
Risk Premia and Volatilities in
a Nonlinear Term Structure Model∗

Peter Feldhütter†

London Business School
Christian Heyerdahl-Larsen‡

London Business School

Philipp Illeditsch§

The Wharton School

September 2016

Review of Finance, forthcoming

Abstract

We introduce a reduced-form term structure model with closed-form solu-
tions for yields where the short rate and market prices of risk are nonlinear
functions of Gaussian state variables. The nonlinear model with three factors
matches the time-variation in expected excess returns and yield volatilities of
U.S. Treasury bonds from 1961 to 2014. Yields and their variances depend on
only three factors, yet the model exhibits features consistent with unspanned
risk premia (URP) and unspanned stochastic volatility (USV).

Keywords: Nonlinear Term Structure Models, Expected Excess Returns,
Stochastic Volatility, Unspanned Risk Premia (URP), Unspanned Stochastic
Volatility (USV).

JEL Classification: D51, E43, E52, G12.

∗We would like to thank Kerry Back; Greg Bauer; David Chapman; Mike Chernov; Joao Cocco;
Alex David; Greg Duffee; Paul Ehling; Michael Gallmeyer; Francisco Gomes; Rodrigo Guimaraes;
Burton Hollifield; Scott Joslin; Christian Julliard; Ralph Koijen; Philippe Mueller; Andreas Pick;
Christian Opp; Giuliano De Rossi; Glenn D. Rudebusch, David Schröder, Ivan Shaliastovich; An-
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1. Introduction

The U.S. Treasury bond market is a large and important financial market. Policy

makers, investors, and researchers need models to disentangle market expectations

from risk premiums, and estimate expected returns and Sharpe ratios, both across

maturity and over time. The most prominent class of models are affine models.

However, there are a number of empirical facts documented in the literature that these

models struggle with matching simultaneously : a) excess returns are time-varying, b)

a part of expected excess returns is unspanned by the yield curve, c) yield variances

are time varying, and d) a part of yield variances is unspanned by the yield curve.1

Affine models have been shown to match each of these four findings separately, but

not simultaneously and only by increasing the number of factors beyond the standard

level, slope, and curvature factors.2

We introduce an arbitrage-free dynamic term structure model where the short

rate and market prices of risk are nonlinear functions of Gaussian state variables. We

provide closed-form solutions for bond prices and since the factors are Gaussian our

nonlinear model is as tractable as a standard Gaussian model. We show that the

model can capture all four findings mentioned above simultaneously and it does so

with only three factors driving yields and their variances. The value of having few

factors is illustrated by Duffee (2010) who estimates a five-factor Gaussian model

to capture time variation in expected returns and finds huge Sharpe ratios due to

1Although the literature is too large to cite in full, examples include Campbell and Shiller (1991)
and Cochrane and Piazzesi (2005) on time-varying excess returns, Duffee (2011b) and Joslin et al.
(2014) on unspanned expected excess returns, Jacobs and Karoui (2009) and Collin-Dufresne et al.
(2009) on time-varying volatility, and Collin-Dufresne and Goldstein (2002) and Andersen and Ben-
zoni (2010) on unspanned stochastic volatility.

2Dai and Singleton (2002), and Tang and Xia (2007) find that the only affine three-factor model
that can capture time-variation in expected excess returns is the Gaussian model that has no stochas-
tic volatility. Duffee (2011b), Wright (2011) and Joslin et al. (2014) capture unspanned expected
excess in four- and five-factor affine models that have no stochastic volatility. Unspanned stochastic
volatility is typically modelled by adding additional factors to the standard three factors (Collin-
Dufresne et al. (2009) and Creal and Wu (2015)). See also Dai and Singleton (2003) and Duffee
(2010) and the references therein.
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overfitting.

We use a monthly panel of five zero-coupon Treasury bond yields and their realized

variances from 1961 to 2014 to estimate the nonlinear model with three factors. To

compare the implications of the nonlinear model with those from the standard class

of affine models, we also estimate three-factor affine models with no or one stochastic

volatility factor, the essentially affine A0(3) and A1(3) models.

We first assess the ability of the nonlinear model to predict excess bond returns in

sample and regress realized excess returns on model-implied expected excess return.

The average R2 across bond maturities and holding horizons is 27% for the nonlinear

model, 6.5% for the A1(3) model, 8% for the A0(3) model, and no more than 15%

for any affine model in which expected excess returns are linear functions of yields.

Campbell and Shiller (1991) document a positive relation between the slope of the

yield curve and expected excess returns, a finding that affine models with stochastic

volatility have difficulty matching (see Dai and Singleton (2002)). In simulations, we

show that the nonlinear model can capture this positive relation.

There is empirical evidence that a part of expected excess bond returns is not

spanned by linear combinations of yields, a phenomenon we refer to as Unspanned

Risk Premia (URP).3 URP arises in our model due to a nonlinear relation between

expected excess returns and yields. To quantitatively explore this explanation, we

regress expected excess returns implied by the nonlinear model on its Principal Com-

ponents (PCs) of yields and find that the first three PCs explain 67 − 72% of the

variation in expected excess returns. Furthermore, the regression residuals correlate

with expected inflation in the data (measured through surveys), not because inflation

has any explanatory power in the model but because it happens to correlate with

“the amount of nonlinearity.” Duffee (2011b), Wright (2011), and Joslin et al. (2014)

3See Ludvigson and Ng (2009), Cooper and Priestley (2009), Cieslak and Povala (2015), Duffee
(2011b), Joslin et al. (2014), Chernov and Mueller (2012), and Bauer and Rudebusch (2016).
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use five-factor Gaussian models where one or two factors that are orthogonal to the

yield curve explain expected excess returns and are related to expected inflation. We

capture the same phenomenon with a nonlinear model that retains a parsimonious

three-factor structure to price bonds and yet allows for time variation in volatilities.

The nonlinear and A1(3) model can capture the persistent time variation in

volatilities and the high volatility during the monetary experiment in the early eight-

ies. However, the two models have different implications for the cross-sectional and

predictive distribution of yield volatility. In the nonlinear model more than one fac-

tor drives the cross-sectional variation in yield volatilities while by construction the

A1(3) model only has one. Moreover, in the nonlinear model the probability of a high

volatility scenario increases with the monetary experiment and remains high during

the Greenspan era even though volatilities came down significantly. This finding re-

sembles the appearance and persistence of the equity option smile since the crash of

1987. In contrast, the distribution of future volatility in the A1(3) model is simi-

lar before and after the monetary experiment. The volatility in the Gaussian A0(3)

model is constant and thus this model overestimates volatility during the Greenspan

era and underestimates it during the monetary experiment.

There is a large literature suggesting that interest rate volatility risk cannot be

hedged by a portfolio consisting solely of bonds; a phenomenon referred to by Collin-

Dufresne and Goldstein (2002) as Unspanned Stochastic Volatility (USV). The em-

pirical evidence supporting USV typically comes from a low R2 when regressing a

measure of volatility on interest rates.4 To test the ability of the nonlinear model

to capture the empirical evidence on USV, we use the methodology of Andersen and

Benzoni (2010) and regress the model-implied variance of yields on the PCs of model-

implied yields. The first three PCs explain 42 − 44%, which is only slightly higher

4Papers on this topic include Collin-Dufresne and Goldstein (2002), Heidari and Wu (2003), Fan
et al. (2003), Li and Zhao (2006), Carr et al. (2009), Andersen and Benzoni (2010), Bikbov and
Chernov (2009), Joslin (2014), and Creal and Wu (2015).
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than in the data where they explain 30− 35% of the variation in realized yield vari-

ance. If we include the fourth and fifth PC, these numbers increase to 55− 62% and

40 − 43%, respectively. Hence, our nonlinear model quantitatively captures the R2s

in USV regressions in the data. In contrast, since there is a linear relation between

yield variance and yields in standard affine models, the first three PCs explain already

100% in the A1(3) model.5

The standard procedure in the reduced form term structure literature is to specify

the short rate and the market prices of risk as functions of the state variables. Instead,

we model the functional form of the stochastic discount factor directly by multiplying

the stochastic discount factor from a Gaussian term structure model with the term

1 + γe−βX , where β and γ are parameters and X is the Gaussian state vector. This

functional form is a special case of the stochastic discount factor that arises in many

equilibrium models in the literature. In such models, the stochastic discount factor

can be decomposed into a weighted average of different representative agent models.

Importantly, the weights on the different models are time-varying and this is a source

of time-varying risk premia and volatility of bond yields.

Our paper is not the first to propose a nonlinear term structure model. Dai et al.

(2007)) estimate a regime-switching model and show that excluding the monetary

experiment in the estimation leads their model to pick up minor variations in volatil-

ity. In contrast, the nonlinear model can pick up states that did not occur in the

sample used to estimate the model. Specifically, we estimate the model using a sam-

ple that excludes the monetary experiment and find that it still implies a significant

probability of a strong increase in volatility. Furthermore, while the Gaussian model

is a special case of both models our nonlinear model only increases the number of

5Collin-Dufresne and Goldstein (2002) introduce knife edge parameter restrictions in affine models
such that volatility state variable(s) do not affect bond pricing, the so called USV models. The most
commonly used USV models–the A1(3) and A1(4) USV models–have one factor driving volatility and
this factor is independent of yields. These models generate zero R2s in USV regressions inconsistent
with the empirical evidence.
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parameters from 23 to 27 whereas the regime-switching model in Dai et al. (2007)

has 56 parameters. Quadratic term structure models have been proposed by Ahn

et al. (2002) and Leippold and Wu (2003) among others, but Ahn et al. (2002) find

that quadratic term structure models are not able to generate the level of conditional

volatility observed for short- and intermediate-term bond yields. Ahn et al. (2003)

propose a class of nonlinear term structure models based on the inverted square-root

model of Ahn and Gao (1999), but in contrast to our nonlinear model they do not

provide closed-form solutions for bond prices. Dai et al. (2010) develop a class of dis-

crete time models that are affine under the risk neutral measure, but show nonlinear

dynamics under the historical measure. They illustrate that the model encompasses

many equilibrium models with recursive preferences and habit formation. Carr et al.

(2009) use the linearity generating framework of Gabaix (2009) to price swaps and

interest rate derivatives. Similarly, in concurrent work Filipovic et al. (2015) intro-

duce a linear-rational framework to price bonds and interest rate derivatives. Both

approaches lead to closed form solutions of discount bonds, but their pricing frame-

work is based on the potential approach of Rogers (1997) while our approach is based

on a large class of equilibrium models discussed in Appendix B.6

The rest of the paper is organized as follows. Section 2 motivates and describes

the model. Section 3 estimates the model and Section 4 presents the empirical results.

In Section 5 we estimate a one-factor version of the nonlinear model and describe how

nonlinearity works in this simple case, while Section 6 concludes.

6It is also possible to combine the general exponential-type stochastic discount factor (SDF) in
our paper with the affine-type SDF in Filipovic et al. (2015) to get an exponential polynomial-type
SDF similar to the setting of Chen and Joslin (2012).
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2. A Nonlinear Term Structure Model

In this section we present a nonlinear model of the term structure of interest rates.

We first motivate the model by presenting regression evidence for nonlinearities in

excess returns and yield variances in Section 2.1 and then we present the model in

Section 2.2.

2.1 MOTIVATING REGRESSION EVIDENCE

In Panel A of Table I we regress yearly excess returns measured on a monthly basis

for the period 1961-2014 on the first three Principal Components (PCs) of yields and

product combinations of the PCs. Specifically, the dependent variable is the average

one-year excess return computed over US Treasury bonds with a maturity of 2, 3,

4, and 5 years (we explain the details of the data in Section 3.1). As independent

variables, we first include all terms that are a product of up to three terms of the

first three PCs (in short PC1, PC2, and PC3). We then exclude terms with the lowest

t-statistics one-by-one until only significant terms remain. The first row of Panel A

shows the result. There are only three significant terms in the regression and they

are all nonlinear. The second row shows the regression when we include only the first

three PCs, the linear relation implied by affine models, and we see that the R2 of 16%

is substantially lower than the R2 of 29% in the first regression. Finally, the third row

shows that the linear terms add almost no explanatory power to the first regression.

Panel B in Table I shows similar regressions with the average excess return re-

placed by the average monthly realized yield variance as dependent variable (again,

we leave the detailed explanation of how we calculate realized variance to Section

3.1). The first regression in Panel B shows the regression result when the indepen-

dent variables are products of up to three terms of PC1, PC2, and PC3, after excluding
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insignificant terms as in Panel A. None of the linear terms are significant and the five

significant nonlinear terms generate an R2 of 55%. Row two shows that a regression

with only the first three PCs, the linear relation implied by affine models, yields a

substantially lower R2 of 34% and row three shows that the linear terms do not raise

the R2 when included in the first regression in Panel B.

These regressions show that there is a nonlinear relation both between yields

and excess returns and between yields and yield variances. While the R2s in the

nonlinear regressions are informative about the importance of nonlinearity, overfitting

and collinearity limits the ability to pin down the precise nonlinear relation. In

particular, when running the regressions for each bond maturity individually it is

rare that the same set of nonlinear terms are significant. This evidence suggests that

we need a parsimonious nonlinear model to study the nonlinearities in the first and

second moments of bond returns, which we present in the next section.

2.2 THE MODEL

Uncertainty is represented by a d-dimensional Brownian motionW (t) = (W1(t), ...,Wd(t))
′.

There is a d-dimensional Gaussian state vector X(t) that follows the dynamics

dX(t) = κ
(
X̄ −X(t)

)
dt+ Σ dW (t), (1)

where X̄ is d–dimensional and κ and Σ are d× d–dimensional.

