
Process-Algebraic Interpretation of AADL
Models?

Oleg Sokolsky1, Insup Lee1, and Duncan Clarke2

1 Department of Computer and Info. Science, University of Pennsylvania,
Philadelphia, PA, U.S.A.

2 Fremont Associates, Camden, S.C., U.S.A.

Abstract. We present a toolset for the behavioral verification and val-
idation of architectural models of embedded systems expressed in the
language AADL. The toolset provides simulation and timing analysis of
AADL models. Underlying both tools is a process-algebraic implementa-
tion of AADL semantics. The common implementation of the semantics
ensures consistency in the analysis results between the tools.

1 Introduction

Distributed real-time embedded (DRE) systems, which once were confined to
a few advanced domains such as avionics systems, are now affecting our lives
in many ways. DRE systems are used in cars, medical and assisted living de-
vices, in home appliances and factory automation systems. Functionality of such
systems if greatly expanded and quality of service requirements remain quite
stringent. At the same time, the use of DRE systems in mass-produced systems
has unleashed market pressures to compress development time and reduce costs.
New development and verification and validation (V&V) methods are needed to
produce safe, efficient, and competitive DRE systems.

Early evaluation of the system design is important for successful and timely
development. Correction of errors in the design becomes progressively more ex-
pensive later in the design process. Of course, many details of the system are
not know in the early stages of development, and only high-level evaluation is
possible. Architectural modeling offers a structured way to collect available in in-
formation about the system and incrementally refine it as the design progresses.
An architectural model also allows developers to apply high-level analysis tech-
niques that can quickly uncover problems. Since architecture-level analysis tend
to be approximate and efficient, design-space exploration can be performed by
varying different aspects of an architectural model and comparing outcomes of
analysis for different architecture variants.

AADL [6, 13] is a standard for the architectural modeling of DRE systems. It
allows developers to describe a system as a collection of interacting components

? This research has been supported in part by grants AFOSR STTR AF04-T023, NSF
STTR IIP-0712298, NSF CNS-0720703, and AFOSR FA9550-07-1-0216.



and connections between them, abstracting away the functionality of compo-
nents that is not precisely known at early stages of system development. The
standard defines interchangeable textual and graphical modeling notations and
gives precise, if mostly informal, semantics for the components and connections.
AADL modeling is supported by an open-source development environment OS-
ATE, which provides an extension API for the development of analysis plugins
that operate on the OSATE internal representation of AADL models.

In this paper, we describe two analysis techniques for AADL models and
present their implementation in the Furness toolset, implemented as an OSATE
plugin. One technique is an AADL simulator that allows the user to visually
follow the high-level execution of the system and track resource utilization. The
other technique is schedulability analysis that determines whether the system
has enough resources to satisfy the timing constraints. Both analysis technique,
along with many other analysis techniques developed for AADL, rely on AADL
semantics. We argue that tools that implement these analysis techniques need
a common interpretation engine to ensure that all tools treat AADL semantics
consistently. Furness toolset uses an encoding of AADL semantics in a real-time
process algebra ACSR [9], which provides a common semantic foundation for for
different analysis tool in the toolset.

The paper is organized as follows. Section 2 presents an overview of AADL
and its behavioral semantics. Section 3 presents the real-time process algebra
ACSR and formal schedulability analysis. In Section 4 we turn to the architecture
of the Furness toolset and present the translation of an AADL model into ACSR.
Finally, Section 5 concludes with a discussion.

2 Introduction to AADL

Components. The main modeling notion of AADL is a component. Components
can represent a software application or an execution platform. A component can
have a set of externally accessible features and an internal implementation that
can be changed transparently to the rest of the model as long as the features
of the component do not change. Implementation of a component can include
interconnected subcomponents. The features of a component include data and
event ports and port groups, subroutine call entries, required and provided re-
sources. Interacting components can have their features linked by event, data,
and access connections. In addition, application components can be bound to
execution platform components to yield a complete system model. Properties,
specific to a component type, can be assigned values that describe the system
design and used to analyze the model. Main component types are illustrated in
Figure 1. Different component types are shown as different shapes. Solid lines
represent connections, while dashed lines represent bindings.

