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ABSTRACT 
 

MULTISCALE MODELING OF CELL FATE SWITCHING TO 

PREDICT PATIENT-SPECIFIC RESPONSE TO COMBINATION 

CANCER THERAPY  

Lindsey R. Fernández 

Ravi Radhakrishnan 

 
All cells in the human body share the same DNA sequence, but differ in their functional 

identity, guided by a wide array of regulatory mechanisms controlling cellular lineage 

commitment and encoded in the unique epigenome of each cell type. Recent experimental 

studies with induced pluripotent stem cells have allowed researchers to investigate the 

dynamic nature of cell identity and relationships between gene regulation and differentiation. 

These studies have major implications for our understanding of not only human 

development, but also disease as cancers, and some neurological diseases, arise in part due to 

inappropriate persistence of cells in immature differentiation states. These studies have 

proliferated massive multi-omics databases as next generation sequencing (NGS) 

technologies are applied to extensively profile stem cells, in vitro differentiated cell 

populations, and cancer patient cohorts. As these data accumulate, important unanswered 

questions remain, including to what extent do physical states of genes change in 

development and disease, and how do these changes meaningful alter cell signaling pathways 

and clinically impact individual patients. To address these questions, new computational 

tools are needed to 1) rigorously assess epigenomic state changes captured with NGS 
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modalities in the course of lineage specification, and to 2) integrate models of patient (epi-) 

genomic states with those of disease-associated cell signaling pathways and clinical 

outcomes. This thesis describes the development and applications of computational methods 

to help address these needs. First described is a statistical tool for classifying long-range 

looping interactions that change across developmental models and disease states from data 

captured with NGS technologies. Its application is demonstrated for study of chromatin 

looping state changes in the course of neural lineage commitment and neuronal activation. 

Then a multiscale framework is described that integrates patient (epi-)genomic profiles with 

mechanistic models of signaling pathways critical to decision making to enter tumorigenic 

states. The framework is demonstrated in a clinical setting to predict patient-specific 

responses to different specific treatment combinations in nephroblastoma. Such methods 

have great potential to advance our understanding of the determinants of cellular identity 

and its loss in cancer, and in turn our ability to personalize patient care.
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1 Introduction 
 
All cells in the human body share the same DNA sequence, but differ in their functional 

identity, guided by a wide array of regulatory mechanisms controlling cellular lineage 

commitment and encoded in the unique epigenome of each cell type. How a stem cell 

commits to one particular lineage or fate over another is determined by many interlinked 

regulatory layers and these must be maintained to achieve healthy cell, tissue, and organ 

function throughout life. [1] Cellular programming constitutes one such regulatory level and 

shapes cell fate decision making through transcriptional regulation, carried out by 

transcription factors (TFs) and chromatin regulators, and post-transcriptional regulation, 

carried out by microRNAs (miRNAs). [2] At a broader scale, cell signaling pathways enable 

cells to respond to stress, infection, and other external cues, and are necessarily interlinked 

with gene regulatory machinery to determine cellular identity. [2] Understanding the 

mechanistic relationships that establish and maintain a cell’s functional identity is a pursuit at 

the heart of biology research. Unraveling these mysteries has major implications for our 

understanding of not only human development, but also disease. For instance, many cancers, 

and some neurological diseases, arise in part due to inappropriate persistence of cells in 

immature differentiation states or loss of the ability to keep cells in a previously established 

differentiation state. [3] [4] [5] [6] Determining the regulatory relationships and external cues 

that underlie specialized cellular functions and their loss in disease could provide a road map 

for creating therapies that optimally control cell fate decision making to reestablish healthy 

tissue function. [7] 
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Recent technological advances have fueled enormous progress in decoding cell fate 

decision making. Development of stem cell models and induced pluripotent stem (iPS) cell 

models have allowed researchers to investigate the dynamic nature of cell identity and 

relationships between gene regulation and differentiation. [8] [9] With these cellular models, 

researchers can follow changes in a differentiating cell’s epigenomic state and signaling 

dynamics over time, identify key regulators, and investigate their role in determining cell fate. 

Tools have proliferated to allow researchers conduct these studies in different lineages, to 

perturb specific regulatory elements with genome editing or silencing, and to compare 

observations across developmental stages, lineages, perturbations, and disease states. These 

studies have proliferated massive multi-omics databases as next generation sequencing 

(NGS) technologies, such as whole genome sequencing, large scale RNA sequencing (RNA-

seq), chromatin immunoprecipitation sequencing (ChIP-seq), and chromatin-conformation-

capture sequencing (3C-seq), are applied to extensively profile stem cells, in vitro 

differentiated cell populations, and cancer patient cohorts. [10] [11] [12] [13] [14]  

As these empirical data accumulate, it becomes increasingly clear that most diseases, 

including cancer, involve a large and diverse set of elements that interact via complex 

networks. [15] These networks complicate the work of designing therapies as cells often find 

alternative molecular routes when the action of individual target genes or molecules are 

perturbated. [14] Key to progressing in the era of large-scale biology research is the 

development of mathematical and computational tools for identifying bona fide biological 

state changes or molecular mechanisms often buried in the noise of large scale and/or 

genome-wide data sets. [16] [17] However, as new NGS techniques are developed so to must 

the tools used to process and interpret the resulting data evolve, and the development of 
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these tools has long represented a bottleneck in biomedical research. [14] Even these data 

are gathered, and processing techniques developed, it remains challenging to answer many 

fundamental questions in biomedical research, including to what extent do physical states of 

genes change in development and disease, and how do these changes meaningful alter cell 

signaling pathways and clinically impact patients?  

In addition to these questions, there remains enormous need to determine which 

empirical observations are relevant for designing treatment plans for individual patients and 

to develop techniques that ensure treatments are optimally effective in individual patients. 

[18] [19] This stands out as particularly important for the development of 

chemoradiotherapy regimens; clinicians often struggle to balance treatment intensity against 

toxicity and often lack information to know if a particular drug or drug combination will be 

effective for an individual patient. [20] [21] Treatment design is also made more challenging 

by genomic instability common across many cancers, which contributes to high inter-tumor 

(tumor-by-tumor) heterogeneity and intra-tumor (within) heterogeneity in genotype and 

phenotype. [22] [23] These heterogeneities alter cell signaling and cell fate decisions, resulting 

in variable drug efficacy over time and across tumor-cell subpopulations, and ultimately 

development of therapeutic resistance. [24] 

Answering these questions and needs requires the development of techniques to deal 

with large amounts of data and relationships between those datasets. [14] Mathematical 

modeling has emerged as a powerful tool to identify clinically relevant information from 

empirical data and predict patient-specific treatment outcomes. [25] As described in [25], 

examples of such clinical modeling approaches include statistical data-driven models which 

analyze clinical data from patients and predict probabilities of different recurrence scenarios, 
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pharmacokinetic-pharmacodynamic (PK-PD) models which determine patient-specific drug 

regimens, and mechanistic models of cellular processes and tumor progression derived from 

empirical data. The development of these modeling approaches represents a critical 

milestone in the path to the era of precision medicine, however challenges remain. To date, 

these modeling efforts have been disparate and most of them restricted to representation of 

phenomena of a specific length or time scale. [25] [26] Such approaches are inadequate for 

modeling of cell fate decision making, as well as diseases resulting from its dysregulation, 

which are guided by a complex hierarchy of mechanisms that span multiple scales in time 

and space (i.e. multiscale), and multiple interconnected physical, chemical, and biological 

processes (i.e. multiphysics). [27] [28] [29] [30] To understand these mechanistic 

relationships, I believe multiscale and multiphysics modeling techniques are needed to enable 

study these processes as in silico biology, built through integration of experimental 

observations with physical principles. [26] [31] These techniques will allow researchers to 

study otherwise technically infeasible parameters and to harness the power of ever-growing 

large scale -omics data sets. Such techniques have the potential to guide creation of the next 

generation of personalized cancer therapies, and to optimize and broaden access to more 

affordable cytotoxic treatment options.  

My thesis work is to create multiscale mechanistic models of pathways critical to cell 

fate decision making between differentiative (healthy) cellular states and proliferative 

(cancerous) cellular states. Such multiscale models allow integration of mechanistic models 

of processes spanning vastly different time scales (e.g., coupling models of shorter time scale 

cell signaling and gene regulatory networks to models of far longer time scale processes like 

cell proliferation and apoptosis) by representing activities of model components as system 
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variables related by governing equations implemented as algorithms. The systems 

represented by these integrated models would be far too complex to solve analytically and 

intractable to fully investigate experimentally. These multiscale models thus have incredible 

value in allowing systematic investigation of complex networks of factors and signals 

contributing to patient outcomes and treatment responses and isolation of critical factors for 

experimental follow-up.  

The overarching goal of my thesis was to create such a multiscale model and 

demonstrate its clinical value in designing personalized treatment plans for individual 

patients. In pursuit of this goal, I created computational tools that allow 1) rigorous 

assessment of epigenomic state changes captured with NGS modalities in the course of 

lineage specification, and 2) integration of models of patient (epi-)genomic states with those 

of disease-associated cell signaling pathways and clinical outcomes. The background, 

implementation, results, and future directions of this work are described across the following 

chapters, summarized below: 

In chapter two, I discuss challenges in characterizing cell fate decisions and how this 

could benefit from a systems modeling approach. Transcriptional and post-transcriptional 

regulators are discussed. Cell signaling pathways critical to cell fate determination are 

detailed, specifically EGFR mediated Ras-MAPK pathway and p53 mediated cell cycle and 

damage response pathways, which are frequently altered in many cancers and for which 

single cell level mechanistic models have been developed.  

In chapter three, I discuss the challenges of implementing such systems modeling 

approaches. Careful consideration is required to create a valuable representation of a 

complex system, including determination of the basic constituents of the system and 
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reasonable mathematical representation of their activity and interactions. These efforts are 

complicated in multiscale, multiphysics modeling as single scale, single physics models must 

be combined in a way that is representative of how signals are propagated across scales, 

however little empirical data may be available for defining such propagation and models 

spanning very different scales and physics are numerically challenging to solve, presenting 

computational challenges as well. These challenges and efforts to address them are discussed.  

In chapters four through six, I describe the mathematical implementation single cell 

level models necessary to populate a multiscale model of cell fate decision making. In 

chapter four, I describe approaches for cellular level modeling, specifically detail efforts to 

represent previously mentioned EGFR and TP53 mediated cell signaling pathways via 

continuous-time ODE modeling and discrete logic-based systems modeling respectively. I 

also describe current modeling standards for combination chemotherapy. In chapters five 

and six, I detail a computational method for capturing epigenetic state changes across 

developmental models and disease states from data captured with NGS technologies, 

specifically 3C-seq data and its evaluation against chromatin immunoprecipitation (ChIP)-

seq and RNA-seq data. Its application is demonstrated for study of chromatin looping state 

changes in the course of neural lineage commitment in chapter five and of neuronal 

activation in chapter six. 

In chapter seven, I discuss how previously mentioned single scale models can be 

integrated in a multiscale modeling approach, detailing implementation of a model that 

modulates the activity of target proteins in a hybrid multiscale of signaling pathways critical 

to decision making to enter tumorigenic states according patient-specific (epi-)genetic 

profiles. I demonstrate this model for the prediction of patient-specific responses to 
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different chemoradiotherapy combinations for the treatment of nephroblastoma, or Wilms 

Tumor, a common pediatric tumor of the kidney.  

Finally, in chapter eight, I discuss future work to expand this effort to account for 

tumor heterogeneity and microenvironmental cues with the implementation of agent-based 

model that represents the constituent cells of different lineages within a tumor with different 

cell level multiscale models. Motivations and challenges in implementing this agent-based 

approach, and I propose machine learning techniques to allow sufficient scale up of single 

cell level models to permit their simulation across multiple cells.   



 

9 

2 A Systems Biology Approach to Cell Fate Determination  
 
Cell fate decision making refers to the ability of a cell respond to signals in its environment 

and process them to differentiate, proliferate, grow, or die as needed to retain the healthy 

function of the tissue and organ. Precise understanding of the processes that guide normal 

cellular decision making and how they are disrupted in disease is in turn critical to our ability 

to treat many diseases, to essentially modulate cell signaling dynamics, transcriptional 

controls, and environmental status as needed to restore normal cellular functional identity 

and overall organ function.  

 That many diseases fit this conceptual framework has long been understood. Cancer 

is in part a disease of mismanaged cell fate: over proliferation and avoidance of apoptosis, 

driven by disrupted DNA repair and abnormal cell signaling. Additionally, incomplete 

differentiation is thought to contribute to the pathogenesis of many cancers as mutations in 

developmentally important genes disrupt the balance between self-renewal and 

differentiation [32] [33]. Increasingly, neurological disease is being thought of from this 

perspective as well with low neural stem cell and progenitor cell populations being linked to 

Parkinson’s Disease and certain epilepsies, and over-proliferation of those cell populations 

being associated with glioma and Huntington’s Disease [34].  

 Based on this understanding, researchers have and continue to develop therapies to 

address different aspects of aberrant cell fate decision making. In the case of cancer, many 

successful cytotoxic drugs address over proliferation, including antimitogenics like 

Vincristine and DNA synthesis blocking drugs like Doxorubicin (see Chapter 7 for 

modeling of combination application of these drugs). More recently, with the emergence of 
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genome wide sequencing, drug development has shifted to targeted therapies that aim to act 

upon biological changes specific to tumor cells while sparing normally functioning cells. 

Small molecules to induce cellular reprogramming to desired cell fates are also being 

explored, a treatment option that would potentially allow regeneration of tissues of all types, 

including for neuro-regeneration and cancer treatment [35]. 

 Incredible successes have already been realized through therapies designed based on 

understanding of cell fate control, but significant limitations persist. Drug resistance remains 

a critical problem in cancer treatment, even for targeted therapies [36]. Attacking individual 

actors within complex signaling systems can be a futile effort as cells may rely on alternative 

pathways to retain aberrant behavior, especially in the context of cancer where signaling 

systems are constantly evolving as new subclonal populations arise. More broadly, the vast 

majority of candidate drugs subject to clinical trial are found to have little to no therapeutic 

benefit, highlighting the generally difficulty of anticipating the effects of drugs once 

administered to people [37]. Even for effective drugs, many sources of variability contribute 

to differences in drug response from person-to-person, site-to-site, and cell-to-cell.    

To address these challenges, there has been great interest in studying the processes 

governing cell fate from a systems biology perspective, to understand the network of 

processes driving cell fate decision making in context rather than as individual elements to 

be pulled apart and characterized in isolation. Excitingly, with an ever-growing array of new 

sequencing and experimental techniques (e.g., single cell studies, gene silencing and editing 

experiments, light-activated protein studies, etc.), more data than ever are available to 

facilitate systems level study of cell fate regulation.   
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In the next few sections, I discuss the state of our systems level understanding of 

signaling pathways, signaling dynamics, transcriptional and post transcriptional controls, and 

the influence of cellular microenvironment as they contribute to cell fate decision making 

and therapy development. In the next chapter, I discuss multiscale modeling as a solution for 

synthesizing these new systems level insights to better characterize decision making and 

disease.   

  

2.1 Cell signaling pathways  
 
Cancer has long been understood to be a quintessential systems biology disease. 

Development of cancer is typically driven by multiple mutations leading to pathologic 

behavior of a complex network of interacting molecular processes and the loss of a cell’s 

functional identity. The success of many cytotoxic drugs has hinged on influencing these 

networks to promote normal differentiative states over aberrant proliferative ones. In that 

pursuit, many signaling pathways critical to deciding between these states have been 

extensively studied and mapped, including pathways contributing to apoptosis, survival, the 

cell cycle, DNA repair, lineage commitment, and differentiation. Below, I describe pathways 

essential to decision making between differentiative (normal) and proliferative (cancerous) 

states that I ultimately represent in a multiscale modeling framework to aid in personalization 

and optimization of combination cancer therapy. 

2.1.1 TP53 mediated cell cycle and damage response pathways 
 
Uncontrolled proliferation driven by dysregulation of the cell cycle is one of the main traits 

of cancer. Crucially, as shown in Figure 2.1, TP53 controls the phase transition from G1 to 

S and cells with mutations in TP53 may not proceed through that checkpoint or initiate 
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apoptosis. This has critical implications for cancer treatment as cytotoxic drugs depend the 

cell cycle and have greatest effect on actively proliferating cells [36]. For instance, as shown 

in Figure 2.1, drugs that act on DNA synthesis damage cells during periods of DNA 

synthesis (S phase) while mitotic inhibitors produce cell kills through exposure during 

mitosis (M phase) [36]. These drugs may fail to produce cell kills in the presence of a TP53 

mutation and other mutations that keep the cell cycle from proceeding to these phases [36]. 

Additionally, therapies that act to reduce the integrity of DNA including many cytotoxic 

drugs and radiation may not produce cell kills in the absence of TP53, which controls the 

signaling machinery for detecting loss of DNA integrity and initiating apoptosis, resulting in 

therapeutic resistance [36]. Thus, in designing a model for simulation of combination 

chemoradiotherapy, it was critical to include representation of the TP53 mediated DNA 

damage response and cycle cell pathways.  

 
 
Figure 2.1. From Izar et al., the cell cycle, its controls and checkpoints as well as sites of 

action of cell-cycle specific cytotoxic drugs.  
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The cell cycle phases consist of non-dividing (G0), resting (G1), DNA synthesis (S), a gap 

between synthesis and mitosis (G2), and mitosis (M). Cyclin proteins activate cyclin-

dependent kinases (CDKs) to control transition between phases (note, CDC-2 is also known 

as CDK-1). Additionally, TP53 monitors DNA integrity and controls passage through the 

G1/S transition. [36] 

Though TP53 function has been under intense investigation for decades, the size and 

complexity of the regulatory network it acts upon make full experimental characterization of 

its kinetics technically infeasible. Integration of experimental results has led to the 

construction of simplified TP53 network models like that shown in Figure 2.2 and state-

space analysis of such networks has provided insight into how TP53 dynamics are controlled 

by specific feedback loops and how perturbations of processes in these loops modulate 

those dynamics to alter cell fate [38]. As summarized in Figure 2.2, these feedback loops 

work to alter TP53 dynamics in response to DNA damage and cellular stress with specific 

dynamics mapping to specific cell fates of DNA repair, cell cycle arrest, senescence, or cell 

death [38]. 
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Figure 2.2. From Choi et al., a simplified schematic of the p53 regulatory network.  

(Note, TP53 is the human isoform of p53, but p53 and TP53 are typically used 

interchangeably to refer to that isoform).  Based on combined literature data, Choi et al. 

constructed a p53 network containing 16 nodes as well as 160 negative and 218 positive 

feedback loops, the vast majority of which interact with p53. Arrows indicate activating 

processes and bars indicate inhibitory ones. In response to DNA damage, ATM activates, in 

turn activating p53 to turn on various feedback loops, with key loops shown in this 

schematic. The lower left orange area represents the cell death module, the upper right green 

area presents the cell cycle module, and the remaining blue area represents the p53 feedback 

module. [38] 

2.1.2 EGFR mediated Ras-MAPK and PI3K/AKT pathways 
 
Epidermal growth factor receptor (EGFR), also known as ErbB1, is part of the greater ErbB 

cell signaling network which is a major contributor to tumorigenesis and is under intense 

investigation for therapeutic targets. As shown in Figure 2.3, the network is comprised of 

many extracellular ligands and trans-membrane receptors like EGFR as well as many 
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enzymes, scaffolds, adaptors, and small molecules [39]. Signaling initiates when a ligand 

binds a receptor and causes the receptor to dimerize. This in turn activates the receptor’s 

tyrosine kinase domain, which results in autophosphorylation of tyrosine residues [39]. In 

response, multiple proteins are recruited to the plasma membrane by binding 

phosphotyrosines and so a complex network of interactions between the activated receptors, 

recruited proteins, and plasma membrane molecules eventually culminates in the activation 

of multiple downstream effectors, including extracellular-signal-regulated kinase MAPK 

(originally known as ERK as it is listed in Figure 2.3) and protein kinase B/AKT, which are 

both implicated in the control of proliferation and survival [39]. 
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Figure 2.3. From Chen et al., a simplified schematic of ErbB regulatory pathways showing 

receptor activation, interaction, internalization, and recycling in the Ras-MAPK/ERK and 

PI3K/AKT cascades.  

Forward reactions are shown with black arrows while negative feedback interactions are 

shown with red arrows. ErbB receptors dimerize upon activation with various ligands and 

the matrix in the top half of the figure summarizes the functional properties of observed 

dimers. Nodes with the prefix C indicate that one or more ErbB receptors form a complex 

with the species. [40] 
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Spatiotemporal dynamics of signaling are known to be critical to the ErbB network's 

control of cell fate, as different inputs stimulate different network kinetics and in turn lead to 

different cell fates [39]. The network as well as its downstream signaling cascades, including 

the Ras-MAPK pathway and the PI3K/AKT pathway, have been studied thoroughly at the 

molecular level resulting in clarification of its activation kinetics and well-defined systems 

models of their behavior based on those findings (see Chapter 4) [39] [40]. Additionally, 

many cancer therapies that interact with the ErbB network are known to dramatically vary in 

efficacy from patient-to-patient [40], further motivating the inclusion of these networks in 

patient specific modeling of combination therapy.  

 The Ras-MAPK pathway (also known as the MAPK/ERK or Ras-Raf-MEK-ERK 

pathway) acts in many ways to regulate cell cycle entry and control cellular proliferation and 

do so across many cell types. This pathway is responsible for integration of external cues 

from the presence of mitosis-triggering signals and growth factors into signaling cascades 

that support proliferation and growth, e.g., EGF binding EGFR leads to phosphorylation 

events in the MAPK cascade which ultimately activate the kinase activity of ERK, which 

must be present for cells to express genes necessary for cell cycle entry and to remove cell 

cycle blocks that allow cells to progress to synthesis (S phase of the cell cycle). Additionally, 

ERK signaling results in expression of c-Myc and other signals that control a downstream 

switch that prevents cells from returning to G1 after entering S phase. Importantly, this 

pathway is known to interact with TP53 signaling to control whether newly proliferated cells 

become quiescent (enter G0 phase) or immediate reenter the cell cycle. In addition to 

cancers, mutations in this pathway have been linked to multiple neuropsychiatric diseases. 
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 The PI3K/AKT pathway (also referred to as the PI3K/AKT/mTOR pathway), is 

also critical for regulating the cell cycle, downregulating apoptosis, and the decision to 

proliferate rather than differentiate in stem cells. In cancer, this pathway is frequently 

overactive, driving proliferation and downregulating apoptosis. This pathway is a central 

contributor to many cancers and anti-cancer drug resistance. Oncogenic activation of the 

pathway can occur via many routes, including those that disrupt inhibition of the pathway 

through PTEN and those that cause overactivation through upstream overexpression of 

EGFR. The pathway is also critical to neural lineage cells, driving proliferation over 

quiescence in neural stem cells in response to sufficient glucose level, and so has an 

important role in neural development and plasticity, and is implicated in neural stem cell 

diseases.  

 Finally, these two EGFR mediated pathways are known to interact with the 

mentioned TP53 mediated DNA damage response and cell cycle control pathways through 

the linkages listed in Figure 2.4 below. As described in Chapter 7, these linkages will be 

used to allow propagation of molecular state information across a multiscale mechanistic 

model for simulation of combination chemoradiotherapy. 

 

Figure 2.4. From Ghosh et al., the p53 regulatory network links to the Ras-MAPK pathway 

through the activity of WIP1 and to the PI3K/AKT pathway through the activity of PTEN 

and MDM2. [25] 
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2.2 Mechanisms of gene expression regulation 
  
Cell signaling pathways act to control gene expression in response to internal and external 

cues. From a systems biology perspective, these signaling networks broadly represent one of 

multiple scales of biological processes that act to influence cell fate determination. At the 

next level below are the many layers of mechanisms through which these signals can act to 

modify gene expression to achieve versatile and precise expression dynamics and cell type 

specific function in mammalian cells. These can occur at any stage in the process of 

generating gene products (see Figure 2.5), including epigenetic controls that enhance or 

limit access of transcriptional machinery to certain sections of the genome; transcriptional 

modifiers that determine when, how frequently, and which sections of a gene are 

transcribed; RNA expression controls that modify newly synthesized transcripts in the 

process of maturation to mRNA; translational regulators that determine how much protein 

is synthesized from a given mRNA, and post-translational modifications that edit existing 

proteins as needed to achieve precise spatiotemporal control of their activity.     
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Figure 2.5. From DeOcesano-Pereira et al., a schematic representation of the roles of 

different RNA species in regulating mammalian gene expression.  

A single genomic locus is depicted and at each step in the process of transcription and 

translation, multiple molecular mechanisms act to control the construction of the final gene 

product. Proximal control elements are located close to the promoter, while distal elements 

(enhancers) may be far away from a gene. Cis-acting regulatory elements, present in the pre-

mRNA sequence, determine which exons are retained and which exons are spliced out, 

resulting in alternative transcript isoforms (alternative splicing). mRNA structure is stabilized 

in preparation for transport into the nucleus with the addition of 5’ Cap and Poly(A) tail. 

Regulatory non-coding RNAs (ncRNAs) can act via multiple pathways to alter gene products 

in the course of transcription and translation. Long non-coding RNAs (lncRNAs) target 

protein complexes to specific genomic loci affecting transcription patterns (transcriptional 

interference), leading to chromatin modifications and DNA polymerase II activity. Advances 

in transcriptomics have resulted in the discovery of large numbers of ncRNAs (miRNAs and 

lncRNAs), many of which display the capacity to regulate gene expression at the levels of 

transcription (control of alternative splicing), post-transcription (mRNA editing, mRNA 

decay and mRNA stability) and translation (translation initiation) [41]. 

 The scale and complexity of these regulatory controls in mammalian gene expression 

has only been recently grasped with the advent of high-resolution genomic sequencing 

techniques and intense efforts remain underway to measure and map the dynamics created 

by these controls to higher order changes in cell signaling, cell fate, and cell function across 

different stages of development, in disease, and in response to experimental or therapeutic 

perturbations. Each regulatory layer presents a new lens through which to investigate the 

enormous breadth of genomic changes that occur in the course of cancer initiation and 

progression.  
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2.2.1 Transcriptional Regulation 

Broadly, transcription is a process in which the enzyme RNA polymerase decodes the 

genetic information stored in the chromosomal DNA to produce an RNA transcript [42]. 

