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1) A technical framework for p-curve and computing pp-values for null of 33% power. 
 

1.1. P-curve and noncentral distributions 

 P-curve is closely related to statistical power. Power is the probability of a statistical test 

obtaining a p-value<α, where α is typically 5%. One can think of the distribution of significant p-

values, p-curve, as computing power for every possible α between 0 and .05.1  

 Power calculations rely on “noncentral” distributions, so p-curve calculations rely on 

noncentral distributions also. Noncentral distributions are seldom covered by statistics textbooks for 

non-statisticians, so we provide a brief introduction to them here. For a more complete yet still 

accessible introduction see the article by Cumming and Finch (2001), beginning with the last 

paragraph of page 546. 

Central vs. noncentral distributions 

 The central distribution captures how a test statistic is distributed when the null of no 

difference is true. The noncentral distribution captures how a test statistic is distributed when the 

null is not true. When we speak of “the” student distribution, then, we actually mean the central 

student distribution. The central student distribution is used, for example, to assess how likely a 

given difference of sample means would be if the true population means were the same. With the 

noncentral distribution, in contrast, we ask how likely a given difference would be if the true means 

were not the same. 

 For instance, when the results section of a paper reads, “the means were significantly 

different, t(38)=2.024, p=.05,” this indicates that, if the true means were identical, there is 

only a 5% chance that the two sample means would differ by the observed 2.024 standard errors or 
                                                 
1 Though note that p-curve is the density rather than the c.d.f. and it only considers p<.05, so it is the probability of 
obtaining a given p-value conditional on it being <.05. 
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more. So unless otherwise stated, it implies that t(38) is evaluated for the central t distribution, so 

tcentral(38)=2.024, p=.05. With the noncentral distribution, we instead ask how likely is t(38)≥2.024 

if the true means differed not by 0, but by, say, one standard deviation from each other (d=1).  

The noncentrality parameter (ncp) 

 While the shape of the central student distribution varies only as a function of the degrees of 

freedom (d.f.) of the test, that of the noncentral distribution is also a function of what’s referred to 

as the “noncentrality parameter” (ncp), which in turn is a function of sample size and effect size. 

For the student distribution, ncp=√𝑛
2 𝑑. This makes intuitive sense: If we want to know how likely a 

given observed difference of means is, if the population means differ by some amount d, we need to 

take into account what that amount is (d) and how big our sample is (n). 

So for example, for a differences of means t-test performed on two samples of n=20 each, 

and (true) effect size of d=1, the resulting test statistic is distributed t, df=38 and ncp=√20
2 1=3.16. 

We hence can answer the question: What is the probability that t(38) will be greater than 2.024 

given a true effect size of d = 1, by evaluating the noncentral t(38), with ncp=3.16, at t=2.024. We 

do this the same way we find values for the central distribution, looking it up in a table, or running 

software that has access to the formulas behind those tables.   

For example, to find the p-value associated with tcentral(38)=2.024 we can look up a student 

table with 38 degrees of freedom, or rely on Excel’s tdist() function, or rely on R’s pt() function, 

etc. Because Excel does not have noncentral distributions built in (as of 2013) we will use R syntax 

(with detailed explanations) for the remainder of this supplement. 

 The pt() function in R gives the c.d.f. for a given t-statistic (that is, the probability of obtaining a 

value smaller than that t-statistic). Its syntax is pt(q,df,ncp), where q is the value of the t-test we are 
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looking up. To find the probability of obtaining a value larger than that t-statistic, you simply 

subtract that formula from 1: 1 – pt(q,df,ncp).  

 Thus, to find the (one-sided) p-value associated with tcentral(38)=2.024, we would use the 

following r formula:  

1-pt(q=2.024,df=38,ncp=0) 

= .025. 2 

This is the probability of finding t>2.024 given ncp = 0, which is equivalent to the probability of 

finding t>2.024 when the null is true (i.e., using the central distribution). This is the one-tailed 

probability, and so the two-tailed probability can be obtained by multiplying by 2, which equals .05. 

This example shows that, when df = 38, the t = 2.024 represents the threshold for statistical 

significance (.05).  

 Now let’s say that we are interested in knowing how likely we are to obtain a t-value greater 

than 2.024 if n = 20 and d = 1, and hence when ncp = 3.16. We would use the following formula:  

1-pt(q=2.024,df=38,ncp=3.16) 

= .869.  

This indicates that there is an 86.9% chance of obtaining a t-value greater than 2.024. Because 

2.024 is the threshold for statistical significance, we can say that, given d = 1 and n = 20, there is an 

86.9% chance of obtaining a statistically significant result, and thus the “power” of this experiment 

is equal to 86.9%. This is precisely how power calculation software uses effect size estimates to 

generate recommended sample sizes or estimated power. 

                                                 
2 This page includes two corrected typos identified by Ellen Evers. Corrections took place on 2013/12/12 
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If we are instead interested in knowing how likely our t-test is to result in p≤.04 rather than 

p≤.05, we would simply look up the value of tcentral(38) that produces p=.04. This value is 2.126. We 

now enter the formula:  

 1- pt(q=2.126,df=38,ncp=3.16) 

= .8457. This indicates that there is an 84.57% chance of obtaining a t-value greater than 2.126, and 

thus an 84.57% chance of obtaining p≤.04.  

Now, if there is an 86.9% chance of p≤.05, and there is a 84.6% chance of p<.04, then the 

chance of .04<p≤.05 is 86.9%-84.6%=2.3%. Hopefully, the relationship between ncp, power, 

noncentral distributions, and p-curve just became obvious.  

 Because the distribution of p-values under the alternative is a function only of the noncentral 

distribution, which is itself a function only of sample size and effect size, p-curve is a function only 

of sample size and effect size. If we know the effect size and sample size, we know the expected p-

curve; we know how likely each p-value is for any given effect size.  

1.2 Computing pp-values under the null of 33% power 

 In the main text we introduce pp-values to test the significance of the deviation from an 

observed p-curve to a null p-curve. For the null of a uniform p-curve, pp-values are trivial to 

compute. They involve “stretching” the [0-.05] into [0-1] by multiplying p-values by 20. For 

example, among significant p-values, p≤.04 is obtained 20*.04=80% of the time under the null of 

d=0, so pp=.8. In light of the previous discussion it is worth highlighting that we do not rely on 

noncentral distributions to test the uniform null, because we are still testing the null of no effect (d 

= 0) and that involves the central distribution. 

 For computing pp-values under the null that a test is powered to 33%, on the other hand, we do 

need to rely on a noncentral distribution. In particular, we rely on the noncentral distribution with a 
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noncentrality parameter (again: ncp) leading the observed test to have 33% power. This means that 

to compute pp-values for the null of 33% power for study i, arising from a given t(dfi)=xi test, we 

may follow these three steps: 

Step 1. Find the critical value of the student distribution, Xi, for which tcentral(dfi)=Xi, p=.05. 

Step 2. Find the ncpi for the tncp(dfi) student distribution that has a 33% chance of obtaining x≥Xi. 

Step 3. Evaluate the observed xi with the noncentral t with ncpi. 