Execution platform components include processors, buses, memory blocks,
and devices. Properties of these components describe the execution platform.
Processors are abstractions of hardware and the operating system. Properties
of processors specify, for example, processing speed and the scheduling policy.



Buses can represent physical interconnections or protocol layers. Their properties
identify the throughput and the latency of data transfers, data formats, etc.

Application components include threads and systems. Threads are units of
execution. A thread can be halted, inactive, or active. An active thread can
be waiting for a dispatch, computing, or blocked on resource access; etc. We
discuss thread semantics in more detail below. Properties of the thread specify
computation requirements and deadlines in active states of the thread, dispatch
protocol, etc. Threads are classified into periodic, aperiodic, sporadic, and back-
ground threads. They differ in their dispatch protocol and their response to
external events. A system component is a unit of composition. It can contain
application components along with platform components, and specifies bindings
between them. Systems can be hierarchically organized.

Decode Display

Compensate

proc1 proc2

phase1 phase2

internal

100ms 100ms

Fig. 1. A simple AADL model

Figure 1 shows a simple AADL model of a stream processing system. The
system component contains two processors connected by a bus, and two software
subsystems, one of which contains a single periodic thread and the other one
contains two threads, one periodic, the other aperiodic. Each of the subsystems
is bound to a separate processor, while the connection between threads bound to
different processors is bound to the bus. Threads communicate via data or event
ports, denoted by filled and blank angles, respectively. Features of a component
are mapped by connections to features of its subcomponents.
Semantics of AADL threads. The AADL standard specifies semantics for each
AADL component, most of which are precise and detailed but informal. An ex-
ception is the thread component. Semantics of a thread are formalized using a
hierarchical stopwatch automaton that describes thread states and conditions on
transitions between thread states. Figure 2 shows the main part of the thread
automaton, omitting initialization, error recovery, and mode switching. The au-
tomaton uses two clocks, t and c, which represent elapsed time and accumulated
execution time, respectively. First derivatives of the clock functions are denoted
δt and δc. Elapsed time always evolves at the same speed (δt = 1). When the
thread is not executing – for example, preempted by another thread – the clock
c is stopped (δc = 0). The invariant of the suspended state and the predicate



Enabled(t) depend on the dispatch protocol property. For example, for a periodic
thread, the invariant is t ≤ Period and Enabled(t) is t = Period.

subprogram

remote

call

resume

preempt

resource return

performing thread computation

awaiting awaiting

resource

block onunblock 

return

suspended awaiting dispatch

runningready

δc = 0 δc = 0

t← 0
c← 0 Enabled(t) c ≥Min(Exec Time)

assert t ≤ Deadline

c ≤Max(Exec Time)
δc = 1δc = 0

Fig. 2. Semantic automaton for an AADL thread

Connections. Event and data connections between AADL components form se-
mantic connections. Each semantic connection has an ultimate source and ulti-
mate destination, which can be thread or device components. Starting from an
ultimate source, a semantic connection follows connections up the component
containment hierarchy via the outgoing ports of enclosing components, includes
one “sibling” connection between two components, and then follows connections
down the hierarchy to the ultimate destination. One semantic connection in Fig-
ure 1 is between threads Decode and Display. This data connection contains
three syntactic connections and is mapped to the bus component. A semantic
event connection exists between threads Display and Compensate. Compensate,
being an aperiodic thread, is dispatched by the arrival of each event via that
connection. By contrast, periodic threads are dispatched by a timer. Similarly,
semantic access connections describe resources required by a thread that is the
ultimate source of an access connection. A resource that serves as the ultimate
destination of an access connection is typically a data component. Properties of
access connections specify concurrency control protocol for a shared resource.
Modes. AADL can represent multi-modal systems, in which active components
and connections between them can change during an execution. Mode changes
occur in response to events, which can be raised by the environment of the sys-
tem or internally by one of the system components. For example, a failure in
one of the components can cause a switch to a recovery mode, in which the
failed component is inactive and its connections are re-routed to other compo-
nents. The AADL standard prescribes the rules for activation and deactivation of



components during a mode switch. Currently, Furness toolset does not support
multiple modes and we do not discuss this aspect of AADL any further.

3 Overview of ACSR

ACSR [9] is a real-time process algebra that makes the notion of resource explicit
in system models. Restrictions on simultaneous access to shared resources are
introduced into the operational semantics of ACSR, which allow us to perform
analysis of scheduling properties of the system model.

a) b)

done!

