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ABSTRACT

ESSAYS ON CONTRACTS

Zenan Wu

Hanming Fang

This dissertation consists of two essays on contract theory. I investigate contracts

under di↵erent economics contexts. In the first chapter, I consider a two-period

model in which the success of the firm depends on the e↵ort of a first-period manager

(the incumbent) and the ability of a second-period manager. At the end of the

first period, the board receives a noisy signal of the incumbent manager’s ability

and decides whether to retain or replace the incumbent manager. I show that the

information technology the board has to assess the incumbent manager’s ability is an

important determinant of the optimal contract and replacement policy. The contract

must balance providing incentives for the incumbent manager to exert e↵ort and

ensuring that the second-period manager is of high ability. I show that severance

pay in the contract serves as a costly commitment device to induce e↵ort. Unlike

existing models, I identify conditions on the information structure under which both

entrenchment and anti-entrenchment emerge in the optimal contract. In the second

chapter, I use a dynamic model of life insurance with one-sided commitment and

bequest-driven lapsation, as in Daily, Hendel and Lizzeri (2008) and Fang and Kung

(2010), but with policyholders who may underestimate the probability of losing their

bequest motive, to analyze how the life settlement market – the secondary market for

life insurance – may a↵ect consumer welfare in equilibrium. I show that life settlement
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may increase consumer welfare in equilibrium when (i) policyholders are su�ciently

overconfident; and (ii) the intertemporal elasticity of substitution of consumption

(IES) of policyholders is greater than one.
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Chapter 1

Managerial Turnover and

Entrenchment

This chapter is a joint work with Xi Weng.

1.1 Introduction

Designing compensation schemes in managerial contracts and deciding whether to

replace a manager, such as a CEO, are important aspects of firm organization. These

decisions are linked through the severance agreement, a key component of the con-

tracts between a board and a manager. The severance agreement specifies payments

to the manager upon his forced departure. Approximately 50% of the CEO compen-

sation contracts implemented between 1994 and 1999 involved some form of severance

agreement (Rusticus, 2006). The percentage of S&P firms that included a severance

agreement in their CEO compensation contracts increased from 20% in 1993 to more
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than 55% in 2007 (Huang, 2011). In general, a contract with a severance agreement

adds an explicit cost to the board’s retention decision and makes replacement more

di�cult relative to a compensation contract without such an agreement.

A widely held belief is that CEOs are replaced too infrequently, or entrenched.1

Entrenchment may arise for many reasons. For example, it may be an instance of

governance failure in the form of a captive board of directors (Inderst and Mueller,

2010; Shleifer and Vishny, 1989; Hermalin and Weisbach, 1998) or a way to mitigate

a moral hazard problem (Almazan and Suarez, 2003; Casamatta and Guembel, 2010;

Manso, 2011). Taylor (2010) makes the first attempt to measure the cost of entrench-

ment using a structural model of CEO turnover and finds suggestive evidence of the

opposite. In particular, he finds that boards in large firms fire CEOs with higher

frequency than is optimal. We refer to this phenomenon as anti-entrenchment. This

finding cannot be rationalized by the existing models on CEO turnover and thus calls

for a new model to better understand the determinants of managerial turnover.

This paper investigates how optimal design of the severance agreement influences

managerial entrenchment. A manager is said to be entrenched if the board retains

an incumbent manager who has an expected ability lower than that of a replacement

manager. Anti-entrenchment occurs when the board fires some managers with higher

than average expected ability. We propose a two-period principal-agent model of

managerial turnover and identify conditions that predict the emergence of entrench-

1Although evidence shows forced CEO turnover is increasing over time and indicates boards are
using more aggressive replacement policies, it is widely believed that CEOs are rarely fired and thus
are entrenched. For instance, Kaplan and Minton (2012) find that board-driven turnover increased
steadily from 10.93% (1992�1999) to 12.47% (2000�2007) using data from publicly traded Fortune
500 companies.
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ment and anti-entrenchment. Formally, we consider a setup in which the first-period

manager is incentivized by a contract that contains performance-related pay and

severance pay. The firm’s success depends on the initial manager’s e↵ort and the

second-period manager’s ability. Thus, the board faces an ability selection problem

and a moral hazard problem. After the initial manager exerts e↵ort, the board ob-

serves a non-contractible signal regarding his ability. The board can fire the initial

manager by paying the severance pay specified in the contract and hire a replacement

manager. Since the board’s information about the initial manager’s ability is non-

contractible, it lacks commitment power and cannot write a contract that specifies a

retention decision contingent on the signal. Severance pay is used as a costly device

to provide commitment to not firing the initial manager. By committing to a high

severance pay, the board ensures a low expected profit for itself after replacement,

which leads to a less aggressive replacement policy. The board’s optimal replacement

policy balances incentive provision, manager selection and commitment.