2.2.1. The Stochastic Discount Factor

We assume that there is no arbitrage and that the strictly positive stochastic discount

factor (SDF) is

M(t) = M0(t)
(

1 + γe−β
′X(t)

)
, (2)
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where γ denotes a nonnegative constant, β a d-dimensional vector, andM0(t) a strictly

positive stochastic process.

Equation (2) is a key departure from standard term structure models (Vasicek

(1977), Cox et al. (1985), Duffie and Kan (1996), and Dai and Singleton (2000)).

Rather than specifying the short rate and the market price of risk, which in turn pins

down the SDF, we specify the functional form of the SDF directly.7 This approach is

motivated by equilibrium models where the SDF is a function of structural parameters

and thus the risk-free rate and market price of risk are interconnected. Moreover, we

show in Appendix B that the SDF specified in equation (2) is a special case of the

SDF in many popular equilibrium models.

To keep the model comparable to the existing literature on affine term structure

models we introduce a base model for which M0(t) is the SDF. The dynamics of M0(t)

are

dM0(t)

M0(t)
= −r0(t)dt− Λ0(t)′dW (t), (3)

where r0(t) and Λ0(t) are affine functions of the state vector X(t). Specifically,

r0(t) = ρ0,0 + ρ′0,XX(t), (4)

Λ0(t) = λ0,0 + λ0,XX(t), (5)

where ρ0,0 is a scalar, ρ0,X and λ0,0 are d-dimensional vectors, and λ0,X is a d × d-

dimensional matrix. It is well known that bond prices in the base model belong to

the class of Gaussian term structure models (Duffee (2002) and Dai and Singleton

(2002)) with essentially affine risk premia. If γ or every element of β is zero, then the

nonlinear model collapses to the Gaussian base model. We now provide closed form

solutions for bond prices in the nonlinear model.

7Constantinides (1992), Rogers (1997), Gabaix (2009), Carr et al. (2009), and Filipovic et al.
(2015) also specify the functional form of the SDF directly and provide closed form solutions for
bond prices.
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2.2.2. Closed-Form Bond Prices

Let P (t, T ) denote the price at time t of a zero-coupon bond that matures at time T .

Specifically,

P (t, T ) = Et

[
M(T )

M(t)

]
. (6)

We show in the next theorem that the price of a bond is a weighted average of bond

prices in artificial economies that belong to the class of essentially affine Gaussian

term structure models.

THEOREM 1. The price of a zero-coupon bond that matures at time T is

P (t, T ) = s(t)P0(t, T ) + (1− s(t))P1(t, T ), (7)

where

s(t) =
1

1 + γe−β′X(t)
∈ (0, 1] (8)

Pn(t, T ) = eAn(T−t)+Bn(T−t)′X(t). (9)

The coefficient An(T − t) and the d-dimensional vector Bn(T − t) solve the ordinary

differential equations

dAn(τ)

dτ
=

1

2
Bn(τ)′ΣΣ′Bn(τ) +Bn(τ)′

(
κX̄ − Σλn,0

)
− ρn,0, An(0) = 0, (10)

dBn(τ)

dτ
= − (κ+ Σλn,X)′Bn(τ)− ρn,X , Bn(0) = 0d, (11)
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where

ρn,0 = ρ0,0 + nβ′κX̄ − nβ′Σλ0,0 −
1

2
n2β′ΣΣ′β, (12)

ρn,X = ρ0,X − nκ′β − nλ′0,XΣ′β, (13)

λn,0 = λ0,0 + nΣ′β, (14)

λn,X = λ0,X . (15)

The proof of this theorem is given in Appendix A where we provide a proof for

a more general class of nonlinear models and also show how our nonlinear model is

related to the class of reduced form asset pricing model presented in Duffie et al.

(2000) and Chen and Joslin (2012). To provide some intuition we define M1(t) =

γe−β
′X(t)M0(t) and rewrite the bond pricing equation (6) using the fact that s(t) =

M0(t)/M(t) = 1−M1(t)/M(t). Specifically,

P (t, T ) = s(t)Et

[
M0(T )

M0(t)

]
+ (1− s(t))Et

[
M1(T )

M1(t)

]
. (16)

Applying Ito’s lemma to M1(t) leads to

dM1(t)

M1(t)
= −r1(t)dt− Λ1(t)′dW (t), (17)

where r1(t) and Λ1(t) are affine functions of the state vector X(t). Specifically,

r1(t) = ρ1,0 + ρ′1,XX(t), (18)

Λ1(t) = λ1,0 + λ1,XX(t), (19)

where ρ1,0, ρ1,X , λ1,0, and λ1,X are given in equations (12), (13), (14), and (15),

respectively. Hence, both expectations in equation (16) are equal to bond prices in

artificial economies with discount factors M0(t) and M1(t), respectively. These bond
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prices belong to the class of essentially affine term structure models and hence P (t, T )

can be computed in closed form.

2.2.3. The Short Rate and the Price of Risk

Applying Ito’s lemma to equation (2) leads to the dynamics of the SDF:

dM(t)

M(t)
= −r(t) dt− Λ(t)′dW (t), (20)

where both the short rate r(t) and the market price of risk Λ(t) are nonlinear functions

of the state vector X(t) given in equations (21) and (22), respectively. The short rate

is given by

r(t) = s(t)r0(t) + (1− s(t))r1(t). (21)

Our model allows the short rate to be nonlinear in the state variables without losing

the tractability of closed form solutions of bond prices and a Gaussian state space.8

The d-dimensional market price of risk is given by

Λ(t) = s(t)Λ0(t) + (1− s(t))Λ1(t). (22)

Equation (22) shows that even if the market prices of risk in the base model are

constant, the market prices of risks in the general model are stochastic due to varia-

tions in the weight s(t). When s(t) approaches zero or one, then Λ(t) approaches the

market price of risk of an essentially affine Gaussian model.

8Chan et al. (1992), Ait-Sahalia (1996a), Ait-Sahalia (1996b), Stanton (1997), Pritsker (1998),
Chapman and Pearson (2000), Ang and Bekaert (2002), and Jones (2003) study the nonlinearity of
the short rate. Jermann (2013) and Richard (2013) study nonlinear term structure models, but they
do not obtain closed form solutions for bond prices.
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2.2.4. Expected Return and Volatility

We know that the bond price is a weighted average of exponential affine bond prices

(see equation (7)). Hence, variations of instantaneous bond returns are due to vari-

ations in the two artificial bond prices P0(t, T ) and P1(t, T ) and due to variations in

the weight s(t). Specifically, the dynamics of the bond price P (t, T ) are

dP (t, T )

P (t, T )
= (r(t) + e(t, T )) dt+ σ(t, T )′ dW (t), (23)

where e(t, T ) denotes the instantaneous expected excess return and σ(t, T ) denotes

the local volatility vector of a zero-coupon bond that matures at time T .

The local volatility vector of the bond is given by

σ(t, T ) = ω(t, T )σ0(T − t) + (1− ω(t, T ))σ1(T − t) + (s(t)− ω(t, T )) β, (24)

where σi(T −t) = Σ′Bi(T −t) denotes the local bond volatility vector in the Gaussian

model with SDF Mi(t) and ω(t, T ) denotes the contribution of P0(t, T ) to the bond

price P (t, T ). Specifically,

ω(t, T ) =
P0(t, T )s(t)

P (t, T )
∈ (0, 1]. (25)

When s(t) approaches zero or one, then σ(t, T ) approaches the deterministic local

volatility of a Gaussian model. However, in contrast to the short rate and the market

price of risk, the local volatility can move outside the range of the two local Gaussian

volatilities, σ0(T − t) and σ1(T − t), because of the last term in equation (24).

Intuitively, there are two distinct contributions to volatility in equation (24). The
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direct term, defined as

σvol(t, T ) = ω(t, T )σ0(T − t) + (1− ω(t, T ))σ1(T − t), (26)

arises because the two artificial Gaussian models have constant but different yield

volatilities. The indirect term, defined as

σlev(t, T ) = (s(t)− ω(t, T )) β (27)

is due to the Gaussian models having different yield levels. Two special cases illus-

trate the distinct contributions to volatility. If P0(t, T ) = P1(t, T ) = P (t, T ), then

σlev(t, T ) = 0 and the local volatility vector reduces to σ(t, T ) = s(t)σ0(T − t) +

(1− s(t))σ1(T − t). On the other hand, if σ0(T − t) = σ1(T − t), the first term

is constant, but there is still stochastic volatility due to the second term which be-

comes more important the bigger the difference between the two artificial bond prices

P1(t, T ) and P0(t, T ).9

The instantaneous expected excess return and volatility of the bond are

e(t, T ) = Λ(t)′σ(t, T ) (28)

v(t, T ) =
√
σ(t, T )′σ(t, T ). (29)

Equations (20)-(29) show that the nonlinear term structure model differs from the

essentially affine Gaussian base model in two important aspects. First, the volatilities

of bond returns and yields are time-varying and hence expected excess returns are

moving with both the price and the quantity of risk.10 Second, the short rate r(t), the

instantaneous volatility v(t, T ), and the instantaneous expected excess return e(t, T )

9If λ0,X and κ are zero, then σ0(T − t) = σ1(T − t).
10The instantaneous volatility of the bond yield is 1

τ v(t, t+ τ).
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are nonlinear functions of X(t).

3. Estimation

In this section, we estimate the nonlinear model described in Section 2 and compare

it to standard essentially affine A0(3) and A1(3) models. All three models have three

factors and the number of parameters is 22 in the A0(3) model, 23 in the A1(3) model

and 26 in the nonlinear model. The A0(3) is a special case of our nonlinear model

where M0(t) = M(t). The A1(3) model is well know and thus we only present the

setup with results in Section 3.2 and defer details to Feldhütter (2016).

3.1 DATA

We treat each period as a month and estimate the models using a monthly panel of

five zero-coupon Treasury bond yields and their realized variances. Although it is in

theory sufficient to use bond yields to estimate the model, we add realized variances

in the estimation to improve the identification of model parameters (see Cieslak and

Povala (2016) for a similar approach). We use daily (continuously compounded)

1-, 2-, 3-, 4-, and 5-year zero-coupon yields extracted from U.S. Treasury security

prices by the method of Gurkaynak et al. (2007). The data is available from the

Federal Reserve Board’s webpage and covers the period 1961:07 to 2014:04. For each

bond maturity, we average daily observations within a month to get a time series of

monthly yields. We use realized yield variance to measure yield variance. Let yτt and

rvτt denote the yield and realized yield variance of a τ -year bond in month t based on
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daily observations within that month. Specifically,

yτt =
1

Nt

Nt∑
i=1

yτd,t (i) , (30)

rvτt = 12
Nt∑
i=1

(
yτd,t (i)− yτd,t (i− 1)

)2
, (31)

where yτd,t (i) denotes the yield at day i within month t, Nt denotes the number of

trading days within month t, and yτd,t (0) denotes the last observation in month t− 1.

The realized variance converges to the quadratic variation as N approaches infinity,

see Andersen et al. (2010) and the references therein for a detailed discussion.

To check the accuracy of realized variance based on daily data, we compare re-

alized volatility with option-implied volatility (to be consistent with the options lit-

erature we look at implied volatility instead of implied variance). We obtain implied

price volatility of one month at-the-money options on five-year Treasury futures from

Datastream and convert it to yield volatility.11 We then calculate monthly volatil-

ity by averaging over daily volatilities. Figure 1 shows that realized volatility tracks

option-implied volatility closely (the correlation is 87%), and thus we conclude that

realized variance is a useful measure for yield variance.

3.2 THE A1(3) MODEL

We briefly describe the A1(3) model in this section and refer the reader to Feldhütter

(2016) for a detailed discussion. The dynamics of the three-dimensional state vector

X(t) = (X1(t), X2(t), X3(t))′ are

dX(t) = κ
(
X̄ −X(t)

)
dt+ S(t) dW (t), (32)

11We calculate yield volatility by dividing price volatility with the bond duration. We calculate
bond duration in two steps. We first find the coupon that makes the present value of a five year
bond’s cash flow equal to the at-the-money price of the underlying bond the option is written on
(available from Datastream). We then calculate the modified duration of this bond.
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where X̄ = (X̄1, 0, 0)′ is the long run mean,

κ =


κ(1,1) 0 0

κ(2,1) κ(2,2) κ(2,3)

κ(3,1) κ(3,2) κ(3,3)

 (33)

is the positive-definite mean reversion matrix, W (t) is a three-dimensional Brownian

motion, and

S(t) =


√
δ1X1(t) 0 0

0
√

1 + δ2X1(t) 0

0 0
√

1 + δ3X1(t)

 (34)

is the local volatility matrix with δ = (1, δ2, δ3).

The dynamics of the stochastic discount factor M(t) are

dM(t)

M(t)
= −r(t) dt− Λ(t)′ dW (t), (35)

where the short rate r(t) and the three-dimensional vector S(t)Λ(t) are affine functions

of X(t). Specifically,

r(t) = ρ0 + ρ′XX(t), (36)

where ρ0 is a scalar and ρX is a 3-dimensional vector. The market price of risk Λ(t)

is the solution of the equation

S(t)Λ(t) =


λX,(1,1)X1(t)

λ0,2 + λX,(2,1)X1(t) + λX,(2,2)X2(t) + λX,(2,3)X3(t)

λ0,3 + λX,(3,1)X1(t) + λX,(3,2)X2(t) + λX,(3,3)X3(t)

 , (37)

where λ0 denotes a three dimensional vector and λX a three-dimensional matrix.
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The bond price and the instantaneous yield volatility are

P (X(t), T ) = eA(T−t)+B(T−t)′X(t) (38)

v(X(t), T ) =
√
B(T − t)′S(X(t))S(X(t))B(T − t), (39)

where A(τ) and B(τ) satisfy the ODEs

dA(τ)

dτ
=
(
κX̄ − λ0

)′
B(τ) +

1

2

3∑
i=2

Bi(τ)2 − ρ0, A(0) = 0 (40)

dB(τ)

dτ
= (κ+ λX)′B(τ) +

1

2

3∑
i=1

Bi(τ)δi − ρX , B(0) = 03×1. (41)

3.3 ESTIMATION METHODOLGY

We use the Unscented Kalman Filter (UKF) to estimate the nonlinear model, the

extended Kalman filter to estimate the A1(3) model, and the Kalman filter to estimate

the A0(3) model. Christoffersen et al. (2014) show that the UKF works well in

estimating term structure models when highly nonlinear instruments are observed.