{(cpu, 1)} {(cpu, 1), (bus, 1)}
Simple1

done!

∅
{(cpu, 1)} {(cpu, 1), (bus, 1)}

Simple2

Fig. 3. ACSR process with computation and communication steps

interrupt

done

done!

∅
{(cpu, 1)} {(cpu, 1), (bus, 1)} interrupt?

T

∅

in
te

rr
u
p
t

∅{(bus, 2)} {(bus, 2)} interrupt!{(bus, 2)} {(bus, 2)} ∅
{(cpu, 2)}

{(bus, 2)} {(cpu, 1), (bus, 1)}{(cpu, 1), (bus, 1)} done!

{(bus, 2)}{(cpu, 1), (bus, 1)} τ@interrupt

exception

Simple

ExceptionHandler

T imeoutHandler Interrupt

Handler

SimpleDriver

Fig. 4. Parallel composition of ACSR processes

An ACSR model consists of a collection of processes that evolve during the
execution of the model. The operational semantics of ACSR defines a transition
relation, in which transitions P1

a−→ P2 describe how process P1 can evolve into
P2 by performing a step a. Rather than giving a formal description of syntax and
semantics, which can be found in several publications [9, 10], we show a pictorial
representation for processes. We also use an example that becomes more complex
as features of the formalism are introduced.



Computation and communication. ACSR processes can execute two kinds of
steps: computation steps and communication steps. Computation steps, which
we call here timed actions, or simply actions, take time and require access to a set
of resources in order to proceed. Access to resources is controlled by priorities
that are associated with each resource access. Formally, an action is a set of
pairs (ri, pi), where pi is the priority of access to the resource ri. For an action
A, we denote the set of resources to be ρ(A). Communication steps, on the
other hand, consist of sending or receiving an instantaneous event. To avoid
confusion with event manipulation in AADL models, we will refer to events in
ACSR processes as ACSR events. Communication also have priorities associated
with them. Figure 3, a shows a simple process that performs a computation step
using the processor resource cpu, then performs another computation step that
requires, in addition, access to a shared bus represented as the resource bus, and
finally announces its completion by sending an event done before restarting.
Resource contention and alternative behaviors. According to ACSR semantics, a
timed action cannot be performed if the necessary resources are not available.
The process that tries to execute the step will be deadlocked, unless alternative
steps are available. To allow processes wait for resource access, ACSR models
introduce idling steps, which do not consume resources but let the time progress,
to allow a process to wait for resources, as shown in Figure 3, b.
Temporal scope. A process can operate in a temporal scope, which we represent
as a shaded background for the process, as shown in Figure 4. The scope can
be exited in one of the three ways: an exception represents a voluntary release
of control by the process, which is transferred to its exit point, represented
pictorially as a white circle; an interrupt represents an involuntary release of
control, when the control is transferred to a handler process and the activity
within the scope is abandoned; the last means of exit is a timeout, which occurs
a specified duration of time passes since the scope was entered.
Parallel composition and preemption. ACSR processes can be combined in par-
allel and interact in two ways. Processes can instantaneously send and receive
ACSR events. Event communication follows the CCS style of synchronization.
The sender and the receiver of matching events take the event step synchronously,
performing together an internal step labeled by a special ACSR event τ . For
clarity, we also specify the name of the ACSR event that generated the internal
step, writing the label as τ@name. Alternatively, a process can perform the step
individually, unless the event is restricted. Event restriction, therefore forces syn-
chronization of the processes within the scope of the restriction operator. The
second means of interaction is implicitly represented by resource conflicts. Pro-
cesses can perform actions, which take time to execute and require access to a
set of resources. Because time progress is global, all processes have to perform
action steps together. The following rule for parallel composition specifies that
two processes can perform action steps concurrently as long as resources used in
each step are disjoint:

(Par3) P1
A1−→ P ′1, P2

A2−→ P ′2

P1‖P2
A1∪A2−→ P ′1‖P ′2

, ρ(A1) ∩ ρ(A2) = ∅



Access to resources is guarded by priorities, and a process with a higher
priority of access can preempt the execution of another process. The preemption
relation is defined on actions and events. For two actions A1 and A2, A2 preempts
A1, denoted A1 ≺ A2, if every resource used in A1 is also used in A2 with greater
or equal priority, and at least one resource has a strictly greater priority. As a
result of this definition, any resource-using step will preempt an idling step
(with an empty set of resources). In addition, an internal step with a non-zero
priority will preempt any timed action to ensure progress in the behavior of an
ACSR model. The prioritized transition relation for an ACSR process removes
preempted transitions from the transition relation.

