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ABSTRACT 
 

MULTISCALE MODELING OF CELL FATE SWITCHING TO 

PREDICT PATIENT -SPECIFIC RESPONSE TO COMBINATION 

CANCER THERAPY  

Lindsey R. Fernández 

Ravi Radhakrishnan 

 
All cells in the human body share the same DNA sequence, but differ in their functional 

identity, guided by a wide array of regulatory mechanisms controlling cellular lineage 

commitment and encoded in the unique epigenome of each cell type. Recent experimental 

studies with induced pluripotent stem cells have allowed researchers to investigate the 

dynamic nature of cell identity and relationships between gene regulation and differentiation. 

These studies have major implications for our understanding of not only human 

development, but also disease as cancers, and some neurological diseases, arise in part due to 

inappropriate persistence of cells in immature differentiation states. These studies have 

proliferated massive multi-omics databases as next generation sequencing (NGS) 

technologies are applied to extensively profile stem cells, in vitro differentiated cell 

populations, and cancer patient cohorts. As these data accumulate, important unanswered 

questions remain, including to what extent do physical states of genes change in 

development and disease, and how do these changes meaningful alter cell signaling pathways 

and clinically impact individual patients. To address these questions, new computational 

tools are needed to 1) rigorously assess epigenomic state changes captured with NGS 
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modalities in the course of lineage specification, and to 2) integrate models of patient (epi-) 

genomic states with those of disease-associated cell signaling pathways and clinical 

outcomes. This thesis describes the development and applications of computational methods 

to help address these needs. First described is a statistical tool for classifying long-range 

looping interactions that change across developmental models and disease states from data 

captured with NGS technologies. Its application is demonstrated for study of chromatin 

looping state changes in the course of neural lineage commitment and neuronal activation. 

Then a multiscale framework is described that integrates patient (epi-)genomic profiles with 

mechanistic models of signaling pathways critical to decision making to enter tumorigenic 

states. The framework is demonstrated in a clinical setting to predict patient-specific 

responses to different specific treatment combinations in nephroblastoma. Such methods 

have great potential to advance our understanding of the determinants of cellular identity 

and its loss in cancer, and in turn our ability to personalize patient care.
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1 Introduction  
 
All cells in the human body share the same DNA sequence, but differ in their functional 

identity, guided by a wide array of regulatory mechanisms controlling cellular lineage 

commitment and encoded in the unique epigenome of each cell type. How a stem cell 

commits to one particular lineage or fate over another is determined by many interlinked 

regulatory layers and these must be maintained to achieve healthy cell, tissue, and organ 

function throughout life. [1] Cellular programming constitutes one such regulatory level and 

shapes cell fate decision making through transcriptional regulation, carried out by 

transcription factors (TFs) and chromatin regulators, and post-transcriptional regulation, 

carried out by microRNAs (miRNAs). [2] At a broader scale, cell signaling pathways enable 

cells to respond to stress, infection, and other external cues, and are necessarily interlinked 

with gene regulatory machinery to determine cellular identity. [2] Understanding the 

mechanistic relationships that establish and maintain a cellõs functional identity is a pursuit at 

the heart of biology research. Unraveling these mysteries has major implications for our 

understanding of not only human development, but also disease. For instance, many cancers, 

and some neurological diseases, arise in part due to inappropriate persistence of cells in 

immature differentiation states or loss of the ability to keep cells in a previously established 

differentiation state. [3] [4] [5] [6] Determining the regulatory relationships and external cues 

that underlie specialized cellular functions and their loss in disease could provide a road map 

for creating therapies that optimally control cell fate decision making to reestablish healthy 

tissue function. [7] 
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Recent technological advances have fueled enormous progress in decoding cell fate 

decision making. Development of stem cell models and induced pluripotent stem (iPS) cell 

models have allowed researchers to investigate the dynamic nature of cell identity and 

relationships between gene regulation and differentiation. [8] [9] With these cellular models, 

researchers can follow changes in a differentiating cellõs epigenomic state and signaling 

dynamics over time, identify key regulators, and investigate their role in determining cell fate. 

Tools have proliferated to allow researchers conduct these studies in different lineages, to 

perturb specific regulatory elements with genome editing or silencing, and to compare 

observations across developmental stages, lineages, perturbations, and disease states. These 

studies have proliferated massive multi-omics databases as next generation sequencing 

(NGS) technologies, such as whole genome sequencing, large scale RNA sequencing (RNA-

seq), chromatin immunoprecipitation sequencing (ChIP-seq), and chromatin-conformation-

capture sequencing (3C-seq), are applied to extensively profile stem cells, in vitro 

differentiated cell populations, and cancer patient cohorts. [10] [11] [12] [13] [14]  

As these empirical data accumulate, it becomes increasingly clear that most diseases, 

including cancer, involve a large and diverse set of elements that interact via complex 

networks. [15] These networks complicate the work of designing therapies as cells often find 

alternative molecular routes when the action of individual target genes or molecules are 

perturbated. [14] Key to progressing in the era of large-scale biology research is the 

development of mathematical and computational tools for identifying bona fide biological 

state changes or molecular mechanisms often buried in the noise of large scale and/or 

genome-wide data sets. [16] [17] However, as new NGS techniques are developed so to must 

the tools used to process and interpret the resulting data evolve, and the development of 
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these tools has long represented a bottleneck in biomedical research. [14] Even these data 

are gathered, and processing techniques developed, it remains challenging to answer many 

fundamental questions in biomedical research, including to what extent do physical states of 

genes change in development and disease, and how do these changes meaningful alter cell 

signaling pathways and clinically impact patients?  

In addition to these questions, there remains enormous need to determine which 

empirical observations are relevant for designing treatment plans for individual patients and 

to develop techniques that ensure treatments are optimally effective in individual patients. 

[18] [19] This stands out as particularly important for the development of 

chemoradiotherapy regimens; clinicians often struggle to balance treatment intensity against 

toxicity and often lack information to know if a particular drug or drug combination will be 

effective for an individual patient. [20] [21] Treatment design is also made more challenging 

by genomic instability common across many cancers, which contributes to high inter-tumor 

(tumor-by-tumor) heterogeneity and intra-tumor (within) heterogeneity in genotype and 

phenotype. [22] [23] These heterogeneities alter cell signaling and cell fate decisions, resulting 

in variable drug efficacy over time and across tumor-cell subpopulations, and ultimately 

development of therapeutic resistance. [24] 

Answering these questions and needs requires the development of techniques to deal 

with large amounts of data and relationships between those datasets. [14] Mathematical 

modeling has emerged as a powerful tool to identify clinically relevant information from 

empirical data and predict patient-specific treatment outcomes. [25] As described in [25], 

examples of such clinical modeling approaches include statistical data-driven models which 

analyze clinical data from patients and predict probabilities of different recurrence scenarios, 
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pharmacokinetic-pharmacodynamic (PK-PD) models which determine patient-specific drug 

regimens, and mechanistic models of cellular processes and tumor progression derived from 

empirical data. The development of these modeling approaches represents a critical 

milestone in the path to the era of precision medicine, however challenges remain. To date, 

these modeling efforts have been disparate and most of them restricted to representation of 

phenomena of a specific length or time scale. [25] [26] Such approaches are inadequate for 

modeling of cell fate decision making, as well as diseases resulting from its dysregulation, 

which are guided by a complex hierarchy of mechanisms that span multiple scales in time 

and space (i.e. multiscale), and multiple interconnected physical, chemical, and biological 

processes (i.e. multiphysics). [27] [28] [29] [30] To understand these mechanistic 

relationships, I believe multiscale and multiphysics modeling techniques are needed to enable 

study these processes as in silico biology, built through integration of experimental 

observations with physical principles. [26] [31] These techniques will allow researchers to 

study otherwise technically infeasible parameters and to harness the power of ever-growing 

large scale -omics data sets. Such techniques have the potential to guide creation of the next 

generation of personalized cancer therapies, and to optimize and broaden access to more 

affordable cytotoxic treatment options.  

My thesis work is to create multiscale mechanistic models of pathways critical to cell 

fate decision making between differentiative (healthy) cellular states and proliferative 

(cancerous) cellular states. Such multiscale models allow integration of mechanistic models 

of processes spanning vastly different time scales (e.g., coupling models of shorter time scale 

cell signaling and gene regulatory networks to models of far longer time scale processes like 

cell proliferation and apoptosis) by representing activities of model components as system 
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variables related by governing equations implemented as algorithms. The systems 

represented by these integrated models would be far too complex to solve analytically and 

intractable to fully investigate experimentally. These multiscale models thus have incredible 

value in allowing systematic investigation of complex networks of factors and signals 

contributing to patient outcomes and treatment responses and isolation of critical factors for 

experimental follow-up.  