We briefly discuss the setup but refer to Christoffersen et al. (2014) and Carr and

Wu (2009) for a detailed description of this nonlinear filter.

When we estimate the nonlinear and A1(3) model, we stack the five yields in

month t in the vector Yt, the corresponding five realized yield variances in the vector

RVt, and set up the model in state-space form. The measurement equation is

 Yt

RVt

 =

 f(Xt)

g(Xt)

+

 σyI5 0

0 σrvI5

 εt, εt ∼ N(0, I10), (42)

where f(·) is the function determining the relation between the latent variables and

yields, g(·) is the function determining the relation between the latent variables and
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the variance of yields, and the positive parameters σrv and σy are the pricing errors for

yields and their variances.12 Specifically, f = (f1, ..., f5)′ and g = (g1, ..., g5)′ where

fτ (Xt) = −1

τ
ln (P (Xt, t+ τ)) (43)

gτ (Xt) =
1

τ 2
v2(Xt, t+ τ) (44)

with P (Xt, t+ τ) and v(Xt, t+ τ) given in Equation (7) and (29), respectively. In the

A0(3) model yield volatility is constant and we therefore only include yields (and not

realized variances) in the estimation.

In the nonlinear model the state space is Gaussian and thus the transition equa-

tion for the latent variables is

Xt+1 = C +DXt + ηt+1, ηt ∼ N(0, Q), (45)

where C is a vector and D is a matrix that enters the one-month ahead expectation

of Xt, i.e., Et(Xt+1) = C +DXt. The covariance matrix of Xt+1 given Xt is constant

and equal to Q.

In the A1(3) model we use the Gaussian transition equation in (45) as an approx-

imation because the dynamics of X are non-Gaussian. This is a standard approach

in the literature (Feldhütter and Lando (2008)). The bond price P (Xt, t + τ) and

volatility v(Xt, t+ τ) in equation (43) and (44) of the A1(3) model are given in equa-

tion (38) and (39) in Section 3.2. We can use the approximate Kalman filter because

both yields and variances are affine in X in the A1(3) model.

We use the normalization proposed in Dai and Singleton (2000) to guarantee

12We choose to keep the estimation as parsimonious as possible by letting the σrv be the same
for all realized variances. An alternative is to use the theoretical result in Barndorff-Nielsen and
Shephard (2002) that the variance of the measurement noise is approximately two times the square
of the spot variance and allow for different measurement errors across bond maturity.
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that the parameters are well identified if s(Xt) is close to zero or one, or if γ and

all elements of β are close to zero. In the nonlinear model, we assume in Equation

(1) that the mean reversion matrix, κ, is lower triangular, the mean of the state

variables, X̄, is the zero vector, and that the local volatility, Σ, is the identity matrix.

The normalizations in the A1(3) model are given in Section 3.2.

3.4 ESTIMATION RESULTS

Estimated parameters with asymptotic standard errors (in parenthesis) are reported

in Table II and III. The second column of Table II shows parameter estimates based

on the whole sample (1961:07-2014:04) that includes the period of the monetary

experiments where the one-year bond yield and its volatility exceeded 15% and 5%,

respectively. We re-estimate the nonlinear model using only yield and volatility data

for the period 1987:08-2014:04, which excludes the high yield and yield volatility

regime during the early eighties.13 The third column of Table II shows that the

estimated parameters for this period are similar to the estimated parameters for the

whole sample period. In particular, the nonlinear parameters β and γ have the same

sign and are of similar magnitude. The parameter estimates for the A1(3) and the

A0(3) model are reported in Table III.

The bond price in the nonlinear model is a weighted average of two Gaussian bond

prices (see Theorem 1). Figure 2 shows the weight s(Xt) on the Gaussian base model.

If the stochastic weight approaches zero or one, then the bond price approaches the

bond price in a Gaussian model where yields are affine functions of the state variables

and yield variances are constant. The stochastic weight is distinctly different from

one and varies substantially over the sample period, that is, the mean and volatility of

s(Xt) are 79.98% and 21.35%, respectively. Moreover, there are both high-frequency

13Alan Greenspan became chairman of the Fed on August 11, 1987.
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and low-frequency movements in s(Xt). The high-frequency movements push s(Xt)

away from one during recessions; we see spikes during the 1970, 1973-1975, 1980, 2001,

and 2007-2009 recessions. The low-frequency movement start in the early eighties

where the weight moves significantly below one and slowly returns over the next 30

years.

To quantify the impact of nonlinearities in our model, we regress yields and their

variances on the three state variables. By construction the R2 of these regressions in

the A1(3) model is 100%. In the nonlinear model, the R2s when regressing the one to

five-year yields on the three state variables are 89.40%, 89.64%, 90.12%, 90.66%, and

91.14%, respectively, showing a considerable amount of nonlinearity. Nonlinearity

shows up even stronger in the relation between yield variances and the three fac-

tors. Specifically, the R2s when regressing the one to five-year yield variances on the

three state variables are 29.52%, 27.99%, 28.18%, 29.52%, and 31.67%, respectively.

For comparison, regressing the stochastic weight s(Xt) on all three state variables

leads to an R2 of 80.88%. Overall, these initial results suggest an important role for

nonlinearity and we explore this in detail in the next section.

4. Empirical Results

In this section we show that the nonlinear three-factor model captures time variation

in expected excess bond returns and yield volatility. Moreover, the nonlinearity leads

to unspanned risk premia (URP) and unspanned stochastic volatility (USV), an em-

pirical stylized fact, that affine models cannot capture without knife-edge restrictions

and additional state variables that describe variations in expected excess returns and

yield variances but not yields. While nonlinearities help explain time-variation in

excess returns and yield variances, we show in Section 4.3 that the amount of nonlin-

earity in the cross-section is small and thus our model retains the linear relation of
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US-Treasury yields across maturities.

4.1 EXPECTED EXCESS RETURNS

Expected excess returns of U.S. Treasury bonds vary over time as documented in

among others Fama and Bliss (1987) and Campbell and Shiller (1991) (CS). CS

document this by regressing future yield changes on the scaled slope of the yield

curve. Specifically, for all bond maturities τ = 2, 3, 4, 5 we have

yτ−1
t+1 − yτt = const + φτ

(
yτt − y1

t

τ − 1

)
+ residual, (46)

where yτt is the (log) yield at time t of a zero-coupon bond maturing at time t + τ .

The slope regression coefficient is one if excess holding period returns are constant,

but CS find negative regression coefficients implying that a steep slope predicts high

future excess bond returns. Table IV replicates their findings for the sample period

1961:07-2014:04, that is, slope coefficients are negative, decreasing with maturity, and

significantly different from one.

To check whether each model can match this stylized fact, we simulate a sample

path of 1, 000, 000 months for two-, three-, four- and five-year excess bond returns and

compare the model implied CS regression coefficients with those observed in the data.

Table IV shows that the nonlinear model and A0(3) model captures the negative CS

regression coefficients in population.

Figure 3 shows that one-year expected excess returns in the nonlinear model are

negative in the early eighties and positive since the mid-80s while they are alternating

between positive and negative in the A1(3) model. Expected excess returns in the

A0(3) model are also positive since the mid-80s but both affine models cannot capture

the very low and high realized excess returns during the monetary experiment. To
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formally test whether the nonlinear model captures expected excess returns better

than the two affine models we run regressions of realized excess returns on model

implied expected excess returns in sample. Specifically,

rxτt,t+n = ατ,n + βτ,nEt
[
rxτt,t+n

]
+ residual, ∀ τ > n = 1, 2, 3, 4, 5, (47)

where rxτt,t+n is the n-year log return on a bond with maturity τ in excess of the n-

year yield and Et[rx
τ
t,t+n] is the corresponding model implied expected excess return.14

The estimated expected excess returns for the nonlinear, A1(3), and A0(3) model are

based on the sample period 1961:07 to 2014:04. The regression results are reported in

Table V. If the model captures expected excess returns well, then the slope coefficient

should be one, the constant zero. The slope coefficients are lower but generally close

to one in the nonlinear model. In the A1(3) model the slope coefficients are close

to one at the one-year horizon but are too low at longer horizon, while in the A0(3)

model the slope coefficients are too high at the one-year horizon and too low for

the three-and four year horizon. The average R2 across bond maturity and holding

horizon is 27.4% in the nonlinear model while it is only 6.5% in the A1(3) and 7.8%

in the A0(3) model.

To measure how well the nonlinear model predicts excess returns we compare the

mean squared error of the predictor to the unconditional variance of excess returns.

Specifically, we define the statistic “fraction of variance explained” that measures the

explanatory power of the model implied in sample expected excess return as follows15

FVE = 1−
1
T

∑T
t=1

(
rxτt,t+n − Et

[
rxτt,t+n

])2

1
T

∑T
t=1

(
rxτt,t+n − 1

T

∑T
t=1 rx

τ
t,t+n

)2 . (48)

14Moments of yields and returns in the nonlinear model are easily calculated using Gauss-Hermite
quadrature, see Appendix C for details. In the rest of the paper we use Gauss-Hermite quadrature
when we do not have closed-form solutions for expectations or variances.

15Almeida et al. (2011) refer to this measure as a modified R2.
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If the predictor is unbiased, then the R2 from the regression of realized on expected

excess returns is equal to the FVE and otherwise it is an upper bound. Table V shows

the FVEs of the nonlinear, A1(3), and A0(3) model for the sample period 1961:07 to

2014:04. The in sample FVEs for the nonlinear model are higher than for the A1(3)

and A0(3) model. In contrast to the nonlinear and A0(3) model, the performance of

the A1(3) model deteriorates as we increase the holding horizon.

To compare the nonlinear model to affine models more generally we regress future

excess returns on the five yields. The R2s from this regression, shown in the second

to last column of Table V, is an upper bound for the FVE of any affine model for

which expected excess returns are spanned by yields, e.g. the Cochrane and Piazzesi

(2005) factor.16 The FVEs of the nonlinear model are equal to or higher than the

explanatory power of the Cochrane-Piazzesi factor. This implies that no affine model

without hidden risk premium factors (see discussion below) can explain more of the

variation in realized excess returns than the nonlinear model. The last column of Table

V shows that the explanatory power of any estimator for expected excess returns that

is spanned by yields and their variances is lower than the FVE of our nonlinear model.

4.1.1. Unspanned Risk Premia

There is a lot of empirical evidence that shows that a part of excess bond returns

is explained by macro factors not spanned by linear combinations of yields.17 For

example, Bauer and Rudebusch (2016) find that the R2 when regressing realized

excess returns on the first three PC of yields along with expected inflation is 85%

16The average R2 from regressing excess returns onto yields for a one-year holding horizon is 17%
which is lower than the 37% reported in Cochrane and Piazzesi (2005). There are two reasons for
this. First, the data sets are different. If we use the Fama-Bliss data, then the average R2 increases
to 25%. Second, Cochrane and Piazzesi (2005) use the period 1964-2003 and R2’s are lower outside
this sample period as documented in Duffee (2012).

17See Ludvigson and Ng (2009), Cooper and Priestley (2009), Cieslak and Povala (2015), Duffee
(2011b), Joslin et al. (2014), and Chernov and Mueller (2012). Bauer and Rudebusch (2016) argue
that this evidence can be explained by measurement error.
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higher than when regressing on just the first three PCs.18 We refer to this empirical

finding as Unspanned Risk Premia or URP.

To quantitatively capture URP in a term structure model, Duffee (2011b), Joslin

et al. (2014), and Chernov and Mueller (2012) use five-factor Gaussian models. The

reason for using five factors is that three factors are needed to explain the cross section

of bond yields and then one or two factors orthogonal to the yield curve explain

expected excess returns. An alternative explanation for the spanning puzzle that

has not been explored in the literature is that there is a nonlinear relation between

yields and expected excess returns. We therefore ask the question: are nonlinearities

empirically important for understanding the spanning puzzle?

To answer the question, we start by regressing model-implied one-year expected

excess return on the first PC, first and second PC, . . . , and all five PCs of model-

implied yields for the sample period 1961:07-2014:04. Specifically, for all bond matu-

rities τ = 2, 3, 4, 5 we run the in sample URP regressions

Et
[
rxτt,t+1

]
= ατ,1:n +

n∑
i=1

βτ,1:n PCi,t + ετ,1:n
t , ∀ n = 1, 2, 3, 4, 5, (49)

where PCi,t denotes the i-th principal component of all five yields (ordered by de-

creasing contribution to the total variation in yields). The in sample R2s of these

regressions are reported in Panels B, C, and D of Table VI. Panel C and D show that

by construction the first three PCs explain all the variation in expected excess returns

in the A1(3) and A0(3) model since expected excess returns are linear functions of

yields in affine models. Panel B shows that the first three PCs explain on average

69.4% of the variation of expected excess returns in the nonlinear model. That is,

almost one third of the variation of expected excess returns is due to a nonlinear

relation between expected excess returns and yields in sample.