The resulting transcript may be one of five types: messenger RNA (mRNA, which become 

proteins; 1-2% of the total transcripts), ribosomal RNA (rRNA, required for translation; 

80% of the total transcripts), transfer RNA (tRNA, required for translation), recently 

discovered microRNA (miRNA, post-transcriptional regulators of gene expression), and 

small interfering RNA (siRNA) [42]. While each type is synthesized according to a different 

set of regulatory mechanisms, in general, a transcriptionally active gene is controlled by a 

stretch of DNA typically located upstream of the transcription start site (−500 bp to 

−1000 bp) defined as a promoter which acts as a docking site for proteins known as 

transcription factors (TF) [42]. Transcription factors (TF) are the fundamental regulators of 

eukaryotic transcription; ubiquitous TFs each contain a specific DNA sequence binding 

motif through which it can recognize and act upon a specific genomic sequence [42]. Gene 

selective transcription factors connect to extra- or intracellular signaling pathways, which act 

as master regulators to switch a gene’s expression on or off [42].  

In addition to its promoter, a gene may be regulated by distal DNA sequences 

located several megabases away from its transcription start site, defined as enhancers. While 

distant in linear representation of the genome, enhancers are brought into spatial contact 

with the genes they act upon through three-dimensional folding of the genome. 3D genome 

structure is organized hierarchically across multiple spatial scales as shown in Figure 2.6. At 

the coarsest level, the genome is separated into chromosome territories (chromosomes 
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spatially separate in the nucleus) and each chromosome further separates into hubs of 

transcriptionally active and inactive chromatin (termed A and B compartments respectively).  

 

Figure 2.6. From Kempfer and Pombo, methods for studying the major features of 3D 

chromatin folding across different genomic scales. 
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 a Chromosomes occupy discrete territories in the nucleus, which were first detected using 

imaging techniques. The 3D-fluorescence in situ hybridization (3D-FISH) image shows the 

positions of the chromosome territories of chromosome 2 (red) and chromosome 9 (green) 

within DAPI-stained nuclei (blue) from mouse embryonic stem cells (ESCs). Chromosome 

territories are also detected as regions of high-frequency intrachromosomal interactions on 

contact maps generated by chromosome conformation capture (3C)-based methods, such as 

Hi-C (high-throughput chromosome conformation capture), and ligation-free approaches, 

such as genome architecture mapping (GAM). b DNA inside the nucleus separates into hubs 

of active (A compartment) and inactive (B compartment) chromatin, clustering around the 

nucleolus, splicing speckles, transcription factories and other nuclear bodies not represented 

here. Electron spectroscopy imaging of the mouse epiblast shows the distribution of 

heterochromatin (yellow) around the nucleolus (light blue) and at the nuclear periphery. 

Decondensed euchromatin (dark blue) is positioned more centrally in the nucleus. Nucleic 

acid-based structures are stained yellow, protein-based structures blue. Hi-C and split-pool 

recognition of interactions by tag extension (SPRITE) contact maps of mouse chromosome 

11 show the separation of chromatin into discrete contact hubs (A and B compartments), 

which are visible as checkerboard-like contact patterns. c At shorter genomic length scales, 

chromatin folds into topologically associating domains (TADs), which overlap with domains 

of early and late replication, and DNA loops, that arise from cohesin-mediated interactions 

between paired CTCF proteins. Multiplexed FISH of consecutive DNA segments in a 2-Mb 

region in the human genome shows the emergence of TADs in the population-average 

distance map. In Hi-C and GAM contact maps, TADs are represented by regions of high 

internal interaction frequencies and demarcated by a drop in local interactions at their 

boundaries. d Contacts between a gene and its cis-regulatory elements occur via loop 

formation between the enhancer bound by RNA polymerase II (Pol II) and the gene 

promoter. These contacts can be detected by live-cell imaging; shown are contacts between 

the enhancer (green) and promoter (blue) of the eve gene in a Drosophila 

melanogaster embryo, with simultaneous imaging of eve mRNA expression (red). 

The circular chromosome conformation capture (4C)-sequencing track shows the 

interactions between the Shh gene promoter and the ZRS (a limb-specific enhancer of 
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the Shh gene) in the anterior forelimb in mice. Contact maps can be processed using 

mathematic techniques to extract the most significant enhancer–promoter contacts from the 

data set, resulting in a contact matrix with only the high-probability interactions. The most 

significant interaction at the Sox2 locus can be found between the Sox2 gene and one of its 

well-studied enhancers. [43] 

At shorter genomic length scales, chromatin folds into topologically associated domains 

(TADs) – genomic regions defined by their tendency to spatially aggregate and interact more 

with each other than with neighboring regions. [43] Through recently developed 

Chromosomal Conformation Capture (3C) techniques, finer scale folding could be 

measured, revealing that at finer genomic length scales, DNA loops arise from cohesin 

mediated interaction between CTCF proteins. These loops, also known as long-range 

looping interactions, form between enhancers and promoters, bringing genes in contact with 

their cis-regulatory elements. 

At yet lower length scale, DNA wraps around nucleosomes to form what is termed 

as the chromatin fiber; tighter and looser wrapping around nucleosomes increases and 

decreases the accessibility of DNA by transcription machinery and a host of proteins act to 

alter this wrapping to control accessibility. Each nucleosome is composed of eight histone 

proteins and these are commonly modified by acetylation, phosphorylation, methylation, 

sumoylation and ubiquitination, which may be detected as epigenetic marks through a variety 

of NGS sequencing techniques. These marks are laid down by specific enzymes (termed 

writers), recognized by effector proteins (termed readers), and may be removed by other 

enzymes (termed erasers).  

The epigenetic marks, genomic contacts, and bound proteins (TFs, RNA 

polymerases, CTCF, cohesin, etc.) can all be sequenced to yield genome-wide maps of their 
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locations. Methods to process and detect significant biologically significant features and 

patterns from these maps is an area of active development (see one such approach in 

Chapter 5). Using the results of such approaches, it is then possible recognize distinct 

epigenetic states of the genome and construct models of their dynamics in development and 

disease. These efforts work to understand transcriptional control from a systems biology 

perspective, understanding that developmentally important changes involve dynamics across 

a network of interacting genes and regulatory elements that can rarely be understood from 

the activity of an individual element. 

2.2.2 Post-transcriptional regulation 

In the early 1990s, a short sequence of non-coding RNA was discovered to be highly 

conserved across species and to regulate gene expression during translation [42]. This non-

coding RNA came to be known as miRNA and since its discovery, the functional 

associations in gene expression as well as cell proliferation and differentiation of more than 

2,000 different miRNAs have reported in literature [42]. Genes encoding miRNAs are 

located either between genes (intergenic), and transcribed by their own promoter, or within a 

gene (intragenic), and transcribed by that gene’s promoter [42]. Both types of miRNAs begin 

as pre-miRNA that are later processed into their functionally active form, a short hair pin 

structure as the transcript folds back on itself.    

While there is evidence that miRNAs may contribute to other regulatory 

mechanisms, their role in post-transcriptional modification is well established. miRNA is 

thought to form a complex with the Argonaut, an RNA binding protein, and then hybridize 

with a target mRNA to initiate processes resulting primarily in negative control of gene 

expression, including premature termination of translation, slowed elongation of translation, 
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ribosomal drop off, and recruitment of factors to degrade the mRNA [42]. Aberrant miRNA 

activity has been reported in many cancer types and they can function as either oncogenes or 

tumor suppressors [44]. Differential expression of miRNAs has been linked to differences in 

sensitivity to chemotherapy, cancer progression, and patient survival, and circulating 

miRNAs are under intense investigation for use as therapeutic targets or biomarkers for 

diagnosis or prognosis [44] [45]. However, many mechanisms guiding the activity of 

miRNAs are unknown, including those guiding secretion and transport of miRNAs into 

circulation, their potential role in cell-to-cell communication, their interaction with coding 

genes, and their interaction with cell signaling pathways [46]. These unknowns present a 

barrier to their optimization for use cancer detection and therapy. Systems level modeling 

could likely provide a route for investigating their role in modulating signaling and how 

differences in miRNA expression between patients manifest into clinically significant 

differences in the efficacy of therapies and disease progression.  

 

2.3 Cues from the cellular microenvironment 
 
External cues from neighboring cells and other external stimuli also act to influence fate in 

individual cells and in turn their behavior and contribution to tissue and organ function. The 

external neighborhood of cell, termed the cellular microenvironment, is a key determinant of 

cell functional identity as maintenance of tissue specific environmental cues has been shown 

to be critical for maintaining cell type specific differentiation [47]. The cellular 

microenvironment includes soluble factors, neighboring cells, the extracellular matrix 

(ECM), and biophysical fields providing stimulation in the form of structural stress and 

strain, temperature, and electrical stimulation [47]. The extracellular matrix (ECM) within the 
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cellular microenvironment provides a structural foundation for cell populations and regulates 

cell function through control of the distribution of soluble factors and propagation of 

mechanical and electrical fields [47]. In this manner, the cellular microenvironment provides 

heterogeneous yet structured cues guiding cell spreading and movement as well as cell fates 

of proliferation, differentiation, and apoptosis.  

 In the case of cancer, the tumor microenvironment stimulates the immense 

heterogeneity of cells within tumors as tumor cells hijack healthy cells through cell-cell 

communication and ECM interaction, forcing healthy neighbors to acquire new phenotypes 

that support tumor growth and invasion [48]. Increasing mechanical strain on cells as tumors 

expand into normal tissue is also thought to activate signaling cascades that disrupt normal 

tissue function, reactivating mechanosensitive developmental pathways to stimulate 

proliferation through control of the cell cycle, epithelial-to-mesenchymal transition, and 

cellular motility [49]. 

 Given the critical role of the cell microenvironment in determining cell fate, many 

efforts to establish regenerative therapies are concerned with recreation of tissue specific 

environments in culture to grow correctly differentiated tissue and stimulation of aberrant 

cells to return to healthy phenotypes by restoring normal environmental cues. As more 

mechanisms of distant cell-to-cell communication are uncovered (e.g., exosomes, cell-free 

DNA, and apoptotic bodies), it becomes clear that at the scale of cell populations and tissue, 

control of cell fate is again regulated by large and highly complex network of interacting 

processes.  
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Beyond simple cell types, with the emergence of genomic sequencing, we have come to 

understand that the immense heterogeneity of cell fate emerges from many simultaneously 

occurring processes acting at spatially and temporally heterogeneous scales. While precise 

experimental work is necessary to advance understanding of these processes, we can 

augment these efforts through computational modeling to associate distinct molecular, 

genomic, and environmental profiles with distinct cellular states and explore the dynamics 

between those state transitions to better understand the drivers of cell fate. In the next 

chapter, I discuss multiscale modeling as a solution well suited for study of phenomena as 

complex as cell fate determination and the challenges of its implementation. 
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3 Challenges in Constructing Multiscale Models of Biological 

Systems 

Over the past few decades, a revolution in data storage and computing has dramatically 

changed scientific research. Complexity is ever increasing both in terms of systems and 

processes studied and through the high‐dimensional and heterogeneous data created to 

describe them. [31] Modeling and simulation are indispensable for tackling such problems, 

and as high-performance computing platforms and machine learning techniques become 

more powerful, the complexity and scale of systems and processes that can be feasibly 

studied with them will only increase. [31] Nonetheless, the growing data intensiveness of 

modern research problems poses an evolving challenge to researchers seeking to find the 

right tools to address these problems. [31]  

These trends and challenges have replicated across biomedical research disciplines. 

Advances in high throughput experimental methodologies have led to the accumulation of 

enormous data sets describing processes at all levels of biological organization. [25] [50] A 

large body of research now focuses on the development of techniques to process data 

generated by these recently developed modalities to identify biologically meaningful signal 

and on relating data across different levels of organizational scale and experimental 

modalities. Multiscale modeling is well positioned to address these needs and provides a 

deep body of knowledge for constructing and connecting mathematical representations of 

processes occurring at divergent scales. [50] While multiscale modeling has had many 

successful applications in biomedical research, several common considerations must be 
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addressed to result in models that are accurate, predictive, and clinically impactful. I describe 

these challenges and solutions to them below. 

 

3.1 Data availability and parameter estimation 

Models are generally more likely to accurately describe observed behaviors when more 

empirical, quantitative observations are available to construct and constrain parameter 

values. [26] Quantifying parameters is a challenging task in developing many single-scale 

biological models and this problem must be addressed for the constituent models of a 

multiscale model. [26] Many parameters may not be experimentally available or measurable 

with current technologies, and instead must instead be estimated by comparing model results 

to empirical ones. [26] While there are many computational techniques for performing 

parameter estimation, special consideration must be taken to avoid over-fitting, i.e., having 

too many parameters to estimate relative to the data available, a common problem when 

constructing models of complex biological systems which may have an extremely large 

number of parameters. [25] [51] Over-fitting leads to inaccurate model outputs and erodes 

predictive value. [25] Instead, best practice for avoiding this issue is to ensure that model 

parameters are drawn as much as possible from direct experimental data from collaborators 

and experimental and theoretical biology literature. Retrieving values from literature may 

require careful consideration as recorded values may not have direct correspondence to 

model parameters and retrieval may be complicated by data access limitations. [26] The 

problems of data availability and parameter estimation may be exacerbated or relieved by 

model type, which also has significant impact on computation efficiency, as discussed in the 

next section. 
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3.2 Computational demand and feasibility  

Another common challenge in creating computational models is that of composing the 

model in such a way that optimizes computational efficiency to allow increasingly complex 

systems to be represented, models to be run at finer resolution (i.e., more time steps), and, in 

the case of data-driven models, input of increasingly large-scale data. [26] [31] Multiscale 

models can be adapted to reduce the complexity of representation of subsystems within the 

larger model system to improve computational efficiency. While a large body of research is 

devoted to developing numerical methods or machine learning based implementations of 

multiscale models to achieve speed up, at a more fundamental level, researchers can decide 

between different underlying model types to reduce the number or resolution of variables 

represented as needed to adapt to compute resource limits.   

For instance, in the case of spatial tumor models, discrete modeling represents each 

constituent cell of a tumor individually with its own internal state updated in the time course 

of the model according to a series of pre-defined rules informed by experimental findings 

and biophysical principles. [26] While these models are excellent for single cell in silico 

investigation, they require many parameters which may be difficult to obtain and 

computational demands scale directly with the size of the tumor-cell population modeled 

and model resolution. [26] By contrast, continuum models represent a tumor as a continuous 

block of tissue rather than a population of individual cells. These models cannot be used to 

investigate single cell dynamics, but rather overall tumor behaviors like growth and how they 

are impacted by bulk genetics, or microenvironment properties, but can be executed at 

dramatically lower computational cost as these models use only overall tumor properties for 

parameter values. [26] In multiscale modeling, discrete and continuous models can be 
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combined to lower the computational cost of representing a more complex system while 

investigating fine-scale dynamics by representing different constituent single scale systems 

with either discrete or continuous modeling as needed to achieve necessary speed up. [26] 

Additionally, information is allowed to propagate between constituent single scale models of 

a multiscale framework, providing constraint to parameters that would be otherwise 

completely unconstrained in single scale representations. [26] 

In the case of study of cell fate decision making, especially in the context of cancer, 

many indicated cellular pathways have been well characterized via high throughput 

measurements of time-course changes and reaction kinetics, such as the Epidermal Receptor 

Growth Factor (EGFR) mediated Ras-MAPK pathway and PI3K/AKT pathway, and the 

TP53 mediated DNA damage response and cell cycle progression pathways. [40] [52] [53] 

When available data are sufficient to completely characterize the dynamics of a pathway, the 

pathway may be modeled using fine-grained methods such as continuous differential 

equations (aka. reaction rate equations), but when data are not sufficient to avoid over-

fitting, parameters may be sufficiently reduced by using coarse-grained approaches such as 

logic-based modeling of which Boolean modeling is one example. [54] As mentioned 

previously, in a multiscale modeling approach, continuous and discrete models can be 

combined to lower the computational cost of representing a more complex system. This 

principle was applied for the multiscale model developed in thesis. The Ras-MAPK pathway 

is represented with a continuous model while the TP53 mediated DNA damage response 

and cell cycle progression pathways are represented with logic-based models within a hybrid 

multiscale modeling framework representing signaling pathways contributing to cell fate 

decision making between healthy (differentiative) or tumorigenic (proliferative) states. This 
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hybrid modeling approach both allowed avoidance of the parameter estimation challenge in 

the case of the TP53 mediated pathways and resulted in a model that well adapted to 

compute power limits, as is discussed in the next section. I describe my application of this 

type of multiscale modeling approach in Chapter 7.  

By increasing the computational efficiency of models, researchers are not only able 

to represent increasingly complex systems on high performance computing systems, but to 

develop models that can be easily used in clinical contexts where time and compute 

resources are more limited. There is enormous demand for tools that allow clinicians to 

personalize therapeutic regimens for individual patients, but multiscale modeling remains 

largely absent from clinical usage despite its enormous potential, as discussed in the next 

section.  

 

3.3 Clinical applications and personalized medicine  

Systems biology approaches, like multiscale modeling, are poised to have incredible clinical 

impact, driven by the data and computing revolution. With more data and a much higher 

ceiling on compute power, models can be run at far higher levels of underlying complexity 

and in turn achieve greater accuracy and predictive ability. Systems models of disease, 

designed based on recent experimental insights and modulated by patient specific -omics 

profiles and clinical data, could be used to develop personalized therapies and help usher in 

the era of precision medicine. Additionally, systems models could be used to identify 

relationships between clinical outcomes and dynamics of variables of complex disease 

systems that would be difficult and costly to search for through empirical techniques, and so 

contribute to hypothesis-generation and testing, biomarker identification and validation, and 

development of targeted therapies.  
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These offerings are perhaps nowhere more relevant and urgently needed than they 

are for cancer therapy. For some cancers, there have been incredible gains in patient survival 

and survivor healthiness as a result of improvements in patient risk stratification and 

therapeutic offerings, but for nearly all cancers there is room for improvement. For every 

patient, a large and complex array of factors influence the progression of their disease, the 

efficacy of any therapy, and the potential for recurrence. Cytotoxic drugs and radiation 

therapy, alongside surgery, form the standard of care for most cancers. These, along with 

new therapies in development, are typical tested via large scale, randomized clinical trials. 

These trials determine whether a drug results in favorable outcomes on average but provide 

little insight into why a drug works or does not achieve that, and why treatment responses 

might vary widely between patients, that is why a drug might be effective in one person but 

not in another. 

These challenges can be addressed through multiscale modeling. A mechanistic 

model of a cancer can be constructed based on insights from experimental data describing 

the cancer across every level of biological organization - from the organ and tumor levels, 

down to the cellular, genomic, epigenetic, and molecular levels. Patient-specific -omics 

profiles and clinical data can be used modulate the activity of species represented in the 

model to obtain patient-specific predictions and predictive value can be assessed by 

comparing these results to true outcomes. Finally, such models can be used to isolate 

variables and system dynamics that differ with treatment outcomes and thus uncover the 

mechanistic relationships that determine why a specific treatment is effective in a specific 

patient. 
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Such approaches have great utility to both accelerate the discovery of new 

therapeutic targets and to model the effects of therapeutics, and multiscale cancer modeling 

research increasing focuses on doing just that as recent advances in gene editing techniques 

drive excitement for targeted therapeutics. However, advances in targeted therapy for now 

have little impact on the vast majority of cancer patients who continue to be administered 

the standard of care, combination therapy of cytotoxic drugs and radiation therapy, also 

known as chemoradiotherapy.  

Recent advances in systems modeling have largely overlooked these therapies as 

many are viewed as established technology. Still in spite of their common usage, clinicians 

often have little information as to which chemoradiotherapy regimen will be most effective 

for a specific patient.  Clinical decision making for these therapies remains largely based on 

results from traditional pharmacokinetic-pharmacodynamic (PK-PD) models. These models 

are mostly phenomenological in nature, relating drug dosages and their duration of treatment 

to macroscopic parameters like tumor volume reduction. These models are parameterized 

using experimental values obtained through sources like medical imaging. Models like these 

provide no means to investigate the underlying mechanism for a drug’s effect or to reason 

about why the drug is more effective in one person over another.  

Clinicians could instead use a multiscale modeling tool to virtually test out therapy 

combinations on specific patients and so determine a patient’s optimal therapy regimen to be 

maximally effective while minimizing dose to avoid adverse outcomes. A large segment of 

cancer patients is burdened by chronic severe health conditions secondary to their cancer 

treatment. Optimizing combination therapy through patient-specific modeling presents not 
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only the opportunity to improve therapeutic outcomes but to increase healthiness and 

quality of life for survivors.  

With this motivation in mind, in the next chapter, I describe the mathematical 

implementation of cell level models necessary to create a multiscale model of cell fate 

decision making, emphasizing systems and models that I incorporated into my own work to 

create a framework for patient-specific modeling combination chemoradiotherapy.  
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4 Formalisms in Cellular Modeling 
 
Computational modeling of cellular processes has evolved to encompass the needs of 

researchers in diverse disciplines addressing diverse problems. As such, many different 

modeling formalisms been developed, including equation-based models, such as those based 

on ordinary differential equations (ODEs), and those based on graphs, like Boolean 

networks [55]. These and other commonly used model types are summarized in Figure 4.1 

below with toy examples. While each of these formalisms have wide applicability, the choice 

of model should be guided by the nature of the data available for design and constraint of it.  

For instance, models based on differential equations are typically for modeling 

dynamical systems using the equations to describe the rate of change of system variables 

over time. Naturally, cell signaling networks fit this description and through these models, 

one can perform time-course simulations of these networks, predict outputs to different 

inputs, and design controllers of system behavior [55]. Creating these models however 

requires experimental data to estimate kinetic parameters, which have historically been 

difficult to produce for large scale networks. By contrast, Boolean networks are populated by 

Boolean variables that only represent a node (gene or molecule) as having two possible 

states, on/active and off/inactive. At each time step in the simulation, each node’s state is 

determined by a logic rule which is a function of the state of its input nodes (its regulators) 

and every node in the network is updated synchronously [55]. While far less experimental 

data is needed for the construction of such models, exploring the full state space still may be 

infeasible for large networks as the number of possible states is 2n for n network nodes. In 

cases where more than two node states must be represented but kinetic data is unavailable, a 
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Bayesian network could be employed. In these networks, nodes are discrete or continuous 

random variables linked by conditional dependencies, and the value at each node is 

determined by its own probability function which depends on the values of input nodes [55]. 

This approach is excellent for inferring parameters in the presence of incomplete data, but 

having no representation of time at baseline, cannot be readily used to model feedback loops 

[55]. Finally, all of these models are ill-suited for representation of processes described by 

spatial data, which could be more appropriately modeled with an agent-based model or 

cellular automata. 

Additionally, model choice may be guided by factors such as the type of analysis one 

would like to perform across the network and the availability of previous work for testing, 

which has become increasing easy with the rise of community standardized formats such as 

Systems Biology Markup Language (SBML) that can be readily explored with visualization 

and simulation software like Copasi [56] [57].  

These considerations came into play in construction of the multiscale model 

described in Chapter 7 with a Boolean Network being used to describe the TP53 mediated 

DNA damage repair and cell cycle pathways, and an ODE model being used to describe the 

EGFR mediated Ras-MAPK and PI3K/AKT pathways [38] [40]. Patient miRNA profiles 

and drug effects were modeled as actors that could change the initial states of nodes in these 

networks as opposed as nodes or variables in their own right acting on other network 

elements in the course of simulation. These two key types of networks, Boolean and 

equation-based, are described below. The chapter ends with a brief overview of historically 

significant formalisms in combination chemotherapy modeling that are later used to evaluate 

the results of my model in Chapter 7. Additionally, considerations for adaptation of the 
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model to better represent intra-tumor heterogeneity and the influence of cellular 

microenvironment via agent-based modeling are introduced in Chapter 8. 

 
 
Figure 4.1. From Machado et al., visual representations of toy examples of popular systems 

modeling formalisms.  

a Boolean network: genes are represented by nodes (a, b, c, d) and the arrows represent 

activation and repression b Bayesian network: the value of the output nodes (genes c, d, e) 

are given by a probability function that depends on the value of the input nodes (genes a and 

b) c Petri net: places represent substances (a, b, c), transitions represent reactions (p, q) and 

the arrows represent consumption and production d Agent based model: two types of agents 

representing two different kinds of cells (or molecules) can move freely and interact within 

the contained space e Interacting state machine: systems are represented by their state (a, b) 

where each state may contain one or more internal substates (b, d, e), arrows represent the 

transition between different system states f Rule-based model (represented by contact map): 

agents represent proteins (P, Q, R, S) which may contain different binding sites (a to f), the 

connections represent the rules for possible interactions (e.g. phosphorylation) g Cellular 

automata: a grid in which the value of each element can represent different kinds of cells (or 

molecules) that can change via interaction with their immediate neighbors [55] 
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4.1 Boolean Networks  
 
The TP53 mediated DNA damage and cell cycle control pathways are large and involve 

numerous complex feedback loops, and in turn the dynamics of actors within it are not fully 

described with kinetic data. The Boolean network approach is well suited to representing 

such data and has been described by [38] to perform state attractor analysis of these TP53 

mediated networks.  

 Defining the network, each node has a possible state of on or off determined as a 

function of values of its regulators, or input nodes [55]. The global state of the network is 

then defined as the state of all nodes, which are all updated synchronously at each time step 

in the simulation, such that the state of any node at time step t+1 is calculated from its input 

nodes’ values at time t [55]. Each node integrates the values of its regulators via a Boolean 

function that can include combinations of Boolean operators such as AND, OR, and NOT. 

In the course of simulation runs, the network state can reach a steady state, in which node 

values do not change in subsequent time steps. The goal of state attractor analysis is to map 

initial network states to these steady states (also known as attractors) and determine how 

robust they are to changes input values or network structure.  