Figure 4 places our running example into a temporal scope that composed
in parallel with a driver process, which lets Simple complete one iteration. The
first action of the driver uses disjoint resources with the first action of Simple
and thus they can proceed together. However, the second action uses the same
resource bus with a higher priority of access and preempts the execution of
Simple for one time step. Then, the driver has two alternative behaviors that
prevent the process Simple from completing the second iteration. One behavior
forces an interrupt by synchronizing with the trigger of the interrupt handler.
The other behavior preempts Simple at the initial state on the second iteration.
The alternative idling step takes Simple to the exception handler.
Parameterized processes. An ACSR process can be associated with parameters
that are changed during an execution of the process. These dynamic parameters
are used as variables that keep the history of the execution – for example, the
progress of time. Syntactic rules limit the range of each parameter and thus
ensure that the parameterized model remains finite-state. The use of parameters
in an ACSR process is illustrated in the next section.
Tool support. Modeling and analysis of real-time systems using the ACSR for-
malism is supported by the tool VERSA [5]. Originally designed as a rewrite
engine for ACSR terms with respect to the strong prioritized bisimulation [9],
VERSA is primarily used as a state-space exploration and reachability analysis
tool. VERSA uses efficient explicit-state representation of the state space, iden-
tifying each state with a normalized ACSR term, extended with a timeout value
for each temporal scope operator. Because of explicit state representation, con-
struction of the state space takes time at tool startup, however state transitions
take constant time, making VERSA an efficient simulator.

3.1 Schedulability analysis with ACSR

We adopt the schedulability analysis approach described in [3]. In this approach,
a real-time system that consists of a collection of tasks is modeled by a parallel
composition of ACSR processes constructed in the following way. Each task is
represented as an ACSR process that captures task states – such as inactive,
ready, running, preempted, etc. – and reflects dependencies on other tasks in
the system. In addition, a separate ACSR process models the task dispatcher.
The dispatcher models the pattern of task dispatches, either by a clock or by



incoming events. The scheduler of the real-time system is not represented explic-
itly. Instead, it is encoded in the priorities of actions that access the processor
resource in task models. For fixed-priority scheduling, the value of thread prior-
ity is used. To encode dynamic-priority schedulers, parametric expressions are
used as priorities. We give a concrete example of such parametric expressions in
Section 4.1. As shown in [3], the resulting ACSR model is deadlock-free if and
only if the respective collection of tasks is schedulable by the specified scheduler.
Thus, schedulability analysis is reduced to deadlock detection.

4 The Furness Toolset

The Furness toolset provides behavioral analysis of AADL models using VERSA
as a state-space exploration engine. The overall architecture of the tool is shown
in Figure 5. In the figure, tools from the underlying development framework
are shown shaded, while modules that comprise the Furness toolset are white.
Furness is a plugin for the OSATE development environment for AADL, which
is in turn a plugin into the popular open-source Eclipse framework. The tool
operates on AADL instance models, which are created by OSATE from declar-
ative AADL models. When Furness is invoked, the translation module produces
an ACSR model from the AADL instance model, which is given as input to the
VERSA tool. VERSA processes the generated model and builds its state space.
At this point, Furness is ready to perform analysis.

instantiation

Simulator

interface

Schedulability

analysis

State interpretation

perspective

Eclipse debug

analysis view

Schedulability
OSATE

Eclipse environment

translation

VERSA

Fig. 5. Furness toolset architecture

An important requirement in the design of the tool was that the user needs to
be unaware of the underlying VERSA implementation of the AADL semantics.
By hiding VERSA, we achieve to desirable goals. On the one hand, we will be
able to employ a different implementation of AADL semantics and make the



switch transparent to the end user. More importantly, the user will be spared
the details of the ACSR formalism. The target user of the Furness toolset is an
engineer, who is unlikely to be well versed in formal methods. Shielding the user
from the formal details will help the adoption of the tool. To achieve this, we
introduced the state interpretation module, an abstraction layer over the ACSR
model that transforms ACSR execution traces into AADL-level traces.