18The R2 is 0.36 in the former and 0.195 in the latter, see Bauer and Rudebusch (2016)’s Table
3. Joslin et al. (2014) present similar evidence.
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Empirically, realized excess returns are invariably used in lieu of expected excess

returns as dependent variable. Hence, for all bond maturities τ = 2, 3, 4, 5 we run the

URP regressions

rxτt,t+1 = ατ,1:n +
n∑
i=1

βτ,1:n PCi,t + residual, ∀ n = 1, 2, 3, 4, 5. (50)

Panel A in VI shows R2 from regressions of realized excess returns on PCs of model-

implied yields in the data based on the sample period 1961:07-2014:04. To check

whether each model can match the actual R2 from the URP regression, we simulate

a sample path of 1, 000, 000 months for two- to five-year excess bond returns and

one- to five-year bond yields and compare the model implied URP regression R2s

to those observed in the data. Panel E, F, and G show the population R2 for the

nonlinear, A1(3), and A0(3) model, respectively. In contrast to both affine models the

population R2 in the nonlinear model are largely in line with the actual R2 observed

in the data.

The final column in Panel E, F, and G shows the population R2 when we replace

the model implied PCs in URP regression (50) with the model implied expected excess

return, that is,

rxτt,t+1 = ατ + βτEt
[
rxτt,t+1

]
+ residual, ∀ τ = 2, 3, 4, 5. (51)

In the nonlinear model the average (over all bond maturities) population R2 in re-

gression (50) when n = 3 is 81% higher than in regression (51), that is, 26.2% vs

14.5%. This implies that if there is a macro variable that perfectly tracks expected

excess returns, average R2s when regressing realized excess returns on the first three

PCs and this macro factor would be 81% higher than when regressing on just the

first three PCs; similar to the incremental R2 documented in Bauer and Rudebusch

(2016). Of course, this is not because this macro factor contains any information not
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in the yield curve.

Is it plausible that macro factors (partially) pick up nonlinearities? To address

this question, we take the in sample residuals from regressing expected excess returns

on PCs in the nonlinear model (Panel B in Table VI) and regress them on expected

inflation. Specifically, for all bond maturities τ = 2, 3, 4, 5 we run the regression

ετ,1:n
t = ατ,n + βτ,n πt + residual, ∀ n = 3, 4, 5, (52)

where ετ,1:n
t is the residual from URP regression (49) and πt is an estimator for ex-

pected inflation that is based on the Michigan Survey of Consumers (MSC).19 Table

VII shows the R2, slope coefficient, and 12-lag Newey-West corrected t-statistics of

regression (52). Expected inflation explains about 11% of the variation in sample

URP residuals based on the first three PCs and it is statistically significant at the

5% level. The R2s increase to slightly less than 20% when adding the fourth PC.

Expected inflation remains statistically significant even when considering in sample

URP residuals based all five PCs. Hence, although all information about expected

excess returns is contained in the yield curve, expected inflation appears to contain

information about them when running linear regressions.

Overall, our nonlinear model highlights an alternative channel that helps explain

the spanning puzzle: expected excess returns are nonlinearly related to yields and

therefore a part of expected excess returns appears to be “hidden” from a linear

combination of yields and this part can be picked up by macro factors. This is

achieved in a parsimonious three-factor model rather than a five-factor model as is

common in the literature.

19Expected inflation is measured as the cross-sectional average of one-year ahead price growth
forecasts of consumers surveyed by the University of Michigan. MSC is a survey conducted on
monthly frequencies covering a large cross-section of consumers and Ang et al. (2007) show that it
is a good unbiased predictor of inflation.
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4.2 STOCHASTIC VOLATILITY

Table VIII shows that there is more than one factor in realized yield variances in

our data: the first PC of yield variances explain 94.5% of the variation while the

first two PCs explain 99.2%. The A1(3) model has by definition only one factor

explaining volatilities and therefore the first PC explain all the variation in model-

implied realized variances.20 In the nonlinear model, the first PC explains 97.5% of

the variation in model-implied variances and the first two PCs explain 99.9%. Hence,

yield variances in the nonlinear model exhibit a linear multi-factor structure as in the

data.

The nonlinear and A1(3) model also have significantly different distributions of

future yield volatility. Figure 4 shows the one-year ahead conditional distribution

of the instantaneous yield volatility for the bond with three years to maturity (the

distributions for bonds with other maturities are similar).21 The volatility is a linear

function of only one factor in the A1(3) model and the distribution of future volatility

is fairly symmetric and does not change much over time. In the nonlinear model

volatility is a nonlinear function of three factors and the volatility distribution takes

on a variety of shapes that persist over time.

The 97.5 quantiles of the one-year ahead volatility distribution in the nonlinear

model shows that the market did not anticipate the possibility of very volatile yields

before the monetary experiment in the early 80s, apart from brief periods around the

1970s recessions. However, there is a significant probability of a high yield volatility

scenario since the 80s, despite the fact that volatilities have come down to levels

similar to those in the 60s and 70s. It is only in the calm 2005-2006 period where a

high-volatility scenario was unlikely. This finding suggest that there is information

20Even though realized variances are noisy measures of integrated variances, average yields nev-
ertheless span realized variances, see Andersen and Benzoni (2010).

21The instantaneous yield volatility is 1
τ v

(τ)(t) with v(τ)(t) given in equation (29).
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about the risk of a high volatility regime in Treasury bond data which is similar to

the appearance of the smile in equity options since the stock market crash of 87.

Figure 5 shows the 97.5 quantiles of the one-year ahead distribution of yield volatility

for sample periods with (1961:07-2014:04) and without (1987:08-2014:04) the early

80s. There is a fat right-tail in the volatility distribution in both cases and hence the

nonlinear model captures the risk of strong increase in volatility, even when such an

event is not in the sample used to estimate the model.

The regime-switching models of Dai et al. (2007), Bansal and Zhou (2002), and

Bansal et al. (2004) capture time variation in the probabilities of high volatility

regimes by adding a state variable that picks up the regime. However, if a high-

volatility regime is not in the sample used to estimate the model, then the regimes

in the model will pick up minor variations in volatility (see the discussion in Dai

et al. (2007)). Everything works through nonlinearities in our model and therefore

the probability of a high-volatility regime can be pinned down in a sample that does

not include such an episode.

4.2.1. Unspanned Stochastic Volatility

There is a large literature suggesting that interest rate volatility risk cannot be hedged

by a portfolio consisting solely of bonds; a phenomenon referred to by Collin-Dufresne

and Goldstein (2002) as Unspanned Stochastic Volatility (USV). The empirical ev-

idence supporting USV typically comes from a low R2 when regressing measures of

volatility on interest rates. For instance, Collin-Dufresne and Goldstein (2002) regress

straddle returns on changes in swap rates and document R2s as low as 10%. Similarly,

Andersen and Benzoni (2010) (AB) regress yield variances - measured using high fre-

quency data - on the first six PCs of yields and find low R2s. Inconsistent with this

evidence, standard affine models produce high R2’s in USV regressions because there
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is a linear relation between yield variances and yields in the model.

The nonlinear model provides an alternative explanation for low R2s in USV

regression because the relation between yield variances and yields is nonlinear. How-

ever, it is an empirical question if nonlinearities in the model are strong enough to

produce R2s similar to those found in the data. To answer this question, we follow

AB and regress realized yield variance on principal components of yields. Specifically,

for each bond maturity τ = 1, 2, 3, 4, 5 and number n = 1, 2, 3, 4, 5 of PCs we run the

following USV regression in the data

rvτt = ατ +
n∑
i=1

βτi PCi,t + ετt , (53)

where, as in the previous section, PCi,t denotes the i-th principal component of all five

yields (ordered by decreasing contribution to the total variation in yields). The R2s of

these USV regressions in the data are reported in Panel A of Table IX. The average

R2 when regressing realized variance on the first three PCs is 32.4%, confirming that

the PCs of yields only explain a fraction of the variation in yield variance in the

data.22

To assess the ability of the nonlinear model to capture USV we regress model-

implied instantaneous yield variance the PCs of model-implied yields:

v(t, t+ τ)2 = ατ +
n∑
i=1

β
(τ)
i PCi

t + ετt , (54)

where v(t, t+ τ) is given in equation (29). Panel B shows that the average in sample

R2 from USV regressions (54) on the first three PCs (n = 3) is with 42.5% not

substantially higher than in the data. In contrast, Panel D shows that in the A1(3)

22The R2 are higher than those found in AB because the sample period includes the monetary ex-
periment, see Jacobs and Karoui (2009) for a discussion of the explanatory power in USV regressions
for different time periods.
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model the in sample R2 is 100% once the first three PCs are included in the USV

regression (54). Hence, the presence of nonlinearities give rise to low R2’s in USV

regressions.

To understand why a significant part of variance is (linearly) unspanned by yields

we recall that equation (24) shows that the local volatility consists of two components,

σlev and σvol, and thus the instantaneous yield variance is

σ(t, T )′σ(t, T ) = σvol(t, T )′σvol(t, T ) + σlev(t, T )′σlev(t, T ) + 2σvol(t, T )′σlev(t, T ) (55)

While the average (across maturities ) in sample R2 from regressing the yield variance

on the first five PCs of model-implied yields is only 59.2% (see Panel B of Table IX),

the average in sample R2 from regressing each component in (55) on the five PCs of

yields is 94.4%, 88.2%, and 94.9%, respectively. Hence, each component is close to be-

ing linearly spanned, but they partially offset each other.23 When P1(t, T ) = P2(t, T )

the second and third term in (55) vanish and volatility is largely spanned. Hence, the

fraction of volatility that is unspanned varies significantly over time consistent with

findings in Jacobs and Karoui (2009).

The actual R2 of USV regression (53) reported in Panel A of Table IX are not

directly comparable to the in sample R2 of USV regression (54) reported in Panel B

for the nonlinear model and Panel C in the A1(3) model because realized variance

based on daily data is a noisy proxy for yield variance. To check wether the nonlinear

model can quantitatively capture USV in the data, we simulate 1,000,000 months

of daily data (with 21 days in each month), compute the monthly realized variance

and monthly average yield, and run the same URP regression as in the data, that

is, regression (53). Panel C shows that the population R2s for the nonlinear model

23In particular, as s(t) moves towards the high volatility model, the yield difference between the
two models tends to decrease. That is, as the first part in (55) increases, the second part in the
same equation tends to decrease.
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are very similar to the in sample R2 of Panel B where we use instantaneous variance

instead of realized variance, that is, the average R2 is 39.8% when including the

first three PCs. Hence, our results are robust to taking into account that realized

variance based on daily data is a noisy proxy for instantaneous variance. Panel E

shows that the average population R2 is 45.8% in the A1(3) model when regressing

realized variance on the first three PCs of yields, which brings the population R2s

much closer to R2s in the data. However, the populations R2s when using only one

or two PCs in the A1(3) model are zero which is strongly at odds with the data.24

Bikbov and Chernov (2009) discuss how measurement error due to microstructure

effects such as the bid-ask spread in option and bond prices affects the explanatory

power of USV regressions. Collin-Dufresne and Goldstein (2002) argue that measure-

ment error cannot be the reason for low R2’s in USV regressions because there is a

strong factor structure in the regression residuals across bond maturities. Panel F of

Table IX confirms the factor structure in the data because the first PC of the residu-

als ε1
t , . . . , ε

5
t of the USV regression (53) explains 91.8% of the total variation in the

USV residuals. Similarly, the first PC explains 98% of the variation in the residuals

of USV regression (54) implied by the nonlinear model. Hence, our nonlinear model

can capture the low explanatory power and the strong residual factor structure of the

USV regressions that is observed in the data.

Collin-Dufresne and Goldstein (2002) introduce knife edge parameter restrictions

in affine models such that volatility state variable(s) do not affect bond yields, the so-

called USV models. The most commonly used USV models – the A1(3) and A1(4) –

have one factor driving volatility and this factor does not affect yields. These models

generate zero R2s in the above USV regression in population, inconsistent with the

24Since measurement errors when using realized variance in the A1(3) model result in a drop in
R2s from 100% to 45.8%, an interesting question is if the population R2s in the nonlinear model in
Panel C would be substantially higher if instantaneous variance is used instead of realized variance.
The answer is no. If instantaneous model-implied variance is used the average R2 is 48.4% instead
of 43.6% in Panel C.
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empirical evidence. In contrast, the nonlinear model retains a parsimonious three-

factor structure and yet can generate R2s in USV regressions which are broadly in

line with those in the data.

4.3 LINEARITY IN THE CROSS-SECTION OF YIELDS

The nonlinear bond pricing model allows us to capture the observed time variation

in the mean and volatility of excess bond returns. However, Balduzzi and Chiang

(2012) show that in the cross-section there is an almost linear relation between yields

of different maturities. To check wether the nonlinear model captures the cross-

sectional linearity we follow Duffee (2011a) and determine the principal components

of zero-coupon bond yield changes with maturities ranging from one to five years and

regress the yield changes of each bond on a constant and the first three principal

components. The results for the data (based on 634 observations) and the three

models (based on one million simulated observations) are shown in Table X.

Panel A of Table X shows that the first three principal components describe almost

all the variation of bond yield changes in the nonlinear model which is consistent with

the data. Moreover, Panel B of Table X shows that the population loading for each

yield on the level, slope, and curvature factor in the nonlinear model is similar to

the data. We conclude that the cross-sectional variation of bond yields implied by

the nonlinear model is well explained by the first three principal components and no

yield breaks this linear relation.

5. One Factor Model - an Illustration

In this section we estimate a one-factor nonlinear model to highlight the role of

nonlinearity in a simple setting. Table XI shows the estimated parameters with
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asymptotic standard errors (in parenthesis) based on the sample period 1961:07-

2014:04. Panel A of Figure 6 shows the stochastic weight s(X), defined in equation

(8), over the sample period. The dynamics of s(X) in the one-factor model are similar

to the dynamics in the three-factor model – shown in Figure 2 – although s(X) moves

closer to zero in the three-factor model.