 

4.2 Differential Equation Based Models 
 
When rate laws and kinetic parameters are available, differential equation based models may 

be used to precisely represent a biological network. The system may be defined with 

different types of equations: ODEs are most commonly used to describe concentrations of 

species (genes, proteins, or molecules) as a function of time, partial differential equations to 

account for spatial distribution of species, stochastic differential equations to account for 
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stochastic components like noise, and piecewise-linear differential equations to integrate 

continuous features with discrete features (like threshold based switches) [55] [58]. Such a  

piecewise-linear differential equation model composed of ODEs is employed to represent 

the EGFR mediated Ras-MAPK and PI3K/AKT (see Chapter 7) for these reasons. 

 Generally, to set up an ODE based model, we can express the network by a set of 

equations with the species amount or activity level as a variable 
𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑥, 𝑢) where x is a n 

by 1 vector of the amount of each individual species in the network, u is an n by 1 vector of 

the external stimuli affecting each species (set to 0 if not including external inputs) and 𝑓𝑖 is a 

continuous function [59]. Commonly, in representing gene regulatory networks, the effect of 

one species on another is not instantly realized (as intermediate mechanisms act to carry out 

the regulatory effect) and these discrete time delays may be accounted for using time-delayed 

ODE equations such as  
𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑥1(𝑡 − 𝜏𝑖,1), 𝑥2(𝑡 − 𝜏𝑖,2), … , 𝑥𝑛(𝑡 − 𝜏𝑖,𝑛), 𝑢) − 𝛾𝑖𝑥𝑖, 

where 𝛾𝑖  

is the degradation rate constant for species i and 𝜏𝑖,𝑗 is the delay in regulation of species i by 

species j [59]. Other functions like the Hill Equation can be used to guide the rate of a 

species regulation by another and these equations can be solved piecewise to eliminate 

nonlinearities that might make the system otherwise infeasible to solve. 

 

4.3 Combination Chemotherapy Models  
 
Additivity models have been historically been employed to mathematically predict dose-

response relationships for combination chemotherapy from experimentally determined dose-

response relationships of the individual therapies. Two such models have remained in 
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widespread use for decades: the Loewe additivity model and the Bliss additivity model, 

shown in Figure 4.2. 

 

Figure 4.2. From Fitzgerald et al., a toy representation of Loewe and Bliss additivity models 

contrasted with that of a mechanistic modeling approach.  

a Single enzymes: (Left) According to Loewe additivity, combinations of enzyme inhibitors 

act upon overlapping binding sites. (Right) According to Bliss independence, combinations 

of enzyme inhibitors act upon independent binding sites. b Application of Loewe additivity 
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and Bliss independence to signaling networks is unintuitive. (Left) Loewe additivity behavior 

could possibly be observed when inhibitor combinations act to inhibit the same pathway 

through similar action. (Right) Bliss independence behavior could be observed for inhibitor 

combinations that act independently at different sites on the same target, different levels in 

the same pathway, or upon different pathways. c Loewe additivity and Bliss independence 

do not account for the mechanisms of inhibitor interactions in complex systems, instead 

treating these systems as black boxes. Mechanistic models can capture complex signaling 

dynamics and so be used to compute how inhibitor combinations will perform. [60] 

Loewe additivity assumes that two drugs act on a target through a similar 

mechanism, resulting in dose substitution and that to reduce cell survival by the same 

proportion X% achieved individually, the concentrations in combination can be calculated 

from the relationship 1 = ∑ [
[𝐶𝑖]𝑋%

[𝐼𝑖]𝑋%
]𝑛

𝑖=1  where [𝐼𝑖]𝑋% is the concentration of drug 𝑖 needed 

to reduce cell survival by X% when administered individual and [𝐶𝑖]𝑋% is the concentration 

of drug 𝑖 needed to reduce cell survival by the same amount when administered in 

combination [60]. By contrast, the Bliss independence model assumes that drugs act on a 

target through independent mechanisms, resulting in effect multiplication; the effect of the 

combination therapy is predicted using the equation 𝐹𝑈𝐴 = ∏ 𝐹𝑈𝐴𝑖

𝑛
𝑖=1  where 𝐹𝑈𝐴 is the 

fraction of targets unaffected by combination therapy and 𝐹𝑈𝐴𝑖
 as the fraction of targets 

unaffected during individual administration of drug 𝑖 at the same dosage when used in 

combination therapy [60].   

These models were originally designed to describe simple enzymatic interactions and 

do not adequately account for mechanisms underlying the interaction of actual 

chemotherapies with complex cell fate decision networks. Mechanistic models, like those 

constructed using the systems formalisms described early in this section, could represent the 
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dynamics of these networks to compute how these combinations will perform, more 

realistically than mechanism-agnostic additivity models.   
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5 A Statistical Tool for Detecting Epigenomic States in 
Lineage Commitment  

 
Adapted from [61] 

 
While multiscale, multiphysics models present a solution to the problem of synthesizing 

observations of biological phenomena across biological scales and heterogeneous data, new 

methods are also needed to pre-process empirical data generated with recently developed 

NGS technologies. As a solution to one such problem, I developed 3DeFDR, a statistical 

tool for detecting chromatin looping interactions that dynamically change across biological 

conditions. This tool was developed with the intent to answer the question of to what extend 

do long-range looping interactions change across developmental models, genetic 

perturbations, drug treatments, and disease states. Together with my co-author, I ultimately 

created a tool for identifying such dynamic loops from high-resolution Chromosome-

Conformation-Capture-Carbon-Copy (5C) and Hi-C data. In this chapter, I demonstrate this 

method in analysis of data sets capturing chromatin looping states in the course of neural 

lineage commitment, including cross-reference of differential loop calls with RNA-seq and 

ChIP-seq results. I anticipate that this method could be used to help construct a more 

complete picture of epigenetic states in the course of lineage commitment and in turn, a 

more realistic multiscale model of lineage commitment.  

 

5.1 Introduction 
 
Chromosome-Conformation-Capture (3C)-based molecular techniques have recently been 

coupled with high-throughput sequencing to generate genome-wide maps of higher-order 

chromatin folding [62, 63, 64] . A number of massively parallel 3C-based technologies query 
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genome folding in a protein-independent manner, including Hi-C, 4C, 5C, and Capture-C 

[65, 66, 67, 68, 69, 70, 71]. All four techniques rely on proximity ligation and high-

throughput sequencing to convert physically connected chromatin fragments into counts of 

specific interaction events. Briefly, chromatin is fixed in its native architectural state across a 

population of cells and then digested with a restriction enzyme. Restriction fragments are 

ligated to form billions of hybrid ligation junctions between two distal genomic loci. The two 

fragments in a given ligation junction can then be identified using high-throughput 

sequencing, and their frequency of ligation is proportional to their spatial proximity across a 

population of cells. Hi-C detects all chromatin interactions genome-wide using high-

throughput sequencing, whereas 5C and Capture-C use tiled probes to selectively sequence 

large, megabase-scale subsets of the genome. 4C queries all genome-wide contacts involving 

a single chosen restriction fragment. Thus, the protein-independent 3C technologies of Hi-

C, 5C, and Capture-C can be used to create high-resolution spatial maps of genome folding 

on the scale of a few megabases to genome-wide coverage. 

Recently published 3C-based sequencing studies have revealed that the mammalian 

genome is folded into a hierarchy of distinct architectural features, including A/B 

compartments, lamina-associated domains (LADs), topologically associating domains 

(TADs), subTADs, and long-range looping interactions [67] [69] [71] [72] [73] [74] [75] [76] 

[77] [78] [79] Loops—groups of adjacent pixels which form a punctate focal increase in 

interaction frequency enriched above local TAD and subTAD structure—have been 

identified algorithmically in high-resolution Hi-C maps [72]. The highest resolution maps to 

date have enabled the detection of tens of thousands of looping interactions genome-wide  

[72] [80]. A subset of looping interactions occur at the corners of TADs/subTADs and are 



 

48 

known as “corner dots.” A leading model for the mechanism of corner dot formation is that 

cohesin tracks along the chromatin fiber until it is blocked by the architectural protein 

CTCF, thus extruding out the intervening DNA  [81] [82] [83] [84] [85] [86]. Corner dot 

TADs/subTADs anchored by CTCF are thought to demarcate the search space of 

enhancers for their target promoters [87] [88] [89] [90]. Moreover, enhancers can also 

connect directly to target genes via corner dots in a CTCF-dependent and CTCF-

independent manner [91] [92] [93] [94]. Initial studies have suggested that specific subsets of 

looping interactions can reconfigure in development, disease, and in response to genetic 

perturbations [80] [89] [91] [92] [95] [96] [97] [98] [99] [100] [101]. Generally, however, it 

remains unknown to what extent loops are dynamically altered genome-wide as cells switch 

fate, due in part to the relative paucity of computational methods to evaluate statistically 

significant changes in interaction frequency across multiple biological conditions. 

As high-resolution Hi-C and 5C chromatin folding maps begin to accumulate in 

developmentally relevant cellular models, there is an increasing need for methods to (1) 

precisely detect loops and clearly distinguish them from other classes of architectural 

features such as local TAD/subTAD structure and compartments and (2) rigorously classify 

loops by their dynamic behavior across cell types. A number of computational methods 

report the ability to identify loops in individual libraries generated by Hi-C. Forcato and 

colleagues performed a detailed comparison of Hi-C loop calling pipelines, including 

HiCCUPS [102], GOTHiC [103], HOMER (http://homer.ucsd.edu/homer/interactions/), 

diffHic [104], HIPPIE [105], and Fit-Hi-C [106]. The conclusion from this study was that 

loop calling methods in individual samples exhibit vastly different performance, with no 

clear gold standard emerging [107]. Importantly, most loop calling pipelines were developed 

http://homer.ucsd.edu/homer/interactions/
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on low-resolution maps (40 kb up to 1 Mb bins) generated with the first-generation dilution 

Hi-C experimental procedure. More recently, Hi-C maps have achieved 1–5-kb resolution 

through higher read depth and markedly reduced spatial noise due to second generation in 

situ ligation and digestion techniques [72] [80]. We also note that active, unsynchronized 

extrusion events could create long-range interactions within TADs/subTADs that do not 

manifest as punctate loops in a 5C/Hi-C heatmap (i.e., transient loops in the making) [84]. 

Thus, it is likely that first generation loop calling algorithms show a wide dynamic range of 

performance because they were developed on lower resolution first-generation Hi-C maps 

and did not explicitly distinguish loops from general non-specific, long-range interactions. 

The emerging model from second-generation Hi-C studies is that quantitative loop detection 

in individual libraries requires rigorous modeling of local chromatin domain structure. 

HiCCUPS explicitly models and accounts for locus-specific TAD/subTADs [72], and 

accounting for local chromatin domain structure has therefore emerged as a leading 

candidate for identifying bona fide loop structures (i.e., persistent loops) in individual Hi-C 

maps. Building upon advances in Hi-C, similar statistical methodologies have been applied in 

lib5C to find loops in individual 5C maps [108]. 

To our knowledge, computational tools are not yet available to statistically test loops 

for their differential signal across two or three conditions in 5C data. Three tools (diffHic 

[104], FIND [109], and HiBrowse [110]) have been published to identify generally 

differential interactions between conditions in Hi-C data. All three methods in their 

published, first-generation form were not designed or verified to distinguish loops from 

higher-order folding patterns such as A/B compartments, TADs, subTADs, or non-specific 

long-range interactions. In the absence of accounting for these features, a large proportion 
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of the differential interactions identified may be due to cell type-specific fluctuations related 

to technical biases, local chromatin domains, extrusion lines, or higher-order compartments. 

Noteworthy, the diffHic manuscript indicates that modeling local chromatin domain 

structure would be essential to evaluate cell type-specific loops, suggesting that second-

generation tools which accomplish this might be available in the future [104]. Computational 

tools have also been published to call within- and across-condition loops from libraries 

generated by Hi-ChIP and ChiA-PET assays [111] [112] [113] [114] [115] [116]. However, 

statistical frameworks built for protein-dependent 3C-methods cannot address the technical 

challenges unique to 5C and Hi-C data. Overall, a gold-standard statistical methodology for 

cell type differential loop detection in protein-independent proximity ligation data (both 5C 

and Hi-C) is an important unmet need. 

Here, we present 3DeFDR, a new statistical method and software implementation 

for identifying cell type-specific looping interactions from genome-wide Hi-C (3DeFDR-

HiC) and locus-specific 5C (3DeFDR-5C) data across two or three biological conditions. For 

locus-specific 5C matrices, 3DeFDR-5C computes an empirical false discovery rate (eFDR) 

by applying a thresholding scheme on the change in interaction score signal on real 5C 

libraries from multiple biological conditions and pseudo-replicates simulated from the same 

biological condition. We implement a controlling procedure in which we iterate thresholds 

to achieve an a priori determined eFDR under the assumption that all thresholded pseudo-

replicate interactions simulated from the same condition are false positives. For genome-

wide Hi-C matrices, 3DeFDR-HiC formulates a negative binomial likelihood ratio test 

parameterized with a Distance-Dispersion-Relationship (DDR) for every pixel engaged in 

persistent loops genome-wide. Cell type-specific loops called by 3DeFDR-5C have fewer 
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false positives and are more strongly enriched for chromatin modifications characteristic of 

the cellular state in which the loops are present compared to (i) an established ANOVA test 

and (ii) our own newly formulated parametric likelihood ratio test (3DLRT). We also 

benchmarked 3DeFDR-HiC against the leading published Hi-C non-specific differential 

interaction calling method diffHic and demonstrate superior performance. 3DeFDR-5C, 

3DeFDR-HiC, and the parametric benchmarking test 3DLRT are freely available as Python 

packages to support the next wave of discoveries in cell type-specific looping. 

 

5.2 Results 
 
We set out to address a critical challenge in the analysis of looping interactions in 5C data: 

the paucity of methods for robustly classifying dynamic loops across multiple cellular 

conditions, a problem which becomes more challenging as the number of conditions 

increases. Our goal was to develop a statistical framework and software implementation to 

rigorously identify differential loops from 5C maps across two or three conditions using a 

target FDR to choose thresholds (Fig. 1a). 
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Figure 5.1. Overview of interaction score thresholding procedure for cell type-specific 

looping interaction classification.  

a A 5C dataset is input as a set of interaction frequency matrices, with each matrix capturing 

the same set of genomic contacts under a different cellular condition. b Raw 5C counts are 

converted to interaction scores (IS) which reflect bias-corrected, sequencing depth 

normalized, local expected background signal normalized, and statistically modeled 

interaction frequency values that are comparable within and between conditions under the 

assumptions of our model (detailed in the “Methods” section and Fig. 4). c Interaction 

scores are thresholded to allow detection and classification of looping interactions that are 

significantly differential across cellular conditions. d Seven looping interaction classes after a 

3-way thresholding scheme on ES-2i, ES-serum, and NPC cellular states. e IS heatmaps at 

two selected genomic loci. Green boxes highlight regions of qualitatively apparent 

differences in looping signal. f Loop classification results after applying 3DeFDR-5C’s 3-way 

IS thresholding procedure 

First, we developed, applied, and benchmarked 3DeFDR-5C using 5C data across three 

distinct cellular states: mouse embryonic stem (ES) cells cultured in 2i media representing a 

naive pluripotent state, mouse ES cells cultured in LIF/serum representing the primed 

pluripotency state, and primary neural progenitors isolated from neonatal mice representing 

a multipotent adult stem cell state in the neuroectoderm lineage (Additional file 1: Table S1) 

[94]. These particular 5C datasets represent large-scale, 4-kb-resolution maps capturing 8 Mb 

of genomic sequence around key developmentally regulated genes. 5C relies on a primer-

based hybrid capture step to selectively detect ligation junctions across specific genomic 

regions, thus enabling the creation of high-resolution matrices with a strikingly lower 

number of reads (~ 30–40 million per sample) compared to Hi-C (~ 3–6 billion per sample). 

We have recently determined that loops are markedly reconfigured during the transition 

from naive pluripotency to multipotency, thus making this dataset ideal for the testing and 
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development of our statistical framework. We tested and validated 3DeFDR-5C with a three 

cellular state experiment, but the statistical framework and code are also able to analyze a 

two cellular state experiment. 

We first started by modeling and correcting biases, artifacts, and local chromatin 

domains in individual replicates. Despite their nuanced technical differences, data from 

protein-independent proximity ligation techniques share several common features, including: 

(1) distance-dependent background interaction signal in which non-specific interaction 

frequency is highest for the closest fragment-fragment pairs on the linear genome and decays 

as the distance separating the genomic fragments increases [67], (2) biases in ligation and 

amplification frequency caused by GC content and length of restriction fragments [117] 

[118] , (3) library complexity and sequencing depth differences across independent 

experiments for the same biological sample leading to nonlinear batch effects [108], and (4) 

highly locus-specific structure due to higher-order folding of chromatin into TADs, 

subTADs, and compartments [72]. One must model and address these features to ensure a 

rigorous analysis of looping interactions. 

We reasoned that a differential loop calling method would have the most utility 

across protein-independent proximity ligation data if it started with a modified interaction 

score (IS) in which background signal as well as per-replicate and per-pixel confounding 

factors had been corrected. We recently discovered that sequence-related biases are not 

constant across cell types and replicates. Therefore, as is routinely done with Hi-C data, we 

used matrix balancing to correct for fragment-specific biases caused by GC content and 

restriction fragment length for every replicate individually (detailed in the “Methods” 

section). We also used conditional quantile normalization to normalize all replicates for non-
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linear library complexity and sequencing depth differences (detailed in the “Methods” 

section). It is widely known that the distance-dependent background signal and local 

chromatin domain structure are widely variable across cell types and highly unique to each 

genomic region. Thus, we used the donut and lower left filters [72] [91] to model the 

distance-dependent and TAD/subTAD expected background signal for every interaction in 

the genome and every replicate individually (detailed in the “Methods” section). After bias 

correction, background normalization, and expected modeling, we assigned p values to every 

pixel in the 5C heatmap and computed an interaction score (IS) that allows for direct 

comparison of each bin-bin pair across replicates and conditions under the assumption that 

the replicates are similarly powered (Fig. 1). Moreover, the use of modeled IS as the random 

variable for differential testing allows 3DeFDR to have utility for matrices of any protein-

independent 3C-based data that have been bias corrected, normalized, modeled, and 

transformed into p values using analysis techniques tailored to the specific method. 

To identify differential looping interactions, we used a classification technique that 

relies on three-way thresholding on the difference in IS across cellular conditions (Fig. 1, 

Additional file 2: Fig. S1, Additional file 3: Table S2). For each biological replicate, we began 

with a framework in which IS is a square, symmetric matrix of interaction scores from a 

modeled and bias-corrected 5C experiment. The matrix IS has dimensions n by n, where n is 

the number of genomic bins in any particular genomic region, r. We use ISts,r, k, l to refer to 

the interaction score between genomic bins k and l in region r as recorded for biological 

replicate s of condition t (detailed in the “Methods” section). We first identify potential 

looping interactions by parsing only bin-bin interactions with an ISts,r, k, l greater than a 

specific significance threshold g for all replicates in at least one condition (purple lines, Fig. 
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1). We then apply a series of thresholds (orange lines, Fig. 1c) on the difference in ISts,r, k, l 

across all three cellular conditions (Additional file 2: Fig. S1E-G, Additional file 3: Table 2S). 

To ensure the most conservative estimate of looping classes, we apply the thresholds on the 

minimum difference in IS across replicates of each condition. Thus, the end result is a 

preliminary set of seven classes of looping interactions: (1) ES-2i only, (2) ES-serum only, (3) 

NPC only, (4) ES-2i and ES-serum only, (5) ES-2i and NPC only, (6) ES-serum and NPC 

only, and (7) constitutive across all three cell types (Fig. 1). Examples of ES-2i only, ES-2i 

and ES-serum only, and NPC only interactions are illustrated in Fig. 1, f. 

We next used estimation and control of an empirical false discovery rate (eFDR) to 

guide the final placement of the difference thresholds for each looping class (orange lines, 

Fig. 1c, detailed in the “Methods” section). The false discovery rate (FDR) is by definition 

FDR = E[V/R] where V is the number of false positives among tests declared significant 

and R is the total number of tests declared significant. Here, R is trivial to compute from our 

set of three conditions (T = {A, B, C} where A is ES-2i, B is ES-serum, and C is NPC) and 

six replicates (S = {A1, A2, B1, B2, C1, C2}) as the total number of significant bin-bin 

interactions in a given looping class (H = {{A}, {B}, {C}, {A, B}, {A, C}, {B, C}}). 

However, V is not known and requires a method for estimating the false-positive rate of our 

three-way thresholding procedure. 

We hypothesized that V is approximately equal to the total number of interactions 

labeled as differential when applying 3DeFDR-5C to a set of biological samples with no true 

differential loops. We defined our null dataset as a set of samples that are replicates of a 

single cellular condition but are assigned a random set of labels matching conditions T. Our 

key assumption in formulating this approach is that that the false-positive rate (FPR) of calls 
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on the null dataset (FPRnull) is approximately equivalent to that of the experimental dataset 

(FPRexp), such that FPRnull ≈ FPRexp. We computed and controlled an empirical false 

discovery rate (eFDR) as in Eq. 1: 

  𝑒𝐹𝐷𝑅 =  
𝑛𝑛𝑢𝑙𝑙

𝑛𝑒𝑥𝑝
≈

𝑉

𝑅
   (1) 

where 𝑛𝑒𝑥𝑝 is the total number of interactions classified as significantly differential for a 

particular looping class using the experimental conditions T and  𝑛𝑛𝑢𝑙𝑙 is the total number of 

interactions classified as significantly differential in the null dataset, which approximates 

𝐹𝑃𝑅𝑒𝑥𝑝.. 

It is often cost prohibitive to generate six biological replicates of 5C data for each 

condition. Therefore, we generated 5C replicate simulations to populate the null sample set. 

We simulated 5C replicates of the same condition at the level of fragment-fragment ligation 

counts after conditional quantile normalization. Our rationale for this decision was that it 

would allow us to omit library complexity, batch effect, and sequencing depth terms in our 

count generating models. To construct our simulation generating model, we first computed 

the sample mean and sample variance for every interaction in every condition (Equations 2 

and 3): 

 𝜇𝑡,𝑟,𝑖,𝑗 =
∑ 𝐶′𝑡𝑠,𝑟,𝑖,𝑗

𝑛𝑡
𝑠 = 1

𝑛𝑡
 (2) 

 𝜎2
𝑡,𝑟,𝑖,𝑗 =

∑ (𝐶′𝑡𝑠,𝑟,𝑖,𝑗 − 𝜇𝑡𝑠,𝑟,𝑖,𝑗)
2𝑛𝑡

𝑠 = 1

𝑛𝑡−1
 (3) 

where 𝑛𝑡 is the number of replicates of condition 𝑡 and 𝐶′𝑡𝑠,𝑟,𝑖,𝑗 is the conditional quantile 

normalized 5C counts of interaction (t,r,i,j) in the 𝑠𝑡ℎ replicate of condition 𝑡 for every 𝑖𝑡ℎ 

and  𝑗𝑡ℎ fragment ligation in genomic region r. 
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Most genomics experiments suffer from poor parameter estimation due to the low 

number of replicates that are financially and logistically feasible to generate for every 

biological condition. To improve parameter estimates, we modeled the mean-variance 

relationship (MVR) between 𝜇𝑡,𝑟,𝑖,𝑗 and 𝜎2
𝑡,𝑟,𝑖,𝑗 by pooling all interactions at similar 

interaction distances (Fig. 2). We stratified quantile normalized counts 𝐶′𝑡𝑠 ,𝑟,𝑖,𝑗 for all 

regions by their linear genomic interaction distance using a dynamic size window (Fig. 2a). 

For distance regime 1 (0–150 kb), we stratified the interactions into fine-grained, 12-kb-sized 

sliding windows with a 4-kb step. For distance regime 2 (151–600 kb), we stratified the 

interactions into 24-kb-sized sliding windows with an 8-kb step. For distance regime 3 (601–

1000 kb), we stratified the interactions into coarse-grained, 60-kb-sized sliding windows with 

a 24-kb step. We found that the variance was greater than the mean across all genomic 

distance scales, indicating that 5C counts data are overdispersed (Fig. 2). For each window 

in each distance regime, we modeled the MVR by fitting the function (Equation 4): 

 𝜎̂2
𝑡,𝑟,𝑖,𝑗  = 𝐴𝑡,𝑤𝜇𝑡,𝑟,𝑖,𝑗

2  
+ 𝜇𝑡,𝑟,𝑖,𝑗  (4) 
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Figure 5.2. 5C counts are overdispersed and their mean-variance relationship varies as a 

function of linear genomic distance and cellular condition.  

a Raw 5C contacts are stratified by genomic distance prior to characterization of their mean-

variance relationship. In each of our three regimes, the width of the stratification windows is 

determined using a different binning scheme. b The coefficient of variation for raw 5C 

counts is plotted against the median genomic interaction distance for each sliding window. 

Each window captures counts from all genomic regions in the dataset in the ES-2i 

condition. c The dispersion parameter, A, for each distance scale window (short horizontal 
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lines) is computed by fitting sample means and variances to the function σ2 = A*μ2 + μ. 

Dispersion versus distance scale trends (solid smooth lines) were generated by Loess 

smoothing. d Mean-variance models for representative genomic distance windows from all 

three distance regimes. Fits of the Poisson mean-variance relationship (σ2 = μ) and the 

negative binomial mean-variance relationship (σ2 = A*μ2 + μ) are shown with their 

corresponding R2 goodness of fit values 

to all 𝜇𝑡,𝑟,𝑖,𝑗 and 𝜎2
𝑡,𝑟,𝑖,𝑗 to find the overdispersion parameter, 𝐴𝑡,𝑤, at each distance scale 

(detailed in the “Methods” section). We found that 𝐴𝑡,𝑤 also varied as a function of distance 

and was unique to each cell type (Fig. 2). Together, these data demonstrate that 5C counts 

are overdispersed and that the overdispersion parameter varies as a function of distance and 

cellular state. 