Both simulation and timing analysis involve state space exploration of the
ACSR model. The state interpretation module maintains the correspondence
between states of the ACSR model and states of the AADL model. When a
transition in the ACSR model is taken, the state interpretation model identi-
fies whether the transition corresponds to an AADL-level event (such as tread
dispatch or completion) and updates the AADL model state. Note that multi-
ple ACSR transitions may correspond to a single AADL-level step. In this case,
chains of transitions are collapsed by the module into a single step.

The presentation layer of the Furness toolset consists of the standard Eclipse
debug perspective, which is used as the user interface for the simulator, and
several custom views that present timing analysis result and show the unfolding
simulation trace. The simulator interface module handles user requests and man-
ages the simulation state such as breakpoint status. It converts user requests into
state interpretation commands and passes the outcome of state interpretation
to the user interface, maintaining a bi-directional communication with the state
interpretation module. By contrast, timing analysis displays only the results
produced by VERSA, resulting in a one-way interaction.

Translation of AADL into ACSR and schedulability analysis have been de-
scribed in [14]. We reproduce some of this description here for the sake of com-
pleteness, concentrating primarily on examples that illustrate the translation.

4.1 Translation of AADL into ACSR

Assumptions and restrictions. The translation applies to systems that are com-
pletely instantiated and bound. This means that: 1) The system contains at
least one thread and at least one processor components. Each thread has to be
bound to a processor; and 2) If the thread is non-periodic (that is, aperiodic,
sporadic, or background), each in event port and in event data port must
have an incoming connection. In addition, each thread is required to specify prop-
erties Dispatch Protocol, Compute Execution Time, and Compute Deadline.
Each processor component that has any threads bound to it must have the
property Scheduling Protocol specified.

The current version of the standard AADL assumes that threads in the sys-
tem are synchronized with respect to a discrete global clock. These assumptions
match the timing model of ACSR. We also assume that the time of data and
event delivery across connections in the AADL model is significantly smaller
than the scheduling quantum. This assumption allows us to model communica-
tion between threads as instantaneous.
ACSR skeleton of a thread component. Each thread is translated into an ACSR
process independently, based on 1) its timing parameters and other properties;



2) its associated connections; and 3) its shared resources. We refer to this pro-
cess as the thread skeleton, because steps within this process can be extended
depending on the event and access connections of the thread, scheduling protocol
property, etc. The overall structure of the thread skeleton, excluding initializa-
tion and mode switching parts, is shown in Figure 6. It directly corresponds to
the thread semantic automaton given in Figure 2. Refinements of the skeleton
are discussed below, when we consider event and data connections. The skeleton
has two static parameters: minimum cmin and maximum cmax execution times.
They are taken from the property Compute Execution Time of the thread com-
ponent, which gives the range of the execution times. The process is indexed by
two dynamic parameters, e and t. Parameter e represents the amount of exe-
cution time that has been accumulated by the thread in the current dispatch.
Parameter t represents the total amount of time elapsed since the dispatch.

As the process executes, it performs computation steps that require resource
cpu, representing the processor to which the thread is mapped. Each computation
step increases both dynamic parameters of the process. When the thread is
preempted by a high-priority thread, it cannot perform the computation step and
takes the alternative that leads to the Preempted state. There, it performs idling
steps, which increase parameter t, but not e. After the number of computation
steps exceeds cmin, the process can exit its scope via the complete exit point and
return to the AwaitDispatch state. Once the cmax has been reached, the process
is forced to leave the scope an return to AwaitDispatch.

∅ t := t + 1

{(cpu, π)}

{(cpu, π)}

e := e + 1
t := t + 1

e < cmax − 1

∅t := t + 1

cmin ≤ e < cmax

t := t + 1
e := e + 1{(cpu, π)}

done!

dispatch?