Panel B of Figure 6 shows bond yields as a function of the state variable X. The

relation between yields and X is close to linear for low X’s, while for high X’s the

rate of change picks up and yields increase more rapidly with X. The reason is that

s(X) starts to move away from one as X increases as seen in Panel C and moreover,

the speed with which s(X) moves away from one increases for high Xs. Hence, for

a given change in X, yields respond more for a high X, that corresponds to a high

yield environment than for a low X, that corresponds to a low yield environment.

Taken together, yield variances must be substantially higher for high yield environ-

ments than for low yield environments, which Panel D indeed shows. Moreover, the

nonlinear relation between yields and their variances shown in Panel D leads to USV.

Specifically, Panel B in Table XIII shows that the first PC of yields only explains be-

tween 52% and 63% of yield variance in sample. In contrast, in any affine one-factor

stochastic volatility model the R2 is 100%.

Panel E of Figure 6 shows the relation between yields and instantaneous expected

excess returns. In a standard affine one-factor model the relation is linear, but we see

that in the nonlinear model there is a U-shaped relation. This nonlinearity creates

Unspanned Risk Premia in the model. Indeed, Panel A in Table XIII shows that the

first PC of yields only explains between 13.0% and 19.9% of the variation in expected

excess returns. Given the U-shaped relation between excess returns and yields it is not

surprising that the level factor does not have more explanatory power but it provides

a stark contrast to one-factor affine models where the first PC always explains 100%.
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Finally, Figure 6’s Panel F shows that the relation between the yields themselves

is approximately linear. Thus, although there are significant nonlinear effects in the

time series of excess returns and yield volatilities, there is an approximately linear

relation between yields in the cross section which is consistent with the data.

6. Conclusion

We introduce a new reduced form term structure model where the short rate and

market prices of risk are nonlinear functions of Gaussian state variables and derive

closed form solutions for yields. The nonlinear model with three Gaussian factors

matches both the time-variation in expected excess returns and yield volatilities of

U.S. Treasury bonds from 1961 to 2014. Because there are nonlinear relations between

factors, yields, and variances, the model exhibits features consistent with empirical

evidence on unspanned risk premia (URP) and unspanned stochastic volatility (USV).

We are not aware of any term structure models–in particular a model with only three

factors–that have empirical properties consistent with evidence on time-variation in

expected excess returns and volatilities, URP, and USV.

Although our empirical analysis has focused on a nonlinear generalization of an

affine Gaussian model, it is possible to generalize a wide range of term structure

models such as affine models with stochastic volatility and quadratic models. Our

generalization introduces new dynamics for bond returns while keeping the new model

as tractable as the standard model. Furthermore, the method extends to processes

such as jump-diffusions and continuous time Markov chains. We explore this in

Feldhütter et al. (2016).
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A. General Nonlinear Gaussian Model

In this section we provide closed form solutions for a more general class of nonlinear

term structure models, prove Theorem 1, and relate our results to the class of reduced

form asset pricing models with closed form solutions discussed in Duffie et al. (2000)

and Chen and Joslin (2012).

A.1 THE STOCHASTIC DISCOUNT FACTOR

Let γ denote a nonnegative constant and M0(t) a strictly positive stochastic process

with dynamics given in equation (3). The stochastic discount factor is defined as

M(t) = M0(t)
(

1 + γe−β
′X(t)

)α
, (56)

where β ∈ Rd and α ∈ N .

A.2 CLOSED FORM BOND PRICES

We show in the next theorem that the price of a bond is a weighted average of bond

prices in artificial economies that belong to the class of essentially affine Gaussian

term structure models.

THEOREM 2. The price of a zero-coupon bond that matures at time T is

P (t, T ) =
α∑
n=0

sn(t)Pn(t, T ), (57)
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where

Pn(t, T ) = eAn(T−t)+Bn(T−t)′X(t), (58)

sn(t) =

(
α
n

)
γne−nβ

′X(t)

(1 + γe−β′X(t))
α . (59)

The coefficient An(T − t) and the d-dimensional vector Bn(T − t) solve the ordinary

differential equations given in equation (10) and (11).

Proof. Using the binomial expansion theorem, the stochastic discount factor in Equa-

tion (56) can be expanded as

M(t) =
α∑
n=0

Mn(t), (60)

where

Mn(t) =

(
α

n

)
γne−nβ

′X(t)M0(t). (61)

Each summand can be interpreted as a stochastic discount factor in an artificial

economy.25 The dynamics of the strictly positive stochastic process Mn(t) are

dMn(t)

Mn(t)
= −rn(t) dt− Λn(t)′dW (t), (62)

where

Λn(t) = Λ0(t) + nΣ′β (63)

rn(t) = r0(t) + nβ′κ
(
X̄ −X(t)

)
− n2

2
β′ΣΣ′β − nβ′ΣΛ0(t). (64)

Plugging in for r0(t) and Λ0(t), it is straightforward to show that Λn(t) and rn(t)

are affine functions of X(t) with coefficients given in Equations (12)-(15). If Mn(t)

25Similar expansions of the stochastic discount factor appear in Yan (2008), Dumas et al. (2009),
Bhamra and Uppal (2014), and Ehling et al. (2016).
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is interpreted as a stochastic discount factor of an artificial economy indexed by n

then we know that bond prices in this economy belong to the class of essentially

(exponential) affine Gaussian term structure models and hence

Pn(t, T ) = eAn(T−t)+Bn(T−t)′X(t), (65)

where coefficient An(T − t) and the d-dimensional vector Bn(T − t) solve the ordinary

differential equations (10) and (11). Hence, the bond price is

P (t, T ) =
α∑
n=0

sn(t)Pn(t, T ), (66)

where sn(t) is given in equation (59).

Proof of Theorem 1. Set α = 1 in Theorem 2.

A.3 EXPECTED RETURN AND BOND VOLATILITY

Applying Ito’s lemma to equation (56) leads to the dynamics of the stochastic discount

factor:

dM(t)

M(t)
= −r(t) dt− Λ(t)′dW (t), (67)

where

r(t) = r0(t) + α (1− s(t)) β′κ
(
X̄ −X(t)

)
− α(1− s(t))β′ΣΛ0(t)

− α

2
(1− s(t)) (α (1− s(t)) + s(t)) β′ΣΣ′β.

(68)

and

Λ(t) = Λ0(t) + α (1− s(t)) Σ′β. (69)
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Let ωn(t, T ) denote the contribution of each artificial exponential affine bond price

to the total bond price. Specifically,

ωn(t, T ) =
Pn(t, T )sn(t)

P (t, T )
. (70)

The dynamics of the bond price P (t, T ) are

dP (t, T )

P (t, T )
= (r(t) + Λ(t)′σ(t, T )) dt+ σ(t, T )′ dW (t), (71)

where

σ(t, T ) = Σ′

(
α∑
n=0

ωn(t, T )Bn(T − t) + β

(
α∑
n=0

n ωn(t, T )− α(1− s(t))

))
. (72)

A.4 LINK TO REDUCED FORM ASSET PRICING MOD-

ELS

How is this model related to the large literature on reduced form asset pricing models

with closed form solutions? At a first glance it does not seem to be related because

the Gaussian state dynamics of X(t) under the data generating or physical measure

are no longer Gaussian under the risk neutral measure Q. Specifically,

dX(t) =
(
κX̄ − κX(t)− ΣΛ(t)

)
dt+ Σ dWQ(t), (73)

where Λ(t), given in equation (69), is a nonlinear function of X(t) and

dQ = e−
1
2

∫ t
0 Λ(a)′Λ(a) da−

∫ t
0 Λ(a)′ dW P(t) dP. (74)
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However, we can compute the state dynamics under the risk neutral measure in the

benchmark model defined as

dQ0 = e−
1
2

∫ t
0 Λ0(a)′Λ0(a) da−

∫ t
0 Λ0(a)′ dW P(t) dP, (75)

where Λ0(t), which is given in equation (19), is an affine function of X(t) and thus

Gaussian under Q0. Specifically,

dX(t) =
(
κX̄ − Σλ0,0 − (κ+ Σλ0,X)X(t)

)
dt+ Σ dWQ0

(t). (76)

Define

f (XT ) =

(
1 + γe−β

′X(T )
)α

(1 + γe−β′X(t))
α (77)

and rewrite the bond price as an expectation under the risk neutral measure in the

benchmark model. Specifically,

P (t, T ) = Et

[
M(T )

M(t)

]
= Et

[
M0(T )

M0(t)
f (XT )

]
= EQ0

t

[
e−

∫ T
t r0(a) daf (X(T ))

]
,

(78)

where r0(t), given in equation (18), is affine in X(t). Duffie et al. (2000) and Chen

and Joslin (2012) show that the expectation in equation (78) can be solved in closed

form if f(x) =
∑

n(cn+vnx)eβnx, the short rate is affine in X(t), and X(t) is Gaussian

under Q. As shown in the proof of Theorem 1, the function f(Xt) can be expanded

into the exponential polynomial

f (XT ) =
α∑
n=0

(
α
n

)
γn

(1 + γe−β′X(t))
α e
−nβ′X(T ) =

α∑
n=0

vne
−nβ′X(T ). (79)

39



using the Binomial expansion theorem and hence the bond price is given in closed

form.

B. Equilibrium Models

In this section we show that the functional form of the state price density in equation

(2) and (56) naturally comes out of several equilibrium models.26 We need to allow

for state variables that follow arithmetic Brownian motions and hence we rewrite the

dynamics of the state vector in equation (1) in the slightly more general form

dX(t) = (θ − κX(t)) dt+ Σ dW (t), (80)

where θ is d–dimensional and κ and Σ are d× d–dimensional.

In what follows, the standard consumption based asset pricing model with a

representative agent power utility and log-normally distributed consumption will serve

as our benchmark model. Specifically, the state price density takes the following form

M0(t) = e−ρtC(t)−R, (81)

where R is the coefficient of RRA and C is aggregate consumption with dynamics

dC(t)

C(t)
= µCdt+ σ′CdW (t). (82)

26Chen and Joslin (2012) provide an alternative way to solve many of these equilibrium models
that is based on a nonlinear transform of processes with tractable characteristic functions.
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The short rate and the market price of risk are both constant and given by

Λ0 = RσC (83)

r0 = ρ+RµC −
1

2
R (R + 1)σ′CσC . (84)

Table XIV summarizes the relation between the nonlinear term structure models and

the equilibrium models discussed in this section.

B.1 TWO TREES

Cochrane et al. (2008) study an economy in which aggregate consumption is the sum

of two Lucas trees. In particular they assume that the dividends of each tree follow

a geometric Brownian motion

dDi(t) = Di(t) (µidt+ σ′idW (t)) . (85)

Aggregate consumption is C(t) = D1(t) +D2(t). There is a representative agent with

power utility and risk aversion R. Hence, the stochastic discount factor is

M(t) = e−ρtC(t)−R

= e−ρt (D1(t) +D2(t))−R

= e−ρtD1(t)−R
(

1 +
D2(t)

D1(t)

)−R
= M0(t)

(
1 + elog(D2(t))−log(D1(t))

)−R
, (86)

where M0(t) = e−ρtD−R1 and X(t) = log (D1(t)/D2(t)). Equation (86) has the same

form as the SDF in equation (56) with α /∈ N . Specifically, γ = 1, β = 1, and

α = −R. Note that in this case the state variable is the log-ratio of two geometric

Brownian motions and thus κ = 0. The share s(X(t)) and hence yields are not
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stationary.

B.2 MULTIPLE CONSUMPTION GOODS

Models with multiple consumption goods and CES consumption aggregator naturally

falls within the functional form of the SDF in equation (56). Consider a setting with

two consumption goods. The aggregate output of the two goods are given by

dDi(t) = Di(t) (µidt+ σ′idW (t)) . (87)

Assume that the representative agent has the following utility over aggregate con-

sumption C,

u(C, t) = e−ρt
1

1−R
C1−R, (88)

where

C(C1, C2) =
(
φ1−bCb

1 + (1− φ)1−bCb
2

) 1
b
. (89)

We use the aggregate consumption bundle as numeraire, and consequently the state

price density is

M(t) = e−ρtC(t)−R

= (φ)
bR
1−b e−ρtD1(t)−R

(
1 +

(
1− φ
φ

)1−b(
D2(t)

D1(t)

)b)−Rb
.

(90)

After normalizing equation (90) has the same form as the SDF in equation (56) with

α /∈ N . Specifically, X(t) = log(D1(t)/D2(t)), γ =
(

1−φ
φ

)1−b
, β = b, and α = −R

b
.

As in the case with Two Trees, the share s(X(t)) and hence yields are not stationary.
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B.3 EXTERNAL HABIT FORMATION

The utility function in Campbell and Cochrane (1999) is

U(C,H) = e−ρt
1

1−R
(C −H)1−R , (91)

where H is the habit level. Rather than working directly with the habit level, Camp-

bell and Cochrane (1999) define the surplus consumption ratio s = C−H
C

. The stochas-

tic discount factor is

M(t) = e−ρtC(t)−Rs(t)−R (92)

= M0(t)s(t)−R. (93)

Define the state variable

dX(t) = κ
(
X̄ −X(t)

)
dt+ bdW (t), (94)

where κ > 0,σc > 0 and b > 0. Now let s(t) = 1
1+e−βX(t) . Note that s(t) is between 0

and 1. In particular, s(t) follows

ds(t) = s(t) (µs(t)dt+ σs(t)dW (t)) , (95)

where

µs(t) = (1− s(t))
(
βκ
(
X̄ −X(t)

)
+

1

2
(1− 2s(t)) β2b2

)
(96)

σs(t) = (1− s(t)) βb. (97)

The functional form of the surplus consumption ratio differs from Campbell and

Cochrane (1999). However, note that the surplus consumption ratio is locally per-
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fectly correlated with consumption shocks, mean-reverting and bounded between 0

and 1 just as in Campbell and Cochrane (1999). The state price density can be

written as

M(t) = M0(t)
(
1 + e−βX(t)

)R
. (98)

The above state price density has the same form as equation (56) with parameters

γ = 1, β = β, and α = R. Note that the state variable X in this case is mean-

reverting and therefore the share s(X(t)) and hence yields are stationary.