To generate simulated 5C libraries, we weighted the predicted variance 𝜎̂2
𝑡,𝑟,𝑖,𝑗  

against the original observed variance 𝜎2
𝑡,𝑟,𝑖,𝑗  to generate a final weighted variance 𝜎𝑡,𝑟,𝑖,𝑗

2 for 

each interaction at each distance scale as in Equation 5 (detailed in the “Methods” section): 

 𝜎𝑡,𝑟,𝑖,𝑗
2 =  𝛼𝜎̂2

𝑡,𝑟,𝑖,𝑗  + 𝛽𝜎2
𝑡,𝑟,𝑖,𝑗  (5) 

 

We used α = β = 0.5 to achieve simulated 5C counts with pairwise correlations on par with 

that of real replicates while improving the quality of our variance estimate with the predicted 

contribution (Additional file 4: Table S3). Finally, we parameterized the negative binomial 

model for each 𝐶′𝑡,𝑟,𝑖,𝑗interaction and generated simulated counts from our models for each 

(𝑡, 𝑟, 𝑖, 𝑗) interaction (Equation 6): 

 𝐶′𝑡,𝑟,𝑖,𝑗
𝑠𝑖𝑚  ~ 𝑁𝐵(𝜇𝑡,𝑟,𝑖,𝑗 , 𝜎𝑡,𝑟,𝑖,𝑗

2 ) (6) 

 

We created simulated replicates by filling in a simulated counts value for each (𝑡, 𝑟, 𝑖, 𝑗) 

interaction with a random variable drawn from the negative binomial distribution 
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parameterized by 𝜇𝑡,𝑟,𝑖,𝑗 and 𝜎𝑡,𝑟,𝑖,𝑗
2 . We then subjected the simulated 5C libraries, 𝐶′𝑡,𝑟,

𝑠𝑖𝑚 , to 

the same matrix balancing, binning, expected normalization, and modeling as the real 5C 

libraries (see the “Methods” section). Simulated 5C counts were highly similar to real 5C data 

in a qualitative comparison (Fig. 3a–d, Additional file 2: Fig. S2). Moreover, for the final 

predicted variance estimates (Equation 5 weighted at α = β = 0.5), our simulated 5C libraries 

exhibit Spearman’s correlations within and between conditions that are nearly equivalent to 

real replicates (Fig. 3). Together, these data show that 5C libraries can be simulated with a 

negative binomial distribution parameterized with an overdispersed distance-specific MVR. 
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Figure 5.3. Simulated 5C datasets exhibit strong similarity to experimental 5C datasets.  

a, b Heatmaps of relative 5C interaction frequency in the genomic regions surrounding 

the a Klf4 and b Olig1/2 genes are shown for simulations and real experimental 
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data. c, d Heatmaps of interaction scores in the genomic regions surrounding 

the c Klf4 and d Olig1/2 genes are shown for simulations and real experimental 

data. e Matrices of pairwise Spearman’s correlations between real and simulated 5C replicates 

after conditional quantile normalization (see the “Methods” section)  

We next used simulated IS matrices (Fig. 4a) to compute an empirical FDR (eFDR) 

estimate for our looping classes across a sweep of IS difference thresholds applied to both 

real (𝐼𝑆𝑡𝑠 ,𝑟,𝑘,𝑙) and simulated (𝐼𝑆𝑡𝑠 ,𝑟,𝑘,𝑙
𝑠𝑖𝑚 ) values. For each loop classification, we computed 

eFDR estimates across a range of difference threshold values d, acquiring a difference 

threshold-to-eFDR mapping for each class, 𝑒𝐹𝐷𝑅𝑑,ℎ, as in Equation 7: 

 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Sec4
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Figure 5.4. Application of 3DeFDR-5C to find cell type-specific looping interactions across 

three cellular states.  
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a Heatmaps representing binned, matrix balanced 5C counts (Observed) around a known 

looping interaction between the Olig1 gene and an NPC-specific enhancer 

(chr16:91,135,612-91,330,612). Observed counts are divided by the computed local expected 

signal to obtain background-normalized counts (Observed/Expected). These counts are 

fitted with a logistic distribution and the resulting p-values are transformed into interaction 

scores, where interaction score = − 10*log2(p value). b Interaction scores are thresholded to 

isolate contacts that are differentially looping across cellular conditions and whose signal 

meets a baseline requirement for significance. This thresholding procedure is applied to both 

real and simulated null replicate sets to compute an eFDR estimate. The dynamic 

thresholding procedure is applied with increasing stringency until a user-specified target false 

discovery rate is reached. c Loop classifications obtained with 3DeFDR-5C in real (top) and 

simulated null (bottom) replicate sets shown in an interaction scatterplot 

representation. d, e Heatmap of final loop classifications at d individual bin-bin pairs 

and e classified looping clusters after applying 3DeFDR-5C at a threshold of 2%. f UpsetR 

scalable Venn diagrams for differential looping clusters called by 3DeFDR-5C at a target 

eFDR of 2% 

 𝑒𝐹𝐷𝑅𝑑,ℎ =
𝑐𝑎𝑟𝑑({(𝑟,𝑘,𝑙) ∈ ℎ𝑛𝑢𝑙𝑙

𝑑  }) 

𝑐𝑎𝑟𝑑({(𝑟,𝑘,𝑙) ∈ ℎ𝑒𝑥𝑝
𝑑  })

 (7) 

where ℎ𝑛𝑢𝑙𝑙
𝑑  represents the set of interactions assigned to differential class ℎ in the simulated 

null dataset at difference threshold 𝑑 and ℎ𝑒𝑥𝑝
𝑑  represents the set of interactions assigned to 

the same class in the real experimental dataset at the same difference threshold 𝑑. We 

selected our final eFDR threshold τ as 2% (Figs. 4 and 5). We performed this eFDR 

controlling procedure for every differential looping class across our three cellular states to 

identify significantly differential bin-bin pairs (Fig. 4). We then clustered significantly 

differential bin-bin pairs of a similar looping class by spatial adjacency (see the “Methods” 

section); the end result was 108 constitutive, 12 ES-2i only, 62 NPC only, 3 ES-2i and ES-
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Serum, and 4 ES-Serum and NPC looping clusters (Fig. 4). The 3DeFDR-5C algorithm is 

designed so that the user can tune the final looping classifications to a pre-determined target 

eFDR. 
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Figure 5.5. Dynamic 3D chromatin looping interactions identified using 3DeFDR-5C, 

3DLRT, and ANOVA.  

a Reference interaction score heatmaps for two sample loci. b Loop classification results 

achieved with each differential looping detection method at a target false discovery rate 

(FDR) of 2%. c Enrichment of cell-type specific markers in loops classified as NPC or ES-2i 

& ES-serum for each of the three methods at a target FDR of 2%. d Log fold-change in 

percent CTCF orientation among loops classified as constitutive, ES-2i & ES-serum, or 

NPC, over percent CTCF orientation among loops classified as background 

To evaluate the performance of the 3DeFDR-5C pipeline, we implemented two additional 

methods for classifying differential looping interactions: ANOVA-BH and 3DLRT-BH 

(Additional file 2: Fig. S3). These methods use ANOVA and our newly formulated 

likelihood ratio test (3DLRT), respectively, to assign a differential looping p value to every 

bin-bin pair in an experimental dataset (detailed in the “Methods” section). In both 

approaches, output p values are then corrected for multiple testing using the Benjamini-

Hochberg step-up procedure. When we compared ANOVA and 3DLRT benchmarking 

tests to 3DeFDR-5C, we found that the three different methods had different optimal FDR 

thresholds for identifying differential loops (Supplementary Figures 4–6, 8–10), with 

3DeFDR-5C identifying the known, previously reported looping interactions at significantly 

lower FDR estimates than the other two approaches (Fig. 5). Thus, 3DeFDR-5C can 

identify known cell type-specific looping interactions with a lower estimated false discovery 

rate than ANOVA and 3DLRT benchmarking tests under the assumptions of our model. 

To further understand the dynamic loops called by 3DeFDR-5C, we also compared 

them to chromatin modifications on the 1-D genome as well as to the performance of the 

leading non-specific differential interaction caller built for Hi-C data. We observed that 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Sec4
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Fig5
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classes of differential loops identified by 3DeFDR-5C at an FDR of 2% were strongly 

enriched for genes and enhancers characteristic of cell types matching their differential loop 

class (Fig. 5c, Additional file 2: Figs. S7, S11). Moreover, we observed that convergently and 

divergently oriented CTCF motifs were over- and under-enriched, respectively, at the base of 

loops identified by 3DeFDR-5C (Fig. 5). Together, these data indicate that 3DeFDR-5C 

calls differential loops that exhibit the known hallmarks of cell type-specific looping 

interactions.  

Finally, we formulated 3DeFDR-HiC to identify cell type-specific loops genome-

wide in Hi-C data. To develop 3DeFDR-HiC, we relied on ultra-high-resolution Hi-C data 

from mouse ES cells and ES-derived NPCs [119]. We first identified loops genome-wide in 

each cell type individually (see the “Methods” section, Fig. 6a, b). To identify which of the 

identified loops were ES- or NPC-specific, we formulated a negative binomial model 

parameterized by (i) the mean count per pixel across replicates for every biological condition, 

(ii) a distance-dependent scaling factor to normalize for sequencing depth (Additional file 2: 

Fig. S14), (iii) bias factors for every row in the raw Hi-C matrix, and (iv) an estimated 

dispersion per pixel across replicates for every biological condition (see the “Methods” 

section). We estimated the dispersion of loops at every 10-kb increment of genomic distance 

via a distance-dispersion-relationship (DDR) (see the “Methods” section, Fig. 6). After 

fitting the parameters of our model to the data, we performed a likelihood ratio test to 

obtain p values against the null hypothesis that each interaction in a loop was not differential 

and applied the Benjamini-Hochberg step-up procedure to correct these p values for 

multiple testing. At an FDR threshold of 1% and a loop cluster size threshold of 3 (see the 

“Methods” section), we identified 818 ES-specific loops and 1435 NPC-specific loops 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Fig5
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Fig5
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Sec4
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Fig6
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Sec4
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Sec4
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Fig6
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Sec4
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(Fig. 6), including the ES-specific loop connecting the Sox2 gene to its ES-specific enhancer 

(box 1), and the longer-range ES-specific, NPC-specific, and constitutive loops 

around Sox2 at this locus (box 2, box 3) (Fig. 6 b, e). Thus, we can identify cell type-specific 

looping interactions genome-wide in Hi-C data with 3DeFDR-HiC. 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Fig6
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Fig6
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Figure 5.6. Cell-type specific looping interactions identified from Hi-C using 3DeFDR-

HiC.  
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a Reference heatmaps of relative Hi-C interaction frequency (Observed) for the Sox2 region 

and two zoom-in views of loops involving the Sox2 gene. Boxes 1, 2, and 3 highlight areas 

of differential looping. b Reference interaction score heatmaps of the same genomic regions 

shown in a. c Distance-dispersion relationship in the ES condition in the Bonev et al. Hi-C 

dataset. The orange dots show the estimated negative binomial dispersion parameter at each 

distance scale. The purple line represents a LOWESS smoothing of the orange points. The 

red dashed line shows the effective dispersion of the Poisson distribution for 

comparison. d MA plot of the differential loop analysis comparing the ES and NPC 

conditions in the Bonev et al. Hi-C dataset. The x- and y-axes represent the average log 

interaction frequency and the log fold change across cell types, respectively, computed on 

observed Hi-C counts normalized for both locus specific biases and sequencing depth 

differences. The densities of non-loop, constitutive, and differential (called by our method at 

an FDR threshold of 1%) pixels are shown in different colors as indicated in the 

legend. e Heatmaps of final loop cluster classifications for each genomic region called by 

3DeFDR-HiC at an FDR threshold of 1% 

Our 3DeFDR-HiC method makes three critical assumptions: (1) the use of a negative 

binomial distribution is necessary to account for overdispersion in Hi-C data, (2) the model 

needs to account for the DDR, and (3) pooling dispersion or variance estimates is necessary 

to achieve good performance in the face of small numbers of available replicates. To test 

these three assumptions, we benchmarked the performance of 3DeFDR-HiC on simulated 

data against three alternative models that each dropped one of our three assumptions. These 

alternative models included a Poisson model (which assumes mean is equal to variance with 

no overdispersion), a “global negative binomial” model (which does not account for the 

DDR), and a “sample variance parameterized negative binomial” model (which does not 

pool dispersion or variance estimates and uses a sample variance computed for each pixel 

across replicates instead) (see the “Methods” section). We provide the intuition for how each 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Sec4
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of the three models compares to our 3DeFDR-HiC method in Additional file 2: Fig. S13A. 

Our inspection of distributions of p values called on true null simulations revealed that the 

Poisson model failed to control type I error (Additional file 2: Fig. S13B). This failure to 

control type I error was also reflected in a failure to control FDR in simulations containing 

truly differential loops (Additional file 2: Fig. S13C). Next, we assessed the performance of 

the different approaches using receiver operator characteristic (ROC) curves, revealing that 

the “sample variance parameterized negative binomial” model resulted in inferior cell type-

specific loop classification performance compared to 3DeFDR-HiC, which uses pooled 

dispersion estimates (Additional file 2: Fig. S13D). Finally, we assessed the bias of 

low p values in simulated null datasets with respect to distance (Additional file 2: Fig. S13E), 

revealing that the “global negative binomial” model is overly conservative at short distances, 

where it overestimates dispersion, and overly permissive at long distances, where it 

underestimates dispersion. Altogether, these results were used to formulate and justify the 

assumptions upon which we built our 3DeFDR-HiC model. 

Finally, to benchmark 3DeFDR-HiC’s performance, we applied diffHic [104] to the 

same Hi-C data. When comparing the two methods, we held constant either the FDR 

threshold or the total number of significant differential loops. In both the ‘matched FDR’ 

and ‘matched loop number’ benchmarking scenarios, we observed that diffHic called cell 

type-specific interactions throughout Hi-C data irrespective of whether or not the 

interactions were bona fide loops (Additional file 2: Fig. S12A,C). We also created simulated 

Hi-C maps containing pre-defined cell type dynamic looping interactions with a range of 

interaction strength effect sizes (see the “Methods” section, Fig. 7). 3DeFDR-HiC markedly 

outperformed diffHic in the sensitivity and specificity of differential loops called on our 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Sec4
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Fig7
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simulated datasets (Additional file 2: Fig. S12D). As expected, running 3DeFDR-HiC on 

simulations with stronger looping fold changes resulted in a higher number of differential 

loops called (Fig. 7). 3DeFDR-HiC exhibits strong sensitivity and specificity of loop 

detection which increases with increasing interaction frequency effect size (Fig. 7), as well as 

consistently strong FDR control at every tested interaction frequency effect size (Fig. 7). 

Our simulations can be used to perform power calculations at a variety of effect sizes 

(Fig. 7), providing estimates of the proportion of uncalled truly differential loops across a 

range of differential effect sizes. Together, these data characterize the performance of 

3DeFDR-HiC and suggest that it outperforms the leading Hi-C interaction caller diffHiC. 

 

Figure 5.7. Characterization of performance of 3DeFDR-HiC method using simulated Hi-C 

data.  

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Fig7
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Fig7
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Fig7
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Fig7


 

74 

a Heatmaps showing a single example loop in simulations generated using varying effect 

sizes. The difference between any heatmap and the baseline loop strength shown in the far-

left panel becomes more pronounced as effect size increases. b MA plots resulting from 

analysis of simulations of two artificial conditions (“A” and “B”) generated using varying 

effect sizes, with red and blue points representing interactions called as differential by our 

method at a false discovery rate of 1%. No interactions are called differential when no loops 

are truly differential (effect size + 0%). The number of interactions called as differential 

increases with increasing effect size, though the true proportion of differential interactions 

remains fixed at 40% in the simulations shown here. c Receiver operating characteristic 

(ROC) curves showing performance of our method on simulations generated using varying 

effect sizes. Like in b, the true proportion of differential interactions remains fixed at 40%. 

The x-axis shows the false-positive rate (FPR), or one minus the specificity. The y-axis 

shows the true positive rate (TPR), or sensitivity. The area under the receiver operating 

characteristic curve (AUROC) for each curve is shown in parentheses in the legend. d False 

discovery rate (FDR) control curves showing FDR control characteristics of our method on 

simulations generated using varying effect sizes, colored as in (C). The x-axis shows a range 

of FDR thresholds, while the y-axis shows the actual FDR we observe in the differential calls 

made by our method at that FDR threshold. Methods that control FDR should stay below 

the dashed gray line. All FDR control curves should show an FDR of 60% at an FDR 

threshold of 100%, since only 40% of loops in each simulation are truly differential. e Power 

curves showing the proportion of truly differential interactions called differential by our 

method (y-axis) as a function of the FDR threshold used for thresholding (x-axis) in 

simulations generated using varying effect sizes, colored as in c 

5.3 Discussion 
 
Since the invention of 5C and Hi-C technologies, the field has been in need of statistical 

methods and computational tools for identifying differential long-range looping interactions 

among biological conditions. To date, there is a severe lack of differential loop calling 

methods available for analysis of 5C data by the scientific community. Moreover, although a 
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small number of “general differential interaction identification” methods have been 

published for Hi-C data, differential loop calling largely remains an open question because 

(1) currently available tools do not account for local distance-dependent background signal 

and TAD/subTAD/compartment structure to identify changes specifically at loops and (2) 

Hi-C datasets with the resolution necessary for looping interaction analysis have only very 

recently become available. We describe two variants of our method: 3DeFDR-5C, our 

original approach designed for identifying cell type-specific loops from 5C data, and 

3DeFDR-HiC, a simplified and parallelized variant fast enough to identify differential loops 

in genome-wide Hi-C datasets. 

It is important to acknowledge potential limitations in our methods. 3DeFDR-5C 

and 3DeFDR-HiC cannot in their current form detect global changes in looping due to a 

biological perturbation such as nuclear volume change which would lead to global shift in 

signal at a specific distance scale. We have created our code in a way that allows users to alter 

bias vectors and scaling parameters to account for their biological question. In cases of 

global changes, the normalization and correction of samples together would not be 

preferred. We also acknowledge that our work here represents one of the first in-depth 

studies of the problem of variance estimation in Hi-C data. To further enhance differential 

loop calling performance, newer modeling approaches will be needed to improve upon our 

dispersion estimates in the future. In an ideal scenario, Hi-C data for every condition would 

be obtained with a high number of biological replicates, thus facilitating the ability to 

estimate variance on a per-pixel basis and account for the local TAD/subTAD and 

compartment folding patterns that influence mean and variance estimates at each pixel. 

Here, we pool interaction frequencies by distance to create a DDR, but future studies may 
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reveal that dispersion is controlled by additional factors beyond distance and biological 

condition. 

In this study, we analyze Hi-C datasets using a 10-kb bin resolution. In principle, our 

implementation of 3DeFDR-HiC is fast enough to call differential loops using smaller bin 

sizes; however, we have chosen to present results using 10 kb bins due to the scarcity of Hi-

C datasets with sufficient read depth to reliably detect loops at bin sizes smaller than 10 kb. 

We expect that assessing the < 10-kb bin matrix resolution performance of 3DeFDR-HiC 

and other differential loop calling models will become an important area for future work as 

more ultra-high-resolution Hi-C datasets become available. 

Our analyses thus far have suggested that variance estimation is not as critical for 

differential loop calling genome-wide in “C” data as it is for differential gene expression 

analyses in RNA-seq data. Our hypothesis for this discrepancy is that RNA-seq data has a 

much higher dynamic range of counts than “C” data and that the dispersion estimates matter 

most for modeling very highly expressed genes. Consistent with this idea, we do indeed 

observe that both of our methods (3DeFDR-5C and 3DeFDR-HiC) allow for more sensitive 

and specific loop detection in the case of ultra-short-range loops where the interaction 

frequencies have the highest mean. The advantage is, however, small compared to using per-

pixel sample variances or a zero-dispersion Poisson model, and future studies will unravel 

how improved sensitivity/specificity in loop calling will aid in biological discovery in high-

resolution Hi-C data. A systematic comparison of all differential looping models—including 

a more quantitative performance assessment for 5C differential loop calling—remains an 

important area for future work. 
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In conclusion, we provide 3DeFDR as a new statistical framework and 

computational tool for detecting and classifying differential looping interactions in high-

resolution, multi-condition 5C and Hi-C datasets. We note that the performance of 3DeFDR 

is highly dependent on the quality of the input dataset and how effectively the raw 

sequencing counts of detected interactions have been processed to reduce batch effects, 

correct for bias, and account for distance-dependent and TAD/subTAD background signal. 

We provide 3DeFDR as a modular coding package that the user may integrate into their 

own 5C or Hi-C analysis pipeline. For the convenience of users, this package includes 

companion visualization tools for assessing 3DeFDR results to determine how effectively 

counts have been modeled for simulation, viewing differential loop calls as color-coded 

clusters, and computing the enrichment of classical epigenetic marks within classes of called 

loops. 

 

5.4 Methods 
 

5.4.1 5C Data 

5C libraries generated with a single alternating primer design [91] in embryonic stem (ES) 

cells cultured in 2i media (ES-2i), ES cells cultured in serum/LIF (ES-Serum), and primary. 

5.4.2 Hi-C data 

Hi-C libraries were downloaded from GEO (Additional file 6: Table S5). Briefly, we used all 

raw Hi-C sequencing reads from the ES_1, ES_3, NPC_1, and NPC_2 replicates 

(representing the ES and NPC conditions), keeping the replicates separate. 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM6
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5.4.3 5C data processing pipeline 

5.4.3.1 Overview 

Raw 5C counts were subjected to our previously published 5C count modeling methods [91] 

[108] [120] [121] [122]. The processing steps described briefly below ultimately resulted in 

the conversion of fragment-level, raw count matrices to a bias- and expected background-

corrected contact matrices of interaction scores. Pre-processing steps were performed prior 

to the post-processing steps of matrix balancing, binning, mean-variance relationship 

modeling, and 5C replicate simulation. Binning and all subsequent normalization and 

modeling steps were performed on both experimental and simulated 5C replicates. 

5.4.3.2 Data structure and pre-processing 

We assembled sequencing counts from each 5C experiment ts and each genomic region r into 

an nr × nr raw contact matrix, 𝐶𝑡𝑠,𝑟, where nr represents the total number of HindIII 

restriction fragments in each region r, t ∈ {ES2i, ESserum, NPC} represents a cellular 

condition, and s ∈ {1, 2} represents a biological replicate of the cellular condition t. 

Thus, 𝐶𝑡𝑠,𝑟,𝑖,𝑗 is the number of reads that represent contacts between the ith and jth 

fragments in region r, where i ∈ {1, 2, 3, …, nr} and j ∈ {1, 2, 3, …, nr}. Raw contact matrices 

were then normalized as described [91]. Briefly, the raw contact matrices 𝐶𝑡𝑠,𝑟 were 

normalized for replicate biases due to batch effects, sequencing depth differences, and 

library complexity differences by conditional quantile normalization to create a normalized 

contact matrix 𝐶′𝑡𝑠,𝑟. 
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5.4.3.3 Matrix balancing 

Each normalized contact matrix 𝐶′𝑡𝑠 ,𝑟 was then matrix balanced with joint express as 

described [91] [108] to correct for differences in fragment-specific biases, such as GC 

content, fragment length, and 5C primer-specific efficiency at each primer in region r to 

create a balanced contact matrix 𝐶′𝑡𝑠,𝑟. 

5.4.3.4 Contact matrix binning 

Balanced contact matrices 𝐶′𝑡𝑠 ,𝑟 were converted to binned interaction frequency matrices by 

binning at regular 4-kb intervals and smoothing at 16-kb intervals as described in [91] [108] 

[120]. The smoothing was performed because we developed the 3DeFDR-5C method on 

older 5C data from an alternating 5C primer design. 5C libraries made with double 

alternating designs do not require this smoothing step [121]. The resulting binned interaction 

frequency matrices 𝐵𝑡𝑠,𝑟 have mr by mr elements where mr is the total number of bins in 

region r. 𝐵𝑡𝑠,𝑟,𝑘,𝑙 represents the arithmetic mean contact frequency between fragments in 

the kth and lth bins in genomic region r as recorded in replicate s under condition t. Binned 

interaction frequency matrices have reduced spatial noise relative to the original fragment-

level matrices while preserving the underlying signal. 

5.4.3.5 Distance dependence normalization 

Following binning, expected values for each interaction in the binned interaction frequency 

matrices were computed using a modification of the local donut expected described by 

Aiden and colleagues that accounts for the local TAD/subTAD structure and the global 

distance-dependent background signal [72] [91] [108]. The binned interaction frequency 

values 𝐵𝑡𝑠,𝑟,𝑘,𝑙 (Observed) were corrected by the maximum of expected donut 
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values 𝐷𝐸𝑡𝑠,𝑟,𝑘,𝑙 and expected lower left values 𝐿𝐿𝐸𝑡𝑠,𝑟,𝑘,𝑙 to yield contact enrichments 

(Observed/Expected, or Obs/Exp) normalized for distance-dependent 5C count signal and 

local chromatin domain structure as detailed previously [91]. 

5.4.3.6 Probabilistic model fitting 

As detailed previously [91], contact enrichment values (Obs/Exp) were modeled within each 

region by parameterizing a log-logistic distribution using maximum likelihood estimation, 

resulting in matrices of right-tailed p values 𝑃𝑡𝑠,𝑟. P values were computed for each 5C 

genomic region separately. 

5.4.3.7 Removal of interactions below distance limit 

Interactions occurring between bins within 20 kb of each other on the linear chromatin fiber 

were removed from consideration and not included in further processing. 

