biomedical researchcludingto what extent dphysicastates of
genes change in development and diseasewvanid thesehanges meaningful alter cell
signaling pathways and clinically impact p&tients

In addition to these questions, there remains enomaeddo determinghich
empiricabbservationare relevant for designing treatment plans for individual patients and
to develop techniquésatensure treatments are optimetfgctivein individual patients
[18][19] Thisstands out gsarticularly important for the development of
chemoraditihnerapy regimenalinicians oftestruggle to balance treatment intensity against
toxicityand often ldcinformation toknowif a particular drug or drug combinatiah be
effective for an indivichl patienf20][21] Treatment design is also made more challenging
by genomic instability common across many cancers,oohtdbutes tdighintertumor
(tumorby-tumor)heterogeneitgnd intratumor (within) heterogeneityn genotype and
phenotype[22][23] These heterogeneitaiercellsignalingaindcell fatedecisionsresulting
in variable drugfficacyover time andcrossumor-cellsulpopulationsandultimately
development aherapeuticesistane [24]

Answering these guestions and needs rethesvelopment of teaiquesto deal
with large amounts of data and relationships betinessndatase{d.4] Mathematical
modelinghasemergdas a powerful tool tdentifyclinically relevant information from
empirical data and prediettientspecifidreatment outcomef25]As describeth [25]
examples of suatlinicalmodeling approachesludestatistical datdriven models which

analyze clinical data from patientsmrdictprobabilities oflifferentrecurrence scenarios



pharmacokinetipharmacodynamic (PRD) models which determipatientspecifiadrug
regimensand mechanistmodels of ceallar processesd tumoiprogressionerived from
empirical dat&he development of these modeling approaepesserstacritical

milestone in thpath totheera ofprecision medicine, however challenges remaiiat§ o

these modelingfefts have been disparate anaist of thenrestricted taepresetation of
phenomena dd specific length or time sc§2&][26]Such approachaseinadequate for
modeling of cell fa@ecision makings well adiseases resulting from its dysregulation,
which argyuided by a complex hierarchy of mechanisms that span multiple scales in time
and space (i.e. multiscale), and multiple interconnected physical, chemical, and biological
processes (i.e. multiphysid)][28][29][30] To understand these mechanistic
relationshipd,believemultiscale and multiphysics modeling technayeeseeded to enable
study these processefmaslicbiology, built through integration of experimental
observations with physical princip26][31] These techniques will allow researchers to
study otherwise technically infeasible parameters and to harness the powgpuwfirayer
large scal®mics data setSuchtechniqueblave the potential to guidesation oftie next
generation of personalized cancer therapidty optimize and broaden accessitoe
affordablecytotoxictreatment options.

My thesis works tocreate multiscale mechanistic models of pathways critical to cell
fate decision making betweefedéntiative (healthy) cellular states and proliferative
(cancerous) cellular states. Such multiscale models allow integration of mechanistic models
of processes spanning vastly different time scaleo(eting models of shorter time scale
cell signatg and gene regulatory networks to models of far longer time scale processes like

cell proliferation and apoptosis) by representing activities of model components as system



variables related by governing equations implemented as algorithms. The systems
represented by these integrated models would be far too complex to solve analytically and
intractable to fully investigate experimentally. These multiscale models thus have incredible
value in allowing systematic investigation of complex networks ofdilagtsignals
contributing to patient outcomes and treatment responses and isolation of critical factors for
experimental followp.

The overarching goal of my thesis twaseatesuch a multiscale model and
demonstrate its clinical vaine&lesigning personalized treatment plans for individual
patientsin pursuit of this goal,created computational tothatallowl) rigorous
assesaent ofepigenomic state changes captured with NGS modalities in the course of
lineage specification,da?) integréon of models of patient (ejpgenomic states with those
of diseasassociated cell signaling pathways and clinical ouftoeneackground,
implementatiojresultsand future directiors this workare described across the following
chaptes, summarizecetow:

In chapter twq | discuss challenges in characterizing cell fate decisions and how this
could benefit from a systems modeling apprdaahscriptional and pestanscriptional
regulators are discussed. Cell signaling pathways caoétidate determinati@re
detailed, specifically EGFR mediated\NRaBK pathway and p53 mediated cell cycle and
damage response pathways, which are frequently altered in many cancefts@nd for w
single cell level mechanistic models have been developed.

In chapter three | discuss the challengesngplemening suchsystemsnodeling
approachegarefulconsideration is requireddeate aaluable representation of a

complex system, includidgtermimtion ofthe basiconstituets of the systerand



reasonablmathematical representation of their acavityinteractios These efforts are
complicated in multiscale, multiphysics modedsiggle scale, single physics models must
becombined in a way that is representafib®w signals are propagated across,scales
however little empirical data may be available for dafimingpropagation and models
spanningery different scalesd physics are numerically challenging to sadgering
computational challengeswellThese challenges aftbrts to address them are discussed.

In chaptes four throughsix | describe the mathematical implementation single cell
level modelsecessary to populate a multiscale model of cell fate decisionimaking.
chapter four, | describepproachefr cellulatevel modeling, specifically deg#drts to
represent previougtyentionede GFR andl'P53 mediated cell signaling pathways
continuougime ODE modeingand discrete logltased systems madglrespectively.
also describe current modeling standards for combination chemothetzggyters five
andsix, | detail &computationainethod for capturing epigenetic state chaggess
developmental models and disease states from data captured wetbhNG&gies
specifically 3Geqdata and its evaluation agashsbmatin immunoprecipitatioGHIP)-
seg andRNA-seq datalts application is demonstrated for study of chromatin looping state
changes in the course of neural lineage commitnedraptefive andof neuronal
activationin chapteris.

In chapterseven | discuss hopreviously mentionesingle scale models can be
integrated in a multiscale modeling appro@tailing implementation of a mottheit
modulateshe activity of target proteinsarnybrid multiscale sfgnaling pathways critical
to decision making to enter tumorigenic stateording patiersipecifiqepi)genetic

profiles | demonstrate this model for the prediction of pasipatific responses to



different chemoradiotherapy combinations for the treatment of nephroblastoma, or Wilms
Tumor, a commopediatric tumor of the kidney.

Finally, irchaptereight, | discuss future work to expand #ffertto account for
tumor heterogeneignd microenvironmental cweish the implementation of agdratsed
model that represerttse constituentells of different lineages withitueor with different
cell level multiscale modétivations and challengesmplementing this agebased
approach, andproposemachine learnirtgchniques tallow sufficient scale up of single

cell level models to permit their simulation across multiple cells.



2 A Systems BiologyApproachto Cell Fate Determination

Cellfate decision makimgfers to the ability of a cedbpond to signals in its environment
and process them tlifferentiateproliferate, grow, or die as needed to retain the healthy
function ofthe tissue and orgdrecise mderstandingf the processes that guide normal
cellular decision making avwalv they ardigupted in disease is in turn critical to our ability
to treatmany diseases, to essentiadigiulatecell signaling dynargitranscriptional
controls and environmental statseeded taestorenormal cellular functional identity
and overall organ function.