 Let’s consider a concrete example. Imagine that a study’s key test was t(38)=2.126, p=.04. To 

compute its pp-value under the null of 33%, we begin by finding the critical Xi for which it is true 

that t(38)=Xi, p=.05. We can find Xi using the qt(p,df,ncp) function in R. Using the formula, 

qt(.975,df=38,ncp=0) tells us that the critical t-value for one-tailed p = .025 (and hence two-tailed p 

= .05), the t-value that exceeds 97.5% of the values under the null, is 2.024.3 We now need to find 

the ncp that would make t>2.024 have 33% chance. This function is not built into R but is easy to 

build it (in SAS it does exist, it is call TNONCT). We want to ask R something like: Hey R, why 

don’t you go find the value of ncp such that: pt(x=2.024, df=38, ncp=???)=67%?  

R can do this in three lines of code:4 

  f <- function(delta, pr, x, df) pt(x, df = df, ncp = delta) - pr 
  out <- uniroot(f, c(0, 37.62), pr =2/3, x = 2.024, df = 38)  
  out$root 

 
The output this code produces is 1.568436. So R just told us that if one were to run  

1-pt(2.024, df=38, ncp=1.568436),  

one would obtain  

.3333333.  

                                                 
3 R’s pt() function is like Excel’s tdist(), and R’s qt() function is like Excel’s tinv()). The key difference is that R 
accommodates noncentral t’s and Excel does not. 
4 That c(0,37.62) command is there because that’s the range of the noncentral parameter which R is able to compute;  
ncp>37.62 just would not work, and ncp>37.62 are way too big for our purposes anyway. 
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 This means that ncp=1.568436 is the noncentrality parameter that leads a test with df=38 to 

have 33% power. Now we ask R how likely it is to observe t<2.126 if ncp=1.568436 using the 

formula:  

pt(2.126, df = 38, ncp = 1.568436) 
 
= . 70127. That’s the probability of t(38)<2.126 (and thus p>.04), but the pp-value is probability of 

obtaining p>.04 given that that we have observed a p-value less than .05. To get that value, we first 

subtract 2/3 from the above probability; because 2/3 is the probability of p>.05 (since power is 1/3, 

there is a 2/3 chance of p>.05), this subtracts out the probability of observing p>.05. We then divide 

by 1/3, or equivalently multiply by 3, because we are conditioning on being in one third of possible 

values. In short, the formula for computing a pp-value for 33% power given df = 38 and p = .04 is 

3*(.70127-2/3)= .10. Thus, a two sample t-test with n=20 per cell has a 10% chance of obtaining 

p>.04 conditioning on the result being significant and the test being powered at 33%.5 

  

  

                                                 
5 We thank Chad Danyluck for alerting us of some typos in this paragraph in an earlier version of this supplement.  
The typos have been corrected (August, 2013). 
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The code that follows creates a function in R that computes pp-values, for the 33% power null, for a 

t-test with degrees of freedom df_ and observed t=x_ 

########################################## 
pp33 <-function(df_,x_) { 
 #Find critical value of student (xc) that gives p=.05 when df=df_ 
  xc=qt(p=.975, df=df_) 
   
 #Find noncentrality parameter (ncp) that leads 33% power to obtain xc 
  f <- function(delta, pr, x, df) pt(x, df = df, ncp = delta) - pr 
  out <- uniroot(f, c(0, 37.62), pr =2/3, x = xc, df = df_)  
  ncp_=out$root 
 
 #Find probability of getting x_ or larger given ncp 
  p_larger=pt(x_,df=df_,ncp=ncp_) 
 
 #Condition on p<.05 (i.e., get pp-value) 
  pp=3*(p_larger-2/3) 
 
 #Print results 
  return(pp) 
 } 
 ########################################## 
So for example, the last two pages of explanations looking for the pp-value of t(38)=2.126 can now 

be performed with the following invocation of the new function: 

pp33(df=38,x=2.126) 

resulting in 

.1034 

the pp-value of p=.04 for df=38 is pp=.1034. 
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(2) Is p-curve uniform if variables are not normally distributed? 

In the paper we assume that the assumptions underlying the statistical tests of interest (e.g., the 

two-sample t-test) are met. We focus on the t-distribution (and hence the F distribution with df1=1), 

which assumes that the underlying random variables are normally distributed. The literature 

contains several demonstrations of the robustness of the t-test to deviations from normality 

(Boneau, 1960; Pearson, 1931); nevertheless, we conducted simulations to verify p-curve’s 

robustness to non-normality. 

We created two small samples (n=15) drawn from the same population, conducted a t-test on 

them, and repeated this procedure several thousand times, tabulating how frequently we observed p-

values in each of the five bins (p<.01, .01<p<.02, etc.). We simulated data using distributions that 

deviated from a normal distribution by an increasing amount: normal, uniform-continuous (0-1), 

uniform-discrete taking just four values (0.25, 0.5, 0.75 and 1), and a Poisson with λ=2 truncated at 

1 and 4. The truncated Poisson leads to a distribution where y takes the values 1,2,3,4 with 

approximate probabilities .4, .3, .2 and .1, respectively. Figure S1 shows that, despite the severe 

deviations from normality and small sample sizes (n=15 per cell), p-curve is quite close to uniform 

for the four different distributions we simulated, with a very slight right-skew tilt. 
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Fig S1. Observed p-curves from 500,000 simulated t-tests on two small samples (n = 15) drawn 
from the same population. Each p-curve represents a different underlying distribution, ranging from 
normal to increasingly non-normal. Because 5% of the 500,000 simulations are expected to be 
p<.05, each p-curve is based on roughly 25,000 p-values. The normally distributed dependent 
variable is N(0,1); the uniform-continuous is (0,1); the uniform-discrete can be y = 0.25, 0.5, 0.75, 
or 1; the Poisson can take values 1, 2, 3, 4 with probabilities roughly equal to .4, .3, .2 and .1, 
respectively. 
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 (3) Modeling p-hacking  
 

Let the {p n}, n∈ℕ, be a sequence of p-values obtained by a researcher. p1 is the first p-value 

that is obtained, presumably from the most straightforward test of the prediction of interest, using 

the entirety of the data that were collected. If p1<.05 the sequence ends. If p1>.05 a researcher may 

engage in file-drawering or p-hacking, which generates p2. If p2<.05 the sequence ends; otherwise, 

p3 is generated, etc. In the discussion that follows we refer to the correlation between consecutive p-

values pi, pi-1 (for i>1) as ri. 

Uniform p-curve with file-drawering 

Because file-drawering involves obtaining new data and entirely disposing of the previous 

data, file drawering leads to ri=0 ∀ i, and hence E(pi|pi-1)=E(pi). This means that the expected p-

curve is the same in the presence or absence of file-drawering. For example, it is uniform under the 

null of no effect. 

r>0 with (most forms of) p-hacking. 

P-hacking can take a variety of forms, many of which lead to r>0. For example, adding a 

covariate, data peeking (adding new observations), data exclusions (e.g., dropping “outliers”), 

choosing among several correlated dependent variables, and choosing among several experimental 

conditions all produce sequences of p-values generated from statistical tests performed on datasets 

with overlapping observations. Thus, these forms of p-hacking generate sequential p-values that are 

positively correlated (r>0). A few forms of p-hacking may lead to r=0, such as choosing among 

uncorrelated dependent variables, choosing between reporting an interaction or a main effect, or 

choosing non-overlapping subsets of data (e.g., comparing treatment 1 with control, and then 

treatment 2 with placebo). 
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 Note that r is not constant for a given sequence of p-values, even if they all arose from the 

same form of p-hacking within the same study. For example, when a researcher collects 20 

observations and then adds new ones in sets of 10, ri will be increasing in i; as more and more 

observations are added, the percentage of data that remains unchanged from test to test increases, 

and, thus, so does the correlation between resulting p-values (e.g., a t-test between two samples of  

300,000 observations each, and one between the same 300,000 plus a new 10 per cell will lead to 

virtually the same result). 