5.4.3.8 Interaction scores and z-scores 

The final step of the post-processing pipeline is the conversion of modeled p values to 

interaction scores. We use 𝐼𝑆𝑡𝑠,𝑟 to refer to the matrix of interaction scores for region r and 

replicate s in condition t. For 3DeFDR-5C, p values were transformed to an interaction score 

of −10 × log2(p value). For benchmarking approaches, ANOVA, and 3DLRT (detailed 

below), p values were transformed to both an interaction score of −10 × log2(pvalue) as well 

as a z-score computed using the standard normal quantile function (the inverse of the 

standard normal cumulative distribution function) (Equations 8 and 9): 

 𝛷(𝑧) =  
1

√2𝜋
∫ 𝑒−

𝑥2

2 𝑑𝑥
𝑧

−∞
 (8) 

 𝑍𝑡𝑠,𝑟,𝑘,𝑙   =  𝛷−1(1 − 𝑃𝑡𝑠,𝑟,𝑘,𝑙)  (9) 

 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ8
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ9
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where 𝑃𝑡𝑠,𝑟,𝑘,𝑙 is the right-tail p value computed for the interaction between bins k and l in 

genomic region r as recorded in biological replicate s under condition t. We implemented the 

conversion of p values to z-scores using the stats.norm.isf function in the scipy Python 

library. 

 

5.4.4 Hi-C data processing pipeline 

Raw Hi-C data were aligned to the mm9 genome using bowtie2 (global parameters: --very-

sensitive -L 30 --score-min L,-0.6,-0.2 --end-to-end --reorder; local parameters: --very-

sensitive -L 20 --score-min L,-0.6,-0.2 --end-to-end --reorder) through the HiC-Pro software. 

Unmapped reads, non-uniquely mapped reads, and PCR duplicates were filtered out, and 

uniquely aligned reads were paired. Cis contact matrices were assembled by binning paired 

reads into uniform 10 kb bins. 

5.4.5 3DeFDR-5C 

5.4.5.1 Overview 

3DeFDR-5C is designed to identify differential looping interactions across a set of 5C 

experiments containing either two or three cellular conditions with at least two replicates 

each. In this section, we describe the application of 3DeFDR-5C to three cellular conditions, 

referring to a set of three conditions T = {A, B, C} and of six replicates 

as S = {A1, A2, B1, B2, C1, C2}. 

5.4.5.2 Differential loop categories 

In the 3DeFDR-5C framework, the set of possible classes of differential looping interactions 

is defined as all nonempty proper subsets H of the input condition set T (Equation 10): 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ10
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 𝐻={{𝐴},{𝐵},{𝐶},{𝐴,𝐵},{𝐴,𝐶},{𝐵,𝐶}} (10) 
 

Interactions assigned to single-condition classes, e.g., {A}, {B}, or {C}, are considered to be 

interacting significantly higher in replicates of that specific condition than in those of the 

other two conditions (Additional file 2: Fig. S1E and Additional file 3: Table S2). 

Interactions assigned to dual condition classes, e.g., {A, B}, {A, C}, or {B, C}, are 

considered to be interacting significantly higher in replicates of the two specific conditions 

than in the remaining single condition (i.e., C, B, and A, respectively). If interaction scores 

for an interaction are sufficiently high in all conditions, that interaction is interpreted to be 

non-differential and labeled as a constitutive looping interaction. If interaction scores are 

sufficiently low in all replicates of all conditions, the interaction is not called a looping 

interaction; therefore, it is not tested for differential looping signal (Additional file 2: Fig. 

S1D). Points with very low interaction scores in all replicates are assigned to a background 

class, representing interactions that are very unlikely to be loops (Additional file 2: Fig. S1C). 

5.4.5.3 Computing empirical false discovery rate 

3DeFDR-5C controls an empirically estimated false discovery rate (eFDR) to classify loops 

as differentially interacting across cellular condition set T. By definition, 𝐹𝐷𝑅 =

𝐸 [
𝑉

𝑅
] where V is the number of false positives among tests declared significant and R is the 

total number of tests declared significant. R is computed as the total number of pixels called 

as significantly differential in any differential class in H (Equation 10). By contrast, V is not 

trivially computed and requires a model for estimating what proportion of looping 

interactions in each class in H are false positives. 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM3
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ10
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We hypothesized that V is approximately equal to the total number of interactions 

incorrectly labeled as differential when applying 3DeFDR-5C (holding all of its thresholds 

fixed) to a set of biological samples known to have no truly differential loops (i.e., a null 

biological sample set). We defined our null data set as a set of samples that are all replicates 

of a single cellular condition but are assigned a set of labels matching the different 

conditions in T. The key assumption of this approach is that that the false-positive rate 

(FPR) of calls on the null dataset (𝐹𝑃𝑅𝑛𝑢𝑙𝑙) is approximately equivalent to that of the real 

experimental dataset (𝐹𝑃𝑅𝑒𝑥𝑝), such that 𝐹𝑃𝑅𝑛𝑢𝑙𝑙  ≈  𝐹𝑃𝑅𝑒𝑥𝑝. We computed and controlled 

an empirical false discovery rate (eFDR) (Equation 11): 

 𝑒𝐹𝐷𝑅 =  
𝑛𝑛𝑢𝑙𝑙

𝑛𝑒𝑥𝑝
≈

𝑉

𝑅
  (11) 

 
where nexp is the total number of interactions classified as significantly differential in the real 

experimental dataset and nnull is the total number of interactions classified as significantly 

differential in the null dataset. 

We computed a piecewise interaction score thresholding scheme for each looping 

interaction class in the set of possible differential classifications H. To classify dynamic 

loops, 3DeFDR-5C applies a thresholding scheme based on the difference in interaction 

scores between conditions (Fig. 1). Using a sweep of IS difference thresholds d (see orange 

lines in Fig. 1), 3DeFDR-5C assigns every pixel in a 5C data set either to one of the 

differential classes in H or to the background, constitutive, or “other” class (as described 

above and below) and computes a class-specific eFDR for each differential looping 

interaction class h ∈ H as (Equation 12): 

 𝑒𝐹𝐷𝑅𝑑,ℎ  ≈
𝑛𝑛𝑢𝑙𝑙

𝑑,ℎ

𝑛𝑒𝑥𝑝
𝑑,ℎ   (12) 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ11
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Fig1
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Fig1
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ12
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where 𝑛𝑒𝑥𝑝
𝑑,ℎ

is the total number of interactions assigned to differential looping class h in the 

real experimental dataset at difference threshold d and 𝑛𝑛𝑢𝑙𝑙
𝑑,ℎ

 is the total number of 

interactions assigned to differential looping class h in the simulated null dataset at the same 

difference threshold d. 3DeFDR-5C adapts the distance threshold for each differential 

looping class to maintain a user-specified target empirical FDR threshold τ across all 

differential looping classes. For each looping interaction class h, we determined the distance 

threshold d at which eFDRd, h is closest to τ while remaining less than τ. Thus, each 

differential looping class h will have a unique difference threshold d to reach the study-

specific target eFDR threshold τ. Constitutive looping pixels are identified as those that are 

strong in all conditions and are not sufficiently differential to admit assignment to one of the 

differential classes (Additional File 3: Table S2). “Other” or “uncalled” pixels include those 

that pass the looping threshold but do not meet the requirements of any of the other classes 

(Additional File 3: Table S2). Overall, 3DeFDR-5C employs eFDR estimate control to guide 

the placement of IS thresholds to call differential looping classes. 

We did not have access to an experimental dataset with enough replicates of the 

same cellular condition to create a null replicate set directly from real 5C libraries. To avoid 

the high costs and labor required to run additional experiments, we modeled and created 

simulations of our existing experimental replicates to create additional simulated replicates. 

We constructed a null dataset from six simulated replicates 

(Snull = {A1sim, A2sim, A3sim, A4sim, A5sim, A6sim}) all based on the same biological condition 

(Tnull = {A, A, A})). 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM3
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM3
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5.4.5.4 Modeling and simulation of preprocessed replicates 

We simulated 5C replicates of the same condition at the level of fragment-level counts after 

conditional quantile normalization. Our rationale for simulating quantile normalized counts 

rather than raw counts was that doing so would allow us to omit library complexity, batch 

effect, and sequencing depth terms in our count-generating models. We simulated fragment-

resolution counts that have been quantile normalized but not balanced (resulting in 

simulated matrices comparable to 𝐶′
𝑡𝑠,𝑟) by parameterizing a different negative binomial 

distribution for each interaction as described below and then drawing a random variable 

from this distribution. 

To begin constructing our simulation-generating model, we computed the sample mean and 

sample variance of the preprocessed sample counts of a single interaction across replicates of 

the same condition as in Equations 13 and 14: 

 𝜇𝑡,𝑟,𝑖,𝑗 =
∑ 𝐶′

𝑡𝑠,𝑟,𝑖,𝑗
𝑛𝑡
𝑠 = 1

𝑛𝑡

  (13) 

 𝜎2
𝑡,𝑟,𝑖,𝑗 =

∑ (𝐶′
𝑡𝑠,𝑟,𝑖,𝑗 – 𝜇𝑡𝑠,𝑟,𝑖,𝑗)

2𝑛𝑡
𝑠 = 1

𝑛𝑡−1
  (14) 

where nt is the number of replicates of condition t and 𝐶′𝑡𝑠,𝑟,𝑖,𝑗 is the conditional quantile 

normalized 5C count value for the interaction between the 𝑖𝑡ℎ and 𝑗𝑡ℎ bins of region r in 

the 𝑠𝑡ℎ replicate of condition t. 

Most genomics experiments suffer from poor parameter estimation due to the low 

number of replicates that are financially and logistically feasible to generate for every 

biological condition. We did not use 𝜇𝑡,𝑟,𝑖,𝑗and 𝜎2
𝑡,𝑟,𝑖,𝑗 , computed from only 𝑛𝑡 = 2 

replicates, to directly parameterize the negative binomial (NB) counts models for each 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ13
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ14
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quantile normalized interaction count 𝐶′𝑡𝑠 ,𝑟,𝑖,𝑗. Instead, we modeled the mean-variance 

relationship (MVR) between 𝜇𝑡,𝑟,𝑖,𝑗 j and 𝜎2
𝑡,𝑟,𝑖,𝑗 , thereby leveraging the high-dimensional 

nature of our data set to improve our variance estimates. We stratified quantile normalized 

counts, 𝐶′𝑡𝑠,𝑟,𝑖,𝑗 for all regions by their linear genomic distance using overlapping 

stratification windows of different sizes depending on genomic distance. For distance regime 

1 (0–150 kb), we stratified the interactions using fine-grained, 12-kb-sized sliding windows 

with a 4-kb step. For distance regime 2 (151–600 kb), we stratified the interactions into 24-

kb-sized sliding windows with an 8-kb step. For distance regime 3 (601–1000 kb), we 

stratified the interactions into coarse-grained, 60-kb-sized sliding windows with a 24-kb step. 

For each window w in each distance regime, we modeled the MVR for each condition t by 

fitting the function 𝜎2 = 𝐴𝑡,𝑤𝜇2  +  𝜇  to the 𝜇𝑡,𝑟,𝑖,𝑗and 𝜎2
𝑡,𝑟,𝑖,𝑗values for all regions r and 

for all bin-bin pairs i, j whose linear genomic separation distance fell in window w. Prior to 

estimation of 𝐴𝑡,𝑤 , interactions with mean counts of one or less, or more than 2.5 standard 

deviations above the mean of mean counts for interactions in bin w were removed. The 

dispersion parameters, 𝐴𝑡,𝑤 , were then plotted as a function of genomic distance, and 

LOWESS smoothing with a smoothing fraction of 0.5 was used to compute the final 

dispersion estimates, 𝐴̅𝑡,𝑤. The predicted sample variance 𝜎̂2
𝑡,𝑟,𝑖,𝑗  for each individual 

interaction was then computed using the LOWESS-smoothed dispersion 

estimate 𝐴̅𝑡,𝑤 appropriate for the window w corresponding to the interaction distance |i − j| 

as in Equation 15: 

 𝜎̂2
𝑡,𝑟,𝑖,𝑗  = 𝐴̅𝑡,𝑤𝜇𝑡,𝑟,𝑖,𝑗

2  
+ 𝜇𝑡,𝑟,𝑖,𝑗  (15) 

 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ15
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We weighted the predicted variance value 𝜎̂2
𝑡,𝑟,𝑖,𝑗  against the original observed variance of 

the interaction 𝜎2
𝑡,𝑟,𝑖,𝑗 to generate a final weighted variance 𝜎𝑡,𝑟,𝑖,𝑗

2  for each interaction as in 

Equation 16: 

 𝜎𝑡,𝑟,𝑖,𝑗
2 =  𝛼𝜎̂2

𝑡,𝑟,𝑖,𝑗  + 𝛽𝜎2
𝑡,𝑟,𝑖,𝑗   (16) 

We chose to use α = β = 0.5 to achieve pairwise correlations on par with that of real 

replicates while improving the quality of our variance estimate with the predicted 

contribution. As shown in Additional file 4: Table S3, increasing α led to higher pairwise 

correlation between simulated replicates. Finally, we parameterized a negative binomial 

distribution for each 𝐶′𝑡,𝑟,𝑖,𝑗 interaction and generated simulated counts 𝐶′
𝑡,𝑟,𝑖,𝑗
𝑠𝑖𝑚

 from it as in 

Equation 17: 

 𝐶′
𝑡,𝑟,𝑖,𝑗
𝑠𝑖𝑚

 ~ 𝑁𝐵(𝜇𝑡,𝑟,𝑖,𝑗 , 𝜎𝑡,𝑟,𝑖,𝑗
2 )  (17) 

 

5.4.5.5 Creating the null replicate set 

Using the generative models described above, we created six simulated replicates of a chosen 

biological condition t ∈ T. For our results, we chose to use the NPC condition (which we 

will denote as condition A ∈ T), because this was the condition which showed the highest 

dispersion between replicates (Fig. 2) and would therefore result in the most conservative 

eFDR estimate. The simulated replicates that made up our null replicate set are shown in 

Equation 18: 

 𝑆𝑠𝑖𝑚 =  {𝐴1𝑠𝑖𝑚 , …  𝐴6𝑠𝑖𝑚 , 𝐵1𝑠𝑖𝑚 , …  𝐵6𝑠𝑖𝑚 , 𝐶1𝑠𝑖𝑚 , …  𝐶6𝑠𝑖𝑚}  (18) 

Users of 3DeFDR-5C may choose whichever condition they like when generating the null 

replicate set. 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ16
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM4
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ17
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Fig2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ18
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The simulated interaction counts 𝐶′𝑡𝑠 ,𝑟,𝑖,𝑗
𝑠𝑖𝑚  were then subjected to the matrix 

balancing, binning, modeling, and p value transformation steps described above. 3DeFDR-

5C takes as input the simulated replicate interaction scores 𝐼𝑆𝑡𝑠 ,𝑟
𝑠𝑖𝑚 and experimental replicate 

interaction scores 𝐼𝑆𝑡𝑠 ,𝑟 for each region r, replicate s, and condition t. 

5.4.5.6 Identification of the background interaction set 

Prior to the identification of differential looping interactions, we created a background null 

interaction set consisting of all interactions for which the interaction scores 𝐼𝑆𝑡𝑠,𝑟,𝑘,𝑙 of all 

replicates of every condition were less than a background threshold b as in Equation 19: 

 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑙𝑜𝑜𝑝𝑠 =  {(𝑟, 𝑘, 𝑙): 
𝑚𝑎𝑥

𝑡𝑠 ∈ 𝑆(𝐼𝑆𝑡𝑠,𝑟,𝑘,𝑙) <  𝑏}   (19) 

The exact threshold for background interactions that we used was b =  − 10 × log2(0.8), 

corresponding to a p value threshold of 0.8. Interactions not placed in this set were then 

passed on for further analysis for differential looping in the 3DeFDR-5C pipeline. 

5.4.5.7 Preliminary classification of differential looping interactions 

As outlined in Additional file 2: Fig. S1, to ultimately be classified as differential, a loop must 

pass thresholds for both baseline significance and IS difference across conditions. 

5.4.5.8 Baseline significance filtering 

To meet the criteria for differential looping for any differential classification h, an interaction 

must have 𝐼𝑆𝑡𝑠,𝑟,𝑘,𝑙  greater than a specific significance threshold g for all replicates in at least 

one condition in T as in Additional file 2: Fig. S1D and Equation 20: 

 𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝐿𝑜𝑜𝑝𝑠 =  {(𝑟, 𝑘, 𝑙): 𝑚𝑎𝑥
𝑡

[𝑚𝑖𝑛
𝑠

(𝐼𝑆𝑡𝑠,𝑟,𝑘,𝑙)] >  𝑔}  (20) 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ19
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ20
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The threshold for a significant looping interaction used in the results presented in the main 

figures was g =  − 10 × log2(0.165), corresponding to a p value threshold of 0.165. 

5.4.5.9 Thresholding interaction score differences across conditions 

Starting with the subset of significant loops across conditions, we then set out to classify 

interactions according to how much their interaction scores changed across cellular 

conditions (Additional file 2: Fig. S1E and Additional file 3: Table S2). For each interaction 

(r, k, l) in the set of significant loops (Equation 20), we computed the difference in 

interaction score between each possible pair of replicates belonging to different conditions. 

We then computed initial looping class assignments (Equation 3) across a sweep of IS 

difference thresholds d as shown in Additional file 3: Table S2. Additionally, in Additional 

file 3: Table S2, we provide the exact set of thresholds applied to obtain each possible 

looping classification of a bin-bin pair in dataset capturing three conditions. 

In 3DeFDR-5C, loop classifications are determined using this thresholding approach 

for each difference threshold across a sweep of all possible difference thresholds in a given 

data set. These classifications are considered preliminary prior to the application of the 

eFDR control procedure described in the next section. 

5.4.5.10 Final loop classification via an adaptive eFDR control procedure 

After obtaining preliminary classifications of each interaction across a sweep of IS difference 

thresholds, we determined each 𝐼𝑆𝑟,𝑘,𝑙 interaction’s final classification via the application of a 

classification-specific eFDR control procedure. For each possible loop classification h ∈ H, 

we computed its eFDR for every tested difference threshold d, acquiring a difference 

threshold-to-eFDR mapping for each class, 𝑒𝐹𝐷𝑅𝑑,ℎ, as in Equation 5. We next applied the 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM3
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ20
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ3
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM3
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#MOESM3
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ5
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eFDR threshold τ to this mapping, identifying the difference threshold d at which 

𝑒𝐹𝐷𝑅𝑑,ℎ is closest to but still less than τ, and report loop calls of class h at this distance 

threshold. We perform the eFDR controlling procedure for every differential looping 

class h ∈ H, and the combined set of loop calls for each class constitutes our final set of 

differential classified loops. 

Additionally, eFDR estimates can be computed as an average over a user-specified 

number, 𝑁𝑛𝑢𝑙𝑙−𝑠𝑒𝑡𝑠 , of null replicate sets as in Equation 21: 

 𝑒𝐹𝐷𝑅𝑑,ℎ =

1

𝑁𝑛𝑢𝑙𝑙−𝑠𝑒𝑡𝑠
∑ 𝑐𝑎𝑟𝑑({(𝑟,𝑘,𝑙)∈ ℎ𝑛𝑢𝑙𝑙

𝑑  }) 
𝑁𝑛𝑢𝑙𝑙−𝑠𝑒𝑡𝑠
𝑚=1

𝑐𝑎𝑟𝑑({(𝑟,𝑘,𝑙)∈ ℎ𝑒𝑥𝑝
𝑑  })

  (21) 

The numerator is now the average number of loops called as class h in the null data sets at 

difference threshold d. The approach in Equation 21 can reduce variability in eFDR 

estimates due to random differences between different simulation sets generated from the 

same counts-generating model. 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ21
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02061-9#Equ21
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6 Epigenomic States of Neuronal Activity Response 
 

Adapted from [123] 
 

Beyond study of lineage commitment, I also developed a version of 3DeFDR to identify 

chromatin loops that dynamically change in response to neural activity. I include this chapter 

as a further demonstration of the performance of the tool and as a secondary example of 

how such methods can be used to study epigenetic state changes that contribute to cellular 

decision making. These observations could be used to develop mechanistic model of 

epigenetic programming and incorporated into a multiscale model of such decision making, 

allowing the creation of a more realistic model.  

Neuronal activation induces rapid transcription of immediate early genes (IEGs) and 

longer-term chromatin remodeling around secondary response genes (SRGs). Here, we use 

high-resolution chromosome-conformation-capture carbon-copy sequencing (5C-seq) to 

elucidate the extent to which long-range chromatin loops are altered during short- and long-

term changes in neural activity. We find that more than 10% of loops surrounding select 

IEGs, SRGs, and synaptic genes are induced de novo during cortical neuron activation. 

IEGs Fos and Arc connect to activity-dependent enhancers via singular short-range loops 

that form within 20 min after stimulation, prior to peak messenger RNA levels. By contrast, 

the SRG Bdnf engages in both pre-existing and activity-inducible loops that form within 1–

6 h. We also show that common single-nucleotide variants that are associated with autism 

and schizophrenia are colocalized with distinct classes of activity-dependent, looped 

enhancers. Our data link architectural complexity to transcriptional kinetics and reveal the 
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rapid timescale by which higher-order chromatin architecture reconfigures during neuronal 

stimulation. 

 

6.1 Introduction  
 
Neurons have the remarkable ability to receive, transmit, and store information via a 

dynamic synaptic network. Experience-dependent neuronal activity regulates synaptic 

features such as dendritic outgrowth, maturation, elimination, and synaptic plasticity [124]. 

Neural activity governs synaptic structure and function via the upregulation of hundreds of 

activity response genes [125]. IEGs such as Fos (also known as c-fos) [126] [127] [128] 

and Arc (also known as Arg3.1) (refs. [129] [130]) are expressed within minutes after 

neuronal stimulation in a protein synthesis-independent manner, whereas SRGs are induced 

on the order of hours and require de novo protein synthesis [131] [132]. Enhancers—for 

example, synaptic activity responsive elements—have been identified using epigenetic 

signatures characteristic of noncoding regulatory activity and verified using reporter 

transgenes [133] [134] [135] [136] [137]. However, the precise genomic elements that are 

functionally linked to temporal expression patterns of each specific IEG and SRG remain 

elusive, in part because synaptic activity responsive elements are distributed across the 

genome in introns and noncoding regions and their specific target genes are generally 

unknown. 

Chromosome conformation capture (3C) techniques have been used recently to 

demonstrate that the mammalian genome folds into a hierarchy of structurally and 

functionally distinct architectural features, including chromosome territories [138], A and B 

compartments [67] [72], topologically associating domains (TADs) [139] [74], nested 
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subTADs [72], and long-range looping interactions [72]. The highest resolution maps so far 

have enabled detection of tens of thousands of loops genome-wide across multiple 

mammalian cell types [72] [80]. However, little is known about three-dimensional (3D) 

genome dynamics during paradigms of synaptic plasticity, partly owing to the paucity of 

high-resolution architecture maps at key time points during neural circuit activation. 

Knockout of CCCTC-binding factor (CTCF), the primary architectural protein responsible 

for connecting loops, results in intellectual disability [140] [141]  and severe synaptic and 

long-term potentiation defects in vivo [142]. Moreover, a recent study demonstrated that in 

vivo cohesin knockout in granule neurons disrupts the tactile startle response, which 

suggests that specific loops that are connected by cohesin may be required for learning [143]. 

Given the clear importance of chromatin architecture in brain function, there is a great need 

for studies that investigate how activity-dependent enhancers are temporally connected via 

long-range loops to regulate gene expression during a wide range of neuronal activity 

paradigms. 

Here, we investigate the extent to which loops are altered during short- and long-

term changes in neural activity, and to analyze the dynamic interplay between the 3D 

genome and the linear epigenome during the activity-dependent transcriptional response. We 

create high-resolution genome folding maps across more than 12 megabases (Mb) 

around Arc, Bdnf, Fos, Nrxn1, Syt1, and Nlgn3 using 5C-seq [91] [120] and a double 

alternating primer design [121]. The 5C-seq approach enables us to create high-complexity, 

fine-scale architecture maps to explore genome folding dynamics without bias toward a 

particular chromatin feature across seven acute or chronic time points of neural activity 

inhibition and activation. We demonstrate that activity-inducible enhancers engage in either 
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pre-existing or de novo loops connected to genes that exhibit 1.3- and 24-fold activity-

dependent increases in expression, respectively. We observe that IEGs Fos and Arc connect 

to activity-dependent enhancers via singular short-range loops that form within 20 min after 

stimulation, whereas the SRG Bdnf engages in both pre-existing and activity-inducible loops 

that form within 1–6 h. Genome-wide analyses confirm a model in which IEGs form fewer, 

shorter loops before maximum mRNA levels are reached, than the slower, more complex 

looping architectures formed by SRGs. We also identify a subclass of pre-existing loops that 

are anchored by enhancers decommissioned upon chronic, 24 h of neural activation. 

Unexpectedly, we find that common single-nucleotide variants (SNVs) linked to 

schizophrenia colocalize preferentially at genomic anchors of pre-existing loops connecting 

activity-decommissioned enhancers to activity-downregulated genes. By contrast, autism-

associated SNVs preferentially colocalize with loop anchors that connect activity-inducible 

enhancers to upregulated genes. Together, our data link 3D genome architectural complexity 

to transcriptional kinetics and uncover distinct architectural motifs associated with 

neuropsychiatric disorders. 

 

6.2 Results 

3D genome maps of dynamic loops during cortical neuron inhibition and activation 

We first created high-resolution maps of higher-order chromatin architecture after 24 h of 

pharmacologically induced low or high activity in primary neurons. We used an established 

in vitro model system in which murine cortical neurons were cultured for 15 d in vitro and 

then treated for 24 h with either 10 µM bicuculline (Bic) [144], which increases neuronal 

firing by blocking GABA (γ-amino butyric acid)-mediated inhibition, or 1 µM tetrodotoxin 



 

95 

(TTX) [145], a sodium channel blocker that inhibits neuronal firing (Fig. 1a and Extended 

Data Fig. 1a–c). Chronic pharmacological induction of activity results in multiple forms of 

synaptic plasticity, including homeostatic changes in AMPA-type glutamate neurotransmitter 

receptor levels at synapses [146]. Our model system enabled us to interrogate the 

transcriptional, epigenomic, and architectural features of the mammalian genome in non-

dividing, terminally differentiated cortical neurons across inactive (TTX-mediated activity 

inhibition), moderately active (Untreated), and highly active (Bic-mediated increased activity) 

states. 