Computing PreemptedAwaitDispatch

Fig. 6. ACSR process for thread computation

Tread dispatcher. An AADL thread is dispatched according to its dispatch policy.
This policy is captured by the dispatcher process that is generated for each
thread in addition to the thread skeleton. The dispatcher sends the dispatch event
to the thread skeleton that advances the skeleton from the AwaitDispatch state
to Compute state. In addition to thread dispatch, the dispatcher process keeps
track of thread deadlines and signals deadline violations by inducing a deadlock
into the model execution. Figure 7 shows dispatcher processes for AADL dispatch
policies. Figure 7,a shows a dispatcher for a periodic thread. In the initial state,
Dispatcherp sends the dispatch event. Note that the dispatcher cannot idle in this
state and has to send this event immediately, ensuring that dispatches happen
precisely every p time units. Once the event is sent, the dispatcher idles while the
thread process is executing. If execution is completed and the ACSR event done
is received before the timeout d (the deadline of the thread), the dispatcher idles



until the next period and repeats the dispatch cycle. Otherwise, the deadline
timeout happens and the dispatcher process is blocked, inducing a deadlock in
the ACSR model that denotes a timing violation.

a) b)
done?

∅ ∅

p
d

dispatch!

d

∅

done?

dispatch!edeq?∅

Dispatcherp Dispatchera

Fig. 7. Thread dispatchers

Aperiodic threads are dispatched by events taken from a queue. The dis-
patcher process Dispatchera, shown in Figure 7,b, receives the ACSR event e deq
from the event queue process E q that corresponds to an incoming event con-
nection of the thread (see below). When this event is received, the dispatcher
sends the dispatch event to the thread skeleton and waits for the ACSR event
done, which should arrive before the deadline. Note that here the dispatcher can
idle waiting for an event to arrive. The dispatcher process for a sporadic thread
is a combination of the two dispatcher processes discussed above. A dispatch
happens when an ACSR event from the queue process is received. However, the
next dispatch cannot happen until the minimum separation interval p elapses.
Event connections. Sending and receiving AADL events is represented in ACSR
by communication steps. Each semantic event or data event connection e in
the AADL model is represented by an auxiliary ACSR process E that handles
queuing of events at the destination. We introduce two ACSR events: e q, sent
by the source thread and received by E, and e deq, sent by E and received by
the dispatcher for the destination thread. The process E implements a counter,
which is sufficient for the representation of the queue, since we do not model the
attributes of individual events. Therefore, we need to know only the number of
events in the queue at any moment during the execution. The size of the queue
and overflow handling logic are obtained from the properties of the port feature.

An AADL thread that is the ultimate source of a semantic event or data event
connection e can raise an event during its computation. We refine the skeleton of
this thread with a communication step with the output ACSR event eq, added
as a self-loop to the Computing state of the skeleton process in Figure 6.
Data connections. Data connections in AADL model sampled communication
and thus do not require queues. However, AADL introduces the notion of an im-
mediate connection that has the following semantics. Whenever the two threads
that are the source and the target of an immediate data connection are dis-
patched logically simultaneously, the execution of the target thread is delayed
until the source thread completes its execution and the data is made available
to the source thread. In order to implement the prescribed semantics, first re-
fine the dispatcher of the target thread to accept a special event blockd before
activating the thread, and the skeleton of the source thread is refined with an



auxiliary event to announce its completion. Then, we introduce an auxiliary
ACSR process that interacts with the dispatchers of the two threads to detect
simultaneous dispatches and, if so, delays sending blockd until the source thread
completes. Otherwise, blockd is offered immediately.

4.2 Trace abstraction

During the analysis, VERSA maintains the current state of the model. Inter-
acting with VERSA, the state interpretation module observes execution traces
of the ACSR model, but not the state directly. To help identify state changes
through trace steps, we add to the ACSR model transitions that do not directly
correspond to any activity on the AADL level. We call such transitions bookkeep-
ing steps. For example, an ACSR timed step specifies what resources were used
in the step, but not which process was using the resource. We thus had to intro-
duce a bookkeeping step that occurs immediately after the time step and whose
event identifies the thread that used the resource. Internal synchronization be-
tween processes in the AADL model – for example, between the thread process
and an auxiliary process that implements a data connection – also introduce
internal bookkeeping steps.