That many diseases fit this conceptual framework has long been un@=nstewd.
Is in part a diseasermnismanaged cell fate: over proliferadiwh avoidance apoptosis,
driven bydisrupted DNA repair and abnormal cell signaidditionally, incompte
differentiation is thought to contribute to the pathogenesis of many cancers as mutations in
developmentally important genes disrupt the balance betwesmesedt and
differentiatio{32][33] Increasinglyjeurological disease is being thought of from this
perspective as welith low neural stem cell and progenitor cell populations being linked to
Parkns o n 60 s abdicestanaepilepsieand oveiproliferation of those cell populations
beingpgnssoci ated with glig¢3dla and Huntingtonds

Based on thisnderstanding, researchers laankcontinue to develdiperapies to
address different aspects of aberrant cell fate decision inakiegase of cancer, many
successful cytotoxic druagdressver proliferationincludingantimitogenics like
Vincristine andNA synthesiblocking drugike Doxorubicin(seeChapter 7for

modeing of combination application of these drug®re recently, with the emergence of



genome wide sequencidgig development has shifted to targeted therapiesnhat act
uponbiological changes specific to tumor wdilesparingnormally functioning cells.
Small molecusgo induce cellular reprogrammioglesired cell fatesealso being
exploredatreatment optiothat would potentially allowgeneration of tissues of all types,
including for neuroegeneration and cancer treatrnfi&5it

Incrediblesuccessdwave already been realized through therapies désigeédn
understanding of cell fatentrol butsignificant limitationgersistDrug resistance remains
a critical problem in cancer treatment, even for targeted thi@@jhdatacking individual
actorswithin complexsignaling systeroan be a futile effort aslls may rely on alternative
pathways to retaaberrant behaviogspecially in the context of canveleresignaling
systemsre constantlgvolvingas new subclonal populations akikwe broadly, the vast
majority ofcandidate drugsibject to clinical trial are found to higttle to no therapeutic
benefit highlighting the generally difficulbyanticipating the effexdf drugs once
administered to peofl@7] Even foreffective drugsnany sources of variatyilcontribute
to differences in drug response fioensonrto-personsiteto-site and celto-cell

To address these challenges, there has been great irsteréghion the processes
governing cell fate from a systems biology perspective, to understahsdateof
processedgrivingcell fatedecision making in context rather taanndividual elemts to
be pulled apart and characterized in isol&aitingly with an evelgrowing array of new
sequencing and experimental technigugssingle cell studies, gene silencing and editing
experimentdightactivated proteistudiesetc), more data than ever are available to

facilitate systems level study of celréelation
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In the next few sections, | discuss the state of our systerhunderstanding of
sighaling pathways, signaling dynamics, transcriptional and post transcriptional controls, and
the influence of cellularicroenvironment as they contribute to cell fate decisadimg
andtherapy development. In the next chaptiscuss multiscale modeling as a solution for
synthesizing these new systems level inwigi@dercharacterizdecision making and

disease

2.1 Caell signaling pathways

Cancer has long been understood @ dpeintessential systems bioltiggase

Development of cancertigicallydriven by multiple mutations leadingathologic

behavior of a complex network of interacting molecular procedtesmssod c el | 0 s
functional identityThe success of many cytotoxic drugs has hamgefluencing these
networkgo promotenormal differentiative states oaberranproliferative ones$n that
pursuitmany signaling pathwaygical todecidingpetween these states have been
extensively studi@shdmappedincludingpathways contribuigy to apoptosis, surviy#te

cell cycle, DNA repaimneage commitmeranddifferentiationBelow, Idescribgathways
essential to decision making between differentiative (normal) and proliferative (cancerous)
stateghat | ultimatelyepresent i multiscale modeling frameworlit in personalization

and optimizationf combination cancer therapy.

2.1.1 TP53 mediated cell cycle and damage response pathways

Uncontrolled proliferation driven by dysregulation of theyodd is one of the main traits

of cancer. Crucially, as show#igure 2 1 TP53 controls the phase transition from G1 to

S and cells with mutationsTiR53 may not proceed through that checkpoint or initiate

11



apoptosis. This has critical implications for cancer treatment as cytotoxic drugs depend the
cell cycle and have greatest effect on actively proliferatifBp L €lts instance, as shown

in Figure 2.1 drugs that act on DNA synthesis damage cells during periods of DNA
synthesis (S phase) while mitotic inhibitmdyze cell kills through exposure during

mitosis (M phas¢36] These drugs may fail to produce cell kills in the presentes# a
mutation and other mutations that keep the cell cycle from proceeding to thef&gphases
Additionally, therapies that act to reduce the integrity of DNA including many cytotoxic
drugs and radiation may not produce cell kills in the absence of TP53, which controls the
signaling machinery for detecting loss of DNégitity and initiating apoptosis, resulting in
therapeutic resistan@] Thus, in designing a model for simulation of combination
chemoradiotherapy, it was critical to include representatiom 8b8enediated DNA

damageasponse and cycle cell pathways.

Cyclin B
cDc-2
M
Antimitotics

Taxol
Vinca alkaloids

Cyclin A
coc-2 Gz
Antimetabolites Gy
Methotrexate iz
Cytosine arabinoside \\\*
5-Fluorouracil - Gop
Cladribine /
Cyclin A Cyclin D
CDK-2 CDK-4/6

TP53

Figure 2.1 From lzaret al., the cell cycle, its controls and checkpoints as well as sites of

action of celtycle specific cytotoxic drugs.
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The cell cycle phases consist ofdigiding (GO), restings), DNA synthesis (S), a gap
between synthesis and mitosis (@&)mitosis (M)Cyclin proteins activate cyelin
dependent kinas@SDKSs)to controltransition between phagaste CDC-2 is also known
as CDK1). Additionally, TP53 monitors DNAtegrity and controls passage through the
G1/S transition[36]

Though TP53 function has been under intense investigation for daeaiss and
complexity of the regulatory network it acts upakefull experimentatharacteration of
its kineticstechnicallynfeasiblel ntegration of experimentakultshas led to the
construction of simplifiedP53network modelBke that shown ifigure 2 2andstate
spacanalysisf such networklasprovided insight into hoiwP53 dynamics are controlled
by specific feedback loopad how perturbations pfocesses in these loopsdulate
those dynamics to alter cell {8%] As summarized Rigure 22 these feedback loops
work toalterTP53 dynamics in response to DNA damage and cellulanstinessecific
dynamis mapping tespecifiacell fates oDNA repair, cell cycle arrest, senesseor cell

deah [38]
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Figure 2.2. From Choi et ala simplifiedschematic of the p53 regulatory network

(Note, TP53 is the human isoform of p53, but p53 and TP53 are typically used
interchangeably to refer to that isoforBgsed on combined literature data, Choi et al.
constructed a p53 network containing 16 naslesell a$60 negativend 218 positive

feedbak loops the vast majority of which intdraith p53 Arrows indicate activating
processeand bars indicatehibitory ones. In response to DNA damage, ATM activates,
turn activating p53 to turn emarious feedback logpsith key loopshown in this
schematicThelower leftorangearea represents the cell death module, the upper right green
area presents the cell cycle module, and the remaining blue area represehetsibaci53
module[38]

2.1.2 EGFR mediated R&APK andPI3K/ AKT pathwag

Epidermal growth factor recept&GFR), also known as ErbB1, is part of the greater ErbB
cell signaling network whiclaisnajor contributor to tumorigenesis and is untirse
investigation for therapeutic targAtsshown irFigure 2.3 the network is comprised of

many extracellular ligaradsltransmembrane receptlike EGFR as well as many

14



enzymes, scaffolds, adaptors, and small mol@@jI&sgnalingnitiatesvhenaligand

binds a receptor amduses the receptor to dimerize. This in turn activates the cecep s
tyrosine kinase domawhich results iautophosphorylation of tyrosine res&]36] In
responsanultiple proteins are recruited to the plasma membrane by binding
phosphotyrosines and so a compktwork of interactions between the activated receptors,
recruited proteins, and plasma membrane molecules eventually culminates in the activation
of multiple downstream effectors, including extracedlgledregulated kinadéAPK