The overarching goal of my thesis was to create such a multiscale model and 

demonstrate its clinical value in designing personalized treatment plans for individual 

patients. In pursuit of this goal, I created computational tools that allow 1) rigorous 

assessment of epigenomic state changes captured with NGS modalities in the course of 

lineage specification, and 2) integration of models of patient (epi-)genomic states with those 

of disease-associated cell signaling pathways and clinical outcomes. The background, 

implementation, results, and future directions of this work are described across the following 

chapters, summarized below: 

In chapter two, I discuss challenges in characterizing cell fate decisions and how this 

could benefit from a systems modeling approach. Transcriptional and post-transcriptional 

regulators are discussed. Cell signaling pathways critical to cell fate determination are 

detailed, specifically EGFR mediated Ras-MAPK pathway and p53 mediated cell cycle and 

damage response pathways, which are frequently altered in many cancers and for which 

single cell level mechanistic models have been developed.  

In chapter three, I discuss the challenges of implementing such systems modeling 

approaches. Careful consideration is required to create a valuable representation of a 

complex system, including determination of the basic constituents of the system and 
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reasonable mathematical representation of their activity and interactions. These efforts are 

complicated in multiscale, multiphysics modeling as single scale, single physics models must 

be combined in a way that is representative of how signals are propagated across scales, 

however little empirical data may be available for defining such propagation and models 

spanning very different scales and physics are numerically challenging to solve, presenting 

computational challenges as well. These challenges and efforts to address them are discussed.  

In chapters four through six, I describe the mathematical implementation single cell 

level models necessary to populate a multiscale model of cell fate decision making. In 

chapter four, I describe approaches for cellular level modeling, specifically detail efforts to 

represent previously mentioned EGFR and TP53 mediated cell signaling pathways via 

continuous-time ODE modeling and discrete logic-based systems modeling respectively. I 

also describe current modeling standards for combination chemotherapy. In chapters five 

and six, I detail a computational method for capturing epigenetic state changes across 

developmental models and disease states from data captured with NGS technologies, 

specifically 3C-seq data and its evaluation against chromatin immunoprecipitation (ChIP)-

seq and RNA-seq data. Its application is demonstrated for study of chromatin looping state 

changes in the course of neural lineage commitment in chapter five and of neuronal 

activation in chapter six. 

In chapter seven, I discuss how previously mentioned single scale models can be 

integrated in a multiscale modeling approach, detailing implementation of a model that 

modulates the activity of target proteins in a hybrid multiscale of signaling pathways critical 

to decision making to enter tumorigenic states according patient-specific (epi-)genetic 

profiles. I demonstrate this model for the prediction of patient-specific responses to 
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different chemoradiotherapy combinations for the treatment of nephroblastoma, or Wilms 

Tumor, a common pediatric tumor of the kidney.  

Finally, in chapter eight, I discuss future work to expand this effort to account for 

tumor heterogeneity and microenvironmental cues with the implementation of agent-based 

model that represents the constituent cells of different lineages within a tumor with different 

cell level multiscale models. Motivations and challenges in implementing this agent-based 

approach, and I propose machine learning techniques to allow sufficient scale up of single 

cell level models to permit their simulation across multiple cells.   



 

9 

2 A Systems Biology Approach to Cell Fate Determination  
 
Cell fate decision making refers to the ability of a cell respond to signals in its environment 

and process them to differentiate, proliferate, grow, or die as needed to retain the healthy 

function of the tissue and organ. Precise understanding of the processes that guide normal 

cellular decision making and how they are disrupted in disease is in turn critical to our ability 

to treat many diseases, to essentially modulate cell signaling dynamics, transcriptional 

controls, and environmental status as needed to restore normal cellular functional identity 

and overall organ function.  

 That many diseases fit this conceptual framework has long been understood. Cancer 

is in part a disease of mismanaged cell fate: over proliferation and avoidance of apoptosis, 

driven by disrupted DNA repair and abnormal cell signaling. Additionally, incomplete 

differentiation is thought to contribute to the pathogenesis of many cancers as mutations in 

developmentally important genes disrupt the balance between self-renewal and 

differentiation [32] [33]. Increasingly, neurological disease is being thought of from this 

perspective as well with low neural stem cell and progenitor cell populations being linked to 

Parkinsonõs Disease and certain epilepsies, and over-proliferation of those cell populations 

being associated with glioma and Huntingtonõs Disease [34].  

 Based on this understanding, researchers have and continue to develop therapies to 

address different aspects of aberrant cell fate decision making. In the case of cancer, many 

successful cytotoxic drugs address over proliferation, including antimitogenics like 

Vincristine and DNA synthesis blocking drugs like Doxorubicin (see Chapter 7 for 

modeling of combination application of these drugs). More recently, with the emergence of 
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genome wide sequencing, drug development has shifted to targeted therapies that aim to act 

upon biological changes specific to tumor cells while sparing normally functioning cells. 

Small molecules to induce cellular reprogramming to desired cell fates are also being 

explored, a treatment option that would potentially allow regeneration of tissues of all types, 

including for neuro-regeneration and cancer treatment [35]. 

 Incredible successes have already been realized through therapies designed based on 

understanding of cell fate control, but significant limitations persist. Drug resistance remains 

a critical problem in cancer treatment, even for targeted therapies [36]. Attacking individual 

actors within complex signaling systems can be a futile effort as cells may rely on alternative 

pathways to retain aberrant behavior, especially in the context of cancer where signaling 

systems are constantly evolving as new subclonal populations arise. More broadly, the vast 

majority of candidate drugs subject to clinical trial are found to have little to no therapeutic 

benefit, highlighting the generally difficulty of anticipating the effects of drugs once 

administered to people [37]. Even for effective drugs, many sources of variability contribute 

to differences in drug response from person-to-person, site-to-site, and cell-to-cell.    

To address these challenges, there has been great interest in studying the processes 

governing cell fate from a systems biology perspective, to understand the network of 

processes driving cell fate decision making in context rather than as individual elements to 

be pulled apart and characterized in isolation. Excitingly, with an ever-growing array of new 

sequencing and experimental techniques (e.g., single cell studies, gene silencing and editing 

experiments, light-activated protein studies, etc.), more data than ever are available to 

facilitate systems level study of cell fate regulation.   
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In the next few sections, I discuss the state of our systems level understanding of 

signaling pathways, signaling dynamics, transcriptional and post transcriptional controls, and 

the influence of cellular microenvironment as they contribute to cell fate decision making 

and therapy development. In the next chapter, I discuss multiscale modeling as a solution for 

synthesizing these new systems level insights to better characterize decision making and 

disease.   

  

2.1 Cell signaling pathways  
 
Cancer has long been understood to be a quintessential systems biology disease. 

Development of cancer is typically driven by multiple mutations leading to pathologic 

behavior of a complex network of interacting molecular processes and the loss of a cellõs 

functional identity. The success of many cytotoxic drugs has hinged on influencing these 

networks to promote normal differentiative states over aberrant proliferative ones. In that 

pursuit, many signaling pathways critical to deciding between these states have been 

extensively studied and mapped, including pathways contributing to apoptosis, survival, the 

cell cycle, DNA repair, lineage commitment, and differentiation. Below, I describe pathways 

essential to decision making between differentiative (normal) and proliferative (cancerous) 

states that I ultimately represent in a multiscale modeling framework to aid in personalization 

and optimization of combination cancer therapy. 

2.1.1 TP53 mediated cell cycle and damage response pathways 
 
Uncontrolled proliferation driven by dysregulation of the cell cycle is one of the main traits 

of cancer. Crucially, as shown in Figure 2.1, TP53 controls the phase transition from G1 to 

S and cells with mutations in TP53 may not proceed through that checkpoint or initiate 
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apoptosis. This has critical implications for cancer treatment as cytotoxic drugs depend the 

cell cycle and have greatest effect on actively proliferating cells [36]. For instance, as shown 

in Figure 2.1, drugs that act on DNA synthesis damage cells during periods of DNA 

synthesis (S phase) while mitotic inhibitors produce cell kills through exposure during 

mitosis (M phase) [36]. These drugs may fail to produce cell kills in the presence of a TP53 

mutation and other mutations that keep the cell cycle from proceeding to these phases [36]. 