The state interpretation module has to abstract away bookkeeping steps. A
single AADL-level step reported by the module corresponds to a sequence of
bookkeeping steps followed by a relevant step. This means that, in the context
of a simulator, a single step request from the user results in multiple calls to
VERSA until the right step is found. When multiple alternative steps are possible
from the current state, the module has to figure out, which selections need to
be made. To do this, when the state of the model changes, the module pre-
processes available alternatives, converting them into tuples of numbers that
encode selections. Consider the following example. Let the current state of the
model be represented by the ACSR term τ.dispatch t1 +τ.(raise e1 +receive e2).
The term has three alternative AADL-level steps, first represents dispatch of a
thread, the second one model event handling. Before presenting the choices to
the user, the module internally represents them as tuples (1, 1), (2, 1), and (2, 2),
respectively. Then, if the user requests to raise event e1, the module will request
two steps from VERSA, selecting the second alternative for the first one and the
first alternative for the second step.

4.3 Timing analysis

Timing analysis in the Furness toolset combines two techniques: schedulability
analysis and response time calculation. To present results to the user, we intro-
duce two new Eclipse views. One for presenting a failing scenario when the AADL
model is not schedulable; the other is for displaying thread response times.

We use the deadlock detection capability of VERSA to perform schedulability
analysis. If a deadlocked state is found, VERSA produces a counterexample in
the form of an execution trace that leads to the deadlocked state. This trace
is lifted to the AADL level and is presented to the user as a failing scenario



using the schedulability analysis view. Representation of the failing scenario is
similar to the simulation trace, which is discussed in the next section. We can,
in fact, use the simulation engine to let the user replay the scenario - however,
this feature is currently not implemented.

Fig. 8. Response time analysis report

Furness toolset also performs response analysis for a schedulable task set and
presents results graphically to the user. For each execution path in the system,
response time of every thread is calculated. Then, a histogram is constructed
showing the number of execution paths that exhibit a given response time. The
histograms are presented to the user through the time bounds view. An example
is shown in Figure 8. Intuitively, a thread that has response times along the
majority of its execution paths close to its deadline may not be robust enough
and can be the target for improvement. This analysis implicitly assumes that
all execution paths are equally likely. One can capture the likelihood of different
paths to come up with a more precise characterization of thread robustness. For
example, PACSR [12], a probabilistic extension of ACSR, can be used for this
purpose. However, the necessary information, such as probability distributions
of thread execution times and event arrivals, cannot be extracted from AADL
without introducing new properties into the model.

4.4 AADL simulation

The Furness simulator is based on the Eclipse debug perspective, familiar to
anyone who has used Eclipse to develop code. The perspective provides standard
controls to start, pause, resume, and stop simulation, as well as views to display
variable values during simulation and manage breakpoints. We also created a
custom view that shows the execution trace of the model up to the current
state. The view is shown in Figure 9. At left, threads involved in the simulation
are listed, grouped by the processor they are bound to. To concentrate on a
particular subsystem, the user can hide threads of a selected processor. Each
thread and each processor has a line in the trace, which shows its color-coded
state at every time instance. A thread is shown as running, blocked waiting for
input/preempted, or inactive. A processor is shown as idle or busy.



Fig. 9. Execution trace view

The simulator offers two modes, interactive and continuous. In the interactive
mode, the user manually requests the execution of a step, which can be either a
micro-step or a macro-step. A micro-step corresponds to a single change in the
state of the AADL model, that is, a thread being dispatched or completed, an
event being raised or delivered to a queue, etc. Multiple micro-steps can occur
simultaneously and observing them individually can be tedious. A macro-step,
then, is a sequence of micro-steps, followed by a time-consuming step.

When a micro-step is invoked, the user interface layer invokes the simulator
interface module that, in turn, passes it to the state interpretation module. It
interacts with VERSA and processes its output and returns the new available
steps to the user. Macro-steps are performed by internally setting a breakpoint
at the next time step and switches to the continuous mode.

In the continuous mode, the simulator keeps executing steps until a deadlock
in the model is reached or some pre-defined condition, such as a breakpoint,
occurs. Currently, the simulator offers only time breakpoints, when an execution
is stopped after a fixed number of time steps. Other kinds of breakpoints, for ex-
ample upon raising a specific event, can be easily added through the breakpoint
interface of the Eclipse debug perspective. An important option for the contin-
uous mode is the resolution of alternative steps. Alternatives can be resolved
randomly, or the execution can be paused to let the user select the alternatives.