 

https://www.nature.com/articles/s41593-020-0634-6#Fig1
https://www.nature.com/articles/s41593-020-0634-6#Fig7
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Figure 6.1. Identification of dynamic and invariant looping interactions across neuronal 

activity states.  

a, Primary cultured cortical neuron preparation used to interrogate 3D genome changes 

during low, basal or high neuronal activity states. b, RNA-seq data in Bic and TTX 

conditions with selected genes highlighted by colored dots. c, Interaction frequency 

heatmaps of 1–3-Mb regions surrounding Bdnf and Syt1 genes (labeled in green) across ES 

cells, NPCs, and cortical neurons (data analyzed from ref. [119]). d, Interaction frequency 
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heatmaps of the regions presented in c across TTX-treated, untreated, and Bic-treated 

DIV16 cortical neurons. e, Scatterplot of the interaction scores of thresholded pixels in TTX 

and Bic conditions. f, Activity-inhibited (TTX-only), activity-induced (Bic-only), and activity-

invariant (constitutive) loops after thresholding (Supplementary Methods). g, Background-

corrected contact frequencies across the TTX, Untreated and Bic conditions for each 

looping class overlaid on kernel density estimate violin plots. n = 340 activity-induced 

interaction pixels, 7,992 constitutive interaction pixels and 81 activity-decommissioned 

interaction pixels as represented in e. h, Interaction score heatmaps and thresholded loops 

demonstrating activity-induced (Bic-only) loops created by Fos (top) and the Syt1 TSS 

(bottom). 

 
We used 5C-seq and a double alternating primer design [121] to create high-resolution maps 

of genome folding in 12.2 Mb surrounding the IEGs Arc and Fos, the SRG Bdnf, the synaptic 

scaffold genes Nrxn1 and Nlgn3, and the synaptic vesicle gene Syt1 for a total of 157 unique 

transcripts (Fig. 1, Extended Data Fig. 1d,e, and Supplementary Table 1). Our genome-

wide RNA-seq data confirmed that Arc, Fos, and Bdnf were upregulated approximately 10- to 

100-fold in Bic versus TTX conditions, whereas Nrxn1, Nlgn3, and Syt1 were unchanged 

(Fig. 1b and Supplementary Tables 2–4). As expected, under the Untreated (basal activity) 

condition we observed an intermediate level of Arc, Fos, and Bdnf expression between Bic 

(high activity) and TTX (inactive) conditions (Extended Data Fig. 1b,c). To confirm data 

quality, we compared the highest resolution Hi-C maps published so far in mouse embryonic 

stem (ES) cells, neural progenitor cells (NPCs), and in vitro differentiated cortical 

neurons (Fig. 1c, Extended Data Fig. 1d, and Supplementary Table 5) to our 5C maps 

(Fig. 1d, Extended Data Fig. 1e, and Extended Data Fig. 2). 5C maps from our mature 

primary cortical neurons were highly correlated with and exhibited similar loops as published 

Hi-C maps from ES cell-derived cortical neurons (Extended Data Fig. 2c–e). We confirmed 

https://www.nature.com/articles/s41593-020-0634-6#MOESM1
https://www.nature.com/articles/s41593-020-0634-6#Fig1
https://www.nature.com/articles/s41593-020-0634-6#Fig7
https://www.nature.com/articles/s41593-020-0634-6#MOESM1
https://www.nature.com/articles/s41593-020-0634-6#Fig1
https://www.nature.com/articles/s41593-020-0634-6#MOESM1
https://www.nature.com/articles/s41593-020-0634-6#MOESM3
https://www.nature.com/articles/s41593-020-0634-6#Fig7
https://www.nature.com/articles/s41593-020-0634-6#Fig1
https://www.nature.com/articles/s41593-020-0634-6#Fig7
https://www.nature.com/articles/s41593-020-0634-6#MOESM1
https://www.nature.com/articles/s41593-020-0634-6#Fig1
https://www.nature.com/articles/s41593-020-0634-6#Fig7
https://www.nature.com/articles/s41593-020-0634-6#Fig8
https://www.nature.com/articles/s41593-020-0634-6#Fig8
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high reproducibility of loops across four 5C replicates taken across two independent batches 

of neuronal cultures (Supplementary Table 6, Extended Data Fig. 3a,b, and Extended Data 

Fig. 4). Thus, we have created high-complexity, ultra-high-resolution maps of genome 

folding across three neuronal activity states. 

We next set out to quantify the extent to which loops are altered across different 

activity states. We normalized the intrinsic biases in 5C data, binned maps to 4-kb matrix 

resolution, and applied our previously published modeling approaches to identify loops with 

statistically significant interaction frequency above the local distance-dependence and TAD 

or subTAD background [91] [120] [108] (Extended Data Fig. 5a and Supplementary 

Methods). We formulated a statistical method, 3DeFDR (ref. [61]), to stratify loops into 

invariant and activity-state-specific classes by using differences in interaction frequency 

across inactive and highly active neurons as thresholds (Fig. 1e, Supplementary Table 6, 

and Supplementary Methods), resulting in the sensitive detection of 215 activity-invariant, 29 

activity-induced, and 9 activity-decommissioned loops within the 12.2 Mb of the genome 

queried (Fig. 1f and Extended Data Fig. 5b). We observed that activity-invariant loops 

exhibited high interaction frequencies across Untreated, TTX, and Bic conditions (Fig. 1g). 

Importantly, activity-induced and activity-decommissioned loops showed two- to threefold 

upregulations or downregulations of interaction frequency, respectively, but were still lower 

in overall looping strength than the activity-invariant contacts (Fig. 1g). We confirmed that 

an enhancer–promoter loop that has been reported previously as activity-dependent 

at Fos via 3C-PCR (ref. [147]) was classified here as an activity-induced loop (Fig. 1h, top) 

and that additional activity-induced loops occurred across our 5C regions (Fig. 1h, bottom). 

https://www.nature.com/articles/s41593-020-0634-6#MOESM3
https://www.nature.com/articles/s41593-020-0634-6#Fig9
https://www.nature.com/articles/s41593-020-0634-6#Fig10
https://www.nature.com/articles/s41593-020-0634-6#Fig11
https://www.nature.com/articles/s41593-020-0634-6#MOESM1
https://www.nature.com/articles/s41593-020-0634-6#MOESM1
https://www.nature.com/articles/s41593-020-0634-6#Fig1
https://www.nature.com/articles/s41593-020-0634-6#MOESM3
https://www.nature.com/articles/s41593-020-0634-6#MOESM1
https://www.nature.com/articles/s41593-020-0634-6#Fig1
https://www.nature.com/articles/s41593-020-0634-6#Fig11
https://www.nature.com/articles/s41593-020-0634-6#Fig1
https://www.nature.com/articles/s41593-020-0634-6#Fig1
https://www.nature.com/articles/s41593-020-0634-6#Fig1
https://www.nature.com/articles/s41593-020-0634-6#Fig1
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These data highlight that both activity-invariant and activity-dynamic loops encompass 

IEGs, SRGs, and synaptic genes. 

Activity-dependent levels of gene expression are predicted by looping and enhancer 

acetylation 

We quantified the relationship between activity-dependent changes in loop strength, 

enhancer acetylation, and gene expression. As the histone mark H3 lysine 27 acetylation 

(H3K27ac) correlates with enhancer and promoter activity, we conducted chromatin 

immunoprecipitation followed by sequencing (ChIP–seq) of H3K27ac to identify changes in 

putative noncoding enhancer elements genome-wide in neural activity states (Supplementary 

Methods and Supplementary Tables 7–10). We noticed a strong correlation between activity-

dependent changes in promoter H3K27ac signal and gene expression (Fig. 2a), whereas the 

total sum interaction frequency made by each gene showed no correlation with gene 

expression (Fig. 2b). Instead of total interaction frequency, we next used only bona fide 

thresholded loops (Fig. 1f). We applied an adapted activity-by-contact (ABC) model [148] to 

identify the single loop or enhancer for each gene that displayed the maximum value of loop 

strength × enhancer H3K27ac signal (Fig. 2c and Supplementary Methods). Importantly, at 

this subset of loops we observed a strong increase in interaction strength at the most 

strongly activity-upregulated genes (Fig. 2d), as well as a consistent increase in H3K27ac 

signal at enhancers that connected through these loops to activity-upregulated genes 

(Fig. 2e). These data indicate that the signal strength of epigenetic marks at distal regulatory 

elements and the interaction frequency of their long-range loops correlate with activity-

dependent gene expression. 

 

https://www.nature.com/articles/s41593-020-0634-6#MOESM1
https://www.nature.com/articles/s41593-020-0634-6#MOESM1
https://www.nature.com/articles/s41593-020-0634-6#MOESM1
https://www.nature.com/articles/s41593-020-0634-6#MOESM3
https://www.nature.com/articles/s41593-020-0634-6#Fig2
https://www.nature.com/articles/s41593-020-0634-6#Fig2
https://www.nature.com/articles/s41593-020-0634-6#Fig1
https://www.nature.com/articles/s41593-020-0634-6#Fig2
https://www.nature.com/articles/s41593-020-0634-6#MOESM1
https://www.nature.com/articles/s41593-020-0634-6#Fig2
https://www.nature.com/articles/s41593-020-0634-6#Fig2
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Figure 6.2. Activity-induced enhancers connected to distal target genes via looping 

interactions predict activity-stimulated expression.  

a,b, Boxplots of the fold changes in promoter acetylation (a) and total interaction frequency 

(b) of genes grouped by fold change in expression. n = 69 independent genes. c, Schematic 

representation of the algorithm used to pair each gene with a single loop or enhancer that 

offered the highest predictive value. Only genes that formed such a loop (n = 45) were 

queried in the following models. obs/exp, observed/expected. d,e, Boxplots of the loop 

strength (d) and looped enhancer acetylation (e) after loops and enhancers are matched to 

genes using the schema presented in c. Boxes in a–e show the range from lower to upper 

quartiles, with the median line; whiskers extend to minimum and maximum data points 

within 1.5 times the interquartile range. f,g, Cartoon representations and scatterplots of the 

two ‘null’ models of the fold change in Bic-over-TTX (Bic/TTX) gene expression: promoter 

acetylation alone (model 1, f), promoter acetylation plus the acetylation of the nearest 

enhancer within 200 kb of the TSS (model 2, g). Fold change in expression is plotted on the 
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y axis, and the fold change in acetylation (of the promoter (f) and nearest enhancer (g) are 

plotted on the x axes. The fold change in expression in g has been adjusted to remove the 

values predicted by the promoter activity term in the model. Values have been min–max 

scaled to allow cross-model comparison. h–j, Cartoon representations and scatterplots of 

loop-containing models, plotted in the same manner as in g. In f–j, n represents the number 

of genes analyzed, the best fit line is shown in red, 95% confidence intervals are shown in 

gray. k, R2 values for each of the three models. l, Barplot of explanatory variable coefficients 

from models 1–5. enh, enhancer. *P < 0.05, **P < 0.005 (two-tailed Student’s t-test); error 

bars represent standard error of parameter elements. 

 
Classic examples of activity-dependent enhancers, such as those for Fos and Arc [133] [134] 

[147], are relatively close (≤40 kb) to the promoters of these genes, but in many cases the 

nearest enhancers are insufficient to explain transcriptional regulation. We constructed 

multivariate linear models of activity-dependent gene expression (Supplementary Methods). 

Promoter H3K27ac alone explained 51.7% of the variance in gene expression after neuronal 

activation in our 5C regions (Fig. 2f,k–l). By adding the covariate of the H3K27ac signal at 

the nearest enhancer, we only marginally increased the performance of the model 

(Fig. 2g,k–l). We then built a third model with covariates of activity-dependent H3K27ac at 

(i) promoters and (ii) only distal enhancers engaged in maximum ABC-thresholded loops 

with their target genes (Fig. 2c and Supplementary Methods). Our third, ‘long-range 

enhancer’ model markedly increased the variance of activity-dependent expression explained 

(Fig. 2h,k–l). Surprisingly, models that used loop strength (Fig. 2i) or the ABC value (loop 

strength × enhancer H3K27ac) between the selected enhancer and promoter (Fig. 2j) as 

covariates correlated similarly well with gene expression changes (Fig. 2i–l). These trends 

remained consistent when we analyzed the promoter and nearest enhancer models for genes 

https://www.nature.com/articles/s41593-020-0634-6#MOESM1
https://www.nature.com/articles/s41593-020-0634-6#Fig2
https://www.nature.com/articles/s41593-020-0634-6#Fig2
https://www.nature.com/articles/s41593-020-0634-6#Fig2
https://www.nature.com/articles/s41593-020-0634-6#MOESM1
https://www.nature.com/articles/s41593-020-0634-6#Fig2
https://www.nature.com/articles/s41593-020-0634-6#Fig2
https://www.nature.com/articles/s41593-020-0634-6#Fig2
https://www.nature.com/articles/s41593-020-0634-6#Fig2
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that only form long-range loops (Extended Data Fig. 6a–e). Together, these data indicate 

that long-range enhancers and loop strength can provide significant improvement in the 

prediction of activity-dependent expression compared to proximal, nearby enhancers. 

Unique architectural motifs connect activity-dependent genes and enhancers 

We next examined the extent to which looping reconfiguration occurred in parallel with 

activity-dependent enhancer changes or whether enhancers were pre-wired to their targets 

independent of their activation state (Fig. 3a). We first stratified H3K27ac peaks into 

activity-invariant (n = 14,424), activity-induced (n = 6014), and activity-decommissioned 

(n = 5402) putative enhancers (Fig. 3b,c, Supplementary Methods, Extended Data Fig. 6f–h, 

and Supplementary Tables 11–13). We quantified the degree of overlap between our 

enhancer classes and the anchors of our looping interactions. We identified three major 

architectural features for further exploration: (i) activity-induced loops anchored by activity-

induced enhancers (n = 11) (class 1); (ii) activity-invariant loops pre-wired in inactive neurons 

and anchored by activity-induced enhancers (n = 41) (class 2); and (iii) activity-invariant 

loops pre-wired in inactive neurons and anchored by activity-decommissioned enhancers 

that lose their H3K27ac signal upon chronic neuronal activation (n = 15) (class 3) 

(Fig. 3d,e). These data reveal a complex long-range cis-regulatory landscape in which diverse 

loop classes might have unique roles in regulating activity-dependent gene expression. 

 

https://www.nature.com/articles/s41593-020-0634-6#Fig12
https://www.nature.com/articles/s41593-020-0634-6#Fig3
https://www.nature.com/articles/s41593-020-0634-6#Fig3
https://www.nature.com/articles/s41593-020-0634-6#MOESM1
https://www.nature.com/articles/s41593-020-0634-6#Fig12
https://www.nature.com/articles/s41593-020-0634-6#MOESM3
https://www.nature.com/articles/s41593-020-0634-6#MOESM3
https://www.nature.com/articles/s41593-020-0634-6#Fig3
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Figure 6.3. Unique topological motifs underlie the activity-dependent transcriptional 

response.  

a, Cartoon representation of hypothesized models in which activity-induced enhancers 

operate to control gene expression via poised (top) or dynamic (bottom) loops. b, 

Scatterplot of enhancer acetylation across Bic and TTX conditions, thresholded by fold 

change in input-normalized signal and classified into activity-induced, activity-invariant and 

activity-decommissioned enhancers. c, Acetylation heatmaps of classified dynamic 

enhancers. d, Cartoon representations of the top three loop-enhancer classes of interest. 

Classified loop anchor colors match those in b, c and e. e, Stacked barplot displaying the 

percent of loops in each looping class with a classified enhancer at either of its anchors. A 

key of enhancer classes is shown in b. The number of loops in each subset is shown at the 

top of the bar. Loops could only be assigned to one enhancer class; the priority order of 

enhancer classes is from the bottom of the barplot (activity-induced enhancers, considered 

first) to the top (TSSs, considered last). f, Boxplots of background-normalized contact 
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frequencies for looping pixels in the five looping classes. Boxes in f–h show the range from 

lower to upper quartiles, with the median line; whiskers extend to minimum and maximum 

data points within 1.5 times the interquartile range. P values in f–h were calculated using the 

two-tailed Wilcoxon signed-rank test. The number of loops in each class is listed above 

boxes. n.s., not significant. g, Fold change in expression (log2[Bic/TTX]) of the transcripts 

whose promoters intersect each looping class. The number of genes in each class is listed 

above boxes. h, Expression (TPM) of the genes whose promoters fall opposite activity-

induced (class 2) and activity-decommissioned (class 3) enhancers in genome-wide cortical 

neuron loops (original data from ref [119]). The number of genes in each class is listed above 

boxes. i, Percent of differentially expressed (DE) genes (parsed using the Sleuth [148] Wald 

test, q < 0.05) in each genome-wide looping class that are upregulated in Bic compared to 

TTX (light gray) or downregulated in Bic compared to TTX (dark gray). n = number of 

genes in each set. j, Gene ontology enrichment calculated using Webgestalt for transcripts 

presented in g and h. Class 1 genes are from 5C regions only (g, n = 3); class 2 and 3 genes 

were parsed using genome-wide analyses (h, n = 2,139 class 2, n = 1,044 class 3). Only the 

top five terms for class 2 could be shown. See Extended Data Fig. 7e for the remaining 

terms at a false discovery rate (FDR) of < 0.05. ncRNA, noncoding RNA. 

 
We then investigated the potential structural and functional properties of our three loop 

classes. We noticed that activity-induced loops anchored by activity-induced enhancers (class 

1) underwent a 2.2-fold change in interaction frequency after 24 h of Bic treatment (Fig. 3f). 

Activity-invariant loops anchored by activity-decommissioned enhancers showed a strong 

and unchanged interaction frequency (class 3, Fig. 3f). By contrast, interaction strength 

further strengthens after neuronal stimulation in the case of activity-invariant loops pre-

wired to activity-induced enhancers (class 2, Fig. 3f). Importantly, although class 1 loops are 

a rare occurrence, they corresponded to a 24-fold increase in activity-induced expression 

(Fig. 3g and Extended Data Fig. 7a). Comparatively more genes engaged in class 2 loops but 

https://www.nature.com/articles/s41593-020-0634-6#Fig13
https://www.nature.com/articles/s41593-020-0634-6#Fig3
https://www.nature.com/articles/s41593-020-0634-6#Fig3
https://www.nature.com/articles/s41593-020-0634-6#Fig3
https://www.nature.com/articles/s41593-020-0634-6#Fig3
https://www.nature.com/articles/s41593-020-0634-6#Fig13


 

105 

on average displayed a modest 1.3-fold increase in expression in active neurons (Fig. 3g and 

Extended Data Fig. 7a). These results suggest that, within our 5C regions, activity-induced 

loops are rare and connect to genes with large activity-dependent increases in expression, 

whereas pre-existing loops are more abundant but correlate with only minor gene expression 

changes. 

To extend our findings genome-wide, we assessed the link between activity-invariant 

loop classes 2 and 3 and gene expression using the high-resolution Hi-C maps published in 

primary cortical neurons [119] and our activity-dependent RNA-seq and ChIP–seq data 

(Fig. 3h and Extended Data Fig. 7b–d). We applied published methods [72] to identify 

24,937 loops in cortical neurons (Extended Data Fig. 7c,d and Supplementary Tables 14–16) 

and stratify them into class 2 (n = 4,764) and class 3 (n = 3,259) groups (Supplementary 

Methods). Consistent with 5C loops, genes connected to activity-induced enhancers via 

activity-invariant loops (Class 2) displayed a modest but significant upregulation in 

expression after neuronal activation when we queried genome-wide loops (Fig. 3h and 

Extended Data Fig. 7b). By contrast, genes looped to activity-decommissioned enhancers via 

activity-invariant loops (class 3) genome-wide exhibited a slight reduction in expression after 

neural activation (Fig. 3h). The majority of differentially expressed genes in class 2 versus 

class 3 loops were upregulated and downregulated, respectively, due to activity (Fig. 3i). 

Together, our data reveal that the genes connected to activity-induced enhancers via rare de 

novo loops show the largest effect size in activity-dependent expression. Genes can also 

exhibit modest but notable upregulation or downregulation when connected via pre-wired, 

activity-invariant loops to activity-induced (class 2) or activity-decommissioned (class 3) 

https://www.nature.com/articles/s41593-020-0634-6#Fig3
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https://www.nature.com/articles/s41593-020-0634-6#Fig3
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enhancers, respectively. Pre-existing class 2 and class 3 loops are markedly more abundant in 

number than class 1 loops. 

We investigated the ontology of the long-range target genes anchoring each looping 

class. Class 1 loops connect Fos, Bdnf, and  to activity-inducible enhancers, suggesting 

that the rapid upregulation of IEGs and SRGs involves the induction of de novo loops and 

de novo enhancers during neural activation (Fig. 3j). Class 2 pre-existing loops connect 

genes involved in several general cellular functions such as RNA processing to activity-

induced enhancers, whereas class 3 pre-existing loops anchored by activity-decommissioned 

enhancers connect genes linked to synaptic organization and the regulation of synaptic 

activity (Fig. 3j and Extended Data Fig. 7f). We were intrigued by the placement of synaptic 

genes in class 3 loops given that they connect to enhancers that are turned off during 

chronic (24 h) high activity levels. We therefore further stratified genes connected in class 3 

loops by those (i) undergoing a 1.5-fold downregulation, (ii) undergoing a1.5-fold 

upregulation, and (iii) remaining unchanged after neural activity (Supplementary Methods). 

We found that the cohort of genes undergoing decreased expression in class 3 loops were 

predominantly involved in synapse organization and signaling, including Gria1, the main 

AMPA receptor subunit (Fig. 3j and Extended Data Fig. 7f). These results reveal a potential 

mechanistic role for class 3 loops and activity-decommissioned enhancers in facilitating 

homeostatic plasticity during chronic high neural activity. 

IEGs form shorter and less complex loops than SRGs 

It is well established that IEGs are activated on the order of seconds to minutes in a 

translation-independent manner following neuronal activation, whereas SRGs are activated 

on the order of minutes to hours (ref. [125]). Consistent with this idea, we re-analyzed a 

https://www.nature.com/articles/s41593-020-0634-6#Fig3
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recently published RNA-seq time course during pharmacological neuronal activation [132] 

and found maximum activation of the IEGs Fos and Arc by 60 min, whereas 

maximum Bdnf upregulation occurred after 6 h (Fig. 4a). Visual inspection of the 5C 

heatmaps revealed two unexpected links between the kinetics of activity-dependent 

transcription and loop complexity (Fig. 4b). First, IEGs in our 5C regions form simple 

short-range loops with activity-dependent enhancers, and thus fall nearly exclusively in the 

class 1 category. For example, after 24 h of Bic treatment, Fos was upregulated more than 

100-fold (Fig. 4c), but we identified only a single 40-kb-sized class 1 loop with an activity-

induced enhancer (Fig. 4d). Similarly, Arc was upregulated more than 12-fold after neural 

activation (Fig. 4c) and also connected in a singular loop with an activity-induced enhancer 

(Fig. 4e). We note that the Arc interaction falls below our 30-kb distance threshold and 

therefore is not formally added to the class 1 loop list (Fig. 3g–j). By contrast, SRG Bdnf was 

upregulated 30-fold after neuronal activation (Fig. 4c) and connected into a complex 

network of multiple long-distance class 1 and class 2 loops (Fig. 4f–i), including: (i) at least 

two class 1 activity-induced loops anchored by activity-induced enhancers, but spanning 

longer distances (840 kb and 1,700 kb) than those formed with IEGs (Fig. 4g,h); and (ii) at 

least two class 2 activity-invariant loops anchored by activity-induced enhancers (Fig. 4h,i). 

The loops formed by Bdnf preferentially targeted its first promoter, from which we observed 

the highest level of transcription and strongest upregulation after 24 h of Bic-induced 

neuronal activation (Extended Data Fig. 8). Loops connected by Bdnf were significantly 

longer than those connected by Fos and Arc (Fig. 4j). These observations provide the basis 

for our working hypothesis that loop complexity and size underlie distinct epigenetic 

mechanisms governing IEG versus SRG upregulation in response to neuronal activation. 
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Figure 6.4. IEGs form shorter and less complex loops than SRGs.  
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A, Expression timing of Bdnf, Fos and Arc following the initiation of cortical neuron 

stimulation (from ref. [133]). N = 13 0-min, n = 4 20-min, n = 7 60-min, and n = 6 360-min 

replicates. The center line connects mean estimates, and error bars represent bootstrapped 

95% confidence intervals. B, Cartoon representations of two loop classes identified in 

Fig. 3. C, Expression (TPM) of the Arc, Bdnf and Fos genes across the DIV5, untreated 

(Unt), TTX, and Bic conditions. N = 3, with mean lines plotted. D, Loop calls (left), TTX 

interaction score heatmap (middle) and Bic interaction score heatmap (right) of a ~65-kb 

region surrounding the Fos gene (green). Plotted beneath maps are cortical neuron CTCF 

(ref. [119]), Bic H3K27ac and TTX H3K27ac tracks. The Bic-specific enhancer underlying 

the Bic loop is highlighted in green. E, TTX interaction score heatmap (left) and Bic 

interaction score heatmap (right) of a ~35-kb region surrounding the Arc gene (green). F), 

TTX interaction score heatmap (top), Bic interaction score heatmap (middle), and loop calls 

(bottom) of a ~2-Mb region surrounding the Bdnf gene (green). Bic loops are shown in 

orange and constitutive loops in gray. G–I, Interaction score heatmaps of three looping 

regions highlighted in f across TTX (left) and Bic (right) conditions. Plotted beneath maps 

are cortical neuron CTCF (ref. [119]), Bic H3K27ac and TTX H3K27ac tracks. Bic-specific 

enhancers are shown in orange and CTCF peaks highlighted in red. J, The genomic distance 

spanned by each loop formed by the Fos (n = 3) and Bdnf (n = 17) genes. K,l, Boxplots 

overlaid by stripplots of loop count (k) and maximum looping distance (l) for IEGs (defined 

as rPRGs in ref. [133]), translation-independent SRGs (tiSRGs, defined as dPRGs in ref. 

[133]), translation-dependent SRGs (tdSRGs), and all genes. P values are from two-sided 

Mann–Whitney rank tests comparing IEGs to other 3 classes. Boxes in k,l show the range 

from lower to upper quartiles, with the median line; whiskers extend to minimum and 

maximum data points within 1.5 times the interquartile range. N represents the number of 

genes in each class. M, Model representation of the distinct looping patterns of 

the Bdnf and Fos genes. 