(originally known a@sRK asit is listedn Figure 2.3 and protein kinase BKT, which are

bothimplicated in the control of proliferation and sury8&l
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Figure 2.3. From Chen et ah simplified schematic BfbB regulatory pathwasisowing

receptor activatiomteractionjntemalization, and recyclimgtheRasMAPK/ERK and

PISK/A KT cascades

Forward reactions are shown with black arrowsegéive feedback interactions are

shown with red arrow&rbB receptors dimerize upon activation wattious ligands and

the matrix in the top half of the figure summattzefinctional properties of observed

dimersNodeswith the prefix Gndicate thabne or moréerbB recepta form a complex

with the specie$40]
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Spatiotemporalynamics o$ignalingire known to be critical to teebB network's
control of cell fate, as different inputs stimulate diffestniorkkineticsand in turnead to
different cell fatg89] The networlkas well as its downstream signalingaesceluding
the RasMAPK pathway and the PIBKIAT pathwayhavebeen studied thoroughly at the
molecular level resulting larification of itactivation kineticandwelldefinedsystems
models otheirbehavior based on those findi(ggeChapter4) [39][40] Additionally,
manycancetherapieshatinteract witithe ErbB networlare known talramatically vary in
efficacy from patierib-patient40] further motivatinghe inclusiorof thesenetworks in
patient specific modeling of combination therapy

TheRasMAPK pathwayalso known as the MAPKEK or RasRafFMEK-ERK
pathwayacts in many ways to regulate cell cycle entry and controlpeelitdaaition and
do so across many cell tyddss pathway is responsibleifdegration of external cues
from the presence afitosistriggeringsignal&nd growth factoigto signaling cascades
thatsupport proliferation argtowth e.g.EGF binding EGFReads to phosphorylation
events in the MAPK cascade whitthmately activate the kinase activity of ERK, which
must be prese for cells to express genes necessary for cell cycmdntr remove cell
cycleblocks that allow cells to progress to synthesis (S phase of the cAltditceanlly,
ERK signaling results in expressionycand othesignals that control a downstream
switch that prevents cells froeturning to G1 after entering S phaseortantly this
pathway is known to interact witR53signalingo control whethenewly proliferateatells
become quiescent (enter GO phase)metrateeenter the cell cycla.addition to

cancers, mutations in this pathivaye beehnked tomultiple neuropsychiatric diseases.
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The PIX/A KT pathway (also referred to as th&KPAKT/mTOR pathway)is
also critical for regulating the cgttle downregulang apoptosisandthe decision to
proliferate rather than differentiate in stem teltsincer, this pathwayfiequently
overactivedriving proliferation and downregulating apoptdkis pathway is a central
contributor tomany cancers and agdincer drug resistan@acogenic activation of the
pathway can occur via many routesudingthose that disrupthibitionof the pathway
through PTENandthose thatauseveractivation througlpstreanoverexpression of
EGFR The pathway is a<ritical to neural lineage cells, driving proliferatien
guiescenc neural stem cells in responssutfficient glucose leyahd so has an
important role in neural development and plasticity, emplicated imeural stem cell
diseases.

Finally, hese two EGFR mediated pathways are known to interatttenith
mentionedl P53 mediate@NA damage response and cell cycle cquatbivays through
the linkages listed ligure 24below As described i@hapter 7 these linkages will be
used to allow propagation of molecular state information across a mukisicaidsc

modelfor simulation of combination chemoradiotherapy.

PTEN
. e
— b3 PIP3 p53
) |
WIP1I — MAPK AKT —> MDM2

Figure 2.4. From Ghosh et althep53 regulatory network links to the RBSPK pathway
through the activity of WIP1 and to the PI2KIT pathwayhrough the activity of PTEN
and MDM.[25]
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2.2 Mechanisms of gene expressioregulation

Cell signalingathwaysct to control gene expression in responisgeimal and external
cuesFrom a systems biology perspegtiase signaling networks broadly represent one of
multiplescale®f biological processes that act to influence celldsaminationAt the
next level below atlke manylayers ofnechanismtgrough whichihese signals can act to
modify gene expressitmachieverersatile and precisgpression dynamics auedl type
specific functiom mammalian cellfhese can occur at astgge in the process of
generating gene produgserigure 2 5), includingepigenetic controls that enhance or
limit access of transcriptional maclyitercertain sections of the genptrascriptional
modifiersthatdeterminavhen, how frequently, andhich sections of a gene are
transcribedRNA expression contthatmodify newly synthesizednscriptsn the
process of maturatida mRNA translational regulatdisat determine how much protein
is synthesized from a giveRNA, and postranslational modificatiotizateditexisting

proteinsas needed @chieve precise spatiotemporal control of their activity.
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Figure 2.5. From DeOcesanBereira et alp, schematiepresentation of the roles of

different RNA species in regulatmgmmalian gene expression.

A single genomic locus is depi@sdat each step in tipgocess of transcription and
translationmultiple moleculanechanisms act tmntrol theconstruction of the final gene
product Proximal control elements are located close to the promoter, while distal elements
(enhancers) may be far away from a @exr@cting regulatory elements, present in the pre
MRNA sequence, determine which expesetained and which exons are spliced out
resulting in alternative transcript isoforms (alternative spliiR§JA structure is stabilized

in preparation for transport intiee nucleus withthelad i t 1 on of 506. Cap and
Regulatory on-codirg RNAs (ncRNAsganactviamultiple pathwayte altergene products

in the course of transcription and translationg norcoding RNAs (IncRNAS) target

protein complexes to specific genomic loci affecting transcription patterns (transcriptional
interfeence), leading to chromatin modifications and DNA polymerase Il activity. Advances
in transcriptomics have resulted in the discovery of large numbers of ncRNAs @aniRNAs
INcRNA9, many of which display the capacity to regulate gene expression at the levels of
transcription (control dlternative splicipgposttranscription (mMRNA editing, mMRNA

decay and mRNA stability) and translation (translation initidfipn)

Thescale andomplexity of thesegulatory controls in mammalian gene expression
has on} been recently grasped withatleentof highresolutiorgenomisequencing
techniqueand intense efforts remain underwayéasure and map the dynamics created
by these controte higher order changescell signalingell fateandcell functioracross
different stages of developmémtlisease, and response texperimental or therapeutic
perturbationsEachregulatory lay@resents a new lens through which to investigate the
enormous breadth of genomic changes that occur in the course of cancer initiation and

progression
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2.2.1 Transcriptional Regulation

Broadlytranscriptions a process whichthe enzyme RNA polymerase decodes the

genetic information stored in the chromosomal DiNgroduceanRNA transcrip{42]

The resultingranscripimay be one dive types: messenger RN@RNA, which become

proteins 1-2% of the total transcriptsibosomal RNA (rRNArequired fotranslation

80% of the total transcriptgransfer RNA (tRNA, required for translation), recently

discovered microRNA (miRNAosttrangriptionalregulators of gene expresyiand

small interfering RNA (siRNA92] While eacliypeis synthesizkaccording to a different

set of regulatory mechanisinsgenerag transcriptionally active gene is controlled by a

stretth of DNA typically located p st r eam of the trkptscri ption

I 1 0Mppdefined ampromoter whictacts aa docking sitéor proteins known as

transcription factors (TI2] Transcription factors (TF) are the fundamental regulators of

eukaryotic transcriptipabiquitous TFgach contaia specific DNA sequence binding

motif through whicht canrecogrieandact uporaspecific genomic sequeifg2] Gene

selective transcription facopnnecto extra or intracellular signiad pathways, which act

as master regulasdo switcha geneds expg42lession on or off
In addition taits promoter, gene may be regulateddiztaDNA sequence

located several megabasesy fromts transcription start sjtdefined asnhancex While

distant inlinear representation of the genome, enhancers are brought into spattal co

with the genes dyact upon througthreedimensional folding of the gen@@D genome

structures organized hierarchically across multiple spatiabscsihesvn ifrigure 2.6. At

the coarsest level, the genome is separated into chromostonegdtiromosomes
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spatially separate in the nuglang eacichromosome further separates into hubs of

transcriptionallgctiveand inactive chromatin (termed A and B compartments respectively)