5 Discussion and Conclusions

We have presented a representation of AADL semantics using a real-time process
algebra. This semantic representation is used as a common foundation for an
AADL simulator and a schedulability analysis tool. It also can be used by any
other tool that requires exploration of the state space of the AADL model. The
semantic representation is based on the hybrid automaton describing states of
thread components and utilizes a number of relevant properties of thread and
processor components and semantic connections in the model.

The semantic representation presented in this paper reflects the fragment of
AADL supported by the Furness toolset. Many of the restrictions can be lifted in
the future. Most notably, the assumption that communication is instantaneous is
unrealistic when connections are mapped to buses. By treating buses as resources
in the system and incorporating bus scheduling protocols into the translation,
the semantic representation can be made more realistic.



Other formalisms can be used to create a similar semantic representation for
AADL. In [4], the authors describe a translation of AADL into BIP [2]. Petri nets
are used to capture the semantics of AADL in the Ocarina toolset [8] and also
in [11]. Linear hybrid automata in the TIMES tool [1] are used in [7] to provide
simulation of AADL threads without execution time uncertainty. We believe
that ACSR is a more suitable semantic representation, since is it incorporates
the notion of a resource directly in the formalism. Resources in the generated
model correspond to platform components, making the translation more direct.

References

1. T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES - a
tool for modelling and implementation of embedded systems. In Proceedings of
TACAS ’02, pages 460–464, Apr. 2002.

2. A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time systems in
BIP. In 4th IEEE International Conference on Software Engineering and Formal
Methods (SEFM06), pages 3–12, Sept. 2006.

3. H. Ben-Abdallah, J.-Y. Choi, D. Clarke, Y. S. Kim, I. Lee, and H.-L. Xie. A
Process Algebraic Approach to the Schedulability Analysis of Real-Time Systems.
Real-Time Systems, 15:189–219, 1998.

4. M. Chkouri, A. Robert, M. Bozga, and J. Sifakis. Translating AADL into BIP –
application to the verification of real time systems. In Workshop on Model Based
Architecting and Construction of Embedded Systems, pages 39–54, Sept. 2008.

5. D. Clarke, I. Lee, and H.-L. Xie. VERSA: A Tool for the Specification and Anal-
ysis of Resource-Bound Real-Time Systems. Journal of Computer and Software
Engineering, 3(2):185–215, Apr. 1995.

6. P. Feiler, B. Lewis, and S. Vestal. The SAE AADL standard: A basis for model-
based architecture-driven embedded systems engineering. In Workshop on Model-
Driven Embedded Systems, May 2003.

7. S. Gui, L. Luo, Y. Li, and L. Wang. Formal schedulability analysis and simulation
for AADL. In 2nd International Conference on Embedded Software and Systems,
pages 429–435, July 2008.

8. J. Hugues, B. Zalila, L. Pautet, and F. Kordon. From the Prototype to the Final
Embedded System Using the Ocarina AADL Tool Suite. ACM Transactions in
Embedded Computing Systems (TECS), 7(4), July 2008.

9. I. Lee, P. Brémond-Grégoire, and R. Gerber. A Process Algebraic Approach to the
Specification and Analysis of Resource-Bound Real-Time Systems. Proceedings of
the IEEE, pages 158–171, Jan 1994.

10. I. Lee, A. Philippou, and O. Sokolsky. Resources in process algebra. Journal of
Logic and Algebraic Programming, 72:98–122, May/June 2007.

11. D. Monteverde, A. Olivero, S. Yovine, and V. Braberman. VTS based specification
and verification of behavioral properties of AADL models. In Workshop on Model
Based Architecting and Construction of Embedded Systems, Sept. 2008.

12. A. Philippou, R. Cleaveland, I. Lee, S. Smolka, and O. Sokolsky. Probabilistic
resource failure in real-time process algebra. In Proceedings of CONCUR, 1998.

13. SAE International. Architecture Analysis and Design Language (AADL), AS 5506,
Nov. 2004.

14. O. Sokolsky, I. Lee, and D. Clarke. Schedulability analysis of AADL models. In
Workshop on Parallel and Distributed Real-Time Systems, Apr. 2006.