Additionally, therapies that act to reduce the integrity of DNA including many cytotoxic 

drugs and radiation may not produce cell kills in the absence of TP53, which controls the 

signaling machinery for detecting loss of DNA integrity and initiating apoptosis, resulting in 

therapeutic resistance [36]. Thus, in designing a model for simulation of combination 

chemoradiotherapy, it was critical to include representation of the TP53 mediated DNA 

damage response and cycle cell pathways.  

 
 
Figure 2.1. From Izar et al., the cell cycle, its controls and checkpoints as well as sites of 

action of cell-cycle specific cytotoxic drugs.  
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The cell cycle phases consist of non-dividing (G0), resting (G1), DNA synthesis (S), a gap 

between synthesis and mitosis (G2), and mitosis (M). Cyclin proteins activate cyclin-

dependent kinases (CDKs) to control transition between phases (note, CDC-2 is also known 

as CDK-1). Additionally, TP53 monitors DNA integrity and controls passage through the 

G1/S transition. [36] 

Though TP53 function has been under intense investigation for decades, the size and 

complexity of the regulatory network it acts upon make full experimental characterization of 

its kinetics technically infeasible. Integration of experimental results has led to the 

construction of simplified TP53 network models like that shown in Figure 2.2 and state-

space analysis of such networks has provided insight into how TP53 dynamics are controlled 

by specific feedback loops and how perturbations of processes in these loops modulate 

those dynamics to alter cell fate [38]. As summarized in Figure 2.2, these feedback loops 

work to alter TP53 dynamics in response to DNA damage and cellular stress with specific 

dynamics mapping to specific cell fates of DNA repair, cell cycle arrest, senescence, or cell 

death [38]. 
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Figure 2.2. From Choi et al., a simplified schematic of the p53 regulatory network.  

(Note, TP53 is the human isoform of p53, but p53 and TP53 are typically used 

interchangeably to refer to that isoform).  Based on combined literature data, Choi et al. 

constructed a p53 network containing 16 nodes as well as 160 negative and 218 positive 

feedback loops, the vast majority of which interact with p53. Arrows indicate activating 

processes and bars indicate inhibitory ones. In response to DNA damage, ATM activates, in 

turn activating p53 to turn on various feedback loops, with key loops shown in this 

schematic. The lower left orange area represents the cell death module, the upper right green 

area presents the cell cycle module, and the remaining blue area represents the p53 feedback 

module. [38] 

2.1.2 EGFR mediated Ras-MAPK and PI3K/ AKT pathways 
 
Epidermal growth factor receptor (EGFR), also known as ErbB1, is part of the greater ErbB 

cell signaling network which is a major contributor to tumorigenesis and is under intense 

investigation for therapeutic targets. As shown in Figure 2.3, the network is comprised of 

many extracellular ligands and trans-membrane receptors like EGFR as well as many 
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enzymes, scaffolds, adaptors, and small molecules [39]. Signaling initiates when a ligand 

binds a receptor and causes the receptor to dimerize. This in turn activates the receptorõs 

tyrosine kinase domain, which results in autophosphorylation of tyrosine residues [39]. In 

response, multiple proteins are recruited to the plasma membrane by binding 

phosphotyrosines and so a complex network of interactions between the activated receptors, 

recruited proteins, and plasma membrane molecules eventually culminates in the activation 

of multiple downstream effectors, including extracellular-signal-regulated kinase MAPK 

(originally known as ERK as it is listed in Figure 2.3) and protein kinase B/AKT, which are 

both implicated in the control of proliferation and survival [39]. 
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Figure 2.3. From Chen et al., a simplified schematic of ErbB regulatory pathways showing 

receptor activation, interaction, internalization, and recycling in the Ras-MAPK/ERK  and 

PI3K/A KT cascades.  

Forward reactions are shown with black arrows while negative feedback interactions are 

shown with red arrows. ErbB receptors dimerize upon activation with various ligands and 

the matrix in the top half of the figure summarizes the functional properties of observed 

dimers. Nodes with the prefix C indicate that one or more ErbB receptors form a complex 

with the species. [40] 

 



 

17 

Spatiotemporal dynamics of signaling are known to be critical to the ErbB network's 

control of cell fate, as different inputs stimulate different network kinetics and in turn lead to 

different cell fates [39]. The network as well as its downstream signaling cascades, including 

the Ras-MAPK pathway and the PI3K/AKT pathway, have been studied thoroughly at the 

molecular level resulting in clarification of its activation kinetics and well-defined systems 

models of their behavior based on those findings (see Chapter 4) [39] [40]. Additionally, 

many cancer therapies that interact with the ErbB network are known to dramatically vary in 

efficacy from patient-to-patient [40], further motivating the inclusion of these networks in 

patient specific modeling of combination therapy.  

 The Ras-MAPK pathway (also known as the MAPK/ERK or Ras-Raf-MEK-ERK 

pathway) acts in many ways to regulate cell cycle entry and control cellular proliferation and 

do so across many cell types. This pathway is responsible for integration of external cues 

from the presence of mitosis-triggering signals and growth factors into signaling cascades 

that support proliferation and growth, e.g., EGF binding EGFR leads to phosphorylation 

events in the MAPK cascade which ultimately activate the kinase activity of ERK, which 

must be present for cells to express genes necessary for cell cycle entry and to remove cell 

cycle blocks that allow cells to progress to synthesis (S phase of the cell cycle). Additionally, 

ERK signaling results in expression of c-Myc and other signals that control a downstream 

switch that prevents cells from returning to G1 after entering S phase. Importantly, this 

pathway is known to interact with TP53 signaling to control whether newly proliferated cells 

become quiescent (enter G0 phase) or immediate reenter the cell cycle. In addition to 

cancers, mutations in this pathway have been linked to multiple neuropsychiatric diseases. 
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 The PI3K/A KT pathway (also referred to as the PI3K/A KT/mTOR pathway), is 

also critical for regulating the cell cycle, downregulating apoptosis, and the decision to 

proliferate rather than differentiate in stem cells. In cancer, this pathway is frequently 

overactive, driving proliferation and downregulating apoptosis. This pathway is a central 

contributor to many cancers and anti-cancer drug resistance. Oncogenic activation of the 

pathway can occur via many routes, including those that disrupt inhibition of the pathway 

through PTEN and those that cause overactivation through upstream overexpression of 

EGFR. The pathway is also critical to neural lineage cells, driving proliferation over 

quiescence in neural stem cells in response to sufficient glucose level, and so has an 

important role in neural development and plasticity, and is implicated in neural stem cell 

diseases.  

 Finally, these two EGFR mediated pathways are known to interact with the 

mentioned TP53 mediated DNA damage response and cell cycle control pathways through 

the linkages listed in Figure 2.4 below. As described in Chapter 7, these linkages will be 

used to allow propagation of molecular state information across a multiscale mechanistic 

model for simulation of combination chemoradiotherapy. 

 

Figure 2.4. From Ghosh et al., the p53 regulatory network links to the Ras-MAPK pathway 

through the activity of WIP1 and to the PI3K/AKT pathway through the activity of PTEN 

and MDM2. [25] 
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2.2 Mechanisms of gene expression regulation 
  
Cell signaling pathways act to control gene expression in response to internal and external 

cues. From a systems biology perspective, these signaling networks broadly represent one of 

multiple scales of biological processes that act to influence cell fate determination. At the 

next level below are the many layers of mechanisms through which these signals can act to 

modify gene expression to achieve versatile and precise expression dynamics and cell type 

specific function in mammalian cells. These can occur at any stage in the process of 

generating gene products (see Figure 2.5), including epigenetic controls that enhance or 

limit access of transcriptional machinery to certain sections of the genome; transcriptional 

modifiers that determine when, how frequently, and which sections of a gene are 

transcribed; RNA expression controls that modify newly synthesized transcripts in the 

process of maturation to mRNA; translational regulators that determine how much protein 

is synthesized from a given mRNA, and post-translational modifications that edit existing 

proteins as needed to achieve precise spatiotemporal control of their activity.     
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Figure 2.5. From DeOcesano-Pereira et al., a schematic representation of the roles of 

different RNA species in regulating mammalian gene expression.  