Left-skewed p-curves with p-hacking  

Considering that pi is obtained only if pi-1>.05, it follows that if ri>0 and pi < .05, then pi will 

be “close” to pi-1 and hence not too far from .05. More formally:  

E(pi | pi-1>.05, ri>0, pi<.05) > E(pi| pi<.05)=.025 

P-curve will be more skewed the higher r is, and moreover,  

limrÆ1 E(pi |pi-1>.05, pi<.05)=.05. 

When the correlation between consecutive p-values is arbitrarily close to 1, then if a p-value in the 

sequence is significant (<.05) but the previous one is not, then it must be very close to .05. This 

means that p-curves of sets of p-hacked studies will be more left-skewed for p-hacking techniques 

that produce more correlated p-values. 
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4) The problem with discrete tests, and, how bad is it to ignore it? 

4.1 The problem 

While the paper focuses on the student distribution, it is straightforward to generalize it to 

others like the χ2, the F with df1>1, the normal, etc. This is not so for discretely distributed test 

statistics, including χ2 approximations for examining contingency tables (e.g., difference of 

proportions tests). Note that while the χ2 distribution is continuous, the distribution of possible χ2 

values for any given contingency table is not. A difference of proportions test is only approximately 

~χ2 (keep in mind that the normal test for the difference of proportions is identical to the χ2 one). 

The discrete nature of a statistical test imposes two challenges for applying p-curve. The first is 

that Fisher’s method can no longer be used to aggregate pp-values. This challenge is easy to 

overcome as there are well-known methods to integrate discretely distributed p-values (Kincaid, 

1962). The second challenge is that pp-values for discrete tests, or at least those based on 

contingency tables, depend on a nuisance parameter: the underlying proportions. For example, the 

pp-value for a difference of proportions test depends not only on the observed proportions, but on 

the true and unknown actual proportions.  

The challenge is closely related to a long-standing controversy regarding tests of contingency 

tables condition (for extremely interesting reviews see Little, 1989; Yates, 1984). In a nutshell the 

controversy arises because when testing if two proportions, say prop1 and prop2 are equal, the result 

of a difference of proportions test depends on what we test those proportions being equal to, such 

that if we test prop1=prop2=50%, we get a different result that if we test prop1=prop2=30%. What 

they are assumed to be equal to is a nuisance parameter, in that it affects the result but we do not 

observe it.  
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The controversy arises in part also because using Fisher’s “exact” test, which conditions on both 

margins (that is, conditions not only on sample sizes but also on the true overall proportion being 

exactly the same as that observed across both samples) the resulting p-value does not occur with its 

nominal frequency, so Fisher’s exact test results in p<.05 less than 5% of the time. Fisher’s exact 

test is conservative. 

This, it turns out, reflects a difference in how Fisher and Neyman Pearson interpret p-values. 

Fisher did not think it was relevant if 5% of test are p<.05 under the null, Neyman Pearson thought 

that was the whole point (for a contrast of both schools of thought on p-values see Lehmann, 1993). 

In any case, this nuisance parameter carries over to pp-value calculations and is amplified, such 

that the pp-value of obtaining p=.04 in a difference of proportions test between two samples of a 

given size, depends on what the two proportions are equal to, and can vary quite substantially 

depending on that parameter. In ongoing research we are considering an alternative that defines pp-

values slightly differently for discrete tests, in a way that seems to eliminate this nuisance 

parameter. Another alternative is to Monte Carlo / bootstrap false-positive rates for the sample sizes 

one is p-curving, see section 4.3 

 

4.2 How bad is it to ignore it 

A pertinent question is just how bad is it to blindly compute pp-values on difference of 

proportions tests ignoring their discrete nature. We tried to address this question through 

simulations. We simulated sets of five difference of proportions test drawn under the null (the 

proportions are identical across any two samples being tested), computed the p-value using a χ2(1) 

test, computed pp-values ignoring the discrete nature of the distribution, and aggregated the 5 

studies to arrive at overall χ2(10) tests for right-skew. 
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If the test were ‘valid,’ then x% of simulations would obtain an overall right-skew p<x, e.g., 5% 

of them would be p<.05, the p-value would correspond to the false-positive rate. It turned out that 

how accurate the p-value captured the false-positive rate depended on sample sizes and underlying 

proportions in non-monotonic ways. For example, if n=20 in each of the two samples in all five 

simulated studies, and in all of them the underlying proportion is 50% (so we expect 10 of the 20 

observations to be 1s, and the other 10 to be 0s), then the nominal right-skew test for the five 

studies combined arrives at a p-value that is off on average off by 3 percentage points, e.g., there is 

an 8.3% chance of p<.05.  If n=22 then the nominal rate is within 0.006 percentage points of the 

actual false-positive rate, but that is not thanks to the “larger sample,” consider that if n=24 it is off 

by 2 percentage points again.   

Basically what’s happening is that the continuous approximation to the discrete distribution will 

undulate around the true value, and as sample size changes one can be in the peak or trough of that 

undulation (or right in the middle and get it just right). We did not find combinations of parameters 

that led to results worse than being off by more than 3 percentage points on average (for nominal 

p<.1).  

When the set of studies is heterogeneous, e.g., some n=20, some n=22, the gap between the 

false-positive rate and the nominal p-value will be in between the extremes of 0 and 3 percentage 

points, which is encouraging because in the real world there will be heterogeneity. 

We are led to tentatively conclude that until a better approach to p-curving discrete tests is 

available, it is reasonable to blindly treat the χ2 as continuously distributed but be aware that the 

result is not as precise as it is for truly continuous statistics. It would be best practice to combine 

this approximate calculations with Monte Carlo simulations, see section 4.3. 
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4.3 Monte Carlo / bootstrap for discrete tests 

When p-curves include difference of proportions test we recommend doing Monte Carlo 

simulations for studies of those exact characteristics to assess how accurate the resulting overall 

tests for skew are for that specific combination of parameters.  

So for example, if a p-curve includes three difference of proportion tests studies with samples 

pairs of (n1=21,n2=24), (n3=41,n4=41) and (n5=40, n6=40) then we propose simulating studies with 

those exact sample sizes, under the null that the proportions are the same within each  pair, and 

assess how close the nominal p-value for the overall test is to the false-positive rate, this allows 

making an informed guess as to how accurate the continuity approximation is for those specific 

parameters.  One could go a step further and treat the percentage of simulated samples obtaining a 

nominal p-value below that observed in the real sample as the bootstrapped p-value for skew. 

If a p-curve combines discrete and continuous test statistics one could bootstrap just the discrete 

ones and combine the result with that arising from the continuous ones. 

This is a tentative solution; its performance ought to be assessed by future research. 
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(5) Selection of JPSP studies for the demonstration. 