B.4 HETEROGENEOUS BELIEFS

Consider an economy with two agents that have different beliefs. Let both agents have

power utility with the same coefficient of relative risk aversion, R. Moreover, assume

that aggregate consumption follows the dynamics in equation (82). The agents do

not observe the expected growth rate and agree to disagree.27 The equilibrium can be

solved by forming the central planner problem with stochastic weight λ that captures

the agents’ initial relative wealth and their differences in beliefs (see Basak (2000),

for example),

U(C, λ) = max
{C1+C2=C}

(
1

1−R
C1−R

1 + λ
1

1−R
C1−R

2

)
. (99)

Solving the above problem leads to the optimal consumption of the agents

C1(t) = s(t)C(t), (100)

C2(t) = (1− s(t))C(t), (101)

27The model can easily be generalised to a setting with disagreement about multiple stochastic
processes and learning. For instance, Ehling et al. (2016) show that in a model with disagreement
about inflation, the bond prices are weighted averages of quadratic Gaussian term structure models.
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where s(t) = 1

1+λ(t)
1
R

is the consumption share of the first agent and C is the aggregate

consumption. The state price density as perceived by the first agent is

M(t) = e−ρtC1(t)−R

= e−ρtC(t)−Rs(t)−R

= M0(t)
(

1 + e
1
R
log(λ(t))

)R
. (102)

This has the same form as equation (56) with X(t) = log(λ(t)), γ = 1, β = − 1
R

, and

α = R. The dynamics of the state variable is driven by the log-likelihood ratio of the

two agents and consequently the share s(X(t)) and hence yields are not stationary.

B.5 HARA UTILITY

Consider a pure exchange economy with a representative agent with utility u(t, c) =

e−ρt

1−R (C + b)1−R, where R > 0 and b > 0. We can write the SDF as

M(t) = e−ρtC(t)−R

= e−ρt (C(t) + b)−R

= e−ρtC(t)−R
(

1 +
b

C(t)

)−R
= M0(t)

(
1 + elog(b)−log(C(t))

)−R
(103)

After normalizing equation (103) has the same form as the SDF in equation (56) with

α /∈ N . Specifically, X(t) = log(b/C(t)), γ = 1, β = 1, and α = −R. Similarly to

the model with Two Trees and multiple consumption goods, the share s(X(t)) and

hence yields are nonstationary as the ratio b/C(t) will eventually converge to zero or

infinity depending on the expected growth in the economy.
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C. Gauss-Hermite Quadrature

While bond prices and bond yields are given in closed form, conditional moments of

yields and bond returns are not. However, it is straightforward to calculate condi-

tional expectations using Gauss-Hermite polynomials because the state vector X(t)

is Gaussian.28

In this section we illustrate how to calculate the expectation of a function of

Gaussian state variables. Let µX and ΣX denote the conditional mean and variance

of X(u) at time t < u. Let f(X(t)) be a function of the state vector at time t.

For instance if you want to calculate at time t the n-th uncentered moment of the

bond yield with maturity τ at time u, then f(X(u)) =
(
y(τ)(X(u))

)n
. Hence, the

conditional expectation of y(τ)(X(u)) at time t is

Et [f (X(u))] =

∫
Rd
f(x)

1(
(2π)d |ΣX |

)0.5 e
− 1

2
(x−µX)′Σ−1

X (x−µX)dx. (104)

Define y =
√

2σ−1
X (x− µX) where σX is determined by the Cholesky decomposition

ΣX = σXσ
′
X . Hence, we can write Equation (104) as

π−
d
2

∫
Rd
f(
√

2σXy + µX)e−y
′ydy. (105)

Let g(y) = f(
√

2σXy + µX). We set d = 3 in the empirical section of the paper

and thus the integral in Equation (105) can be approximated by the n point Gauss-

Hermite quadrature

∫
Rd
f(
√

2σXy + µX)e−y
′ydy ≈

n∑
i=1

n∑
j=1

n∑
k=1

wiwjwkg(y1(i), y2(j), y3(k)), (106)

where wi are the weighs and yl(i) are the nodes for the n point Gauss-Hermite quadra-

28For more details see Judd (1998).
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ture for i = 1, .., n and l = 1, .., 3. We use n = 4 in equation (106).

References

Ahn, D.-H., R. Dittmar, and A. Gallant, 2002, Quadratic term structure models:

Theory and evidence, Review of Financial Studies 15, 243–288.

Ahn, D.-H., R. F. Dittmar, A. R. Gallant, and B. Gao, 2003, Purebred or hybrid?

Reproducing the volatility in term structure dynamics, Journal of Econometrics

116, 147–180.

Ahn, D.-H., and B. Gao, 1999, A parametric non-linear model of term structure

dynamics, Review of Financial Studies 12, 721–762.

Ait-Sahalia, Y., 1996a, Nonparametric pricing of interest rate derivative securities,

Econometrica 64, 527–560.

Ait-Sahalia, Y., 1996b, Testing continous-time models of the spot interest rate, Review

of Financial Studies 9, 385–426.

Almeida, C., J. J. Graveline, and S. Joslin, 2011, Do interest rate options contain

information about excess bond returns?, Journal of Econometrics 164, 35–44.

Andersen, T. G., and L. Benzoni, 2010, Do Bonds Span Volatility Risk in the U.S.

Treasury market? A Specification Test for Affine Term Structure Models, Journal

of Finance 65, 603–653.

Andersen, T. G., T. Bollerslev, and F. X. Diebold, 2010, Parametric and nonpara-

metric volatility measurement, in Y. Ait-Sahalia, and L. P. Hansen, eds., Handbook

of Financial Econometrics, Vol 1: Tools and Techniques (Handbooks in Finance),

67–137 (Elsevier).

47



Ang, A., and G. Bekaert, 2002, Short rate nonlinearities and regime switches, Journal

of Economic Dynamics and Control 26, 1243–1274.

Ang, A., G. Bekaert, and M. Wei, 2007, Do macro variables, asset markets, or surveys

forecast inflation better?, Journal of Monetary Economics 54, 1163–1212.

Balduzzi, P., and I.-H. E. Chiang, 2012, A simple test of the affine class of term

structure models, Review of Asset Pricing Studies 2, 203–244.

Bansal, R., G. Tauchen, and H. Zhou, 2004, Regime Shifts, Risk Premiums in the

Term Structure, and the Business Cycle, Journal of Business and Economic Statis-

tics 22, 396–409.

Bansal, R., and H. Zhou, 2002, Term structure of interest rates with regime shifts,

Journal of Finance 57, 1997–2043.

Barndorff-Nielsen, O., and N. Shephard, 2002, Econometric analysis of realized

volatility and its use in estimating stochastic volatility models, Journal of the Royal

Statistical Society B 64, 253–280.

Basak, S., 2000, A model of dynamic equilibrium asset pricing with heterogeneous

beliefs and extraneous risk, Journal of Economic Dynamics and Control 24, 63–95.

Bauer, M., and G. Rudebusch, 2016, Resolving the spanning puzzle in macro-finance

term structure models, forthcoming, Review of Finance .

Bhamra, H., and R. Uppal, 2014, Asset prices with heterogeneity in preferences and

beliefs, Review of Financial Studies 27, 519–580.

Bikbov, R., and M. Chernov, 2009, Unspanned Stochastic Volatility in Affine Models:

Evidence from Eurodollar Futures and Options, Management Science 1292–1305.

48



Campbell, J. Y., and J. H. Cochrane, 1999, By force of habit: A consumption-based

explanation of aggregate stock market behavior, The Journal of Political Economy

107, 205–251.

Campbell, J. Y., and R. J. Shiller, 1991, Yield spread and interest rate movements:

A bird’s eye view, Review of Economic Studies 58, 495–514.

Carr, P., X. Gabaix, and L. Wu, 2009, Linearity-generating processes, unspanned

stochastic volatility, and interest-rate option pricing, Working paper.

Carr, P., and L. Wu, 2009, Stock options and credit default swaps: A joint framework

for valuation amd estimation, Journal of Financial Econometrics 1–41.

Chan, K., A. Karolyi, F. Longstaff, and A. B. Sanders, 1992, An empirical comparison

of alternative models of the short-term interest rate, Journal of Finance 47, 1209–

1227.

Chapman, D. A., and N. D. Pearson, 2000, Is the short rate drift actually nonlinear?,

Journal of Finance LV, 355–388.

Chen, H., and S. Joslin, 2012, Generalized transform analysis of affine processes and

applications in finance, Review of Financial Studies 25, 2225–2256.

Chernov, M., and P. Mueller, 2012, The term structure of inflation expectations,

Journal of Financial Economics 106, 367–394.

Christoffersen, P., C. Dorion, K. Jacobs, and L. Karoui, 2014, Nonlinear Kalman

Filtering in Affine Term Structure Models, Management Science 60.

Cieslak, A., and P. Povala, 2015, Expected returns in treasury bonds, conditionally

accepted, Review of Financial Studies.

Cieslak, A., and P. Povala, 2016, Information in the term structure of yield curve

volatility, Journal of Finance 71, 1393–1436.

49



Cochrane, J., and M. Piazzesi, 2005, Bond risk premia, American Economic Review

95, 138–160.

Cochrane, J. H., F. A. Longstaff, and P. Santa-Clara, 2008, Two trees, Review of

Financial Studies 21, 347–385.

Collin-Dufresne, P., and R. S. Goldstein, 2002, Do Bonds Span the Fixed Income

Markets? Theory and Evidence for Unspanned Stochastic Volatility, Journal of

Finance 57, 1685–1730.

Collin-Dufresne, P., R. S. Goldstein, and C. S. Jones, 2009, Can interest rate volatility

be extracted from the cross section of bond yields?, Journal of Financial Economics

94, 47–66.

Constantinides, G. M., 1992, A theory of the nominal term structure of interest rates,

Review of Financial Studies 5, 531–552.

Cooper, I., and R. Priestley, 2009, Time-Varying Risk Premiums and the Output

Gap, Review of Financial Studies 22, 2601–2633.

Cox, J. C., J. E. Ingersoll, and S. A. Ross, 1985, A theory of the term structure of

interest rates, Econometrica 53, p. 385–408.

Creal, D. D., and J. C. Wu, 2015, Estimation of affine term structure models with

spanned or unspanned stochastic volatility, Journal of Econometrics 185, 60–81.

Dai, Q., A. Le, and K. Singleton, 2010, Discrete-time affineQ term structure models

with generalized market prices of risk, Review of Financial Studies 23, 2184–2227.

Dai, Q., and K. Singleton, 2000, Specification analysis of affine term structure models,

Journal of Finance 55, 1943–1978.

Dai, Q., and K. Singleton, 2003, Term structure dynamics in theory and reality,

Review of Financial Studies 16, 631–678.

50



Dai, Q., and K. J. Singleton, 2002, Expectation puzzles, time-varying risk premia, and

affine models of the term structure, Journal of Financial Economics 63, 415–441.

Dai, Q., K. J. Singleton, and W. Yang, 2007, Regime shifts in a dynamic term struc-

ture model of u.s. treasury bond yields, Review of Financial Studies 20, 1669–1706.

Duffee, G., 2002, Term premia and interest rate forecast in affine models, Journal of

Finance 57, 405–443.

Duffee, G., 2010, Sharpe ratios in term structure models, Working Paper, University

of California, Berkeley .

Duffee, G., 2011a, Forecasting with the term structure: The role of no-arbitrage

restrictions, Working Paper, Johns Hopkins University .

Duffee, G., 2011b, Information in (and not in) the term structure, Review of Financial

Studies 24, 2895–2934.

Duffee, G., 2012, Forecasting interest rates, Working paper.

Duffie, D., and R. Kan, 1996, A yield-factor model of interest rates, Mathematical

Finance 6, p. 379–406.

Duffie, D., J. Pan, and K. Singleton, 2000, Transform analysis and asset pricing for

affine jump-diffusions, Econometrica 68, 1343–1376.

Dumas, B., A. Kurshev, and R. Uppal, 2009, Equilibrium portfolio strategies in the

presence of sentiment risk and excess volatility, The Journal of Finance 64, 579–

629.

Ehling, P., M. Gallmeyer, C. Heyerdahl-Larsen, and P. Illeditsch, 2016, Disagreement

about inflation and the yield curve, Working Paper.

51



Fama, E. F., and R. R. Bliss, 1987, The information in long-maturity forward rates,

American Economic Review 77, 680–692.

Fan, R., A. Gupta, and P. Ritchken, 2003, Hedging in the possible presence of un-

spanned stochastic volatility: Evidence from swaption markets, Journal of Finance

58, 2219–2248.

Feldhütter, P., 2016, Can affine models match the moments in bond yields?, Quarterly

Journal of Finance 6, 1–56.

Feldhütter, P., C. Heyerdahl-Larsen, and P. Illeditsch, 2016, Expanded term structure

models, Work in progress.

Feldhütter, P., and D. Lando, 2008, Decomposing Swap Spreads, Journal of Financial

Economics 88, 375–405.

Filipovic, D., M. Larsson, and A. B. Trolle, 2015, Linear-Rational Term Structure

Models, forthcoming, Journal of Finance .

Gabaix, X., 2009, Linearity-generating processes: A modelling tool yielding closed

forms for asset prices, CEPR and NBER Working paper.

Gurkaynak, R. S., B. Sack, and J. H. Wright, 2007, The u.s. treasury yield curve:

1961 to the present, Journal of Monetary Economics 54, 2291–2304.