A single genomic locus is depicted and at each step in the process of transcription and 

translation, multiple molecular mechanisms act to control the construction of the final gene 

product. Proximal control elements are located close to the promoter, while distal elements 

(enhancers) may be far away from a gene. Cis-acting regulatory elements, present in the pre-

mRNA sequence, determine which exons are retained and which exons are spliced out, 

resulting in alternative transcript isoforms (alternative splicing). mRNA structure is stabilized 

in preparation for transport into the nucleus with the addition of 5õ Cap and Poly(A) tail. 

Regulatory non-coding RNAs (ncRNAs) can act via multiple pathways to alter gene products 

in the course of transcription and translation. Long non-coding RNAs (lncRNAs) target 

protein complexes to specific genomic loci affecting transcription patterns (transcriptional 

interference), leading to chromatin modifications and DNA polymerase II activity. Advances 

in transcriptomics have resulted in the discovery of large numbers of ncRNAs (miRNAs and 

lncRNAs), many of which display the capacity to regulate gene expression at the levels of 

transcription (control of alternative splicing), post-transcription (mRNA editing, mRNA 

decay and mRNA stability) and translation (translation initiation) [41]. 

 The scale and complexity of these regulatory controls in mammalian gene expression 

has only been recently grasped with the advent of high-resolution genomic sequencing 

techniques and intense efforts remain underway to measure and map the dynamics created 

by these controls to higher order changes in cell signaling, cell fate, and cell function across 

different stages of development, in disease, and in response to experimental or therapeutic 

perturbations. Each regulatory layer presents a new lens through which to investigate the 

enormous breadth of genomic changes that occur in the course of cancer initiation and 

progression.  
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2.2.1 Transcriptional Regulation 

Broadly, transcription is a process in which the enzyme RNA polymerase decodes the 

genetic information stored in the chromosomal DNA to produce an RNA transcript [42]. 

The resulting transcript may be one of five types: messenger RNA (mRNA, which become 

proteins; 1-2% of the total transcripts), ribosomal RNA (rRNA, required for translation; 

80% of the total transcripts), transfer RNA (tRNA, required for translation), recently 

discovered microRNA (miRNA, post-transcriptional regulators of gene expression), and 

small interfering RNA (siRNA) [42]. While each type is synthesized according to a different 

set of regulatory mechanisms, in general, a transcriptionally active gene is controlled by a 

stretch of DNA typically located upstream of the transcription start site (Ĭ500 bp to 

Ĭ1000 bp) defined as a promoter which acts as a docking site for proteins known as 

transcription factors (TF) [42]. Transcription factors (TF) are the fundamental regulators of 

eukaryotic transcription; ubiquitous TFs each contain a specific DNA sequence binding 

motif through which it can recognize and act upon a specific genomic sequence [42]. Gene 

selective transcription factors connect to extra- or intracellular signaling pathways, which act 

as master regulators to switch a geneõs expression on or off [42].  

In addition to its promoter, a gene may be regulated by distal DNA sequences 

located several megabases away from its transcription start site, defined as enhancers. While 

distant in linear representation of the genome, enhancers are brought into spatial contact 

with the genes they act upon through three-dimensional folding of the genome. 3D genome 

structure is organized hierarchically across multiple spatial scales as shown in Figure 2.6. At 

the coarsest level, the genome is separated into chromosome territories (chromosomes 
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spatially separate in the nucleus) and each chromosome further separates into hubs of 

transcriptionally active and inactive chromatin (termed A and B compartments respectively).  

 

Figure 2.6. From Kempfer and Pombo, methods for studying the major features of 3D 

chromatin folding across different genomic scales. 
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 a Chromosomes occupy discrete territories in the nucleus, which were first detected using 

imaging techniques. The 3D-fluorescence in situ hybridization (3D-FISH) image shows the 

positions of the chromosome territories of chromosome 2 (red) and chromosome 9 (green) 

within DAPI-stained nuclei (blue) from mouse embryonic stem cells (ESCs). Chromosome 

territories are also detected as regions of high-frequency intrachromosomal interactions on 

contact maps generated by chromosome conformation capture (3C)-based methods, such as 

Hi-C (high-throughput chromosome conformation capture), and ligation-free approaches, 

such as genome architecture mapping (GAM). b DNA inside the nucleus separates into hubs 

of active (A compartment) and inactive (B compartment) chromatin, clustering around the 

nucleolus, splicing speckles, transcription factories and other nuclear bodies not represented 

here. Electron spectroscopy imaging of the mouse epiblast shows the distribution of 

heterochromatin (yellow) around the nucleolus (light blue) and at the nuclear periphery. 

Decondensed euchromatin (dark blue) is positioned more centrally in the nucleus. Nucleic 

acid-based structures are stained yellow, protein-based structures blue. Hi-C and split-pool 

recognition of interactions by tag extension (SPRITE) contact maps of mouse chromosome 

11 show the separation of chromatin into discrete contact hubs (A and B compartments), 

which are visible as checkerboard-like contact patterns. c At shorter genomic length scales, 

chromatin folds into topologically associating domains (TADs), which overlap with domains 

of early and late replication, and DNA loops, that arise from cohesin-mediated interactions 

between paired CTCF proteins. Multiplexed FISH of consecutive DNA segments in a 2-Mb 

region in the human genome shows the emergence of TADs in the population-average 

distance map. In Hi-C and GAM contact maps, TADs are represented by regions of high 

internal interaction frequencies and demarcated by a drop in local interactions at their 

boundaries. d Contacts between a gene and its cis-regulatory elements occur via loop 

formation between the enhancer bound by RNA polymerase II (Pol II) and the gene 

promoter. These contacts can be detected by live-cell imaging; shown are contacts between 

the enhancer (green) and promoter (blue) of the eve gene in a Drosophila 

melanogaster embryo, with simultaneous imaging of eve mRNA expression (red). 

The circular chromosome conformation capture (4C)-sequencing track shows the 

interactions between the Shh gene promoter and the ZRS (a limb-specific enhancer of 
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the Shh gene) in the anterior forelimb in mice. Contact maps can be processed using 

mathematic techniques to extract the most significant enhancerðpromoter contacts from the 

data set, resulting in a contact matrix with only the high-probability interactions. The most 

significant interaction at the Sox2 locus can be found between the Sox2 gene and one of its 

well-studied enhancers. [43] 

At shorter genomic length scales, chromatin folds into topologically associated domains 

(TADs) ð genomic regions defined by their tendency to spatially aggregate and interact more 

with each other than with neighboring regions. [43] Through recently developed 

Chromosomal Conformation Capture (3C) techniques, finer scale folding could be 

measured, revealing that at finer genomic length scales, DNA loops arise from cohesin 

mediated interaction between CTCF proteins. These loops, also known as long-range 

looping interactions, form between enhancers and promoters, bringing genes in contact with 

their cis-regulatory elements. 

At yet lower length scale, DNA wraps around nucleosomes to form what is termed 

as the chromatin fiber; tighter and looser wrapping around nucleosomes increases and 

decreases the accessibility of DNA by transcription machinery and a host of proteins act to 

alter this wrapping to control accessibility. Each nucleosome is composed of eight histone 

proteins and these are commonly modified by acetylation, phosphorylation, methylation, 

sumoylation and ubiquitination, which may be detected as epigenetic marks through a variety 

of NGS sequencing techniques. These marks are laid down by specific enzymes (termed 

writers), recognized by effector proteins (termed readers), and may be removed by other 

enzymes (termed erasers).  

The epigenetic marks, genomic contacts, and bound proteins (TFs, RNA 

polymerases, CTCF, cohesin, etc.) can all be sequenced to yield genome-wide maps of their 
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locations. Methods to process and detect significant biologically significant features and 

patterns from these maps is an area of active development (see one such approach in 

Chapter 5). Using the results of such approaches, it is then possible recognize distinct 

epigenetic states of the genome and construct models of their dynamics in development and 

disease. These efforts work to understand transcriptional control from a systems biology 

perspective, understanding that developmentally important changes involve dynamics across 

a network of interacting genes and regulatory elements that can rarely be understood from 

the activity of an individual element. 

2.2.2 Post-transcriptional regulation 

In the early 1990s, a short sequence of non-coding RNA was discovered to be highly 

conserved across species and to regulate gene expression during translation [42]. This non-

coding RNA came to be known as miRNA and since its discovery, the functional 

associations in gene expression as well as cell proliferation and differentiation of more than 

2,000 different miRNAs have reported in literature [42]. Genes encoding miRNAs are 

located either between genes (intergenic), and transcribed by their own promoter, or within a 

gene (intragenic), and transcribed by that geneõs promoter [42]. Both types of miRNAs begin 

as pre-miRNA that are later processed into their functionally active form, a short hair pin 

structure as the transcript folds back on itself.    