 
We next explored loop complexity genome-wide using published annotations of 

IEGs and SRGs [132] and the 24,937 loops from ES cell-derived mouse cortical neuron Hi-

C maps (Extended Data Fig. 7c,d and Supplementary Tables 14–16). Published Hi-C data 

https://www.nature.com/articles/s41593-020-0634-6#Fig3
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represent only the untreated activity state, therefore we could not assess activity-induced 

loops (class 1) genome-wide. Nevertheless, we were able to integrate our data on genome-

wide enhancers with cortical neuron Hi-C data to query the complexity of activity-invariant 

loops surrounding known activity-dependent genes genome-wide. Consistent with our locus-

specific 5C results, we found that rapid response IEGs form significantly fewer loops 

(Fig. 4k), shorter loops (Fig. 4l), and connect to a lower number of activity-induced 

putative enhancers (Extended Data Fig. 8c) than both translation-independent and -

dependent SRGs genome-wide. Together, these data are consistent with our working model 

in which SRGs engage in a complex network of long-range loops, whereas IEGs form 

simple, short-range loops to activity-induced enhancers to facilitate rapid activation 

independent of new protein synthesis (Fig. 4m). 

Differential IEG and SRG looping kinetics after an acute neural activation time 

course 

We next examined the kinetics of loop formation for IEGs and SRGs. We created 5C 

architecture maps in an acute time course of 0, 5, 20, 60, and 360 min of pharmacologically 

induced high activity in primary cultured mouse cortical neurons. To normalize baseline 

activity across different cultures, we pre-silenced our neural preparations by 24 h of TTX 

treatment before the addition of Bic (Fig. 5 and Supplementary Methods). We found that 

the class 1 loops surrounding Fos and Arc achieved peak contact frequency as quickly as 

20 min after initiating stimulation (Fig. 5a,b). We also created total RNA-seq libraries at 

each time point and observed that the enhancer–promoter loop strength for IEGs peaks 

before maximum mRNA levels occur (60 min after stimulation) (Fig. 5c,d). Importantly, at 

early time points Fos interacted with an additional enhancer (Fig. 5a, ‘Enhancer 2’) 

https://www.nature.com/articles/s41593-020-0634-6#Fig4
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compared to its loop induced by 24 h of activity (Fig. 4d, ‘Enhancer 1’), suggesting dynamic 

engagement with differential activity-induced enhancers over short time scales. We next 

measured enhancer activity dynamics by quantifying the RNA-seq signal that mapped to 

each enhancer (enhancer RNAs, eRNAs)12 (Supplementary Methods). We verified that our 

eRNA analysis approach produced activity-dependent dynamic patterns that resembled a 

previously published activity-induced eRNA data set12 and our own H3K27ac ChIP–seq 

data (Extended Data Fig. 9). The enhancers that loop to both Fos and Arc peak in activity 

20 min after neuronal activity, and exhibit lower activity at all other time points (Fig. 5c,d). 

Although the extent to which loops causally drive gene expression is still under investigation, 

our observation that class 1 activity-induced enhancers and loops connect rapidly to IEGs 

before mRNA levels peak supports the assertion that the two are functionally linked. 

 
 

https://www.nature.com/articles/s41593-020-0634-6#Fig4
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Figure 6.5. Activity-induced loops form before and persist after peak mRNA levels of 

IEGs.  

a,b, Interaction score heatmaps surrounding Fos (a) and Arc (b) across 6 h of Bic treatment 

(preceded by 24 h of TTX silencing). Heatmap coordinates are identical to Fig. 4d (Fos) and 

Fig. 4e (Arc). Enhancers quantified in c,d are represented by green boxes. The magenta 

arrowhead denotes the Fos loop that is present only at early time points. c,d, Quantifications 

of Fos (c) and Arc (d) enhancer activity (top, quantified by eRNA signal), loop strength 

(middle, observed/expected 5C counts), and gene expression (bottom, TPM) across the 

activation time course. e,f, Interaction score heatmaps of activity-induced loops formed by 

the first Bdnf promoter. Heatmap coordinates in f, ‘Enhancer 2’, match those in Fig. 4g. 

Heatmap coordinates in e, ‘Enhancer 1’, represent a zoomed-in subset of Fig. 4h to 

highlight an activity-induced loop. Enhancers quantified in g,h are represented by green 

boxes. g,h, Quantifications of Bdnf enhancer 1 (g) and enhancer 2 (h) activity (top) and loop 

strength (middle), coupled with the expression (bottom) of the Bdnf isoform with the 

strongest expression (see Extended Data Fig. 9). eRNA signal and gene expression are 

plotted as the mean of n = 2 RNA-seq replicates, error bars represent the 95% CI. 

 
To test our hypothesis that loop dynamics contribute to the relatively delayed 

expression of SRGs (Fig. 4k–n), we quantified interaction frequency, enhancer activity, and 

mRNA levels for the class 1 loops formed by Bdnf (Fig. 4g,h). Consistent with our 

hypothesis, Bdnf class 1 loops did not interact until 60 (Figs. 4h and 5e,g, ‘Enhancer 1’) or 

360 minutes (Figs. 4g and 5f,h, ‘Enhancer 2’) after stimulation. Bdnf enhancers and 

expression were upregulated in parallel with loops and did not reach maximum signal in our 

time course until 360 min of stimulated activity (Fig. 5g,h). Thus, Bdnf loop and enhancer 

dynamics are significantly delayed in comparison to those of Fos and Arc, corroborating our 

model that slower interaction kinetics may contribute to SRGs delayed expression. 
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6.3 Discussion 

It has been known for decades that information storage in the brain requires de novo gene 

expression, but there is little consensus on whether and how specific epigenetic 

modifications maintain transcriptional signatures induced by neural activity. Here, we show 

that neuronal activity results in dynamic changes in the 3D genome that may inform precise 

temporal control of activity-dependent gene expression over short and long time scales. 

Using chronic (24 h) neuronal activation and inhibition conditions, we demonstrate 

that activity-inducible enhancers engage in either de novo (class 1) or pre-existing (class 2) 

loops. Class 1 and class 2 loops connect to genes exhibiting a 24- and 1.3-fold activity-

dependent increase in expression, respectively. Our 5C and genome-wide Hi-C results 

support our working model in which poised or pre-existing loops that connect to target 

genes in advance of activity-induced enhancer activation are abundant but have a modest 

effect on gene expression. Moreover, our 5C results suggest that loops that are induced by 

neural stimulation are relatively rare but exhibit a markedly higher effect on activity-

dependent upregulation of distal target genes. The quantitative effect of these two looping 

classes on activity-dependent gene expression levels will be more precisely estimated in the 

future with genome-wide Hi-C and diverse activity-induction conditions. Future studies that 

focus on genome-wide detection of short-range class 1 architectural features, 

like Arc and Fos, will require maps with extremely high resolution using Micro-C [148] or 

high read-depth Hi-C created with restriction enzymes that cut 4-bp restriction sites. 

A long-standing question in the transcription field is to what degree enhancer 

activation and/or looping strength are linked to gene expression. We used our loops and 

linear epigenetic data in chronic activity inhibition and induction conditions to create simple 
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linear models of activity-dependent expression changes. We find that H3K27ac signal at 

distal looped enhancers is a notably better predictor of activity-dependent target gene 

expression than nearest enhancers. The ability of our models to explain the variance of 

activity-dependent gene expression was achieved by building on a critical advance in the 

functional genomics field. In the ABC model, the multiplication of enhancer activity and 3D 

interaction frequency was the best predictor of enhancer–target gene pairs [148]. We used 

the ABC approach to choose a specific enhancer linked to each gene in our model, and this 

enabled us to prioritize and identify the looped enhancers that most significantly contributed 

to activity-dependent gene expression. Together, these data suggest that enhancer–target 

gene prediction would be facilitated by the use of chromatin architecture maps, instead of 

relying on the enhancer that is closest on the linear genome. 

An important area of active research in neurobiology is elucidating the molecular 

mechanisms that regulate the unique temporal kinetics of IEGs and SRGs. Here, we 

unexpectedly observed that IEGs connect to enhancers via singular short-range loops that 

occur de novo after activation, whereas SRGs connect to multiple activity-inducible 

enhancers via a complex network of invariant and de novo loops. Consistent with our 

observations, another study reported—using H3K4me3 proximity ligation assisted ChIP–seq 

(PLAC-seq)—that the SRG Nr4a3 engages in multiple long-range contacts over several 

hundred kb after neuronal stimulation [143]. These observations inspired our working 

hypothesis that looping complexity and distance are contributing factors to the kinetics of 

IEG and SRG expression (Fig. 4m). To critically assess this model, we induced acute 

pharmacological activation of neuronal activity and gathered looping and transcription data 

across multiple short time points. We observed striking differences in loop and enhancer 

https://www.nature.com/articles/s41593-020-0634-6#Fig4
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induction kinetics for IEGs and SRGs in our 5C regions. For example, enhancers and loops 

surrounding Fos and Arc peak in signal strength roughly 20 min after the induction of 

neuronal activity, before peak mRNA levels. By contrast, Bdnf loops and enhancers gain 

strength in parallel with mRNA levels over a longer time of sustained stimulation (360 min). 

We note that Fos engages in different short-range loops after 5 min, 20 min, and 24 h of 

neural activation, shifting interaction strength from a nearby enhancer to one that is more 

distal, suggesting that rapid activity-induced enhancer switching via alternative looping might 

be a mechanistic aspect of IEG upregulation (Figs. 4d and 5a). Together, these data form 

the basis of our working hypothesis that the complexity and size of long-range 3D 

interactions might functionally govern the kinetics of IEG and SRG expression with tight 

temporal precision during paradigms of synaptic plasticity. 

We believe that greater understanding of how activity-dependent enhancers colocalize 

with daSNVs and connect over vast distances to distal target genes can provide critical new 

insights into the molecular mechanisms governing disease pathogenesis. Here, we identify a 

unique set of loops that are anchored by enhancers that decrease in activity during chronic 

stimulation. We speculate that enhancer decommissioning may be an epigenetic mechanism 

that is involved in homeostatic plasticity. Consistent with this hypothesis, we find that 

specific genes that are involved in homeostatic plasticity, such as Gria1, are connected in 

class 3 loops to activity-decommissioned enhancers and are downregulated during chronic 

high activity. We also observe that schizophrenia-associated SNVs are enriched at class 3 

loops and are connected to downregulated genes after synaptic activity. By contrast, ASD-

associated SNVs preferentially colocalize with class 2 loops that connect activity-inducible 

enhancers to activity-upregulated target genes. These results are striking as they suggest that 

https://www.nature.com/articles/s41593-020-0634-6#Fig4
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some disease-specific neuronal phenotypes may arise from noncoding SNVs that have 

different effects depending on the class of loops that they anchor (Fig. 6e). Moreover, the 

colocalization of schizophrenia-associated SNVs with class 3 loops suggests that defects in 

enhancer decommissioning might contribute to synaptic plasticity defects in neuropsychiatric 

diseases [149]. Genome misfolding has been reported in fragile X syndrome [122], the 

leading monogenic cause of ASD, as well as other human diseases [150], thus loop 

dysfunction could be possible owing to common SNVs in sporadic ASD and schizophrenia. 

Future work to build human activity-dependent loop maps and to dissect their functionality 

with genome editing will continue to refine our understanding of the functional role of 

distinct activity-dependent architectural features in neuropsychiatric disorders. 

 

6.4 Methods 
 
I include only sections describing my work to perform differential chromatin looping 

analysis using an adaptation of statistical tool I created, 3DeFDR. See [123] for complete 

methods.  

5C interaction analysis 

The adoption of the double alternating primer scheme and in situ 3C significantly improved 

5C data quality (see ref. [121] for more details) such that some steps of our 5C analysis 

approach could be changed from those used previously [91] to more closely resemble those 

used for analyzing Hi-C [72]. Paired-end reads were aligned to the 5C primer pseudogenome 

using Bowtie, so that only reads with one unique alignment passed filtering. Only reads for 

which one paired end mapped to a forward or left-forward primer and the other end 

mapped to a reverse or left-reverse primer were tallied as true counts. 

https://www.nature.com/articles/s41593-020-0634-6#Fig6
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5C is subject to specific biases, such as primer GC content resulting in annealing or 

PCR biases, that methods such as Hi-C are not. This manifests in primer–primer pairs with 

mapped counts that are orders of magnitude higher than the neighboring primer–primer 

pairs. Such an extreme enrichment of single primer–primer pairs does not resemble the 

broader distribution of elevated counts, spanning clusters of neighboring primer–primer 

pairs, that exists at bona fide looping interactions across 5C and Hi-C data. Therefore, we 

decided to remove these biased primer–primer pairs before proceeding with interaction 

analysis. This was done by calculating for each primer–primer pair the median count of itself 

and the 24 primer–primer pairs nearest to the primer–primer pair in question (that is, a 

scipy.ndimagfor exampleeneric_filter window of size 5 was passed over the primer–primer 

pair matrix and the median of each window was recorded). If the count of one primer–

primer pair was greater than eightfold higher than its neighborhood median then it was 

flagged as a high spatial outlier and removed. This process was performed for all primer–

primer pairs, except for those in the 5C region surrounding the Arc gene, for which the 

eightfold threshold was found to be too stringent owing to low region complexity and 

therefore a 100-fold threshold was used instead. 

After the removal of high outliers, primer–primer pair counts were quantile 

normalized across all 12 replicates (4 per condition) as described previously [108]. For 

plotting purposes, quantile-normalized counts were merged across replicates by summation, 

whereas for loop calling analysis all replicates were kept separate. Primer–primer pair counts 

were then converted to fragment–fragment interaction counts by averaging the primer–

primer counts that mapped to each fragment–fragment pair (a maximum of two if both a 

forward or left-forward and a reverse or left-reverse primer were able to be designed to both 
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fragments and were not trimmed during outlier removal). We then divided our 5C regions 

into adjacent 4-kb bins and computed the relative interaction frequency of two bins (i,j) by 

summing the counts of all fragment–fragment interactions for which the coordinates of one 

of the constituent fragments overlapped (at least partially) a 12-kb window surrounding the 

center of the 4-kb ith bin and the other constituent fragment overlapped the 12-kb window 

surrounding the center if the jth bin. Binned count matrices were then matrix balanced using 

the ICE algorithm [108] [118], at which point we considered each entry (i,j) to represent the 

relative interaction frequency of the 4-kb bins i and j. Finally, the background contact 

domain ‘expected’ signal was calculated using the donut background model, as described 

previously [137], and used to normalize the relative interaction frequency data for the 

background interaction frequency present at each bin–bin pair. The resulting background-

normalized interaction frequency (observed over expected) counts were fit with a logistic 

distribution from which P values were computed for each bin–bin pair and converted into 

background-corrected interaction scores (interaction score = −10 × log2[P value]) as 

described previously. Interaction scores have proven to be informatively comparable across 

replicates and conditions [120], and as such were used for most subsequent visualization 

analyses and all loop-calling analyses.  

Quantitative 5C loop identification 

We applied the 3DeFDR analysis package [61] to our data set to identify differential 

interactions across the TTX and Bic conditions (four replicates of each). In brief, 3DeFDR 

identifies differential interactions and estimates an empirical false discovery rate (eFDR) for 

each identified dynamic looping class. Interactions were considered for analysis only if the 

interaction scores of all eight replicates across both conditions surpassed a ‘significance 
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threshold’. Interactions were classified as ‘TTX-only’ if all four interaction scores of the 

TTX replicates surpassed the interaction scores of the Bic replicates by more than a specified 

‘difference threshold’. ‘Bic-only’ interactions were classified in the same manner. Those 

interactions that passed the significance threshold but were not classified as Bic-only or 

TTX-only were classified as ‘Constitutive’. Lastly, significant interactions that passed our 

thresholds were clustered based on spatial adjacency into ‘loops’. Looping clusters that were 

smaller than 5 pixels were removed. The 3DeFDR package simulates null replicate sets (that 

is, eight replicates of the same cell type per condition) using a negative binomial counts 

generating function parameterized with mean-variance relationships computed from the real 

data. We compute an eFDR for each differential loop class as the total number of significant 

interactions called in that class on a simulated null replicate set divided by the total number 

of significant interactions called as that class with the original real replicate set. 

We used the ‘non-adaptive’ functionality option of the 3DeFDR analysis package, 

which sweeps across a wide range of difference thresholds and calculates an eFDR for each 

loop class at each iteration. We generated 250 simulated null replicate sets of eight replicates 

based on mean-variance relationships underlying the real TTX replicates. We used the 

default 3DeFDR initialization parameters with the exception of ‘bin_properties’, which is a 

tunable parameter that specifies the distance scales over which fragment level interactions 

are stratified before fitting the negative binomial counts generating function to those 

interactions. We modified ‘bin_properties’ to capture the full extent of our regional matrices: 

(i) for close-range interactions (0–150 kb), we stratified the interactions using fine-grained, 

12-kb sliding windows with a 4-kb step; (ii) for mid-range interactions (151–600 kb), we 

stratified the interactions into 24-kb sliding windows with an 8-kb step; and (iii) for longer-



 

120 

range interactions (601–2,500 kb), we stratified the interactions into coarse-grained, 60-kb 

sliding windows with a 24-kb step. Through this approach we achieved an eFDR of 6.6% for 

Bic-only (activity-induced) loops using a difference threshold of 6.75, a significance 

threshold of −10 × log2(0.08) (that is, a P value of 0.08 resulting from the logistic fit to the 

observed over expected data), and a cluster size threshold of 5. 
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7 Modeling Patient-Specific Responses to Combination 
Cancer Therapies  

 
Adapted from [151] 

 
Recent advances in clinical cancer modeling have focused on discovery of new druggable 

targets and optimization of targeted therapeutics. Targeted therapeutics, however, are not 

available or affordable to the vast majority of cancer patients and instead these patients 

receive combination chemoradiotherapy in addition to surgery as standard of care. In clinic, 

modeling of combination therapy is typically performed via simple addition of the 

independent effects of these therapies, which are available in literature as population values 

without guidance for how they can be adapted for specific patients. Here, we present a 

mechanistic, multiscale modeling framework which can be applied in clinic to simulate 

combination therapy through simultaneous, rather than independent, application of 

component therapies to a patient-specific cell signaling model. This model is constructed 

through integration of the ErbB reception mediated Ras-MAPK and PI3K/AKT pathways 

with the TP53 mediated DNA damage response pathway and modulated based on patient-

specific miRNA profiling. We anticipate that this model has utility in clinical decision making 

across many cancers for which combination therapy remains first line care. Here, we 

demonstrate this approach in one such cancer, describing its application to predict patient-

specific responses to nephroblastoma, also known as Wilms’ Tumor.  

 

7.1 Introduction 
 
Development, progression and metastasis of a wide variety of cancers have been attributed 

to activation of cellular signaling cascades through receptor proteins on the cell surface. 
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When activated by extracellular growth factors, these receptors typically dimerize and 

initialize a cascade of signals that propagate inside the cell eventually reaching the nucleus 

where they initiate various transcriptional programs that determines ultimate cell fate [152] 

[153]. Although there are considerable variations in the receptor type, signal duration and 

transcriptional program that determines cell fate in different cancers, they all share some 

common structural and functional features [154]. In most cell lines and in most common 

types of cancers, cell fate decisions are influenced by interaction of multiple processes 

operating at different time scales. Faster cell surface receptor mediated signaling pathways 

respond to suitable ligands to activate downstream proteins to transport into the nucleus. 

Once inside the nucleus, these proteins regulate slower processes guiding transcription and 

cell cycle progression [155]. In addition, the cell cycle is also influenced by DNA repair 

pathways which can be activated by cytotoxic drugs and radiation therapy. These repair 

pathways are often mediated by tumor suppressor gene TP53 [156] [157] which has been 

found to be frequently mutated in different cancers.  

Apart from the events happening inside the cells, cellular outcome is affected in a 

profound manner by the heterogeneous microenvironment and in particular by its chemical 

and mechanical composition. Cells can detect and respond to changes in the 

microenvironment like stiff vs. soft extracellular matrix (ECM) or altered ligand composition 

through a complex interplay of receptor mediated signaling and reorganization of the matrix 

and cytoskeletal components [158] [159] [160].  

Due to the complexity, multiscale nature, and sheer number of external factors that 

can influence outcomes, mathematical modeling is well positioned for investigating the 

processes which underlie cell fate decision making in the context of cancer. Such models 
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enable us to systematically vary input, explore parameter space and create testable 

predictions. They are useful not only from a basic science perspective to understand cellular 

behavior, and to motivate and design further experiments, but they also are of clinical value 

in determining effectiveness of personalized treatment strategies for specific patients and 

cancer types [40] [161] [162]. 

Despite of its great potential, mathematical modeling of biological processes in 

practice is a challenging task for multiple reasons: 

• The amount of quantitative information available are often insufficient for detailed 

mathematical modeling. Many components and their interaction details are not 

known or been verified experimentally. 

• Even if quantitative data are available, it is non-trivial to combine processes of 

multiple time scales. 

• A single modeling paradigm is usually insufficient and there is a need to combine 

different models meaningfully. 

• Uncertainties in the large number of free parameters can decrease the reliability of 

the model outcome unless special precautions are taken. 

Here we have developed a heterogeneous and multi-scale modeling paradigm that can 

address these challenges, effectively combining models of different processes and timescales 

and generate testable and clinically useful predictions. Our aim was not to build an all-

encompassing whole-cell model but rather provide a framework that can combine both 

existing and new models that were developed for different relevant processes using available 

experimental data possibly having different characteristic time scales. The models are 
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validated using both experimental and clinical information and are used to predict the effect 

of various single and combination therapies in patients of nephroblastoma (Wilms Tumor). 

We found that the patient response to single or combination chemotherapeutic drugs and 

radiation therapy is greatly influenced by the individual miRNA profiles of the patients. The 

model-predicted cell kill rates often differed from the literature cell kill rates of the 

chemotherapeutic drugs or cell kill rate calculated using empirical methods like Linear 

Quadratic model of radiation. 

We believe that such an integrated modeling framework can be of great value in 

different cancers and help us understand the multiscale nature of cancer and design more 

effective treatment strategies using patient specific information and incorporate 

heterogeneity in tumor environment. 

 

7.2 Challenges in Optimizing Clinical Combination Therapy 

The central goal of all cancer therapy research is to identify and target properties of cancer 

cells that distinguish them from their normal counterparts [36]. Chief among these 

properties are overproliferation, defective DNA repair, reduced apoptosis, altered 

metabolism, increased angiogenesis, avoidance of immune surveillance, and invasion into 

neighboring tissues, which uninterrupted would lead to metastasis [36]. Many of these 

properties serve to tip the balance of cell fates from normal differentiative states to rapid 

proliferation of genetically unstable subclones that over time become increasingly adept at 

surviving hostile extracellular environments, as tumor expansion leads to lower nutrient 

availability and extracellular matrix (ECM) stiffening, and increasingly drug resistant. 

Understanding this, cancer therapies are developed to attack these properties with most 
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cytotoxic drugs acting to reduce proliferation and more recent targeted therapies addressing 

a wider variety of changes.   

 Increasingly effective cancer therapies have dramatically changed the outlook of 

cancer in the United States. When Sidney Farber introduced the first cytotoxic drug in 1944, 

the mean five-year survival rates across all cancers stood at 30% [36]. Today, the National 

Cancer Institute (NCI) reports a five-year survival rate of 69.3% for cancer patients for their 

most recent surveillance period of 2010-2016 [163]. These gains were achieved in part 

through optimization of chemotherapies in the clinical setting via pharmacokinetic studies, 

which profile how drug’s plasma concentration changes over time, sometimes accompanied 

with information about how clearance changes with age, gender, drug interactions, and organ 

dysfunction, and to a far lesser extent, pharmacodynamic studies which correlate these 

properties to patient outcomes but are more challenging to conduct [36]. Importantly, these 

studies do not yield information about the mechanism of action of the drugs they evaluate, 

which historically has needed to be pieced together from cellular studies. These studies rarely 

evaluated combination therapy regimens with researchers instead reasoning that combination 

effects on cell kill rates would likely be additive [36] [164]. More recently, great effort has 

been made to characterize actions of targeted therapies and determine their 

pharmacokinetic-pharmacodynamic (PK-PD) correlates.  

An unfortunate result of this is that PK-PD correlates have not been determined for 

the vast majority of combination therapies, which remains the standard of care for the 

majority of cancer patients, and that these patients have not benefitted from the same 

intensity of optimization efforts extended for targeted therapy. Instead, the practical 

endpoint for most combination therapy clinical studies has been to maximize dose per unit 
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time and in clinical practice, oncologists typically administer full doses of cytotoxic drugs 

with the goal of reaching reversible, well-tolerated toxicity as their endpoint [36].  

Unfortunately, this is not always the case as many survivors are affected by chronic health 

conditions secondary to their care, and in extreme cases, patients may succumb to fatal 

toxicity. Without information in the literature for how to adjust regimens to individual 

patients, it remains extremely challenging for clinicians to determine what regimen could 

achieve best disease outcomes while minimizing dose toxicity.  

In developing our multiscale framework, we hope to provide a tool that can help guide 

clinical decisions for combination therapy regimen design by providing cell kill rates that are 

patient specific and more representative of true simultaneous administration of multiple 

cytotoxic drugs than simple addition of population rates for individual drugs. Such guidance 

tools are highly sought after by clinicians and we describe this in the case of the 

nephroblastoma research community below. 

 

7.3 Motivation for Application to Nephroblastoma 

Nephroblastoma is a renal tumor affecting primarily children under ten years old. It is a 

relatively rare tumor at 7.7 cases per million children under 15 years old [165], but represents 

7% of all childhood cancers [32]. This cancer is a treatment success story with progressively 

improved survival (85% overall [166]) and survivor healthiness due to advances in risk 

stratification, surgery, chemotherapy, and radiation therapy [20]. However, room for 

improvement remains with a cure rate of 95-99% for low stage tumors, and 66% for 

metastatic cases [167], and 25% survivors impacted by chronic conditions secondary to their 

treatment, including include “renal failure, infertility, cardiac toxicity, restrictive pulmonary 



 

128 

disease, and development of subsequent malignancies” according to Aldrink et al. 2019 [166] 

[168].  