In the paper we plot p-curves for sets of studies published in the Journal of Personality and 

Social Psychology (JPSP) that we expected to have been intensely p-hacked and that we expected 

not to have been intensely p-hacked. Here we provide details of how the papers and p-values were 

selected and provide robustness results for their p-curves.  

  
 
5.1) Set of studies reporting statistical results only with a covariate. 
 
 In a recent paper (Simmons, Nelson, & Simonsohn, 2011) we simulated false-positive rates 

obtained by researchers who p-hack by exploiting four specific researchers’ degrees-of-freedom: (1) 

data-peeking (deciding whether to continue collecting data based on the statistical significance of 

existing data), (2) dropping a dependent variable, (3) dropping a condition (e.g., reporting only two 

cells of a three cell design), and (4) controlling for a covariate, especially under conditions of 

random assignment. 

 The first three of these are hard to detect in published research that does not follow our 

recommended disclosure rules (Simmons et al., 2011). The fourth, in contrast, is typically 

straightforward as authors do routinely disclose if their analyses control or do not control for 

covariates. With this in mind we decided to identify experiments using covariates as ones that might 

have been p-hacked. 

 We explored the feasibility of this approach by searching the archives of JPSP, using this 

interface: http://psycnet.apa.org/index.cfm?fa=search.defaultSearchForm. After browsing JPSP 

articles published in 2011 and 2012 that included the word “covariate,” we defined three rules for 

selecting studies and applied those rules to studies published before 2011 (to ensure our rule 

http://psycnet.apa.org/index.cfm?fa=search.defaultSearchForm
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selection was not being influenced by its consequences, as in choosing rules that would favor our 

predicted p-curve shape). 

 Our rules for selecting articles had two main motivations. One was to focus on usage of 

covariates that would ex-ante be expected to be associated with p-hacking. The second was to 

minimize the subjectivity involved in the selection of p-values. These considerations led us to select 

only articles that satisfied all of the following criteria: 

1) All independent variables of interest to the researchers were randomly assigned. This rule 

excluded, for example, studies examining correlates of personality scales, and those 

comparing people of different genders, races, or personality types. Note that this only 

applies to the independent variable of interest, not the covariate. Studies that randomly 

assigned participants to conditions and merely controlled for gender could be included. 

2) The statistical results without the covariate are not reported. This rule excluded, for 

example, mediation analyses and robustness checks (e.g., authors examining if their results 

also hold when controlling for gender differences). 

3) The covariate may not be causally affected by the manipulation. We applied this rule 

because when a covariate is correlated with the manipulation, collinearity may result in one 

observing a flatter p-curve even in the absence of p-hacking. This rule excluded, for 

example, studies that control for mood differences across conditions, if mood was measured 

after the manipulation. 

We applied these rules to JPSP articles containing the words “covariate” and “experiment” in 

the full text, and published before 2011. We sorted the results by descending date and proceeded to 

examine papers one-by-one. If none of the exclusion rules applied to the first study using the word 

“covariate” in the text, we selected the key result, using the guidelines from Table 3. If any of the 
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rules were not met, we made a note of it and moved on to the next article. For simplicity we did not 

consider the next study in the same paper. This broad search led to articles from areas of 

psychology we were unfamiliar with; on a few occasions we excluded studies because we could not 

understand the hypothesis being tested. We registered those instances on a spreadsheet available 

upon request. We decided beforehand to collect significant p-values from 20 articles.  

 
5.2) Set of studies expected not to have been intensely p-hacked. 

 After a similar exploratory process with articles published in 2011 and 2012, we conducted 

a search for pre-2011 JPSP articles that included the phrase “Experiment 2” and none of the 

following terms: exclude, excluded, suspicion (sometimes participants who express suspicion are 

dropped from experiments but the decision to exclude them can be made ex-post), transform (as 

when dependent variables are log or arcsine transformed), log, covariate. We included “Experiment 

2” because we found it to be useful to help identify experiments in which all variables were 

manipulated. 

We then proceeded to inspect articles one-by-one, and coded the p-values of articles that, in 

addition to the three rules from section 5.1 above, did not make any explicit allusion to the 

elimination of data or transformation of variables. This broad search led to articles from areas of 

psychology we were unfamiliar with; on a few occasions we excluded studies because we could not 

understand the hypothesis being tested. We registered those instances on a spreadsheet available 

upon request. We decided beforehand to collect significant p-values from 20 articles.  

5.3) Robustness tests for the demonstrations. 

 As described in the paper, it is important that p-curve include only p-values that both 

directly test the stated hypothesis and that are statistically independent form each other. When more 

than one p-value directly tests the stated hypothesis but is not independent from another (e.g., when 
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t-tests on two correlated measures constitute equally appropriate tests of the stated hypothesis), then 

the researcher p-curving the study must decide which p-value to select initially, and then conduct 

robustness tests, where the selected p-value is replaced by one that was not chosen initially. 

 When we encountered this situation in our demonstration, we used the following rule. 

We initially selected the first p-value if two were equally relevant and we selected the median p-

value if three were equally relevant. The p-curves and analyses depicted in Figure 3 feature those 

initial selections. 

 For the set with the covariate, Figure 3a, robustness involved a single instance where 

authors reported three tests of the hypothesis of interest. In the main text we reported p-curve 

results using the median of the three. Replacing the median with the lowest p-value reported in the 

triad barely affected the results; the test for lack of evidential value remained highly significant, 

χ2(40)=80.5, p=<.0001 (down from χ2(40)=82.5). 

For the set without keywords associated with p-hacking, Figure 3b, robustness involved five 

instances when the authors reported two tests of the key hypothesis. In the main text we reported p-

curve results always including the one appearing first in the text; for robustness we reran the 

analyses including only the one appearing second. The overall test for right-skew remained highly 

significant, χ2(44)=93.6, p<.0001 (down from χ2(44)=94.2). 
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6) Other statistical tests applicable to p-curve. 
 

In the paper we propose two methods for conducting statistical inference with p-curve: binomial 

test of high vs low p-values, and computing pp-values. An alternative worth considering in the 

future is the Kolmogorov-Smirnov (KS) test. While it is known to have low power for small 

samples (in this case, few p-values), its one-tail version has the great advantage of allowing 

simultaneously testing for left-skew and right-skew. So a pair of one-tail KS tests could reject the 

uniform null and suggest some studies do have evidential value, and other studies within that same 

set were intensely p-hacked. Given our interest in applying p-curve to small sets of p-values we 

have not considered it in much detail but it may be useful for meta-analytical contexts. 

Future research may also consider central tendency tests on p-curve, contrasting, for example, 

the mean or median p-value to those expected under different nulls through parametric (e.g., t-test) 

or nonparametric (e.g., Wilcoxon) tests. 
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7) Selection bias as an alternative to p-hacking to explain the ANCOVA example 

A referee proposed an alternative explanation for our demonstration with studies reporting only 

ANCOVA and not ANOVA results (Figure 3a). If some researchers, call them “choosers,” who 

obtain p<.05 with both ANOVA and ANCOVA choose to report the ANOVA result, then our 

sample which only includes ANCOVAs, will not include them, obviously.  

Importantly, those missing studies are likely to have had low (ANCOVA) p-values, because the 

corresponding ANOVA ones were p<.05, and ANCOVAs tend to lead to lower p-values than 

ANOVAs. This type of selection bias would lead a set of studies reporting only ANCOVA results 

to have fewer than expected low p-values and hence to be less right skewed than otherwise 

expected. 