While there is evidence that miRNAs may contribute to other regulatory 

mechanisms, their role in post-transcriptional modification is well established. miRNA is 

thought to form a complex with the Argonaut, an RNA binding protein, and then hybridize 

with a target mRNA to initiate processes resulting primarily in negative control of gene 

expression, including premature termination of translation, slowed elongation of translation, 
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ribosomal drop off, and recruitment of factors to degrade the mRNA [42]. Aberrant miRNA 

activity has been reported in many cancer types and they can function as either oncogenes or 

tumor suppressors [44]. Differential expression of miRNAs has been linked to differences in 

sensitivity to chemotherapy, cancer progression, and patient survival, and circulating 

miRNAs are under intense investigation for use as therapeutic targets or biomarkers for 

diagnosis or prognosis [44] [45]. However, many mechanisms guiding the activity of 

miRNAs are unknown, including those guiding secretion and transport of miRNAs into 

circulation, their potential role in cell-to-cell communication, their interaction with coding 

genes, and their interaction with cell signaling pathways [46]. These unknowns present a 

barrier to their optimization for use cancer detection and therapy. Systems level modeling 

could likely provide a route for investigating their role in modulating signaling and how 

differences in miRNA expression between patients manifest into clinically significant 

differences in the efficacy of therapies and disease progression.  

 

2.3 Cues from the cellular microenvironment 
 
External cues from neighboring cells and other external stimuli also act to influence fate in 

individual cells and in turn their behavior and contribution to tissue and organ function. The 

external neighborhood of cell, termed the cellular microenvironment, is a key determinant of 

cell functional identity as maintenance of tissue specific environmental cues has been shown 

to be critical for maintaining cell type specific differentiation [47]. The cellular 

microenvironment includes soluble factors, neighboring cells, the extracellular matrix 

(ECM), and biophysical fields providing stimulation in the form of structural stress and 

strain, temperature, and electrical stimulation [47]. The extracellular matrix (ECM) within the 
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cellular microenvironment provides a structural foundation for cell populations and regulates 

cell function through control of the distribution of soluble factors and propagation of 

mechanical and electrical fields [47]. In this manner, the cellular microenvironment provides 

heterogeneous yet structured cues guiding cell spreading and movement as well as cell fates 

of proliferation, differentiation, and apoptosis.  

 In the case of cancer, the tumor microenvironment stimulates the immense 

heterogeneity of cells within tumors as tumor cells hijack healthy cells through cell-cell 

communication and ECM interaction, forcing healthy neighbors to acquire new phenotypes 

that support tumor growth and invasion [48]. Increasing mechanical strain on cells as tumors 

expand into normal tissue is also thought to activate signaling cascades that disrupt normal 

tissue function, reactivating mechanosensitive developmental pathways to stimulate 

proliferation through control of the cell cycle, epithelial-to-mesenchymal transition, and 

cellular motility [49]. 

 Given the critical role of the cell microenvironment in determining cell fate, many 

efforts to establish regenerative therapies are concerned with recreation of tissue specific 

environments in culture to grow correctly differentiated tissue and stimulation of aberrant 

cells to return to healthy phenotypes by restoring normal environmental cues. As more 

mechanisms of distant cell-to-cell communication are uncovered (e.g., exosomes, cell-free 

DNA, and apoptotic bodies), it becomes clear that at the scale of cell populations and tissue, 

control of cell fate is again regulated by large and highly complex network of interacting 

processes.  
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Beyond simple cell types, with the emergence of genomic sequencing, we have come to 

understand that the immense heterogeneity of cell fate emerges from many simultaneously 

occurring processes acting at spatially and temporally heterogeneous scales. While precise 

experimental work is necessary to advance understanding of these processes, we can 

augment these efforts through computational modeling to associate distinct molecular, 

genomic, and environmental profiles with distinct cellular states and explore the dynamics 

between those state transitions to better understand the drivers of cell fate. In the next 

chapter, I discuss multiscale modeling as a solution well suited for study of phenomena as 

complex as cell fate determination and the challenges of its implementation. 
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3 Challenges in Constructing Multiscale Models of Biological 

Systems 

Over the past few decades, a revolution in data storage and computing has dramatically 

changed scientific research. Complexity is ever increasing both in terms of systems and 

processes studied and through the highȤdimensional and heterogeneous data created to 

describe them. [31] Modeling and simulation are indispensable for tackling such problems, 

and as high-performance computing platforms and machine learning techniques become 

more powerful, the complexity and scale of systems and processes that can be feasibly 

studied with them will only increase. [31] Nonetheless, the growing data intensiveness of 

modern research problems poses an evolving challenge to researchers seeking to find the 

right tools to address these problems. [31]  

These trends and challenges have replicated across biomedical research disciplines. 

Advances in high throughput experimental methodologies have led to the accumulation of 

enormous data sets describing processes at all levels of biological organization. [25] [50] A 

large body of research now focuses on the development of techniques to process data 

generated by these recently developed modalities to identify biologically meaningful signal 

and on relating data across different levels of organizational scale and experimental 

modalities. Multiscale modeling is well positioned to address these needs and provides a 

deep body of knowledge for constructing and connecting mathematical representations of 

processes occurring at divergent scales. [50] While multiscale modeling has had many 

successful applications in biomedical research, several common considerations must be 
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addressed to result in models that are accurate, predictive, and clinically impactful. I describe 

these challenges and solutions to them below. 

 

3.1 Data availability and parameter estimation 

Models are generally more likely to accurately describe observed behaviors when more 

empirical, quantitative observations are available to construct and constrain parameter 

values. [26] Quantifying parameters is a challenging task in developing many single-scale 

biological models and this problem must be addressed for the constituent models of a 

multiscale model. [26] Many parameters may not be experimentally available or measurable 

with current technologies, and instead must instead be estimated by comparing model results 

to empirical ones. [26] While there are many computational techniques for performing 

parameter estimation, special consideration must be taken to avoid over-fitting, i.e., having 

too many parameters to estimate relative to the data available, a common problem when 

constructing models of complex biological systems which may have an extremely large 

number of parameters. [25] [51] Over-fitting leads to inaccurate model outputs and erodes 

predictive value. [25] Instead, best practice for avoiding this issue is to ensure that model 

parameters are drawn as much as possible from direct experimental data from collaborators 

and experimental and theoretical biology literature. Retrieving values from literature may 

require careful consideration as recorded values may not have direct correspondence to 

model parameters and retrieval may be complicated by data access limitations. [26] The 

problems of data availability and parameter estimation may be exacerbated or relieved by 

model type, which also has significant impact on computation efficiency, as discussed in the 

next section. 
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3.2 Computational demand and feasibility  

Another common challenge in creating computational models is that of composing the 

model in such a way that optimizes computational efficiency to allow increasingly complex 

systems to be represented, models to be run at finer resolution (i.e., more time steps), and, in 

the case of data-driven models, input of increasingly large-scale data. [26] [31] Multiscale 

models can be adapted to reduce the complexity of representation of subsystems within the 

larger model system to improve computational efficiency. While a large body of research is 

devoted to developing numerical methods or machine learning based implementations of 

multiscale models to achieve speed up, at a more fundamental level, researchers can decide 

between different underlying model types to reduce the number or resolution of variables 

represented as needed to adapt to compute resource limits.   