Chromatin feature Genomic Methodology
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a Chromosome territories 3D-FISH Hi-C
1 2 3 4 5
~100 Mb \‘
Chr9 Low o High Low s High
b Hubs and compartments Electron Hi-C SPRITE
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Figure 2.6. From Kempfer and Pombmethods for studying the majeatures of 3D

chromatin folding across different genomic scales.



a Chromosomes occupy discrete territories in the nucleus, which were first detected using
imaging techniques. The-BDorescence in situ hybridization {BI3H) image shows the
positions of the chromosome territories of chromosome 2 (red) and chrom¢geer)9

within DAPLstained nuclei (blue) framouse embryonic stem cells (ESCs). Chromosome
territories are also detectedeggons of higiirequency intrachromosomal interactions on
contact maps generatadchromosome conformation capture {3ed ntbods such as

Hi-C (highthroughput chromosome conformation capiam] ligatioffree approaches

such as genome architecture mapping (GABDINA inside the nucleus separates into hubs

of active (A compartment) and inactive (B compartment) chrorestiarieg around the
nucleolus, splicing speckles, transcription factories and other nuclear bodies not represented
here. Electron spectroscopy imaging of the mouse epiblast shdigtsilo¢ion of
heterochromatin (yellow) around the nucleolus (ligh)tdoha at the nuclear periphery.
Decondensed euchromatin (dark blue) is positioned more centrally in the nucleus. Nucleic
acidbased structures are stained yellow, pitmdisied structures blue-Eliand splipool
recognition of interactions by tag extam§SPRITE) contact maps of mouse chromosome

11 show the separation of chromatin into discrete contact hubs (A and B compartments),
which are visible as checkerbdgwel contact patterns At shorter genomic length scales,
chromatin folds into topologilty associating domains (TADs), which overlap with domains
of early and late replication, and DNA loops, that arise from eptezBated interactions
between paired CTCF proteins. Multiplexed FISH of consecutive DNA segmesiNiin a 2
region in the humagenome shows the emergence of TADs in the poptdatoage

distance map. In K& and GAM contact maps, TADs are represented by regions of high
internal interaction frequencies and demarcated by a drop in local interactions at their
boundariesd Contacs between a gene anctitaregulatory elements occur via loop

formation between the enhancer bound by RNA polymerase Il (Pol Il) and the gene
promoter. These contacts can be detected kpellimaging; shown are contacts between

the enhancer (greemdgoromoter (blue) of thevegene in &rosophila

melanogastembryo, with simultaneous imaging\@mRNA expression (red).

Thecircular chromosome conformation capture-$¢Glencing track shows the

interactions between tBhgene promoter and tERS (a limkspecific enhancer of
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theShhgene) in the anterior forelimb in miCentact mapsan be processeding
mathematitechniqueso extract the most significant enhadymemoter contacts from the
data set, resulting in a contact matrix withtbelrighprobability interactianThe most
significant interaction at tB@x2locus can be found between 8ux2gene and one of its
wellstudied enhancef43]

At shorter genomic length scatéspmatin folds inttopologically associated doreain
(TADs) d genomiaegions defined by tinéendencyo spatiallyaggregatend interaamnore
with eachotherthanwith neighboring regiongl3] Through recently developed
Chromosomal Conformation Capture (@Chniguediner scale fidingcould be
measured, revealitigatat finer genomic lengfitaled)NA loopsarise from cohesin
mediatednteraction between CTCF proteihbese loops, also known as {cargye
looping interactiongorm between enhancers and promabeirsgnggenes in contact with
their cisregulatory elements

At yet lower length scale, DNA wraps around nucleosomestwifiat is termed
as the chromatin fiber; tighter and looser wrapping around nucleosomes increases and
decreases the accessibility of DNA by transcription machinery and a host of proteins act to
alter this wrapping to control accessibility. Each nucle@ssoomposed of eight histone
proteins and these are commonly modified by acetylation, phosphorylation, methylation,
sumoylation and ubiquitination, which may be detected as epigenetic marks arieigh
of NGS sequencing techniquésese marks arld down by specific enzymes (termed
writers), recognized by effector proteins (termed readers), and may be removed by other
enzymes (termed erasers).

The epigenetic marks, genomic contacts, and bound proteins (TFs, RNA

polymerases, CTCF, cohesin, edn)atl be sequenced to yield geraide maps of their

24



locations. Methods to process and detect significant biologically significant features and
patterns from these maps is an area of active development (see one such approach in
Chapter 5. Using the results of such approaches, it is then possible recognize distinct
epigenetic states of the genome and construct models of their dynamics in development and
diseaselhese effds work to understand transcriptional control from a systems biology
perspectivajnderstanding thaevelopmentally important changes invijw@amics across
anetwork ofinteracting genesd regulatory elemetitat can rarely be understood from

the adivity of an individual element.

2.2.2 Posttranscriptional regulation

In theearly 1990s, a shegquencef noncoding RNAwas discovered to heghly

conserved across speeied to regulatgene expressiaturing translatiof#2] This non

coding RNA came to be known as miRNA amck#ts discoverythefunctional

associatianin gene expressias well asell proliferation and differentiatiohmore than

2,000 different miRN&havereported in literatujd2] GenesncodingniRNAs are

located eithdsetween genes @mjenic) and transcribed by their own promatenyithin a

gene (intragenignd transcri bed [B2)BothtypesomdREAskegis pr o m
aspremiRNA that are later processei their functionally active forenshortair pin

structureas the transcript folds back on itself.

Whilethere is evidence that miRdiiay contribute to otheegulatory
mechanismsheirrole in postranscriptional modification is well establism&@NA is
thought toform a complex with the Argortaan RNA binding proteiand then hybridize
with a targenRNA to initiateprocesses resultipgmarilyin negative control afene

expressionncludingoremature terminatiasf translationslowed elongation of translation,
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ribosomal drop offand recruitment of factors to degrade the mRIgPAberrant miRNA
activity has been reported in many cancerdppoéiseycanfunctionas either oncogenes or
tumor suppressof44] Differential expression afiRNAs has been linkedddferences in
sensitivity tahemotherapycancer progressicemd patient survivalndcirculating
MiRNAs areunder intense investigation €sle as therapeutic targets or biomafkers
diagnosis or progno$it][45] Howevermany mechanisms guiding the activity of
mMiRNAs are unknown, including thgsedingsecretion and transport of miRNiAt
circulation, their potential role in g4elcell communicatiotheir interaction with coding
genes, and thenteraction with cell signaling pathwdg$ These unknowns present a
barrier to the optimization for useancer detection and thera@ystems levaiodeling
could likely provideraute for investigating their role in modulating sigrexiddpow
differences in miRNAxpressiobetween patientaanifest into clinically significant

differences in the efficacy of therapies and disease progression.