We conducted simulations to assess if this type of selection bias could result not only in a less 

right-skewed p-curve, but also in a left-skewed one. That is, we conducted simulations to assess if 

this hypothetical form of selection bias was a plausible alternative explanation for Figure 3a. Our 

simulations involved two-cell studies with n=20 participants per cell and a covariate. We varied 

three parameters: 

1. Percentage of researchers who are choosers: 25%,50% or 75% 

2. Power of ANOVA test: 33%,50% or 80%. 

3. Correlation between covariate and dependent variable r(y,z): r = .25,.5 or .75. 

 
Those values of parameters can be combined in 27 different ways. We report all of them in 

Figure 2S below. We found that the expected p-curve is markedly right-skew for all of them. 

Even under the most extreme assumptions – most researchers are “choosers”, the studies are 

severely underpowered, and the covariate is hardly related to the dependent variable – we still 

expect a right-skewed p-curve (the green line of the top-left panel in Figure S2). The p-curve we 
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actually observe for studies reporting experimental results only with a covariate, in sharp 

contrast, is distinctly, and significantly, left-skewed (Figure 3a).  

Note that if researchers are ex-ante deciding on employing a covariate (z) to use for a 

dependent variable (y), such covariate is likely to have a high r(y,z), and for such situations p-

curve is strongly right skewed . 
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Figure S2. Expected p-curves from sets of studies reporting ANCOVA where some researchers, 
‘choosers,’ are excluded because they report ANOVA instead if it is p<.05. 

Notes: Each panel reports three expected p-curves, obtained from 20,000 simulations each, for studies reported with 
ANCOVA, when some percentage of authors, ‘choosers’, choose to report ANOVA results if they are p<.05 and are 
hence excluded from an ANCOVA sample. ANCOVA samples exclude ‘choosers’ when their ANOVAs are p<.05, but 
include them otherwise. Each column contains simulations for a given level of statistical power for the ANOVA (the 
power for the ANCOVA is always higher of course and increases more the higher r(y,z) is), each row for a given 
percentage of researchers being ‘choosers’, and within each panel we consider three possible correlations, ex-ante, 
between a covariate and the dependent variable. Note that the percentage of choosers is not the ex-post share of people 
exiting, but the percentage that would do so if their ANOVA is p<.05. For example, the top left panel shows that if the 
ANOVA is powered to 33%, 25% of researchers would choose to report ANOVA instead of ANCOVA if it came up 
p<.05, and the covariate is correlated .25 with the dependent variable, then 33% of p-values for studies reporting 
ANCOVA would be p<.01, and 17% would be p>.04. 
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Table S1. P-curve disclosure table (PDT) for JPSP demonstration (part 1 of 3), also available as an Excel file from www.p-curve.com  

 

link Quoted text from paper stating hypothesis 
Comments by Simonsohn, Nelson Simmons, in purple Brief description Quoted text from paper describing results

Selected result in bold (6) results (7) Robustness 
results

http://psycnet.apa.org/journals/psp/99/6/883.html

The first experiment was designed to be an initial examination of our 
prediction that stereotype threat can reduce learning by interfering with 
encoding processes. We proposed that stereotype threat reduces women's 
ability to learn mathematical rules and operations by reducing their ability 
to encode mathematical information into memory, not by inhibiting the 
ability to retrieve mathematical information from memory.
[this is tested by stereotype threat influencing only math rules learn after 
the threat. They report first results on remembering rules, then on 
performance. We include remembering of rules in p-curve, and report 
robustness for the other]

2 (Stereotype threat: control vs. threat) x
2 (learning time; before vs after instructions)
(attenuated interaction)

Interaction

Yes.
(note: this column is 
always "yes" when 
assessing evidential 
value of the finding of 
interest to researchers, 
it may only be "No" 
when engaging in a 
meta-analysis of 
findings that were not 
the primary interest of 
original researchers.

The results for mathematical learning showed the expected two-way 
interaction, F(1, 57) = 7.25, p < .01, ηp2 = .11 (see Table 1). As predicted, the 
stereotype threat manipulation did not affect women's learning of mathematical 
rules presented before the instructions, F(1, 57) = 0.68, p = .41, ηp2 = .01; 
however, women in the stereotype threat condition learned fewer 
mathematical rules presented after the instructions than did women in the 
control condition, F(1, 57) = 3.96, p = .05, ηp2 = .07. Also as predicted, learning 
time did not impact the number of mathematical rules women learned in the 
control condition, F(1, 28) = 0.61, p = .44, ηp2 = .02, but women in the stereotype 
threat condition learned more of the mathematical rules presented before the 
instructions than the mathematical rules presented after the instructions, F(1, 
29) = 15.83, p < .001, ηp2 = .35.

The results for math performance also showed a two-way interaction, F (1, 57) = 
4.02, p  = .05, ηp2 = .07 (see Table 1). The stereotype threat manipulation did not 
affect women's performance on problems that used mathematical rules 
presented before the instructions, F(1, 57) = 0.16, p = .69, ηp2 = .00; however, 
women in the stereotype threat condition solved fewer mathematical problems 
based on the rules presented after the instructions than did women in the 
control condition, F(1, 57) = 8.12, p = .01, ηp2 = .13.
[again, we p-curved F(1,57)=7.25 and report robustness for F(1,57)=4.02]

F(1,57)=7.25, p=0.0093 F(1,57)=4.02, p=0.0497

http://psycnet.apa.org/journals/psp/99/4/573.html

Dissonance theory only predicts spreading in the RCR condition because 
the spreading of preferences is considered an effect of choosing. A 
preference-driven choice theory, in contrast, predicts positive spreading 
for both.
[authors want to know if RRC also leads to spreading, the key test is the 
simple effect of spreading in that condition]

two-cell Simple difference between cells
Yes.

Critically, however, as predicted by a preference-driven model of choice, we 
also found positive chosen spread for participants in the RRC condition (M  = 
1.75, SD  = 2.66, n  = 40). In other words, on average, from Rank 1 to Rank 2, the 
item that participants eventually chose also moved further apart in participants' 
rankings. This spreading was also significantly different from 0, t (39) = 4.16, p  < 
.001.

t(39)=4.16, p=0.0002

http://psycnet.apa.org/journals/psp/98/6/872.html
We predicted that people would perceive their embarrassing moment as 
less psychologically distant when described emotionally.

two-cell Simple difference between cells
Yes.

As predicted, participants perceived their previous embarrassing moment to be 
less psychologically distant after describing it emotionally (M  = 4.90, SD  = 2.30) 
than after describing it neutrally (M  = 6.66, SD  = 1.83), t (38) = 2.67, p  < .025 (see 
Table 1).

t(38)=2.67, p=0.0111

http://psycnet.apa.org/journals/psp/98/5/761.html#S-6

We measured fixed-pie perceptions prior to the negotiation and then 
again after participants had received information about their counterpart's 
issue chart (or not, in the control condition). We predicted stronger 
revisions of fixed-pie perceptions when negotiators had a high rather than 
a low level of construal. 