For instance, in the case of spatial tumor models, discrete modeling represents each 

constituent cell of a tumor individually with its own internal state updated in the time course 

of the model according to a series of pre-defined rules informed by experimental findings 

and biophysical principles. [26] While these models are excellent for single cell in silico 

investigation, they require many parameters which may be difficult to obtain and 

computational demands scale directly with the size of the tumor-cell population modeled 

and model resolution. [26] By contrast, continuum models represent a tumor as a continuous 

block of tissue rather than a population of individual cells. These models cannot be used to 

investigate single cell dynamics, but rather overall tumor behaviors like growth and how they 

are impacted by bulk genetics, or microenvironment properties, but can be executed at 

dramatically lower computational cost as these models use only overall tumor properties for 

parameter values. [26] In multiscale modeling, discrete and continuous models can be 
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combined to lower the computational cost of representing a more complex system while 

investigating fine-scale dynamics by representing different constituent single scale systems 

with either discrete or continuous modeling as needed to achieve necessary speed up. [26] 

Additionally, information is allowed to propagate between constituent single scale models of 

a multiscale framework, providing constraint to parameters that would be otherwise 

completely unconstrained in single scale representations. [26] 

In the case of study of cell fate decision making, especially in the context of cancer, 

many indicated cellular pathways have been well characterized via high throughput 

measurements of time-course changes and reaction kinetics, such as the Epidermal Receptor 

Growth Factor (EGFR) mediated Ras-MAPK pathway and PI3K/ AKT pathway, and the 

TP53 mediated DNA damage response and cell cycle progression pathways. [40] [52] [53] 

When available data are sufficient to completely characterize the dynamics of a pathway, the 

pathway may be modeled using fine-grained methods such as continuous differential 

equations (aka. reaction rate equations), but when data are not sufficient to avoid over-

fitting, parameters may be sufficiently reduced by using coarse-grained approaches such as 

logic-based modeling of which Boolean modeling is one example. [54] As mentioned 

previously, in a multiscale modeling approach, continuous and discrete models can be 

combined to lower the computational cost of representing a more complex system. This 

principle was applied for the multiscale model developed in thesis. The Ras-MAPK pathway 

is represented with a continuous model while the TP53 mediated DNA damage response 

and cell cycle progression pathways are represented with logic-based models within a hybrid 

multiscale modeling framework representing signaling pathways contributing to cell fate 

decision making between healthy (differentiative) or tumorigenic (proliferative) states. This 
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hybrid modeling approach both allowed avoidance of the parameter estimation challenge in 

the case of the TP53 mediated pathways and resulted in a model that well adapted to 

compute power limits, as is discussed in the next section. I describe my application of this 

type of multiscale modeling approach in Chapter 7.  

By increasing the computational efficiency of models, researchers are not only able 

to represent increasingly complex systems on high performance computing systems, but to 

develop models that can be easily used in clinical contexts where time and compute 

resources are more limited. There is enormous demand for tools that allow clinicians to 

personalize therapeutic regimens for individual patients, but multiscale modeling remains 

largely absent from clinical usage despite its enormous potential, as discussed in the next 

section.  

 

3.3 Clinical applications and personalized medicine  

Systems biology approaches, like multiscale modeling, are poised to have incredible clinical 

impact, driven by the data and computing revolution. With more data and a much higher 

ceiling on compute power, models can be run at far higher levels of underlying complexity 

and in turn achieve greater accuracy and predictive ability. Systems models of disease, 

designed based on recent experimental insights and modulated by patient specific -omics 

profiles and clinical data, could be used to develop personalized therapies and help usher in 

the era of precision medicine. Additionally, systems models could be used to identify 

relationships between clinical outcomes and dynamics of variables of complex disease 

systems that would be difficult and costly to search for through empirical techniques, and so 

contribute to hypothesis-generation and testing, biomarker identification and validation, and 

development of targeted therapies.  
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These offerings are perhaps nowhere more relevant and urgently needed than they 

are for cancer therapy. For some cancers, there have been incredible gains in patient survival 

and survivor healthiness as a result of improvements in patient risk stratification and 

therapeutic offerings, but for nearly all cancers there is room for improvement. For every 

patient, a large and complex array of factors influence the progression of their disease, the 

efficacy of any therapy, and the potential for recurrence. Cytotoxic drugs and radiation 

therapy, alongside surgery, form the standard of care for most cancers. These, along with 

new therapies in development, are typical tested via large scale, randomized clinical trials. 

These trials determine whether a drug results in favorable outcomes on average but provide 

little insight into why a drug works or does not achieve that, and why treatment responses 

might vary widely between patients, that is why a drug might be effective in one person but 

not in another. 

These challenges can be addressed through multiscale modeling. A mechanistic 

model of a cancer can be constructed based on insights from experimental data describing 

the cancer across every level of biological organization - from the organ and tumor levels, 

down to the cellular, genomic, epigenetic, and molecular levels. Patient-specific -omics 

profiles and clinical data can be used modulate the activity of species represented in the 

model to obtain patient-specific predictions and predictive value can be assessed by 

comparing these results to true outcomes. Finally, such models can be used to isolate 

variables and system dynamics that differ with treatment outcomes and thus uncover the 

mechanistic relationships that determine why a specific treatment is effective in a specific 

patient. 
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Such approaches have great utility to both accelerate the discovery of new 

therapeutic targets and to model the effects of therapeutics, and multiscale cancer modeling 

research increasing focuses on doing just that as recent advances in gene editing techniques 

drive excitement for targeted therapeutics. However, advances in targeted therapy for now 

have little impact on the vast majority of cancer patients who continue to be administered 

the standard of care, combination therapy of cytotoxic drugs and radiation therapy, also 

known as chemoradiotherapy.  

Recent advances in systems modeling have largely overlooked these therapies as 

many are viewed as established technology. Still in spite of their common usage, clinicians 

often have little information as to which chemoradiotherapy regimen will be most effective 

for a specific patient.  Clinical decision making for these therapies remains largely based on 

results from traditional pharmacokinetic-pharmacodynamic (PK-PD) models. These models 

are mostly phenomenological in nature, relating drug dosages and their duration of treatment 

to macroscopic parameters like tumor volume reduction. These models are parameterized 

using experimental values obtained through sources like medical imaging. Models like these 

provide no means to investigate the underlying mechanism for a drugõs effect or to reason 

about why the drug is more effective in one person over another.  

Clinicians could instead use a multiscale modeling tool to virtually test out therapy 

combinations on specific patients and so determine a patientõs optimal therapy regimen to be 

maximally effective while minimizing dose to avoid adverse outcomes. A large segment of 

cancer patients is burdened by chronic severe health conditions secondary to their cancer 

treatment. Optimizing combination therapy through patient-specific modeling presents not 
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only the opportunity to improve therapeutic outcomes but to increase healthiness and 

quality of life for survivors.  

With this motivation in mind, in the next chapter, I describe the mathematical 

implementation of cell level models necessary to create a multiscale model of cell fate 

decision making, emphasizing systems and models that I incorporated into my own work to 

create a framework for patient-specific modeling combination chemoradiotherapy.  
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4 Formalisms in Cellular Modeling 
 
Computational modeling of cellular processes has evolved to encompass the needs of 

researchers in diverse disciplines addressing diverse problems. As such, many different 

modeling formalisms been developed, including equation-based models, such as those based 

on ordinary differential equations (ODEs), and those based on graphs, like Boolean 

networks [55]. These and other commonly used model types are summarized in Figure 4.1 

below with toy examples. While each of these formalisms have wide applicability, the choice 

of model should be guided by the nature of the data available for design and constraint of it.  

For instance, models based on differential equations are typically for modeling 

dynamical systems using the equations to describe the rate of change of system variables 

over time. Naturally, cell signaling networks fit this description and through these models, 

one can perform time-course simulations of these networks, predict outputs to different 

inputs, and design controllers of system behavior [55]. Creating these models however 

requires experimental data to estimate kinetic parameters, which have historically been 

difficult to produce for large scale networks. By contrast, Boolean networks are populated by 

Boolean variables that only represent a node (gene or molecule) as having two possible 

states, on/active and off/inactive. At each time step in the simulation, each nodeõs state is 

determined by a logic rule which is a function of the state of its input nodes (its regulators) 

and every node in the network is updated synchronously [55]. While far less experimental 

data is needed for the construction of such models, exploring the full state space still may be 

infeasible for large networks as the number of possible states is 2n for n network nodes. In 

cases where more than two node states must be represented but kinetic data is unavailable, a 
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Bayesian network could be employed. In these networks, nodes are discrete or continuous 

random variables linked by conditional dependencies, and the value at each node is 

determined by its own probability function which depends on the values of input nodes [55]. 

This approach is excellent for inferring parameters in the presence of incomplete data, but 

having no representation of time at baseline, cannot be readily used to model feedback loops 

[55]. Finally, all of these models are ill-suited for representation of processes described by 

spatial data, which could be more appropriately modeled with an agent-based model or 

cellular automata. 

Additionally, model choice may be guided by factors such as the type of analysis one 

would like to perform across the network and the availability of previous work for testing, 

which has become increasing easy with the rise of community standardized formats such as 

Systems Biology Markup Language (SBML) that can be readily explored with visualization 

and simulation software like Copasi [56] [57].  