2.3 Cues from the cellular microenvironment

External cues from neigbring cells and othekternal stimuélsoact to iriluence fate in
individual cedl and in turrtheirbehaviorland contribution to tissue and organ funciidre.
external neighborhood of cell, termed the cellular microenvirorsady determinant of
cell functional identity asaintenance of tissue specific environmhene$as been shown
to becritical for maintainingell type specifdifferentiaion [47] The cellular
microenvironment inalles soluble factorsgighboring cellthe extracellular matrix
(ECM), and biophysical fieljpi®vidingstimulation in the form aftructural stress and

straintemperaturegnd electrical stimulatipi7] The extracellular matrix (ECM) within the
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cellular microenvironmeptovidesa structural foundation for cell populatiand regulates

cell function throug control of the distribution of soluble factors prapagatiorof

mechanical and electrical fi¢dd§ In this manner, the cellular microenwin@nt provides
heterogeneous yet structured cues guiding cell spreading and movement as wedl as cell fate
of proliferation, differentiation, and apoptosis

In the case of cancengttumor microenvironmestimulates thenmense
heterogeneityf cells withitumors asumor cells hijack healthy cells throughkcedl|
communication and ECM interaction, forcing healthy neighleguoe new phenotypes
that support tumor growth and invasjé8] Increasing mechaniatain on cells as tumors
expand into normal tissisealso thought to activate sigatascadebat disrupt normal
tissue functioreactivatinghechanosensitive developmental pathwagsriulate
proliferation througlkeontrol of the cell cycle, epithel@mesenchymal transition, and
celularmotility [49]

Given thecritical role of the cell microenvironment in determining celiniatg,
effortsto establish regenerative theragiesoncerned withecreation of tissue specific
environments in cultute grow correctly differentiated tissunelstimulation of aberrant
cellsto return to healthghenotypes by restoring normal environmentalAsietore
mechanisms afistantceltto-cell communicatioare uncovered (e.g., exosomesireell
DNA, and apoptotic bodieg) becomes clear trattthe scale of cell populations and tissue,
control of cell fate is again regulatethlgeand highly complex network of interacting

processes.
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Beyondsimple cell types, with the emergence of genomic sequencing, we have come to
understand thdheimmenséneterogeneity of cell faamergefrom manysimultaneously
occurringprocesseactingat spatidly and temporalljeterogeneowssalesWhile precise
experimental work is necessary to advance understanding of these, pveazases
augment tase efforts through computational modebrassociate distinct molecular
genomic, andnvironmentgbrofiles with distinatellular states and explore the dynamics
between those state transitionsdtier understand the drivers of cell fatéhe next

chapter, | discuss multiscale modelsg solution wedlited for study gghenomena as

complex asell fate determination and the challenges iofiplementation.
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3 Challenges inConstructing Multiscale Modelsof Biological

Systems

Over the past few decadesevolutionn data storage and computing has dramatically
changedcientific researcBomplexity is ever increasiragh in terms of systems and
processes studiaddthrough théhighdlimensional and heterogenedatscreatedo
describe thenf31]Modelingandsimulation are indispensable for tackling such prgoblems
and as higiperformance computimgatformsand machine learnitgchniquebecome
more powerful, the complexépd scalef systemand processéisat can be feasibly
studiedwith themwill only increas¢31]Nonethelesshe growinglata intensiveness of
modern research problepwes an evolving challengersearchers seeking to find the
right tools to address these probldB1.

These trends and challenges heplcated acrossomedical research disciplines.
Advances ihigh throughpuéxperimentahethodologies have led to #eezumulationf
enormouslatasetsdescribing processes ateadels of biological organizatif#b][50]A
large body of research now focuses on the development of tedionioesssliata
generatebly theseecenly developed modalitiés identify biologically meaningful signal
andon relating datacrosglifferent levels afrganizational scaded experimental
modalitiesMultiscalenodelings well positionetb address these needhsl provides a
deep body of knowledge fmynstructing andbanecting mathematicapresentations of
processes occurriagidivergent scalg®0]While multiscale modeling has had many

succedsl applicationg biomedical researdgveral common considerations must be



addressed to resultrmodels that are accurate, predictiveckmdally impactful.describe

these challenges asadutions to them below.

3.1 Data availability and parameter estimation

Models are generally more likely to actydescribe observéghaviors when more
empirical, quantitative observations are available to construct and pamatreater
values[26]Quantifying prameters achallengingaskin develpingmany singlscale
biological modeksnd this ppblemmust be addressed tbe constituent models of a
multiscale moddR6]Many parameters may not be experimentally availatdasurable

with current technologiesnd instead must instead be estimated by comparing model results
to empirical onef26]While there are maosgmputationaechniques fgperforming
parameteestimationspecial consideration must be taken to awveiitting, i.e, having

too many parameters to estimate relatitheetdata available common problem when
constructing models of complex biological systems which may have an extremely large
number of parametef25][51]Overfitting leads to inaccurate model outputsesiodes
predictive valu¢25]Instead, best practifa avoiding this issugto ensure that model
parameters are draas much as possililem direct experimental data from collaborators
and experimental and theoretical biology liter&eteeving values from literataray
requirecareful considerati@srecorded values may not have direct correspondence to
modelparameters and retrievalymh@ complicated by data actiestations[26]The

problems of data availability and parameter estimatiohe exacerbated or relieved by
model typewhich also has significant impact on computation efficiedsgussed in the

nextsection.
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3.2 Computational demand and feasibility

Another common challenge in creating computational models is that of composing the
model in such a way that optimizes computational efficiency to allow increasingly complex
systems tbe represented, models to be run at finer resolutipmdire.time steps), and, in

the case of datdriven models, input of increasingly lsxagde datg26][31]Multiscale

models can be adagtto reduce the complexity of representatisnlifystems within the
larger model systemitoprove computationafficiencyWhile a large body of research is
devoted to developing numerical methods or machine learning based implementations of
multiscale models &xhieve speed gt a more fundamental levekearcheisandecide
between different underlying model typesdoagthe number or resolution of variables
representeds needed to adaptcompute resource limits.

For instancenithe case ddpatial tumor modeldiscrete modelingpresents each
constituent cell of a tumor individualigh its own internal statgdated in the time course
of the mode&ccording to a series of yuiefined rulegformed by experimental findings
and biophysical principl¢a6]While these modedse excellent for single aelsilico
investigatiorthey require many parametehnsch may be difficult to obtaamd
computational demands scale directly with the size of thecelhpmpulation modeled
andmodel resolutiarj26]By contrast, continuum modetpresent a tumor as a continuous
block of tissue rather than a population of individuale#lse models cannot be used to
investigate single cell dynabed ratheoverall tumor behaviors like growatid how they
areimpacted by bulgenetis, or microenvironment propertjdsitcan be executed at
dramatically lower computational cost as these models useeailyimor propertiefor

parameter valug26]In multiscale modelindiscrete and continuous models can be
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combined to lower the computational cosepfesenting more complegystem while
investigatingjne-scale dynamity representingifferent constituent single scastems

with either discrete or continuous modeling as needetiieve necessapeed ug26]
Additionallyjnformation is allowed to propagate between constituent single scale models of
a multiscale framewonbroviding constraint fgarameters that would b#erwise

completely unconstraingdsingle scale representati{i2]

In the case of study of cell fate decision madspgcially in the context of cancer,
many indicated cellular pathwaggebeen well characterized vigh throughput
measurements of tinaeursechanges an@action kineticsuch asheEpidermal Receptor
Growth Factor (EGFRnediatedRasMAPK pathwaynd PISK AKT pathwayand the
TP53mediatedNA damageesponse and celloby progression pathveayi0][52][53]
Whenavailable data are sufficientdmpletelgharacterizéhe dynamics of@athway, the
pathwg may benodeled usinfine-grained methods such as continuous differential
equationgakareaction rate equatignbutwhen data are not sufficieéatavoid over
fitting, parameters may be sufficiently reduced by using-g@ansehpproaches such a
logicbased modeling of which Boolean modeling is one exg#ea mentioned
previously, in a multiscale modeling approach, continuous@aetednodels can be
combined to lower the computational cost of representing a more complex hystem
principle was applied for the multiscale model developed inThhestasVAPK pathway
Is represented with a continuous model whileRG68 mediated DNA damage response
and cell cycle progression pathways are represented withdedimodels within a hybrid
multiscale modeling framewoepresentingignaling pathwsgontributing to cell fate

decision makingetween healthy (differentiative) or tumorigenic (proliferative) Hates
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hybrid modeling approabloth allowed avoidance of the parameter estimation challenge in
the case of thEP53 mediated pathways aeslilted in a model thakelladaptedo
compute power limitais igliscussed in the next section. | describe my application of this
type of multiscale modeling appro@maGhapter 7

By increasing the computational efficiencyanfels, researchers are not only able
to represent increasingly complex systems on high performance computing systems, but to
develop models that can be easily used in clinical camesgdime and compute
resources are more limitétdere issnormousiemand fotools that allow cliniciats
personalizéherapeutic regimens for individual patigntsmultiscale modeling remains
largely absent from clinical usage despéedtsous potentighs discusséa the next

section.