Hansen, L. P., and R. J. Hodrick, 1980, Forward Exchange Rates as Optimal predic-

tors of future Spot Rates: An Econometric Analysis, Journal of Political Economy

88, 829–853.

Heidari, M., and L. Wu, 2003, Are Interest Rate Derivatives Spanned by the Term

Structure of Interest Rates?, Journal of Fixed Income 12, 75–86.

52



Jacobs, K., and L. Karoui, 2009, Conditional volatility in affine term-structure mod-

els: Evidence from Treasury and swap markets, Journal of Financial Economics

91, 288–318.

Jermann, U., 2013, A production-based model for the therm structure, Journal of

Financial Economics 109, 293–306.

Jones, C. S., 2003, Nonlinear mean reversion in the short-term interest rate, Review

of Financial Studies 16, 793–843.

Joslin, S., 2014, Can Unspanned Stochastic Volatility Models Explain the Cross Sec-

tion of Bond Volatilities?, forthcoming, Management Science .

Joslin, S., M. Priebsch, and K. Singleton, 2014, Risk premiums in dynamic term

structure models with unspanned macro risks, JF 69, 1197–1233.

Judd, K. L., 1998, Numerical Methods in Economics , first edition (MIT Press).

Leippold, M., and L. Wu, 2003, Design and Estimation of Quadratic Term Structure

Models, European Finance Review 7, 47–73.

Li, H., and F. Zhao, 2006, Unspanned stochastic volatility: Evidence from hedging

interest rate derivatives, Journal of Finance 61, 341–378.

Ludvigson, S., and S. Ng, 2009, Macro Factors in Bond Risk Premia, Review of

Financial Studies 22, 5027–5067.

Newey, W. K., and K. D. West, 1987, A simple, positive sem-definite, heteroscedastic-

ity, and autocorrelation consistent covariance matrix, Econometrica 55, 703–708.

Pritsker, M., 1998, Nonparametric density estimation and tests of continuous time

interest rate models, Review of Financial Studies 11, 449–487.

Richard, S., 2013, A non-linear macroeconomic term structure model, Working Paper.

53



Rogers, L., 1997, The potential approach to the term structure of interest rates and

foreign exchange rates, Mathematical Finance 7, 157–164.

Stanton, R., 1997, A nonparametric model of term structure dynamics and the market

price of interest rate risk, Journal of Finance VII, 1973–2002.

Tang, H., and Y. Xia, 2007, An international examination of affine term structure

models and the expectation hypothesis, Journal of Financial and Quantitative

Analysis 42, 41–80.

Vasicek, O., 1977, An equilibrium characterization of the term structure, Journal of

Financial Economics 5, 177–188.

Wright, J., 2011, Term Premia and Inflation Uncertainty: Empirical Evidence from

an International Panel Dataset, American Economic Review 101, 1514–1534.

Yan, H., 2008, Natural selection in financial markets: Does it work?, Management

Science 54, 1935–1950.

54



Table I: Nonlinearities in expected excess returns and realized variances. This table
shows coefficients, standard errors (in brackets), and R2s from regressions of realized
one-year log excess bond returns (Panel A) and realized yield variances (Panel B),
averaged over bond maturities two to five in Panel A and one to five in Panel B,
on three different sets of yield principal components (PCs) and powers thereof. The
independent variables in the first row of both panels are obtained by first considering
all product combinations of the first three PCs up to and including order three and
excluding every variable with the lowest t-statistic until only significant variables
remain. The monthly excess returns, realized variances, and PCs are calculated using
daily zero-coupon bond yield data from 1961:07 to 2014:04. The bond maturities are
ranging from 1-5 years and the data are obtained from Gurkaynak, Sack, and Wright
(2007). The number of observations is 622 for the predictive regressions in Panel A
and 634 for the contemporaneous regressions in Panel B. All variables are standardized
and standard errors are computed using the Hansen and Hodrick correction with 12
lags in Panel A and the Newey and West correction with 12 lags in Panel B. ∗∗ and
∗ indicate statistical significance at the 1% and 5% levels, respectively.

Panel A: One-year average excess bond returns

PC1 PC2 PC3 PC1PC2 PC3
1 PC3

2 R2

−0.37∗∗
(0.09)

0.40∗∗
(0.11)

0.33∗∗
(0.08)

0.29

0.07
(0.13)

0.39∗∗
(0.12)

−0.05
(0.11)

0.16

−0.14
(0.17)

0.10
(0.14)

−0.04
(0.10)

−0.33∗∗
(0.10)

0.49∗∗
(0.16)

0.26∗
(0.11)

0.30

Panel B: Realized average yield variance

PC1 PC2 PC3 PC2
1 PC1PC3 PC2PC3 PC3

1 PC1PC2PC3 R2

0.12∗∗
(0.04)

−0.12∗
(0.05)

−0.18∗∗
(0.06)

0.39∗∗
(0.07)

−0.34∗∗
(0.05)

0.55

0.48∗∗
(0.12)

−0.10
(0.09)

0.32∗∗
(0.09)

0.34

0.10
(0.14)

0.04
(0.05)

0.04
(0.06)

0.14
(0.08)

−0.10
(0.05)

−0.16∗
(0.07)

0.30∗
(0.15)

−0.34∗∗
(0.08)

0.55
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Table II: Parameter estimates of the nonlinear three-factor model. This table contains
parameter estimates and asymptotic standard errors (in parenthesis) for the nonlinear
three-factor model. The left column shows parameters estimates based on yield and
realized variance data for the whole sample (1961:07-2014:04) and the right column
shows parameter estimates based on yield and realized variance data for the Post-
Volcker period (1987:08-2014:04). The bond maturities are ranging from 1-5 years
and the data are obtained from Gurkaynak, Sack, and Wright (2007). The unscented
Kalman filter is used to estimate the nonlinear model.

Nonlinear Model (1961-2014) Nonlinear Model (1987-2014)
0.3127
(0.04224)

0 0 0.3452
(0.08753)

0 0

κ 0.3063
(0.05601)

0.002189
(2.246e−05)

0 0.5507
(0.09825)

0.003245
(0.002091)

0

1.258
(0.1103)

0.03804
(0.02125)

0.4098
(0.0377)

1.057
(0.2745)

1.072e− 05
(0.0002734)

0.4449
(0.2494)

ρ0 −0.001756
(0.01408)

−0.001002
(0.02238)

ρX 0.0002071
(0.0001846)

0.003061
(0.0002364)

0.004345
(0.0001742)

0.0002036
(0.0009384)

0.005161
(0.0004481)

0.004939
(0.0005533)

λ0 0.7569
(0.04302)

−0.01631
(0.5559)

−0.4413
(0.3375)

0.3814
(0.09227)

−0.02483
(0.09312)

−0.3191
(0.2209)

−0.2187
(0.04129)

0.005572
(0.001321)

−0.02053
(0.005609)

−0.2244
(0.06907)

0.003604
(0.00792)

−0.02491
(0.04552)

λX −1.735e− 06
(4.238e−05)

0.001197
(0.03785)

0.6863
(0.03001)

−1.558e− 06
(2.248e−05)

0.001282
(0.03908)

0.7165
(0.05695)

−0.2943
(0.1053)

−0.02387
(0.01562)

0.04613
(0.05121)

−0.3973
(0.2578)

−0.0237
(0.02542)

0.05947
(0.2159)

γ 0.0003857
(0.0004591)

0.0005653
(0.0007368)

β −1.444
(0.008187)

−0.2376
(0.01831)

0.2846
(0.02526)

−1.196
(0.0521)

−0.2737
(0.07188)

0.3483
(0.08285)

σy 0.0005463
(6.945e−05)

0.0004679
(9.47e−05)

σrv 7.281e− 05
(8.491e−06)

2.857e− 05
(3.381e−06)
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Table III: Parameter estimates of the A1(3) and the A0(3) model. This table contains
parameter estimates and asymptotic standard errors (in parenthesis) for two three-
factor affine models: the A1(3) model with one stochastic volatility factor and the
A0(3) model with only Gaussian factors. The parameter estimates for the A1(3)
model are based on yield and realized variance data for the whole sample (1961:07-
2014:04) and the parameter estimates for the A0(3) model are based on yield data for
the whole sample. The bond maturities are ranging from 1-5 years and the data are
obtained from Gurkaynak, Sack, and Wright (2007). The extended Kalman filter is
used to estimate the A1(3) model and the Kalman filter is used to estimate the A0(3)
model.

A1(3) Model (1961-2014) A0(3) Model (1961-2014)
1.421
(0.1863)

0 0 0.7064
(0.1982)

0 0

κ −0.04787
(1.899)

0.07225
(0.01938)

−0.003283
(4.101)

0.3558
(0.2189)

0.06629
(0.06185)

0

0.283
(0.6523)

−0.009014
(0.07474)

0.356
(0.01893)

0.6473
(0.1987)

0.3549
(0.2011)

0.8202
(0.1865)

ρ0 0.08832
(0.3038)

0.02046
(0.06848)

ρX 0.0003736
(0.0002645)

0.001131
(0.0009603)

1.385e− 05
(0.000302)

−0.001232
(0.002566)

0.01626
(0.002255)

0.01085
(0.003361)

λ0 0 0.6101
(106.4)

0.006454
(7.178)

0.1353
(0.1707)

−0.3741
(0.1998)

0.1233
(0.4018)

6.75e− 05
(0.07544)

0 0 −0.335
(0.1954)

−0.01799
(0.03515)

0.006627
(0.09816)

λX 2.378
(3.64)

−0.0006549
(0.01964)

3.381
(5.878)

−7.847e− 05
(0.001684)

0.1821
(0.1682)

0.5751
(0.114)

0.01683
(0.7003)

−0.0001671
(0.0733)

1.302e− 05
(0.01966)

0.183
(0.2063)

−0.09196
(0.08949)

−0.03485
(0.1974)

δ 0 491.5
(836.6)

2.417
(0.3336)

(κX) 1.509
(0.1109)

0 0

σy 0.0006001
(8.676e−05)

0.0001038
(1.698e−05)

σrv 6.18e− 05
(6.019e−06)
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Table IV: Campbell-Shiller regressions. This table shows the coefficients φτ from the

regressions yτ−1
t+1 − yτt = const + φτ

(
yτt −y1t
τ−1

)
+ residual, where yτt is the zero-coupon

yield at time t of a bond maturing at time t + τ (τ and t are measured in years).
The actual coefficients are calculated using monthly data of one through five-year
zero coupon bond yields from 1961:7 to 2014:04 obtained from Gurkaynak, Sack, and
Wright (2007). Standard errors in parentheses are computed using the Hansen and
Hodrick correction with 12 lags. The population coefficients for each model are based
on one simulated sample path of 1,000,000 months.

Campbell-Shiller regression coefficients

Bond maturity 2-year 3-year 4-year 5-year

Data −0.63
(0.64)

−0.93
(0.69)

−1.21
(0.73)

−1.47
(0.77)

Nonlinear model -0.61 -0.61 -0.63 -0.65
A1(3) model -0.01 0.01 0.04 0.07
A0(3) model -0.18 -0.37 -0.54 -0.71
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Table VI: URP (Unspanned Risk Premia) regressions. This table shows R2s (in
percent) from regressions of excess returns on the five principal components (PCs) of
yields. Panel A shows R2 from regressions of one-year actual realized excess return on
PCs of actual yields based on the sample 1961:07-2014:04. Panel B, C, and D show
for each model in sample R2 from regressions of model-implied one-year excess return
on model-implied PCs of yields. Panel E, F, and G show for each model population
R2s from regressions of realized one-year excess return on PCs of yields based on a
simulated data sample of 1,000,000 months. The final column of Panels E-G shows
the R2s when using the model-implied excess return instead of the model-implied PCs
as independent variable.

Maturity PC1 PC1-PC2 PC1-PC3 PC1-PC4 PC1-PC5 Et
[
rxτt,t+1

]
Panel A: R2 in data (1961-2014)
τ =2 2.1 12.6 13.2 14.4 14.6
τ =3 0.8 13.9 14.3 15.9 16.2
τ =4 0.3 15.6 15.8 17.8 18.1
τ =5 0.1 17.2 17.3 19.7 19.9

Panel B: In sample R2 for nonlinear three-factor model
τ =2 5.7 64.9 67.5 85.3 91.2
τ =3 4.6 67.7 69.1 84.8 90.8
τ =4 4.2 69.7 70.6 84.8 90.7
τ =5 4.4 71.0 72.0 85.4 90.9

Panel C: In sample R2 for A1(3) model
τ =2 10.8 99.8 100.0
τ =3 10.5 99.7 100.0
τ =4 10.2 99.6 100.0
τ =5 9.9 99.5 100.0

Panel D: In sample R2 for A0(3) model
τ =2 5.3 99.6 100.0
τ =3 1.4 99.9 100.0
τ =4 0.2 100.0 100.0
τ =5 0.0 99.6 100.0

Panel E: Population R2 for nonlinear three-factor model
τ =2 0.0 10.7 14.5 15.7 15.8 28.0
τ =3 0.1 10.5 14.4 15.2 15.3 26.2
τ =4 0.1 10.6 14.5 15.2 15.3 25.3
τ =5 0.1 11.1 14.7 15.6 15.6 25.2

Panel F: Population R2 for A1(3) model
τ =2 3.9 4.5 4.5 4.5 4.5 4.5
τ =3 3.9 4.5 4.5 4.5 4.5 4.5
τ =4 3.9 4.5 4.5 4.5 4.5 4.5
τ =5 3.9 4.5 4.5 4.5 4.5 4.5

Panel G: Population R2 for A0(3) model
τ =2 0.4 9.5 9.6 9.6 9.6 9.6
τ =3 0.1 9.8 9.8 9.8 9.8 9.8
τ =4 0.0 10.6 10.6 10.6 10.6 10.6
τ =5 0.0 11.7 11.7 11.7 11.7 11.760
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Table VIII: Principal Component analysis of realized yield variances. Principal com-
ponents (PCs) are constructed from a panel of realized yield variances of constant-
maturity zero-coupon bond yields with maturities ranging from one to five years. The
contribution of the first PC, the first and second PC, and the first, second, and third
PC to the total variation in the five realized yield variances are shown for the data,
the nonlinear model, and the A1(3) model. Actual PC contributions are computed
using monthly realized variance data (based on daily squared yield changes) from
1961:07 to 2014:04 obtained from Gurkaynak, Sack, and Wright (2007). Population
PC contributions for the nonlinear and A1(3) model are computed using monthly
realized variance data (based on daily squared yield changes) based on one simulated
sample path of 1,000,000 months.