These considerations came into play in construction of the multiscale model 

described in Chapter 7 with a Boolean Network being used to describe the TP53 mediated 

DNA damage repair and cell cycle pathways, and an ODE model being used to describe the 

EGFR mediated Ras-MAPK and PI3K/AKT pathways [38] [40]. Patient miRNA profiles 

and drug effects were modeled as actors that could change the initial states of nodes in these 

networks as opposed as nodes or variables in their own right acting on other network 

elements in the course of simulation. These two key types of networks, Boolean and 

equation-based, are described below. The chapter ends with a brief overview of historically 

significant formalisms in combination chemotherapy modeling that are later used to evaluate 

the results of my model in Chapter 7. Additionally, considerations for adaptation of the 



 

40 

model to better represent intra-tumor heterogeneity and the influence of cellular 

microenvironment via agent-based modeling are introduced in Chapter 8. 

 
 
Figure 4.1. From Machado et al., visual representations of toy examples of popular systems 

modeling formalisms.  

a Boolean network: genes are represented by nodes (a, b, c, d) and the arrows represent 

activation and repression b Bayesian network: the value of the output nodes (genes c, d, e) 

are given by a probability function that depends on the value of the input nodes (genes a and 

b) c Petri net: places represent substances (a, b, c), transitions represent reactions (p, q) and 

the arrows represent consumption and production d Agent based model: two types of agents 

representing two different kinds of cells (or molecules) can move freely and interact within 

the contained space e Interacting state machine: systems are represented by their state (a, b) 

where each state may contain one or more internal substates (b, d, e), arrows represent the 

transition between different system states f Rule-based model (represented by contact map): 

agents represent proteins (P, Q, R, S) which may contain different binding sites (a to f), the 

connections represent the rules for possible interactions (e.g. phosphorylation) g Cellular 

automata: a grid in which the value of each element can represent different kinds of cells (or 

molecules) that can change via interaction with their immediate neighbors [55] 
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4.1 Boolean Networks  
 
The TP53 mediated DNA damage and cell cycle control pathways are large and involve 

numerous complex feedback loops, and in turn the dynamics of actors within it are not fully 

described with kinetic data. The Boolean network approach is well suited to representing 

such data and has been described by [38] to perform state attractor analysis of these TP53 

mediated networks.  

 Defining the network, each node has a possible state of on or off determined as a 

function of values of its regulators, or input nodes [55]. The global state of the network is 

then defined as the state of all nodes, which are all updated synchronously at each time step 

in the simulation, such that the state of any node at time step t+1 is calculated from its input 

nodesõ values at time t [55]. Each node integrates the values of its regulators via a Boolean 

function that can include combinations of Boolean operators such as AND, OR, and NOT. 

In the course of simulation runs, the network state can reach a steady state, in which node 

values do not change in subsequent time steps. The goal of state attractor analysis is to map 

initial network states to these steady states (also known as attractors) and determine how 

robust they are to changes input values or network structure.  

 

4.2 Differential Equation Based Models 
 
When rate laws and kinetic parameters are available, differential equation based models may 

be used to precisely represent a biological network. The system may be defined with 

different types of equations: ODEs are most commonly used to describe concentrations of 

species (genes, proteins, or molecules) as a function of time, partial differential equations to 

account for spatial distribution of species, stochastic differential equations to account for 
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stochastic components like noise, and piecewise-linear differential equations to integrate 

continuous features with discrete features (like threshold based switches) [55] [58]. Such a  

piecewise-linear differential equation model composed of ODEs is employed to represent 

the EGFR mediated Ras-MAPK and PI3K/A KT (see Chapter 7) for these reasons. 

 Generally, to set up an ODE based model, we can express the network by a set of 

equations with the species amount or activity level as a variable Ὢὼȟό where x is a n 

by 1 vector of the amount of each individual species in the network, u is an n by 1 vector of 

the external stimuli affecting each species (set to 0 if not including external inputs) and Ὢ is a 

continuous function [59]. Commonly, in representing gene regulatory networks, the effect of 

one species on another is not instantly realized (as intermediate mechanisms act to carry out 

the regulatory effect) and these discrete time delays may be accounted for using time-delayed 

ODE equations such as  Ὢὼ ὸ †ȟ ȟὼ ὸ †ȟ ȟȣȟὼ ὸ †ȟ ȟό ‎ὼ, 

where ‎ 

is the degradation rate constant for species i and †ȟ is the delay in regulation of species i by 

species j [59]. Other functions like the Hill Equation can be used to guide the rate of a 

species regulation by another and these equations can be solved piecewise to eliminate 

nonlinearities that might make the system otherwise infeasible to solve. 

 

4.3 Combination Chemotherapy Models  
 
Additivity models have been historically been employed to mathematically predict dose-

response relationships for combination chemotherapy from experimentally determined dose-

response relationships of the individual therapies. Two such models have remained in 
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widespread use for decades: the Loewe additivity model and the Bliss additivity model, 

shown in Figure 4.2. 

 

Figure 4.2. From Fitzgerald et al., a toy representation of Loewe and Bliss additivity models 

contrasted with that of a mechanistic modeling approach.  

a Single enzymes: (Left) According to Loewe additivity, combinations of enzyme inhibitors 

act upon overlapping binding sites. (Right) According to Bliss independence, combinations 

of enzyme inhibitors act upon independent binding sites. b Application of Loewe additivity 
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and Bliss independence to signaling networks is unintuitive. (Left) Loewe additivity behavior 

could possibly be observed when inhibitor combinations act to inhibit the same pathway 

through similar action. (Right) Bliss independence behavior could be observed for inhibitor 

combinations that act independently at different sites on the same target, different levels in 

the same pathway, or upon different pathways. c Loewe additivity and Bliss independence 

do not account for the mechanisms of inhibitor interactions in complex systems, instead 

treating these systems as black boxes. Mechanistic models can capture complex signaling 

dynamics and so be used to compute how inhibitor combinations will perform. [60] 

Loewe additivity assumes that two drugs act on a target through a similar 

mechanism, resulting in dose substitution and that to reduce cell survival by the same 

proportion X% achieved individually, the concentrations in combination can be calculated 

from the relationship ρ В Ϸ

Ϸ
 where Ὅ Ϸ is the concentration of drug Ὥ needed 

to reduce cell survival by X% when administered individual and ὅ Ϸ is the concentration 

of drug Ὥ needed to reduce cell survival by the same amount when administered in 

combination [60]. By contrast, the Bliss independence model assumes that drugs act on a 

target through independent mechanisms, resulting in effect multiplication; the effect of the 

combination therapy is predicted using the equation Ὂ Б Ὂ  where Ὂ  is the 

fraction of targets unaffected by combination therapy and Ὂ  as the fraction of targets 

unaffected during individual administration of drug Ὥ at the same dosage when used in 

combination therapy [60].   

These models were originally designed to describe simple enzymatic interactions and 

do not adequately account for mechanisms underlying the interaction of actual 

chemotherapies with complex cell fate decision networks. Mechanistic models, like those 

constructed using the systems formalisms described early in this section, could represent the 
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dynamics of these networks to compute how these combinations will perform, more 

realistically than mechanism-agnostic additivity models.   
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5 A Statistical Tool for Detecting Epigenomic States in 
Lineage Commitment  

 
Adapted from [61] 

 
While multiscale, multiphysics models present a solution to the problem of synthesizing 

observations of biological phenomena across biological scales and heterogeneous data, new 

methods are also needed to pre-process empirical data generated with recently developed 

NGS technologies. As a solution to one such problem, I developed 3DeFDR, a statistical 

tool for detecting chromatin looping interactions that dynamically change across biological 

conditions. This tool was developed with the intent to answer the question of to what extend 

do long-range looping interactions change across developmental models, genetic 

perturbations, drug treatments, and disease states. Together with my co-author, I ultimately 

created a tool for identifying such dynamic loops from high-resolution Chromosome-

Conformation-Capture-Carbon-Copy (5C) and Hi-C data. In this chapter, I demonstrate this 

method in analysis of data sets capturing chromatin looping states in the course of neural 

lineage commitment, including cross-reference of differential loop calls with RNA-seq and 

ChIP-seq results. I anticipate that this method could be used to help construct a more 

complete picture of epigenetic states in the course of lineage commitment and in turn, a 

more realistic multiscale model of lineage commitment.  