Participants would be confirmed in their fixed-pie assumption when they 
either did not receive or process information on their counterpart or 
focused on issues only. They would revise their initial fixed-pie perception 
only when they would receive information on their counterpart and 
process the information on underlying interests rather than issues. 

Note: The authors are predicting that the effect of construal on revision 
(which is manipulated as time of measurement) will be greater when 
information is available than when it is not. This is a 3-way interaction: a 
moderated interaction - revision will be greater when construal is high vs. 
low - will be stronger under one condition than another (information 
availability).

2 (Construal: high vs. low) x
2 (Info on other: present vs. absent) x
2 (time: time 1 vs. time 2) 
(attenuation of an attenuated interaction)

3-way interaction
Yes.

We submitted fixed-pie perceptions assessed at Time 1 and Time 2 to a 2 × 2 × 2 
(Construal Level × Information × Time of Measurement) ANOVA, with construal 
level and information as between-subjects factors and time of measurement as 
a within-subjects factor. Results revealed a main effect for time of 
measurement, F(1, 77) = 34.62, p < .001, η2 = .31; an interaction between time 
and construal level, F(1, 77) = 5.91, p < .05, η2 = .07; and an interaction between 
time and information, F(1, 77) = 30.52, p < .001, η2 = .28. These effects were all 
qualified by the predicted three-way interaction among time, construal level, 
and information, F(1, 77) = 5.86, p < .05, η2 = .07. 

Fig 1 shows that in the no-information condition, construal level had no effects 
on perceptual accuracy at Time 1 or at Time 2. In the information available 
condition, participants were more accurate at Time 2 than at Time 1, but this 
effect was considerably stronger in the high-construal level condition, F(1, 77) = 
72.2, p < .001, η2 = .48, than in the low-construal level condition, F(1, 77) = 9.61, p 
< .01, η2 = .11. As a result, participants in the high-construal level condition were 
more accurate at Time 2 than those in the low-construal level condition, F(1, 77) 
= 3.77, p < .06 (approached significance).

F(1,77)=5.86, p=0.0178

http://psycnet.apa.org/journals/psp/98/5/721.html
We predicted that the classical effect by Jacoby, Kelley, et al., namely the 
misattribution of increased fluency to fame, would vanish under the oral 
motor task but would still be detected under a manual motor task.
[technically one cannot test that an effect vanishes, but one can that it gets 
significantly smaller, so we code the attenuated interaction]

2 (exposure: old vs. new) x
2 (motor task: oral vs manual)
(attenuated interaction)

2-way interaction
Yes.

Over the fame ratings in the test phase, a 2 (exposure: old items, new items) × 2 
(concurrent motor task: manual, oral) analysis of variance (ANOVA) was run with 
motor task as a between-subjects factor. A main effect of exposure, F (1, 48) = 
5.54, p  < .023, ηp2 = .10, surfaced, as well as an interaction between exposure 
and motor task, F (1, 48) = 4.12, p  < .05, ηp2 = .08. The conditional means are 
displayed in Table 1.

F(1,48)=4.12, p=0.0479

http://psycnet.apa.org/journals/psp/98/4/605.html

Thus, we predicted that participants who were not mimicked would 
consume more of the snack than participants who were mimicked.

Accordingly, we predicted that participants who were not mimicked would 
consume more of the snack than would control participants.

three-cell (mimicking confederate, nonmimicking confederate, confederate 
absent)
(one treatment, two controls)

Treatment vs control 1 
(confederate w/o mimicking)

Yes.
Planned comparisons revealed that participants who were not mimicked 
consumed more grams of cookies than did participants who were mimicked, F (1, 
27) = 4.21, p  < .05, η2 = .13, and more grams of cookies than did control 
participants, F (1, 27) = 5.51, p  < .05, η2 = .25.

F(1,27)=4.21, p=0.0500002 F(1,27)=5.51, p=0.0265

http://psycnet.apa.org/journals/psp/98/1/29.html

We expected that, consistent with the resource attribution hypothesis, the 
feedback would affect individuals in the low and high depletion states 
differently. Specifically, participants in the low depletion condition were 
expected to use our feedback to interpret their amount of available 
mental resources and, consequently, to persist longer on our problem-
solving task when given the replenished (vs. depleted) feedback. 
Conversely, participants in the high depletion condition were expected to 
use our feedback to explain their amount of available mental resources 
and, consequently, to persist longer on our problem-solving task when 
given the depleted (vs. replenished) feedback.

2 (depletion: high vs low) x
2 (feedback: depleted vs. replenished)
(reversing interaction)

Two simple effects
Yes.

In the low depletion condition, participants persisted significantly longer when 
given the replenished, as opposed to depleted, feedback, t (30) = –2.52, p  < .02. 
In the high depletion condition, participants persisted significantly longer when 
given the depleted, as opposed to replenished, feedback,  t (30) = 2.50, p  < .02.

t(30)=2.52, p=0.0173

t(30)=2.5, p=0.0181

http://psycnet.apa.org/journals/psp/97/6/946.html

 Type of gesture (gestures of approval vs. gestures of disapproval) was the 
manipulation. Reported attitudes served as the dependent measure. Role 
(participant vs. observer) was the predicted moderator variable. The 
central prediction called for a type of Gesture × Role interaction, in which 
perceivers would report more positive attitudes after seeing gestures of 
approval than disapproval made by someone else toward an attitude 
object, but observers who saw the same gestures made by someone else 
would not, because observers would not have the same visual illusion and 
inferential cues to agency as would perceivers.

2 (Role: perceiver vs. observer)x
2 (Gesture: aproval vs. dissaproval)
(attenuated interaction)

(note: there is a third role condition over which no strong prediction is made: 

hand helper)

two-way interaction
Yes.

A 2 (type of gesture) × 3 (role) ANOVA was performed on participants’ answers 
to the question about their current attitudes toward gay men, after participating 
in the experiment. That ANOVA yielded the predicted type of Gesture × Role 
interaction, F (2, 62) = 3.53, p  < .05. In addition, an ANOVA that included just 
perceivers and observers yielded the same significant interaction, F (1, 31) = 
6.73, p  < .05

F(1,31)=6.73, p=0.0143

http://www.p-curve.com/
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Table S2 continues (part 2 of 3) 

 
 

link Quoted text from paper stating hypothesis 
Comments by Simonsohn, Nelson Simmons, in purple Brief description Quoted text from paper describing results

Selected result in bold (6) results
(7) Robustness 

results

http://psycnet.apa.org/journals/psp/97/5/823.html
The prediction that only high identifiers would respond to a heightened 
identity threat by giving more help

[note: the inro and setup of this experiment give slightly different 
predictions, one involves an unreported comparison of one cell against all 
three others, the other just the simple effect,  but given the design, and 
this stated prediction, we are selecting the p-value for the most natural 
test: the interaction]

2 (group identification: low vs. high) x
2 (threat level: low vs high)
(attenuated interaction)

two-way interaction
Yes.