The overall goal of the nephroblastoma research community is to understand exactly 

what drives this cancer to initiate and recur in individual patients, and develop curative, 

minimally toxic therapy regimens optimized to an individual patient’s genetics and tumor 

features. Current Wilms’ Tumor management standards are defined primarily by two medical 

research groups, the Children’s Oncology Group (COG) in the United States, and the 

International Society of Paediatric Oncology (SIOP), which is based in Europe. The groups 

generally agree on staging criteria but differ in treatment strategy; SIOP recommends pre-

operative combination chemoradiotherapy while COG does not, instead exclusively applying 

these therapies after surgery [169] [170] [171]. Each approach has advantages, and both 

achieve strong outcomes, but lack of consensus suggests more information is needed to 

know which is truly optimal and highlights the need for new methods to inform treatment 

decision making.  

Clinical decision making for treatment of nephroblastoma remains challenging and a 

significant portion of nephroblastoma research is dedicated addressing that through 

identification of biomarkers that are predictive of patient risk and treatment efficacy. In 

contrast with many pediatric tumors, nephroblastomas are not typically driven by single 

mutations, but a diverse, growing list of over forty cancer genes. [32] High genetic 

heterogeneity within tumors has also been observed for this cancer though it is rarely 

assessed in childhood tumors. [172] Additionally, Wilms’ Tumor is a global disease with 

outcome disparities driven in part by unidentified genetic factors. [165] Amongst these 

factors perhaps are differences in transcriptional and post-transcriptional regulation of 
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targets within pathways critical to making cell fate decisions contributing to this cancer. For 

instance, aberrant expression of miRNAs is linked to nephroblastoma and are currently 

under investigation for use as biomarkers [173] [45] [174]. These issues are common across 

many cancers, though to a lesser extent in childhood cancers, and underscore an urgent need 

to personalize treatments for nephroblastoma to the individual genetics of patients.  

Hoping to address these issues, SIOP-affiliated researchers across Europe formed a 

collaboration known as Computational Horizons In Cancer (CHIC) [175] to share clinical 

data and expertise necessary for developing in silico methods for modeling pediatric cancers 

and therapies. As part of the CHIC project, this lab gained access to sequencing, imaging, 

and clinical data necessary to validate predictions of Wilms’ Tumor response to combination 

therapy. Here, we use this data to demonstrate our new offering to the research community 

in patient-specific mechanistic cancer modeling to support clinical decision making and 

therapy optimization.  

 

7.4 Results 

Our hybrid multiscale modeling framework can combine two or more biological processes 

and predict the time evolution and final steady state of the combination (please see the 

Methods section for more details). We combined the signaling pathways Ras-MAPK and 

PI3K/AKT mediated by Epidermal Growth Factor Receptor (EGFR) family with the tumor 

suppressor TP53 mediated DNA damage repair and cell cycle pathway, and we used this 

combined approach to predict the outcome of treatment for patients with nephroblastoma. 

In the SIOP protocol, the standard treatment strategy is to either resect the tumor if 

it is less than a threshold size or prescribe chemotherapy to reduce the tumor size prior to 
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surgery. Across both the SIOP and COG protocols, varying combinations of the same 

standard chemotherapies are applied for most Wilms’ Tumors, though some additional ones 

may be included to create a more intensive regimen for patients with additional risk factors, 

such as combined LOH at chromosomes 1p and 16q [176]. These common therapies 

include a) Doxorubicin b) Vincristine and c) Actinomycin D (also known as Dactinomycin) 

[177]. We use the model of the combined pathways to predict the cell kill rate for specific 

patients for different combinations of these three therapies.  

One advantage of the SIOP protocol is that in vivo chemosensitivity of each child’s 

tumor may be recorded as tumor volume change with preoperative therapy, and 

incorporated into risk stratification, which has allowed reduction of treatment intensity for 

patients across many stages of disease [178].  As a consequence, when provided with data 

from patients treated with this protocol, we received the following information: 

• miRNA expression 

• Prescribed chemotherapeutic drug dosage and schedule 

• Tumor volume pre- and post-therapy 

First, we used the model to predict probabilities of cell fates (death, growth, and senescence) 

for patients subjected to different cytotoxic therapy combinations. miRNA expression data 

was used to modulate target protein activity levels within our model to obtain patient-

specific predicted cell fate probabilities. These probabilities were then used to compute 

tumor growth and compared against the actual growth rates. No mutations were part of the 

study. Figure 7.1 shows the cell kill probabilities calculated for a control patient (base 

values) and actual nephroblastoma patients with different miRNA expression profiles. The 

simulations were run for all possible combinations of three common chemotherapies used in 



 

131 

treatment of nephroblastoma and the subset of more commonly used combinations are 

shown in Figure 7.1.  As expected, maximum cell death was achieved when all drugs were 

used and minimum when no drugs are used.  

 
Figure 7.1. Predicted probabilities of cell death, growth, and senescence for a variety of 

possible cytotoxic therapy combinations.  

Probabilities are computed as mean outcomes across an ensemble of models representing a 

range of initial starting values for unconstrained variables. Patient specific probabilities are 

obtained by modulating the initial activity or concentration levels of target proteins of a 

patient’s most significantly differentially expressed miRNAs for targets present in the model. 

Such probabilities are shown for three nephroblastoma patients labeled with identification 

numbers. Control patient probabilities are obtained by running the simulation in the absence 

any modulation based on miRNA profiling. Drug specific probabilities are obtained by 

modeling each individual drug according to pharmacokinetic values in literature and 

modulating the activity levels of affected proteins in the heterogeneous, multiscale model. 

In Figure 7.2, these data are summarized for all possible combinations of Actinomycin D, 

Doxorubicin, and Vincristine, using fixed dosages matching values used with actual patients 

(650 mg/m2 Actinomycin D, 34 mg/m2 Doxorubicin, and 1 mg/m2 Vincristine).  
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Figure 7.2. Predicted net cell growth probabilities computed as difference in cell death and 

cell growth probabilities for each patient and simulated drug combination.  

Activity or concentration levels of target proteins are modulated in response to significantly 

differential patient miRNAs to obtain patient specific results, and in response to simulated 

drug activity derived from pharmacokinetic values for individual drugs in literature to obtain 

drug combination specific results. Simulated drugs are denoted as A = Actinomycin D, D = 

Doxorubicin, and V = Vincristine. 

To determine whether patient specific cell fate probabilities were reflective of actual 

treatment effects observed, we compared observed change in tumor volume with treatment 

for each patient to the predicted change in net cell growth probability when the model was 

modulated using patient miRNA profiles and when it was not. As shown in Figure 7.3, we 

performed this patient for three patients for which we had tumor volume data pre- and post-

chemotherapy as guided by the SIOP treatment protocol. While a constant percent 

reduction in tumor volume would have been predicted for patients treated with the same 
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chemotherapies based on literature values, we see that differences in volume reduction 

linearly correlate with patient-specific changes represented within our model. Based on these 

results, each patient potentially represents a different scenario of tumor response to 

generalized therapy: correspondence of treatment effect to literature values, underestimation 

of effect based on literature values, and overestimation of effect based on literature values.  

 

Figure 7.3. a Change in predicted net cell growth for three patients vs their observed 

changes in tumor volume.  

Tumor volume change was computed as the percent of the post treatment tumor volume 

from the pretreatment tumor volume. Predicted net cell growth change was computed as the 
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ratio of net cell growth change of each patient to non-patient specific net cell growth change 

predicted for the corresponding therapy. b Pre and post treatment tumor volumes are listed 

for each patient alongside dosages of cytotoxic drugs administered.  

In addition, we compared our model results to those obtained assuming additivity of 

constituent drug cell kill rates and separately, assuming additivity of rate constants, also 

known as the Bliss Independence model [164], which have both historically been used to 

assess therapy combinations. As shown in  

Figure 7.4, our results deviate strongly from those obtained assuming additivity of 

cell kill rates (listed as the sum modeling approach in the figure) as has been done for many 

cytotoxic drug combinations not formally assessed in pharmacodynamic studies. 

Comparatively, our model estimates deviate less strongly from those computed assuming 

additivity of rate constants, or drug independence according to the Bliss model, but are still 

more conservative for most patient and therapy combinations. This indicates that our model 

favors the assumption of additivity of rate constants over that of cell kill rates. We are 

interested in further investigating discrepancy between our results and those of the Bliss 

model, which is favored as a shorthand method for assessing drug combinations in clinical 

settings.  When considered with the Bliss approach, our model might indicate more 

antagonistic behavior between drugs than would be expected, however, this type of Bliss 

assessment has been controversial in the research community with some indications that it is 
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misleading simplistic [164]. 

 

Figure 7.4. Comparison of predicted cell death probabilities obtained with the hybrid 

multiscale model vs the Bliss independence model and simple summation of individual drug 

rates.  

Results are shown for patients listed by identification number and for simulated 

combinations of two or more of the cytotoxic drugs A = Actinomycin D, D = Doxorubicin, 

and V = Vincristine. Bliss model results and simple summation results were computed by 

applying them to cell death probabilities obtained from the hybrid model when simulating 

the administration of single drugs. 

Next, we used the model to predict cell fate probabilities when subjecting each 

patient to different dosages of radiation at levels within range of that typical for treatment of 

nephroblastoma (14.4 Gy flank for intermediate risk disease and 25.2 Gy flank for high-risk 

disease for patient of moderate to high stage; patients may also receive a 10.8 Gy boost in 

both cases for lymph node involvement or gross disease [179]). In Figure 7.5, we show 

these results for four patients for which miRNA profiles were available through the CHIC 

project. We note that actual treatment dosages were not available for patient ECCOAH and 

that this patient had bilateral disease while the other patients had one affected kidney. As 
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shown in Figure 7.5, in the absence of chemotherapy, predicted net cell growth probability 

on average decreased nonlinearly with radiation dosage, perhaps reaching a plateau as 

radiation reached its maximal effect level in our model, and patient-specific probabilities 

were well matched to those predicted in the absence of modulation with patient miRNA 

profiles. However, in the presence of combination chemotherapy and radiation therapy, 

patient-specific predicted net growth probabilities differed considerably from generalized 

values and varied between patients and chemotherapy combinations.  

 

Figure 7.5. Predicted net cell growth probabilities for patients across a range of simulated 

radiation levels. Radiation is modeled using the standard linear quadratic model for dose 

response with model parameters (α,β) =(2.0e-2,5.1e-3) obtained from literature. We activate 
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ATM protein in TP53 pathway with a probability of e−αDand obtain the cell survival 

fraction calculated only from double strand breaks via our hybrid mechanistic model. As 

described in Methods, we use this value to compute an adjusted patient-specific and 

treatment-specific estimate of cell kill and cell growth probability. Results are compared 

across four simulated cytotoxic drug combinations: no cytotoxic therapy (A- D- V-), 

Doxorubicin alone (A- D+ V-), Actinomycin D and Vincristine (A+ D- V+), and all three 

drugs together (A+ D+ V+). Patients are listed by identification number while the control 

patient refers to running of the model in the absence of patient specific modulation. 

While combination chemoradiotherapy is common in treatment of nephroblastoma, 

we did not have data for tumor volume change as a result of radiation therapy or combined 

chemoradiotherapy in our patient data set with which to compare our findings. Instead, we 

observe that the patient-specific net cell growth probabilities predicted with our model trend 

closely with those yielded by the generalized linear-quadratic (LQ) dose response model 

often used to anticipate the effects of radiation therapy in clinical settings today [180] [181].  

 

7.5 Methods 
 

7.5.1 Description of modeling framework 

We adapted a heterogenous multiscale modeling approach presented in [25] [182] to model 

nephroblastoma. In this framework, systems models representing distinct, but 

mechanistically linked biological processes are run simultaneously [25]. Each model in this 

framework represents each process at its operational time scale and time resolution, and 

these properties determine how models of different processes are integrated [25].  These of 

different processes are linked mechanistically according to what species occur in two or 

more constituent models and these links mediate the flow of information across models [25]. 

If two models do not have any species in common, they do not have direct interaction, 
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however, the interaction could still occur if a third model shared interfaces with both models 

[25]. 

To model Wilms’ Tumor, we combined two modeling modules: an ErbB receptor 

mediated Ras-MAPK and PI3K/AKT signaling module and a TP53 mediated DNA damage 

response modeling [25].  The ErbB receptor models are implemented using continuous time 

and with a characteristic time scale of 6-8 hours [25].  By contrast, the TP53 mediated DNA 

damage response pathway is modeled in discrete time (Boolean model) and at a characteristic 

time scale of 24-48 hours [25].  A Boolean model is used in the case of the T53 mediated 

pathways as these pathways are challenging to precisely, quantitatively characterize because 

of their high complexity [25]. These models linked via common interfaces and their 

characteristic time scales are well separated, such that pseudo-steady state approximations 

may be used to combine these models as, when occurring at sufficiently separated time 

scales, from the perspective of the slower process, the faster process is at steady state [25]. 

7.5.2 Model interfaces and hybrid simulator algorithm 

When processes occur at sufficiently distinct time scales, their models can be interfaced by 

evolving the slower process using steady state information from faster process [25]. 

Likewise, when multiple processes are modeled by different mathematical representations, 

e.g., continuous time ordinary differential equations and discrete time logical equations, their 

models can be mechanistically linked across common species by modifying the governing 

equations (e.g., ODE or Boolean rules) and initial state of one model by using information 

obtained by running the other model for a specified amount of time [25] [183]. The 

algorithm for the hybrid simulator is shown in the flowchart in Figure 7.6 and described in 

[182]. 
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Figure 7.6. Flowchart representation of the hybrid simulator.  

From Ghosh et al., yellow boxes represent states of the slower timescale processes and blue 

boxes represent models of faster timescale processes included in the framework. Each set of 

models has characteristic time scales, ∆t1 and ∆t2, and here ∆t1 << ∆t2. These models can 

have a common set of input conditions, such as patient-specific -omics profiles, therapy 

specific DNA damage or perturbation, or other variation of species for the purpose of in 

silico investigation of properties like cellular heterogeneity. Represented with the green box is 

the message passing interface that passes information across models using the common 

interface species. All constituent models are evolved this way until they reach a common 

steady state difference from control data. For Boolean models, in which only two states are 

possible, target nodes are constrained to an ON/OFF state dependent on their expression 

state for all members of the initial state space (see Methods for more detail). In this way, two 

instances of the model are initialized with two different gene and protein expression 

signatures which can be run to obtain the predictions for the patient and compared with 
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control results obtained when the simulation was run in the absence of patient specific data 

[25]. 

7.5.3 Using miRNA expression data 

MicroRNAs, or miRNAs, are short non-coding RNAs that act as post-transcriptional 

regulators of gene expression by either promoting mRNA degradation or inhibiting 

translation. Such miRNAs have been found to play a critical role in various forms of cancer, 

including nephroblastoma, and are under investigation for use as circulating serum 

biomarkers [44] [173]. From the CHIC project, tissue and serum miRNA expression profiles 

are available in the minml format for a group of nephroblastoma patients [45]. For each 

patient, we identified the specific mRNA targets of the 30 most significantly differentially 

expressed miRNAs in their profile using miRTarBase [183] [184]. Initial expression levels of 

these mRNA targets, if present in our model network, were constrained correspondingly 

before each model run. Hence the final outcomes were tailored to the expression profile of 

the patients to generate clinically useful outcomes. An example table is shown below 

indicating some top expressed miRNAs and their corresponding target mRNAs obtained 

from miRTarBase [182] [184]. 

miRNA 
Sample mRNA 

Targets 

Highly differentially expressed in patient 

4L3YB6 5XIHQG 6Z34IQ ECCOAH 

hsa-miR-320b IGF2, MAX 
   

✓ 
hsa-miR-199a-5p ERBB2, ERBB3 

   
✓ 

hsa-miR-320d IGF2, MAX 
   

✓ 

hsa-miR-4284 MDM4 
  

✓ 
 

hsa-miR-125a-5p CDKN1A, 
ERBB2, ERBB3, 
SIX1, TP53 

  
✓ 

 

hsa-miR-1260b BRD7, CDKN1A 
  

✓ ✓ 
hsa-miR-1207-5p ASXL1, MLLT1, 

TP53 

 
✓ 
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hsa-miR-1275 ACTB 
 

✓ 
  

hsa-miR-574-5p AMER1, 
CDKN1A 

 
✓ 

  

hsa-miR-4270 ASXL1, CDK2, 
ERBB2, MLLT1 

 
✓ 

  

hsa-miR-718 PTEN 
 

✓ 
  

hsa-miR-630 BCL2 
 

✓ 
  

hsa-miR-762 CDK2 
 

✓ 
  

hsa-miR-320c IGF2, MAX 
 

✓ 
  

hsa-miR-4281 CDKN1A 
 

✓ 
 

✓ 
hsa-miR-107 PTEN ✓ 

 
✓ 

 

hsa-miR-4286 TP53 ✓ 
 

✓ ✓ 
hsa-miR-199a-3p AKT1, MAP3K4 ✓ 

 
✓ ✓ 

 

Table 7.1. Sample list of top differentially expressed miRNAs based on miRNA profiles 

provided by the CHIC project for four patients. 

Patients are listed by identification number. For each miRNA, sample mRNA targets are 

listed including those with species overlapping with those of our models and those linked to 

nephroblastoma. Targets were obtained from miRTarBase [184] and it should be noted that 

additional targets are associated with many of these miRNAs but as those are not relevant to 

our model, we do not list them here. Additionally, this list does not include miRNAs that 

were highly differentially expressed in these patients but did not have known targets listed on 

miRTarBase. 

As an integrated clinical tool, our model takes miRNA profiles of a given patient, 

maps the most highly differential miRNAs to their target mRNAs, and then constrains these 

nodes in our network in order to capture the molecular effect of these miRNAs. Similarly, 

our model constrains nodes based on therapy interactions. In total, we consider 

Doxorubicin, Vincristine, and Actinomycin D as well as radiotherapy for nephroblastoma. 

The model is run based on the input miRNA profile and drug treatment and averages over 

several tissue conditions such as growth factor levels and receptor expression. An average as 
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well as a distribution of cell kill, cell senescence, and cell growth probabilities are obtained 

for a given patient, which are then passed on to the multi-modeler framework. 

7.5.4 Model setup and simulations 

Using the miRNA data, we identified the top 30 mRNA targets that are present in the core 

networks. The expression levels of these targets were increased or decreased by a preset 

value depending on the direction of miRNA expression changes. Additionally, we simulated 

the effects of administered chemotherapies, radiation therapy, and cellular heterogeneity. 

Thus, the basic workflow for simulation setup and run for each patient is as follows: 

• Analyze miRNA profile and obtain a target set of proteins that will be activated or 

inhibited in the model 

• Analyze patient treatment information (dosage of chemotherapeutic or radiation) 

and activate target DNA damage nodes 

• Run and calculate cell fate probabilities for different growth factors to mimic cellular 

heterogeneity 

For each type of chemotherapeutic drug, cell kill rates are available in literature and these 

generalized values are uniformly applied to patients in the absence of guidance for how to 

adjust them according to individual patient characteristics. To address this, we use our model 

to obtain an adjusted cell kill rate that accounts for patient specific genetic variation. We 

implemented this by first assuming that cytotoxic drugs influence cell survival according to 

Poisson distribution, such that the cell killed rate (CKR) may be obtained from: 

𝐶𝐾𝑅 = 1 − 𝑒−𝑘𝑡 
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where k is the rate constant and is proportional to the cell kill probability [25]. Using this 

relationship, we can obtain literature and adjusted cell kill rates as 𝐶𝐾𝑅𝑙𝑖𝑡 = 1 − 𝑒−𝑘𝑙𝑖𝑡𝑡 and 

𝐶𝐾𝑅𝑎𝑑𝑗 = 1 − 𝑒−𝑘𝑎𝑑𝑗𝑡 respectively [25]. These two CKRs can then be related as follows: 

𝑘𝑎𝑑𝑗

𝑘𝑙𝑖𝑡
=

ln(1 − 𝐶𝐾𝑅𝑎𝑑𝑗)

ln(1 − 𝐶𝐾𝑅𝑙𝑖𝑡)
 

The ratio 
𝑘𝑎𝑑𝑗

𝑘𝑙𝑖𝑡
 is obtained from simulation for a patient and a control where control indicates 

no miRNA-based initialization of the model [25]. 

For a combination of multiple drugs, additivity of rate constants (probabilities) is 

assumed as opposed to additivity of cell kill fractions, as is commonly used in literature [25]. 

Given the cell kill rates of two different drugs 𝐶𝐾𝑅1and 𝐶𝐾𝑅2, additivity of rate constants 

yields: 

ln(1 − 𝐶𝐾𝑅1) + ln(1 − 𝐶𝐾𝑅2) = −(𝑘1 + 𝑘2)𝑡 = ln(1 − 𝐶𝐾𝑅1+2) 

Thus, assuming additivity of rate constants, the cell kill rate of chemotherapeutic drug 

combinations is the product rather than sum of the rates for the individual drugs [25]. We 

did find, as shown in  

Figure 7.4 in the results section, that our model results do follow far more closely to results 

obtained assuming additivity of rate constants than assuming additivity of cell kill rates, 

however, our model results were more conservative than those computed directly from the 

equations above.  

 Next, to simulate the effects of radiation therapy, we referred to the linear quadratic 

model which predicts cell survival for dosage D Gy of radiation as 

𝑆 = 𝑒−(𝛼𝐷+𝛽𝐺𝐷2) = 𝑒−𝛼𝐷𝑒−𝛽𝐺𝐷2
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In the above, the parameter α is the proportionality constant for the number of DNA 

double strand breaks (DSB) to the dosage. In addition to DSB repair, binary mis-repair of 

pairs of DSBs can also produce lethal lesions which is proportional to the square of the 

dose. This part is not explicitly modeled and estimated directly from LQ model. G is Lea-

Catchside factor which is calculated based on the dose duration and intervals. Using the 

value of β from literature, we activate ATM protein in TP53 pathway with a probability of 

𝑒−𝛼𝐷and obtain the cell kill probability 𝑝𝑐𝑘 . Then the cell survival fraction calculated only 

from double strand breaks are 1 − 𝑝𝑐𝑘 . Incorporating the mis-repair part from LQ model, 

the modified cell survival fraction is (1 − 𝑝𝑐𝑘)𝑒−𝛽𝐺𝐷2
. Then the final adjusted cell kill 

probability is given by 

𝑝𝑐𝑘
′ = 1 − (1 − 𝑝𝑐𝑘)𝑒−𝛽𝐺𝐷2

 

The results of this approach are shown in Figure 7.5 and shows that cell kill probabilities 

assessed with this approach were more conservative when the model was modulated with 

patient-specific miRNA profiles than when it was used to obtain generalized estimates. 

These results were obtained using a = 2.0e-2 and b = 5.1e-3, obtained from literature. These 

values yield an a/b ratio of 3.92 Gy. The a, b parameters represent cells at different levels of 

radiosensitivity and a/b ratios vary with tissue, intra-tumor cell population, and cell cycle 

status with lower a/b ratios indicating higher radiosensitivity. The kidney is thought to have 

a/b ratios typically in the range of 3-5 Gy. 

Finally, to mimic the variability of tumor microenvironment, simulations were run at 

multiple values of growth factor (EGF) concentration and across multiple values for 

randomly selected subsets of 15 unconstrained variables within our model. Final cell fate 
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probabilities are reported as averages across an ensemble set of model runs performed in this 

way.  

 

7.6 Conclusions 
 
To our knowledge, the described work represents the first multiscale mechanistic model of 

combination chemotherapy and radiation therapy. Here we employ a hybrid model 

framework representing interlinked growth factor mediated Ras-MAPK and PI3K/AKT 

pathways and TP53 mediated cell cycle and DNA damage response pathways to compute 

patient-specific and therapy-specific predictions of cell fate. Through this work, we 

demonstrate that a mechanistic approach to modeling combination therapy yields 

predictions of cell fate changes that differ widely from those of generalized black-box 

additivity models. We hope that this model can provide a mechanistic foundation for the 

development of tools applied in clinic to optimize combination therapy regimens for 

individual patients. In this work, we demonstrated this approach in the case of 

nephroblastoma and modulated through patient-specific miRNA profiling. In future work, 

we will expand this model into an agent-based framework in which tumor cell populations 

and surrounding tissue conditions can be represented. This will allow us to account for the 

effects of intratumor heterogeneity typically observed in nephroblastoma as well as those of 

tumor density, tumor microenvironment, and intercellular signaling on model predictions for 

treatment response. We will additionally conduct sensitivity analysis to identify key 

parameters driving model dynamics and finally, subject the framework to clinical validation. 
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8 Future Directions 

I found it deeply gratifying to be able to translate computational modeling into methods that 

could be applied in the clinic to improve cancer treatment and want to continue contributing 

to such projects throughout my career. I am excited by multiple routes for building upon 

this work in the near future. Machine learning based enhancement of model performance 

represents one such route and allows one to obtain something of the best of both worlds 

between data-driven and mechanistic approaches. Mechanistic modeling enables us to obtain 

results that are explainable and insights that are transferrable across systems. I can apply 

machine learning to the parameters of mechanistic models to learn patterns of their 

dynamics that are predictive of model outcomes. 

 Refinement of my mechanistic representation of radiation therapy represents another 

promising route and there has been great interest in this segment of the project as the 

radiation oncology community seeks out tools to guide therapy planning through better 

prediction of patient-specific therapy benefit and toxicity, and I am very interested in 

expanding this model to represent therapy effects in healthy vs. tumor cells.  

 Finally, I hope to apply this modeling framework to predict effects of other cancer 

therapies, particularly immunotherapies through representation of tumor cell and 

microenvironment interactions with immune cells and estimation of their impact on anti-

tumor immune suppression. Overall, I have been truly glad to be a part of this research 

community and look forward to other new opportunities to enhance the clinical actionability 

of multiscale cancer modeling.
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