 

5.1 Introduction  
 
Chromosome-Conformation-Capture (3C)-based molecular techniques have recently been 

coupled with high-throughput sequencing to generate genome-wide maps of higher-order 

chromatin folding [62, 63, 64] . A number of massively parallel 3C-based technologies query 
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genome folding in a protein-independent manner, including Hi-C, 4C, 5C, and Capture-C 

[65, 66, 67, 68, 69, 70, 71]. All four techniques rely on proximity ligation and high-

throughput sequencing to convert physically connected chromatin fragments into counts of 

specific interaction events. Briefly, chromatin is fixed in its native architectural state across a 

population of cells and then digested with a restriction enzyme. Restriction fragments are 

ligated to form billions of hybrid ligation junctions between two distal genomic loci. The two 

fragments in a given ligation junction can then be identified using high-throughput 

sequencing, and their frequency of ligation is proportional to their spatial proximity across a 

population of cells. Hi-C detects all chromatin interactions genome-wide using high-

throughput sequencing, whereas 5C and Capture-C use tiled probes to selectively sequence 

large, megabase-scale subsets of the genome. 4C queries all genome-wide contacts involving 

a single chosen restriction fragment. Thus, the protein-independent 3C technologies of Hi-

C, 5C, and Capture-C can be used to create high-resolution spatial maps of genome folding 

on the scale of a few megabases to genome-wide coverage. 

Recently published 3C-based sequencing studies have revealed that the mammalian 

genome is folded into a hierarchy of distinct architectural features, including A/B 

compartments, lamina-associated domains (LADs), topologically associating domains 

(TADs), subTADs, and long-range looping interactions [67] [69] [71] [72] [73] [74] [75] [76] 

[77] [78] [79] Loopsñgroups of adjacent pixels which form a punctate focal increase in 

interaction frequency enriched above local TAD and subTAD structureñhave been 

identified algorithmically in high-resolution Hi-C maps [72]. The highest resolution maps to 

date have enabled the detection of tens of thousands of looping interactions genome-wide  

[72] [80]. A subset of looping interactions occur at the corners of TADs/subTADs and are 
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known as òcorner dots.ó A leading model for the mechanism of corner dot formation is that 

cohesin tracks along the chromatin fiber until it is blocked by the architectural protein 

CTCF, thus extruding out the intervening DNA  [81] [82] [83] [84] [85] [86]. Corner dot 

TADs/subTADs anchored by CTCF are thought to demarcate the search space of 

enhancers for their target promoters [87] [88] [89] [90]. Moreover, enhancers can also 

connect directly to target genes via corner dots in a CTCF-dependent and CTCF-

independent manner [91] [92] [93] [94]. Initial studies have suggested that specific subsets of 

looping interactions can reconfigure in development, disease, and in response to genetic 

perturbations [80] [89] [91] [92] [95] [96] [97] [98] [99] [100] [101]. Generally, however, it 

remains unknown to what extent loops are dynamically altered genome-wide as cells switch 

fate, due in part to the relative paucity of computational methods to evaluate statistically 

significant changes in interaction frequency across multiple biological conditions. 

As high-resolution Hi-C and 5C chromatin folding maps begin to accumulate in 

developmentally relevant cellular models, there is an increasing need for methods to (1) 

precisely detect loops and clearly distinguish them from other classes of architectural 

features such as local TAD/subTAD structure and compartments and (2) rigorously classify 

loops by their dynamic behavior across cell types. A number of computational methods 

report the ability to identify loops in individual libraries generated by Hi-C. Forcato and 

colleagues performed a detailed comparison of Hi-C loop calling pipelines, including 

HiCCUPS [102], GOTHiC [103], HOMER (http://homer.ucsd.edu/homer/interactions/), 

diffHic [104], HIPPIE [105], and Fit-Hi-C [106]. The conclusion from this study was that 

loop calling methods in individual samples exhibit vastly different performance, with no 

clear gold standard emerging [107]. Importantly, most loop calling pipelines were developed 

http://homer.ucsd.edu/homer/interactions/
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on low-resolution maps (40kb up to 1Mb bins) generated with the first-generation dilution 

Hi-C experimental procedure. More recently, Hi-C maps have achieved 1ð5-kb resolution 

through higher read depth and markedly reduced spatial noise due to second generation in 

situ ligation and digestion techniques [72] [80]. We also note that active, unsynchronized 

extrusion events could create long-range interactions within TADs/subTADs that do not 

manifest as punctate loops in a 5C/Hi-C heatmap (i.e., transient loops in the making) [84]. 

Thus, it is likely that first generation loop calling algorithms show a wide dynamic range of 

performance because they were developed on lower resolution first-generation Hi-C maps 

and did not explicitly distinguish loops from general non-specific, long-range interactions. 

The emerging model from second-generation Hi-C studies is that quantitative loop detection 

in individual libraries requires rigorous modeling of local chromatin domain structure. 

HiCCUPS explicitly models and accounts for locus-specific TAD/subTADs [72], and 

accounting for local chromatin domain structure has therefore emerged as a leading 

candidate for identifying bona fide loop structures (i.e., persistent loops) in individual Hi-C 

maps. Building upon advances in Hi-C, similar statistical methodologies have been applied in 

lib5C to find loops in individual 5C maps [108]. 

To our knowledge, computational tools are not yet available to statistically test loops 

for their differential signal across two or three conditions in 5C data. Three tools (diffHic 

[104], FIND [109], and HiBrowse [110]) have been published to identify generally 

differential interactions between conditions in Hi-C data. All three methods in their 

published, first-generation form were not designed or verified to distinguish loops from 

higher-order folding patterns such as A/B compartments, TADs, subTADs, or non-specific 

long-range interactions. In the absence of accounting for these features, a large proportion 
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of the differential interactions identified may be due to cell type-specific fluctuations related 

to technical biases, local chromatin domains, extrusion lines, or higher-order compartments. 

Noteworthy, the diffHic manuscript indicates that modeling local chromatin domain 

structure would be essential to evaluate cell type-specific loops, suggesting that second-

generation tools which accomplish this might be available in the future [104]. Computational 

tools have also been published to call within- and across-condition loops from libraries 

generated by Hi-ChIP and ChiA-PET assays [111] [112] [113] [114] [115] [116]. However, 

statistical frameworks built for protein-dependent 3C-methods cannot address the technical 

challenges unique to 5C and Hi-C data. Overall, a gold-standard statistical methodology for 

cell type differential loop detection in protein-independent proximity ligation data (both 5C 

and Hi-C) is an important unmet need. 

Here, we present 3DeFDR, a new statistical method and software implementation 

for identifying cell type-specific looping interactions from genome-wide Hi-C (3DeFDR-

HiC) and locus-specific 5C (3DeFDR-5C) data across two or three biological conditions. For 

locus-specific 5C matrices, 3DeFDR-5C computes an empirical false discovery rate (eFDR) 

by applying a thresholding scheme on the change in interaction score signal on real 5C 

libraries from multiple biological conditions and pseudo-replicates simulated from the same 

biological condition. We implement a controlling procedure in which we iterate thresholds 

to achieve an a priori determined eFDR under the assumption that all thresholded pseudo-

replicate interactions simulated from the same condition are false positives. For genome-

wide Hi-C matrices, 3DeFDR-HiC formulates a negative binomial likelihood ratio test 

parameterized with a Distance-Dispersion-Relationship (DDR) for every pixel engaged in 

persistent loops genome-wide. Cell type-specific loops called by 3DeFDR-5C have fewer 
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false positives and are more strongly enriched for chromatin modifications characteristic of 

the cellular state in which the loops are present compared to (i) an established ANOVA test 

and (ii) our own newly formulated parametric likelihood ratio test (3DLRT). We also 

benchmarked 3DeFDR-HiC against the leading published Hi-C non-specific differential 

interaction calling method diffHic and demonstrate superior performance. 3DeFDR-5C, 

3DeFDR-HiC, and the parametric benchmarking test 3DLRT are freely available as Python 

packages to support the next wave of discoveries in cell type-specific looping. 

 

5.2 Results 
 
We set out to address a critical challenge in the analysis of looping interactions in 5C data: 

the paucity of methods for robustly classifying dynamic loops across multiple cellular 

conditions, a problem which becomes more challenging as the number of conditions 

increases. Our goal was to develop a statistical framework and software implementation to 

rigorously identify differential loops from 5C maps across two or three conditions using a 

target FDR to choose thresholds (Fig. 1a). 
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