A 2 (high- vs. low ingroup identification) × 2 (high- vs. low threat) analysis of 
variance (ANOVA) on amount of help-giving revealed a Threat × Ingroup 
Identification interaction, F (1, 92) = 4.45, p  < .05, η2 = .05. To pursue our findings 
for the prediction that only high identifiers would respond to a heightened 
identity threat by giving more help, we used orthogonal contrasts to compare 
helping under high- and low-threat conditions for high- and low identifiers 
separately. This analysis indicated that participants in the high-identification 
condition gave more help to the outgroup when it posed a relatively high than 
low threat to social identity (M  = 4.30, SD  = 2.40 and M  = 2.57, SD  = 2.10, 
respectively), F (1, 45) = 7.80, p  < .01, η2 = .13. The amount of help given in the 
high-threat cell did not differ from the amount of help given in the low-threat 
cell in the low-identification condition (M  = 3.36, SD  = 1.91 and M  = 3.46, SD  = 
1.86, respectively), F (1, 47) < 1 (see Table 1).

F(1,92)=4.45, p=0.0376

http://psycnet.apa.org/journals/psp/95/2/319.html
Thus, we hypothesize that when a sociability goal is activated via priming, 
the accessibility of various friends should be guided by their 
instrumentality for this goal. When no such goal has been activated, we 
hypothesize, friend accessibility should not be affected by instrumentality.

2 (prime: goal vs. control) x
2 (instrumentality; yes vs no)
(attenuated interaction)

two-way interaction
Yes.

As predicted, a significant two-way interaction emerged, F (1, 32) = 4.46, p  < .05. 
As illustrated in Figure 1,the active goal influenced the cognitive accessibility of 
instrumental versus noninstrumental friends. For participants primed with a 
sociability goal, instrumental friends were significantly more accessible than 
were noninstrumental friends, F(1, 16) = 19.63, p < .05. Participants in the control 
condition showed no such effect; no significant difference in the accessibility of 
instrumental and noninstrumental targets emerged (F < 1, ns). 

F(1,32)=4.46, p=0.0426

http://psycnet.apa.org/journals/psp/94/6/988.html
We predicted that Jews would perceive Palestinians as being more 
responsible for the conflict and legitimize Israeli actions more when 
reminded of the Holocaust than when not reminded, and doing so would 
lessen feelings of collective guilt.

two-cells
Difference of means
(on collective guilt)

Yes.
As predicted, participants in the Holocaust reminder condition (M  = 2.92, SD  = 
1.67) reported less collective guilt than participants in the no-reminder 
condition (M  = 4.14, SD  = 2.24), F (1, 52) = 5.08, p  = .03, d  = .62.

F(1,52)=5.08, p=0.0284

http://psycnet.apa.org/journals/psp/94/4/547.html
We predicted that presenting these items together in one image would 
increase the value of unhealthy (temptation) items, whereas presenting 
them apart, in separate images, would increase the value of healthy (goal) 
items.

3 (presentation format: together, single (control) , apart)x
2 (food: healthy vs unhealthy)
(rreversing trends)

Two simple effects of high vs low
(because trends  including control cell not 

reported)

Yes.

t(20)=3.36, p=0.0031

t(30)=2.5, p=0.0181

http://psycnet.apa.org/journals/psp/93/4/515.html#S-2
In Experiment 1, we tested the proposition that a disappointing choice 
would be regretted more if it were made from a larger decision set than 
from a smaller decision set.

Two-cells

Difference of means
(one of the two cells consists of two 

counterabalanced ones that were 

collapsed)

Yes.
Contrasts between the conditions showed that there was more regret when 
there were two alternatives to going to the movie (M  = 5.59, SD  = 1.44) than 
when there was just one (M  = 3.82, SD  = 1.73), F (1, 72) = 22.56, p  < .001,

F(1,72)=22.56, p=0.00001

http://psycnet.apa.org/journals/psp/93/2/143.html
It was predicted that more unrequested (negative) cognitions would be 
reported in the difficult than in the easy condition. two-cells Difference of means

Yes.

As predicted, the number of positive thoughts manipulation had a significant 
effect on participants' self-reported unrequested cognitions, t (26) = −4.98, p  < 
.001. Participants indicated that more negative thoughts came to mind when 
they had been asked to list 10 (M  = 5.00, SD  = 2.04) rather than 2 (M  = 2.07, SD  = 
0.83) positive thoughts.

t(26)=4.98, p=0.00003543

http://psycnet.apa.org/journals/psp/91/6/1009.html#S-6
Experiment 1 tested whether answering questions correctly before 
attempting to answer them randomly would result in successful random 
answers.

two-cells Difference of means
Yes.

Participants who were allowed to answer only once, randomly, exhibited a 
significantly higher mean proportion of correct responses (M  = .58, SD  = .15) 
than did correct-random participants (M  = .49, SD  = .12), t (46) = 2.07, p  < .05, η2 = 
.09 (see Figure 1).

t(46)=2.07, p=0.0441

http://psycnet.apa.org/journals/psp/91/1/97.html#S-5

Our main predictions rest on our theorizing that when status relations are 
perceived as relatively unstable, dependence on the high-status outgroup 
is inconsistent with group members' quest for equality and results in a 
threat to social identity. This threat should be expressed in relatively low 
affect, drive group members to positively distinguish the ingroup by 
discriminating against and devaluing the outgroup, and perceive the 
ingroup and the outgroup as more homogeneous (Studies 1 and 2). 

(prediction is cleaer in discussion of results):
 When the status hierarchy was perceived as relatively stable, the receipt 
of help from the high-status outgroup did not influence recipients' affect, 
ingroup favoritism, and perceptions of the outgroup. Yet when the status 
hierarchy was perceived as unstable, being helped by a member of the 
high-status outgroup led recipients to feel worse. 

2 (Help: yes vs no) x
2 (relations status: stable vs. unstable)
(attenuated interaction)

two-way interaction
(for three d.v.s)

Yes.

(1)A 2 (help vs. no help) × 2 (stable vs. unstable status) ANOVA on the measure 
of ingroup favoritism revealed no significant effects. Although the predicted 
Help × Stability interaction was not significant, F(1, 63) < 1,  

(2) A 2 (help vs. no help) × 2 (stable vs. unstable status) ANOVA on the general 
evaluation score... ...  The Stability × Help interaction was not significant, F(1, 63) 
< 1.

(3) A 2 (help vs. no help) × 2 (stable vs. unstable status) ANOVA on perceived 
aggressiveness of the outgroup revealed a significant interaction, F(1, 63) = 3.70, 
p < .05

(4) A similar ANOVA on the perceived homogeneity of the outgroup revealed a 
significant Status Stability × Help interaction, F(1, 63) = 8.27, p < .005

F(1,63)=3.7, p=0.0589 F(1,63)=8.27, p=0.0055

A Presentation Format × Food Type ANOVA of these composite value scores 
yielded a main effect of food type, F (1, 62) = 5.64, p  < .05, indicating that the 
healthy foods were more appealing than the unhealthy foods. It also yielded the 
predicted Presentation Format × Food Type interaction, F (2, 62) = 12.31, p  < .001 
(see Figure 2)
A contrast analysis revealed that in the single (control) presentation format, 
participants provided similar ratings to healthy food items (M = 4.56, SD = 1.00) 
and unhealthy food items (M = 4.18, SD = 1.13), t(23) = 1.17, ns. Thus, we were 
successful in choosing healthy and unhealthy food items with a priori similar 
value. Moreover, when the items were presented together, participants 
provided higher value ratings to unhealthy food items (M = 5.02, SD = 0.76) 
compared with healthy items (M = 4.30, SD = 1.04), t(20) = 3.36, p < .01. In 
contrast, when the items were presented apart, participants provided higher 
value ratings to healthy food items (M = 5.39, SD = 1.27) compared with 
unhealthy items (M = 3.65, SD = 1.33), t(19) = 3.79, p < .01.
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Table S2 continues (part 3 of 3) 

 
 

Quoted text from paper stating hypothesis 
Comments by Simonsohn, Nelson Simmons, in purple Brief description Quoted text from paper describing results

Selected result in bold (6) results
(7) Robustness 

results

http://psycnet.apa.org/journals/psp/88/2/288.html#S-5
We expected that Jews would be more willing to forgive Germans for the 
past when they categorized at the human identity level and that the guilt 
assigned to contemporary Germans would be lower in the human identity 
condition compared with the social identity condition.

two-cell
Difference of means
(for two d.v.s)

Yes.