3.3 Clinical applications and personalized medicine

Sygtems biology approachbke multiscale modelireye poised to have incredidliaical
impact, driven bthe data and computing revolutidfith more data areimuch higler
ceiling on computgower models can be run at far higher levels of undectyglexity
and in trn achieve greater accuracy and predictive &yiitgms moded$ disease
designed based ogcent experimental insights aratiulated by patient specibmics
profiles and clinical datauld beused to develop personalized therapies and help usher in
the era of precision mediciAglditionallysystems modetsuld be used tdentify
relationships between clinical outcomesignamics of variables of complex disease
systems that walibedifficult and costly teearch for through empirical technigaed,so
contribute to hypothesgeneratiomand testingbiomarkerdentifiation and validatioand

development of targeted therapies
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Theseofferings ar@erhapsowhere more relevaarid urgently needéthn they
are for cancer therapyor some canceihere haebeenincrediblegaingn patient survival
and survivor healthiness a result of improvements in patient risk stratification and
therapeutiofferings but for nearlgll cancerthere is roonfior improvement~or every
patient, a large and complex array of faictitugence the progression of their disease, the
efficacy ofanytherapy, and the potential for recurre@g#otoxic drugs and radiation
therapy, alongside surgery, form the standard of care faammests. These, along with
new therapies in development, are typical testadyeacale, randomized clinical trials
These trialdetermine whether a drieguls in favorable outcomes average buirovide
little insighinto why a drug works @loes notichieve thaandwhy treatment responses
might vary widely between patiethist iswhy a drug might be effective in one pebsdn
not in another

These challenges can be addressed through multiscale rdonhetiganistic
model of a cancer can be constructed lmasi@dights fronexperimental data describing
the canceacrosevery levedf biological organizatierirom the organ antlmor leved,
down to thecellulargenomic, epigenetic, amdlecular levelPatientspecificomics
profilesand clinical datzan be usechodulate the activity epecies represented in the
modelto obtain patienspecific predictions and predictive value can be assessed by
comparing these resultdrnoee outcoras.Finally, such models can be usasolate
variables and system dynamicsdiffer with treatment outcomes ahdsuncoveithe
mechanigc relationships that determimly a specific treatment is effective in a specific

patient.
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Such approachédsave great utility tooth accelerate the discovery of new
therapeutitargets antb modelthe effects ofherapeuticand multiscaleancemodeling
research increasifgguses omoing just thadsrecent advances in gene edigegniques
drive excitement for targeted therapeuiics/iever, advances in targeted therapy for now
have little impact on the vast majority of cancer patientsowtioue to be administered
the standard of care, combination therapy of cytotoxic drugslattbn therapy, also
known as chemoradiotherapy.

Recentadvances in systems modeling have largely overlooked thesedkerapies
many are viewed as established techn8ldlgin spite of their common usage, clinicians
often have little informatiors @0 which chemoradiotherapy regimen will be most effective
for a specific patienClinical decision making for these therapies relaajakbased on
results from tradition@harmacokinetipharmacodynam{PK-PD) modelsThese models
aremostly phenomenological in natue¢atng drugdosages arttieirduration of treatment
to macroscopic parametéke tumor volume reductiomhesanodels arparameterized
using experimentahlues obtained througburces likenedical imaginilodels like these
provide no means to investigate the underlying mectaoisam a d ordogedson ef f ect
about why the drug is more effective in one person over another.

Clinicianscould instead use a multiscataleling tooto virtually test out therapy
combination®n specific patientsxd so determire pat i ent 6 s optobemal t h
maximallyeffective whileninimizing dose to avoid adverse outcomé&mge segment of
cancer patientsburdened by chronic severe health conditions secondary to their cancer

treatment. @timizing combination theraggyough patienspecific modeling presentst



only theopportunityto improve therapeutic outcomes buntorease healthiness and
quality of life for survivors
With this motivation in mind, in the next chapter, | describe the mathematical
implementationf cell level models necessary to create a multiscieofncell fate
decision makingmphasizing systems and models that | incorporated into my own work to

create framework fopatientspecifianodelingcombination chemoradiotherapy.
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Part Il: Single-Scale
Modeling



4 Formalisms in Cellular Modeling

Computational modeling of cellular procdsas®volved to encompéss needs of
researchers in diverse disciplines addressing diverse problemsmasgulitierent
modeling formalisms been develgpeduding equatidnased modelsuch as those based
on ordinandifferentiakquations (ODEsand those based on draplike Boolean
networkg55] These and other commonly used model types are summafigedar 1
belowwith toy example®Vhile each of these formalisms have wide applicétlidgyoice
of model shoultbeguided by theature of thelata availabfer desigrand constrairof it.

For instance, models based on differential equatmtgically for modeling
dynamical systems usihg equations to describe the rate of change of system variables
over timeNaturally, cell signalingtworks fit this description arfiddugh these models,
one can perform timeourse simulatiord the® networkspredictoutputsto different
inputs, and desigrontrollers of system beha\es] Creating these models however
requires experimental data to estimate kinetic paranvatenfiave historically been
difficult to produce for large scale netwoBkg contrast, Boolean netwoakspopulated by
Boolean variabldisa only representraode ¢ene or molecylas having two possible
statespn/activeandoff/inactive.At eachime step in the simulation, each iiostate is
determined by a logic rule which is a function of the state of its input nodes (its regulators)
and everyode in the network is updated synchrongoSiyWhile far less experimental
data is needed for the constiutidf such modelsxploringhe full state spacsill maybe
infeasild# for large networkas the number of possible state8 fisrzy network nodesn

casesvhere more than twmde states must be represented but kinetic data is unavailable, a
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Bayesian nebrk could be employed. Imelse networks, nodes are discrete or continuous
random variables linked dgnditional dependensjeind th@alueat each node is

determined by itswn probabilityfunctionwhichdepends on the values of input nd8é$

This approach is excellent for inferring parameters in the presence of incomplete data, but
having no representation of time at baseamsot be readily used to mddedback loops

[55] Finally all of these models aitesuited for representationocesses described by
spatiddata which could be more appropriately modeled with antzggat modelr

cellular automata

Additionally, model choice may be guideddtgrs such as the typeaoflysis one
would like to perform across the network and the availabgigvadus work for testing
which has become increasing eaitythe rise of community standardized formats such as
Systems Biology Markup LanguaB&/(S thatcan be readily explored with visualization
andsimulatiorsoftware like Copg&6][57]