PC1 PC1-PC2 PC1-PC3

Data 0.9454 0.9922 0.9996
Nonlinear model 0.9750 0.9993 1.0000
A1(3) model 1.0000 1.0000 1.0000
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Table IX: USV (Unspanned Stochastic Volatility) regressions. Panel A shows R2s (in
percent) from regressing realized variance on the five principal components (PCs) of
yields. Panel B shows in sample R2s for the nonlinear model from regressing model-
implied instantaneous variance on the PCs of model-implied yields. Panel C shows
in population R2s for the nonlinear model from regressing monthly realized variance
(based on daily model-implied yields) on the PCs of monthly yields (based on averages
over daily model-implied yields) based on a sample of 1,000,000 simulated months.
Panel D and E shows corresponding results for the A1(3) model, where only results
for one maturity is shown because R2’s are the same for all maturities. Panel F shows
the explanatory power of the PCs of residuals from the USV regressions in Panel A
and B.

Maturity PC1 PC1-PC2 PC1-PC3 PC1-PC4 PC1-PC5

Panel A: R2 in the data (1961-2014)
τ =1 24.3 26.8 35.0 35.7 40.2
τ =2 23.2 24.8 33.7 35.4 41.6
τ =3 21.9 22.8 32.6 35.8 42.5
τ =4 20.3 20.7 31.1 35.9 42.6
τ =5 18.8 18.9 29.6 36.0 42.6

Panel B: In sample R2 for nonlinear three-factor model
τ =1 21.6 21.8 44.0 47.9 55.1
τ =2 19.1 19.1 42.3 49.2 57.4
τ =3 17.5 17.6 41.8 50.9 59.9
τ =4 16.7 16.8 42.0 52.9 61.7
τ =5 16.9 17.2 42.4 54.6 62.1

Panel C: Population R2 for nonlinear three-factor model
τ =1 31.8 32.7 40.8 46.0 56.9
τ =2 32.8 33.8 40.7 48.6 60.8
τ =3 32.9 34.2 40.1 50.3 63.4
τ =4 32.6 34.4 39.2 51.0 65.0
τ =5 31.9 34.7 38.3 51.0 66.1

Panel D: In sample R2 for A1(3) model
τ = 1, ..., 5 21.5 22.3 100.0 100.0 100.0

Panel E: Population R2 for A1(3) model
τ = 1, ..., 5 0.0 0.0 45.8 45.8 45.8

Panel F: In sample PC analysis of USV regression residuals
Data 91.8 98.7 99.9 100.0 100.0

Nonlinear model 97.9 99.9 100.0 100.0 100.0
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Table X: Principal Component analysis of yields. Principal components (PCs) are
constructed from a panel of constant-maturity zero-coupon bond yields with matu-
rities ranging from one to five years. The contribution of the first PC, the first and
second PC, and the first, second, and third PC to the total variation in the five bond
yields are shown in Panel A. In Panel B yields for each bond are then regressed on the
first three principal components and a constant (omitted). Actual PC contributions,
slope coefficients, and R2s are computed using monthly data of one through five-year
zero coupon bond yields from 1961:07 to 2014:04 obtained from Gurkaynak, Sack, and
Wright (2007). For all three models population PC contributions, population slope
coefficients, and population R2s are based on one simulated sample path of 1,000,000
months.

Panel A: Principal components of yields

PC1 PC1-PC2 PC1-PC3

Data 99.1909 99.9779 99.9996
Nonlinear model 99.6866 99.9977 100.0000
A1(3) model 99.9738 100.0000 100.0000
A0(3) model 99.3788 99.9819 100.0000

Panel B: Linearity in the cross-section of yields

Maturity PC1 PC2 PC3 R2

Data (1961-2014)

τ = 1 0.47 −0.72 0.48 1.00
τ = 2 0.46 −0.22 −0.52 1.00
τ = 3 0.45 0.12 −0.46 1.00
τ = 4 0.43 0.36 −0.02 1.00
τ = 5 0.42 0.54 0.54 1.00

Nonlinear three-factor model in population

τ = 1 0.45 −0.67 0.52 1.00
τ = 2 0.45 −0.29 −0.37 1.00
τ = 3 0.45 0.04 −0.52 1.00
τ = 4 0.45 0.33 −0.17 1.00
τ = 5 0.44 0.59 0.54 1.00

A1(3) model in population

τ = 1 0.51 −0.66 0.53 1.00
τ = 2 0.48 −0.21 −0.58 1.00
τ = 3 0.44 0.14 −0.41 1.00
τ = 4 0.41 0.39 0.04 1.00
τ = 5 0.38 0.58 0.46 1.00

A0(3) model in population

τ = 1 0.47 −0.72 0.47 1.00
τ = 2 0.46 −0.21 −0.52 1.00
τ = 3 0.45 0.13 −0.46 1.00
τ = 4 0.43 0.36 −0.01 1.00
τ = 5 0.42 0.54 0.54 1.00
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Table XI: Parameter estimates of the one-factor nonlinear model. This table contains
parameter estimates and asymptotic standard errors (in parenthesis) for the nonlinear
one factor model. The parameter estimates are based on yield and realized variance
data for the sample period 1961:07-2014:04. The bond maturities range from 1-5
years and the data are obtained from Gurkaynak, Sack, and Wright (2007). The
unscented Kalman filter is used to estimate the nonlinear model.

κ ρ0 ρX λ0 λX γ β σy σrv
0.04027
(0.03695)

0.03061
(0.06164)

0.01093
(0.0001309)

−0.6473
(0.5656)

0.05966
(0.03703)

0.01456
(0.03452)

−0.4206
(0.003205)

0.003122
(0.0004019)

0.0001671
(1.161e−05)
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Table XII: The cross-section of yields in one-factor models. Principal components
(PCs) are constructed from a panel of constant-maturity zero-coupon bond yields
with maturities ranging from one to five years. The contribution of the first PC, the
first and second PC, and the first, second, and third PC to the total variation in
the five bond yields are shown in Panel A. In Panel B yields for each bond are then
regressed on the first three principal components and a constant (omitted). Actual
PC contributions, slope coefficients, and R2s are computed using monthly data of one
through five-year zero coupon bond yields from 1961:07 to 2014:04. For the nonlinear
one factor model and for the one factor Gaussian model population PC contributions,
population slope coefficients, and population R2s are based on one simulated sample
path of 1,000,000 months.

Panel A: Principal components of yields

PC1 PC1-PC2 PC1-PC3

Data 99.1909 99.9779 99.9996
Nonlinear model 99.9740 99.9999 100.0000
A0(1) model 100.0000 100.0000 100.0000

Panel B: Linearity in the cross-section of yields

Maturity PC1 PC2 PC3 R2

Data (1961-2014)

τ = 1 0.47 −0.72 0.48 1.00
τ = 2 0.46 −0.22 −0.52 1.00
τ = 3 0.45 0.12 −0.46 1.00
τ = 4 0.43 0.36 −0.02 1.00
τ = 5 0.42 0.54 0.54 1.00

Nonlinear one factor Model in population

τ = 1 0.49 −0.65 0.50 1.00
τ = 2 0.46 −0.26 −0.37 1.00
τ = 3 0.44 0.08 −0.53 1.00
τ = 4 0.43 0.37 −0.16 1.00
τ = 5 0.41 0.60 0.56 1.00

Gaussian one factor model in population

τ = 1 0.47 1.00
τ = 2 0.46 1.00
τ = 3 0.45 1.00
τ = 4 0.43 1.00
τ = 5 0.42 1.00
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Table XIII: URP and USV regressions in the one-factor nonlinear model. Panel A
shows in sample R2s from regressions of model-implied one-year excess returns on the
Principal Components (PCs) of model-implied yields. Panel B shows in sample R2s
from regressing model-implied instantaneous variance on the PCs of model-implied
yields. Model-implied PCs are constructed from a panel of constant-maturity zero-
coupon bond yields with maturities ranging from one to five years. The in sample
results are based on the sample period 1961:07-2014:04.

Maturity PC1 PC1-PC2 PC1-PC3 PC1-PC4 PC1-PC5

Panel A: In sample R2 for nonlinear 1-factor model
τ =2 13.0 69.3 98.1 98.4 100.0
τ =3 14.4 73.2 98.1 98.4 100.0
τ =4 16.7 76.7 98.1 98.4 100.0
τ =5 19.9 79.9 98.1 98.4 100.0

Panel B: In sample R2 for nonlinear one factor model
τ = 1 52.0 64.8 96.1 96.8 99.9
τ = 2 55.1 68.2 96.6 97.2 99.9
τ = 3 57.9 71.3 97.0 97.5 100.0
τ = 4 60.4 73.9 97.4 97.8 100.0
τ = 5 62.7 76.2 97.7 98.0 100.0

Table XIV: Equilibrium models. The table shows various equilibrium models and how
they map into the nonlinear term structure models.

Model N d X α γ β Stationary
Two trees 1 2 log (D1(t)/D2(t)) −R 1 1 No

Multiple consumption goods 1 2 log (D1(t)/D2(t)) −R
b

(
1−φ
φ

)1−b
b No

External habit formation 1 1 X R 1 β Yes
Heterogeneous beliefs 1 1 log (λ(t)) R 1 − 1

R
No

HARA utility 1 1 log (b/C(t)) −R 1 1 No
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Figure 1: Realized and option-implied yield volatility. We use monthly estimates of
realized yield variance based on daily squared yield changes. This graph shows that
option-implied volatility tracks the realized volatility closely over the last 10 years
(the correlation is 87%). Option-implied volatility is obtained from 1-month at-the-
money options on 5-year Treasury futures as explained in the text. The data are
available from Datastream since October 2003.
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Figure 2: Stochastic weight on Gaussian base model. The bond price in the nonlinear
model is P (t, T ) = s(t)P0(t, T )+(1−s(t))P1(t, T ) where P0(t, T ) and P1(t, T ) are bond
prices that belong to the class of essentially affine Gaussian term structure models
and s(t) is a stochastic weight between 0 and 1. This figure shows the stochastic
weight and the shaded areas show NBER recessions.
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Figure 3: Expected excess returns. The graphs show the expected one year log excess
returns of zero-coupon Treasury bonds with maturities of 2, 3, 4, and 5 years. The
blue, black, and red lines show expected excess returns in the three-factor A0(3),
A1(3), and nonlinear model, respectively. The shaded areas show NBER recessions.
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Figure 4: Distribution of one-year ahead yield volatility. The graphs show quantiles
in the one-year ahead distribution of instantaneous volatility for the bond with a
maturity of three years. The top graph shows the distribution in the three-factor
nonlinear model, while the bottom graph shows the distribution in the three-factor
A1(3) model. The data sample is 07:1961 to 04:2014 and the results for July in each
year are plotted.
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Figure 5: Distribution of one-year ahead yield volatility for nonlinear model estimated
using 1961-2014 and estimated using 1987-2014. The graphs show the 97.5% quantiles
in the one-year ahead distribution of instantaneous volatility. The red line shows the
97.5% quantiles in the three-factor nonlinear model, where the model is estimated by
using data in the whole sample period 1961-2014. The yellow line shows the 97.5%
quantiles in the three-factor nonlinear model, where the model is estimated by using
data in the period 1987-2014. The results for September in each year are plotted.

72



1970 1980 1990 2000 2010

s
(X

)

0.5

0.6

0.7

0.8

0.9

1
Panel A

X
-2 0 2 4 6 8

Y
ie

ld
 (

in
 p

e
rc

e
n

t)

0

5

10

15

Panel B

1-year bond
2-year bond
3-year bond
4-year bond
5-year bond

X
-2 0 2 4 6 8

s
(X

)

0.5

0.6

0.7

0.8

0.9

1
Panel C

1-year yield
0 5 10 15

Y
ie

ld
 (

in
 p

e
rc

e
n

t)

0

5

10

15

Panel F

1-year bond
2-year bond
3-year bond
4-year bond
5-year bond

1-year yield
0 5 10 15

V
a

ri
a

n
c
e

×10
-4

1

1.5

2

2.5

3

3.5
Panel D

1-year bond
2-year bond
3-year bond
4-year bond
5-year bond

1-year yield
0 5 10 15

E
x
c
e

s
s
 r

e
tu

rn
 (

in
 p

e
rc

e
n

t)

0.4

0.5

0.6

0.7

0.8

Panel E

1-year bond
2-year bond
3-year bond
4-year bond
5-year bond

Figure 6: Stochastic weight, yields, volatilities, and excess returns in a one-factor
nonlinear model. Panel A shows the estimated stochastic weight on the Gaussian
base model for the sample period 1961-2014 and Panel C shows it as function of the
factor X. Panel B and F show yields as function of the factor X and the one year
yield, respectively. Panel D and E show yield variance and expected excess returns as
a function of the one-year yield. The parameters for the one-factor nonlinear model
are estimated using yields and realized yield variance of zero-coupon Treasury bonds
with maturities ranging from one to five years. The range of X on the x-axis equals
the range of X in the sample period 1961-2014.
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