Participants assigned significantly less collective guilt to Germans when the 
more inclusive human-level categorization was salient (M = 5.47, SD = 2.06) than 
they did when categorization was at the social identity level (M = 6.75, SD = 0.74), 
F(1, 45) = 7.62, p <.01, d = 0.83.

Participants were more willing to forgive Germans when the human level of 
identity was salient (M = 5.84, SD = 1.25) than they were when categorization was 
at the social identity level (M = 4.52, SD = 0.92), F(1, 45) = 16.55, p <.01, d = 1.20.

F(1,45)=7.62, p=0.0083 F(1,45)=16.55, p=0.0002

http://psycnet.apa.org/journals/psp/75/2/347.html

Hypothesis 1.1 : When target persons belonging to two different categories 
are presented in a mixed presentation mode, participants will infer that 
their primary task is to differentiate between the categories. 
Consequently, assimilation effects will occur. 

Hypothesis 1.2 : When target persons belonging to two different categories 
are presented in blocks, participants will infer that their primary task is to 
differentiate within the categories. Consequently, contrast effects will 
occur.

2 (categorical info: nurse vs. stockbroker) x
2 (presentation: mixed vs. blockwise) x
2 (individuating information: mildly unhelpful vs. helpful) 
(reversing interaction  for first 2x2)

note: third factor is not explicitly made a prediction for in the motivation of the 

stuy)

Both simple effects
Yes.

Supporting our hypotheses, nurses were rated as more helpful than 
stockbrokers in the mixed presentation condition, t  (9) = 2.03, p  < .04 (one-
tailed), which indicates an assimilation effect; nurses were rated as slightly less 
helpful than stockbrokers in the blockwise presentation condition, t  (9) = 1.69, p 
< .07 (one-tailed), demonstrating a contrast effect

t(9)=2.03, p=0.0729

t(9)=1.69, p=0.1253

http://psycnet.apa.org/journals/psp/66/1/48.html#S-4
We created a situation in which some subjects were to think that they 
possessed individuating information about an introverted or extraverted 
target without having actually been confronted with such information. 
Contrary to other subjects who were not told that they had been informed, 
those who believed they had been informed were expected to display 
more confidence in their judgments. Also, their ratings should be more 
polarized in the direction of the activated stereotype.

two-cell
(two measures)

Difference of means
(for two d.v.s)

Yes.

As far as the confidence measure was concerned, the analysis of the don't know 

answers revealed a highly significant information status main effect, F (1, 55) = 
9.96, p  < .003. Subjects who thought that individuating information had been 
given to them avoided the questions less often than the other subjects (M s = 
5.07 and 10.13, respectively).

[polarized:]prediction was supported by the presence of a highly significant 
information status main effect for the congruence scores, F(1, 55) = 8.26, p < .006. 
In other words, our subjects judged the archivist to be more introverted and the 
comedian more extraverted when they supposedly had received individuating 
information (M = 9.97) than when no such induction had taken place (M = 6.30)

F(1,55)=9.96, p=0.0026 F(1,55)=8.26, p=0.0058

http://psycnet.apa.org/journals/psp/62/4/699.html#S-5

The first study was planned as a simple demonstration of the hypothesis 
that the arousal of any mood state, whether positive or negative, leads to 
self-directed attention

three-cell
(treatment 1, treatment 2, control)

Quadratic trend
(note: this is an unusual prediction and the 

quadratic trend seems a natural way to 

test it)

Yes.

Subjects in the happy mood condition (M  = 25.75, SD  = 5.42) and the sad mood 
condition (M  = 24.92, SD  = 5.80) scored higher on the Linguistic Implications 
Form than did subjects in the neutral mood condition (M  = 22.86, SD  = 4.85). The 
U-shaped pattern of means is congruent with the hypothesis that both happy 
and sad moods produce more self-focus than do neutral moods. To confirm this 
hypothesis, a one-way ANOVA was conducted in which a quadratic trend was 
specified using contrast weights of 1, −2, and 1 for the happy, neutral, and sad 
mood conditions, respectively. This analysis revealed that the data fit this 
hypothesized pattern of results, F (1, 104) = 5.04, p  < .05. The contrast residual, 
however, was not significant, indicating that a U-shaped pattern of means, as 
predicted by Hypothesis 3, fits the data well.

F(1,104)=5.04, p=0.0269

http://psycnet.apa.org/journals/psp/89/4/504.html
We expected participants to relate the stereotype-consistent behaviors 
more abstractly than the stereotype-inconsistent behaviors. Moreover, we 
expected this effect to be more pronounced when the category label was 
presented before participants heard the story than when the category 
label was presented after participants heard the story.

2 (category label: chess master vs hairdresser)x
2 (label: before vs. after)x
2 (behavior: intelligent vs. sociable)
(attenuation of attenuating interaction)

Three-way interaction
Yes.

The only significant effect was the expected three-way interaction between 
category label, label presentation, and behavior, F (1, 44) = 8.38, p  < .01, η2 = .14 
(see Table 1).
The two-way interaction between category label and behavior was significant 
only when the category label was presented before the story (an LEB effect), F(2, 
44) = 5.05, p = .01, η2 = .18, but not when the category label was presented after 
the story, F(2, 44) = 1.63, p = .21. When the category label was presented before 
the story, sociable behavior was described more abstractly than intelligent 
behavior for a hairdresser, t(9) = 2.80, p = .02, d = 0.91, and intelligent behavior 
was described somewhat more abstractly than sociable behavior for a chess 
master, t(10) = 1.85, p = .09, d = 0.54.

F(1,44)=8.38, p=0.0059

http://psycnet.apa.org/journals/psp/86/2/219.html

Our primary hypothesis was that although failed counterarguing would 
lead to attitudes that were equivalent in valence to those that followed 
undirected thinking, the former attitudes would be held with greater 
certainty.

Four-cell design
(two expected to show effect, other two are controls)

Difference of means
(for focal two conditions)

Yes.

There was a significant effect of treatment on attitude certainty, F (2, 54) = 4.51, 
p  =.02. Individuals instructed to generate negative thoughts (M  = 7.64, SD  = 1.20) 
were more certain of their attitudes than individuals who attempted to generate 
either thoughts (M  = 6.72, SD  = 1.20), t (36) = 2.35, p  =.02, or positive thoughts 
(M  = 6.50, SD  = 1.26), t (35) = 2.82, p  <.01.
[note: there is also a prediction of same valence, that's considered supported in 
the paper by lack of statistical significance]

t(36)=2.35, p=0.0244
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