Theseconsiderationsamento play in construction of the multiscale model
described ihapter 7with a Boolean Network being used to describERb& mediated
DNA damage repair and cell cycle pathways, and an ODE mogleidaei to describe the
EGFR mediated RAAPK and PI3K/AKT pathway$38][40] Patient miRNAorofiles
and drug effects were modeled as actors that could change the initial states of nodes in these
networksas opposeds nodes or variables in their own @giihg on othemetwork
element# the course of simulatiofhese two key types of netwoiRsolean and
equatiorbasedare described beloWwhe chapter ends with a brief overviehigibrically
significant formalisms in combination chemotherapy motlelirgye later used to evaluate

the results of my model@hapter 7. Additionally, considerations for adaptation of the
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modelto better represent inttamor heterogeneity and the influenceetitilar

microenvironment via agdmsed modeling are introduce@Gliapter 8
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Figure 4.1 From Machado et alisual representatioaktoy examples of popular systems
modeling formalisms.

a Boolean networlgenes are represented by nodesdal) and the arrows represent
activation and repressibiBayesian netwarthe value of the output nodes (gendss),

are given by a probability function that depends on the valedrgiuhnodes (genes a and

b) c Petri netplaces represent substances ¢, transitions represent reactiong|j@nd

the arrows represent consumption and produdtigentbasednodei two types of agents
representing two different kinds of cells (or molecules) can move freely and interact within
thecontained spaeenteracting state machirsystems are represented by their(stéle

where each state may contaia or more internal substategi(le), arrows represent the
transition between different system sfaRedebased modétepresented by contact map):
agents represent proteins@PR, S) which may contain different binding sites (a to f), the
connections represent the rules for possible intera@ignphosphorylatiog)Cellular
automataa grid in which the value of each element can represent different kinds of cells (or
moleculesthat can change via interaction with their immediate neifftijors
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4.1 Boolean Networks

TheTP53 mediated DNA damage and cell cycle control pathwiyrgemedinvolve
numerous complex feedback lgapwl in turrthe dynamics of actors within it are not fully
described with kinetic datdne Boolean network approach is well suited to representing
such data and has been describ§88pio performstate attractor analysis of thEBB3
mediated networks.

Defining the network, each node has a possible state of odeteatiined as a
functionof values of its regulators, or input nd88&$ Theglobalstate of the network is
thendefined as the state of all nqdesich are all updated synchronously at each time step
in the simulatignsuch that thstate of any node at time step t+1 is calculated fromputs i
nodes & v alb5)eash nadéntegratesithe values of its regulators via a Boolean
function thatcan include combinations of Boolean operators such as AND, OR, and NOT.
In the course of simulation runs, the network stateeaah a steady state, in which node
values do not changesubsequent time steps. The goal of state attractor analysipis to ma
initial network states to these steady states (also known as a#tract@trmine how

robust they ar® changes input values or network structure.

4.2 Differential Equation Based Models

When rate laws and kingdarameters are available, diffeabatjuatiolased modelnay

be used to precisely represent a biological netwerkystem may be defined with
different types of equatior@DEs are most commonly used to descaipeentrationsf
specieggenes, proteins, or faculeshs a function of time, partial differential equations to

account for spatial distribution of spedshastic differential equations to account for
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stochasticomponentsike noiseand piecewidmear differential equatiotwsintegrate
continuoudeatureswith discrete featuréskethreshold basesivitches)55][58] Such a
piecewisdinear differential equation model composed of ODEs is employed to represent
the EGFR mediatedasMAPK andPI3K/A KT (seeChapter 7) for these reasons.

Generally, to set up an ODE based model, wexgaess the network by a set of
equations witthespecisamountor activity level as a variable "Qaf where s an

by 1 vector othe amount oéach individual species in the netwoik an n by 1 vector of
the external stimuifecting each species (set tondtifincluding external inpynd™Qis a
continuous functiofb9] Commonly, in representing gene regulatory netwuelesfectof
one species on another is not intarvalizedas intermediate mechanismgacarry out

the regulatory effect) and these discrete time delgyse accounted for using tidetayed
ODE equationssuchas- "Qw 0 th lw 0 5 Bhw o 15 b [ o,
where

is the degradation rate constant for speciestijaisdthe delayn regulation of species i by
species[p9] Other functions like the Hill Equation can be used to guidatéefa

species regulation by anotherthiede equations can be solved piecewadienioate

nonlinearities that might make the systtrarwisenfeasible to solve.

4.3 Combination Chemotherapy Models
Additivitymodels have been historicalen employeid mathematicallyredict dose
response relationships for combination chemothiapyexperimentally determined dose

response relationshipstbé individual therapieébivo such modelsave remained in



widesprad use for decades: the Loewe additivity model and the Bliss additivity model

shown inFigure 4.2
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Figure 4.2. From Fitzgerald et al., a t@presentation of Loewe and Bliss additivity models
contrasted witthat of a mechanistic modeling approach.

a Single enzymegd.eft) According to Loewe additivity, combinations of enzyme inhibitors
act upon overlapping binding sites. (Right) According to Bliss indeperwiahogtions

of enzyme inhibitors act upon independent bindinglsitgglication of Loewe additivity
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and Bliss independence to signaling networks is unintuitivel flestg additivity behavior
could possibly be observed whdnbitorcombinationsct to inhibit the sanpathway
through similar actiofRight)Bliss independence behavior could be obsknvihibitor
combinations that act independeathlyifferent sites on the same tardéferentlevels in

the sam@athway, or upon different pathwaylsoewe additivity and Bliss independence
do notaccount for the mechanisms of inhibitor interactions in complex systems, instead
treating these systems as black bdeshanistic models can capture complex signaling

dynamics ansb be used to compute hawkibitor combinations will perforii0]
Loewe additivity assumes tivad drugs aain a targethrough a similar

mechanispresulting in dose substitutemd that taeduce cell survival by the same

proportionX% achieved individuallihe concentrations in combinataam be calculated
from the relationship B —= where 'O . is the concentration of dri@eeded
b

to reduce cell survival by X% when administered individu@ andis the concentration
of drugtmeeded to reduce cell survival by the same amount when administered in
combinatior{60] By contrast, the Bligsdgpendence model assumes that drugs act on a
target through independent mechanisessilting in effect multiplicatighe effect of the

combination therapy is predictesing the equatio® B O wheréO isthe
fraction of targets unatffied by combination therapy 40d as thedraction of argets

unaffected during individual administration of @atghe same dosage when used in
combination therad®0]

These models weredginallydesigned to describe simple enzymatic interactions and
do not adequately accountieechanisms underlying the interaction of actual
chemotherapiesith complexcell fate decision networkéechanistic modelike those

constructed using the systems fdismes described early in this sectonldrepresent the
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dynamics of these networkstomputehow theseombinationsvill perform more

realisttally than mechanisagnostic adtivity models.



5 A Statistical Tool for DetectingEpigenomic States in
LineageCommitment

Adapted fron{61]
While multiscale, multiphysics models present a solutiorptoltheam of synthesizing
observations of biological phenomena across biokisited and heterogeneous data,
methods are also needed tegracesempirical data generated with recently developed
NGS technologiess a solution to one such problerdeVveloped 3DeFDR, statistical
tool for detecting chromatin looping interactions diyamically change across biological
conditionsThis tool was developed with the intent to answer the question of to what extend
dolongrange looping interactions npa across developmental models, genetic
perturbations, drug treatments, and disease Stajether with my eauthor, | ultimately
created a tool fadentifyingsuchdynamic loops from higlesolutionrChromosome
ConformatiorCaptureCarbonCopy (5C) and HT dataln this chapten, demonstrate this
method in analysis déta sets capturing chromatin looping states in the course of neural
lineage commitmenicluding crosseference of differential lpealls with RNAsegand
ChliP-seq results anticipate thahis method could be used to help construct a more
complete picture apigenetic states in the course of lineage commitnakimt turna

morerealistianultiscalenodel of lineage commitment.

5.1 Introduction
Chromosomé&onformatiorCapture (3CGhased molecular techniques have recently been
coupled with higthroughput sequencing to generate genaidemaps of higherder

chromatin folding62, 63, 64]A number of massively parallelt#Ged technologies query
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genome folding in a protaimdependent manner, including®i4C, 5C, and Capttu(te

[65, 66, 67, 68, 69, 70,. Al four techniques rely on proximity ligation and high

throughput sequencing to convert physically connected chromatin fragments into counts of
specific interaction events. Briefly, chromatin is fixed in its native architectural state across a
populatiam of cells and then digested with a restriction enzyme. Restriction fragments are
ligated to form billions of hybrid ligation junctions between two distal genomic loci. The two
fragments in a given ligation junction can then be identified usktiy dughput

sequencing, and their frequency of ligation is proportional to their spatial proximity across a
population of cells. HC detects all chromatin interactions geneide using high

throughput sequencing, whereas 5C and C#&puse tiled probes to selively sequence

large, megabaseale subsets of the genome. 4C queries all gamEumntacts involving

a single chosen restriction fragment. Thus, the pirudeipendent 3C technologies of Hi

C, 5C, and Captuf@ can be used to create higbolutio spatial maps of genome folding

on the scale of a few megabases to gewaleeoverage.

Recently published 3ased sequencing studies have revealed that the mammalian
genome is folded into a hierarchy of distinct architectural features, including A/B
compartments, lamir@ssociated domains (LADSs), topologically associating domains
(TADSs), subTADs, and longnge looping interaati®[67][69][71][72][73][74][75][76]
[77][78][79]Loopsi groups of adjacent pixels which form a punctate focal increase in
interaction frequency enriched above local TAD and subTAD stiubave been
identified algorithmically in higbsolution HIiC mapg72] The highest resolution maps to
date have enabled the detection of tens of thousands of looping interactionsvgEnome

[72][80] A subset of looping interactions occur at the corners of TADs/subTADs and are
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known as o0corner dots.dé6 A |l eading model
cohesin tracks along the chromatin fiber until it is blocked by the architectiral prot
CTCF, thus extruding out the intervening DA ][82][83][84][85][86] Corner dot
TADs/subTADs anchored by CTCF are thought to demarcate the search space of
enhancers for their target promo{8[88][89][90] Moreover, enhancers can also

connect directly to target genes via corner dots in ad€peérdent and CTCF

independent mannf1][92][93][94] Initial studies have suggested that specific subsets of
looping interactions can reconfigure in development, disease, and in response to genetic
perturbabns[80][89][91][92][95][96][97][98][99][100][101] Generally, however, it
remains unknown to what extent loops are dynamically altered-ga@aecells switch

fate, de in part to the relative paucity of computational methods to evaluate statistically
significant changes in interaction frequency across multiple biological conditions.

As highresolution HiC and 5C chromatin folding maps begin to accumulate in
developmentally relevant cellular models, there is an increasing need for methods to (1)
precisely detect loops and clearly distinguish them from other classes of architectural
features such as local TAD/subTAD structure and compartments and (2) rigtassifly
loops by their dynamic behavior across cell types. A number of computational methods
report the ability to identify loops in individual libraries generatedChbiFd¢tcatoand
colleagues performed a detailed comparison©fiddip calling pipeles, including
HICCUPH102] GOTHIC[103] HOMER fttp://homer.ucsd.edu/homer/interaction)/
diffHic [104] HIPPIE [105] and Fi#Hi-C [106] The conclusion from this study was that
loop calling methods in individual samples exhibit vastly different performance, with no

clear gold standard emerdit@7] Importantly, most loop calling pipelines were developed
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on lowresolution maps (4b up to IMb bins) generated with the figeneration dilution
Hi-C experimental procedure. More recenthz; hiaps havachieved ds-kb resolution
through higher read depth and markedly reduced spatial noise due to second generation in
situ ligation and digestion technidu@$[80] We also note that active, unsymcized
extrusion events could create {oangge interactions within TADs/subTADs that do not
manifest as punctate loops in a 58Hieatmap (i.e., transient loops in the mdi&dp)
Thus, it is likely that first generatiood calling algorithms show a wide dynamic range of
performance because they were developed on lower resolut@mération HC maps

and did not explicitly distinguish loops from generaspecific, longange interactions.

The emerging model froseconeheneration HC studies is that quantitative loop detection
in individual libraries requires rigorous modeling of local chromatin domain structure.
HICCUPS explicitly models and accounts for{gpesific TAD/subTADg72] and
accounting for local chromatin domain structure has therefore emerged as a leading
candidate for identifying bona fide loop structures (i.e., persistent loops) in indi@ddual Hi
maps. Building upon advances wCHsimilar statistical methodolsdiave been applied in
lib5C to find loops in individual 5C m&pG&8]

To our knowledge, computational tools are not yet available to statistically test loops
for their differential signal across two or teogalitions in 5C data. Three tools (diffHic
[104] FIND [109] and HiBrows§110) have been published to identify generally
differential interactions between conditiontdii@ data. All three methods in their
published, firstieneration form were not designed or verified to distinguish loops from
higherorder folding patterns such as A/B compartments, TADs, subTADSs,-epecific

longrange interactions. In the abserfa@coounting for these features, a large proportion
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of the differential interactions identified may be due to cefiggpic fluctuations related
to technical biases, local chromatin domains, extrusion lines, eotligheompartments.
Noteworthy, e diffHic manuscript indicates that modeling local chromatin domain
structure would be essential to evaluate ceBypdic loops, suggesting that second
generation tools which accomplish this might be available in th§l@4li@omputational
tools have also been published to call wilmid acrossondition loops from libraries
generated by FGChIP and ChiAPET assayd11][112][113][114][115][116] However,
statistical frameworks built for protdependent 3@ethods cannot address the technical
challenges unique to 5C andHilata. Overall, a gedthndard statistical methodology for
cell type differential loop detection in pretedependent proximity ligation data (both 5C
and HtC) is an important unmet need.

Here, we present 3DeFDR, a n@atistical method and software implementation
for identifying cell typspecific looping interactions from gename HiC (3DeFDR
HiC) and locuspecific 5C (3DeFDRC) data across two or three biological conditions. For
locusspecific 5C matrices, 3DelRIBC computes an empirical false discovery rate (eFDR)
by applying a thresholding scheme on the change in interaction score signal on real 5C
libraries from multiple biological conditions and psexmlwates simulated from the same
biological conditio’WWe implement a controlling procedure in which we iterate thresholds
to achieve an a priori determined eFDR under the assumption that all thresholded pseudo
replicate interactions simulated from the same condition are false positives. For genome
wide HiC matrices, 3DeFDHRIIC formulates a negative binomial likelihood ratio test
parameterized with a DistasizispersiorRelationship (DDR) for every pixel engaged in

persistent loops genomde. Cell typspecific loops called by 3DeFBR have fewer
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false posives and are more strongly enriched for chromatin modifications characteristic of
the cellular state in which the loops are present compared to (i) an established ANOVA test
and (ii) our own newly formulated parametric likelihood ratio test (3DLRT3oWe al
benchmarked 3DeFDRIC against the leading publishedCHionspecific differential

interaction calling method diffHic and demonstrate superior performance. 3b@FDR
3DeFDRHIC, and the parametric benchmarking test 3DLRT are freely available as Python

packages to support the next wave of discoveries in ecspeggde looping.

5.2 Results

We set out to address a critical challenge in the analysis of looping interactions in 5C data:
the paucity of methods for robustly classifying dynamic loops adtgds oellular

conditions, a problem which becomes more challenging as the number of conditions
increases. Our goal was to develop a statistical framework and software implementation to
rigorously identify differential loops from 5C maps across tweerctinditions using a

target FDR to choose thresholfgy( 13.
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