Our main result characterizes the optimal replacement policy and shows how it

depends on the precision of the signal of the manager’s ability. When this monitoring

technology is noisy, entrenchment is optimal. In such a scenario, the board places

higher priority on motivating the incumbent manager to exert e↵ort rather than on

maximizing the manager’s ability. Setting an aggressive replacement policy will fire

the incumbent of high ability too often and dis-incentivize the incumbent to exert

e↵ort, while saving little on severance pay. As a result, a contract that induces

entrenchment is optimal for the board.

Anti-entrenchment is optimal when the board’s monitoring technology is su�-
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ciently informative. The board is reluctant to provide commitment. On the one

hand, a contract that favors the incumbent manager does not increase e↵ort by much

because of the low probability of replacement when the incumbent is of high ability.

On the other hand, an aggressive replacement policy helps the board avoid paying the

performance-related pay to the incumbent manager and can increase the firms profit.

Thus, anti-entrenchment is optimal for the board. To the best of our knowledge,

we are the first to study the interaction between the board’s monitoring technol-

ogy and managerial turnover, and to show that a contract with anti-entrenchment is

sometimes optimal.

Our model can be applied to a variety of real-world settings. For example, the

model can be used to analyze the turnover of founder CEOs in venture-capital-backed

companies where the venture capitalist is a large shareholder and engages in active

monitoring. It could also be used to analyze the contracts between head coaches and

professional sports teams.

Related Literature: This paper belongs to the literature on the principal-agent

model with replacement.2 One strand of research views entrenchment as a po-

tential source of ine�ciency that the board aims to mitigate. Consequently, anti-

entrenchment cannot be observed. Inderst and Mueller (2010) solve the optimal

contract for the incumbent manager who holds private information on the firm’s

future performance and can avoid replacement by concealing bad information. Con-

sequently, the optimal contract is designed to induce the incumbent to voluntarily

step down when evidence suggests low expected profit under his management. Sim-

2See Laux (2014) for a comprehensive survey of the theoretical models on this topic.
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ilarly, entrenchment occurs if the incumbent can make manager-specific investments

to create cost of replacement to the board (Shleifer and Vishny, 1989) or if there exist

close ties between the board and manager (Hermalin and Weisbach, 1998).

Another strand of research views entrenchment as a feature of the optimal contract

(board structure) that helps overcome the moral hazard problem. Manso (2011) shows

that tolerance for early failure (entrenchment) can be part of the optimal incentive

scheme when motivating a manager to pursue more innovative business strategies is

important to the board. Casamatta and Guembel (2010) study the optimal contract

for the incumbent manager with reputational concern. In their model, entrenchment

is optimal because the incumbent manager would like to see his strategy succeed and

is less costly to motivate than the replacement manager. Almazan and Suarez (2003)

study the optimal board structure for incentivizing the incumbent manager. They

show that it can be optimal for shareholders to relinquish some power and choose a

weak board, where the incumbent can veto his departure, rather than a strong board,

where the board can fire the incumbent at will. In the same spirit, Laux (2008)

studies the optimal degree of board independence for shareholders. He shows that

some lack of independence can increase shareholder value. In these papers, boards

(shareholders) provide better job security to the incumbent by making dismissal more

di�cult to induce more e↵ort. Our paper contributes to the existing literature by

pointing out that despite all the incentive-providing merits of entrenchment, the cost

of incentivizing can be high when the board’s monitoring technology is su�ciently

informative.

In terms of modeling, the paper is most similar to Taylor and Yildirim (2011).
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They study the benefits and costs of di↵erent review policies and identify conditions

under which the principal commits not to utilize the agent’s information and chooses

blind review as optimal policy. We apply their model to analyze managerial turnover

by adding a contract stage to endogenize the agent’s payo↵ and allowing the principal

to replace the agent in the interim stage.

The remainder of the paper is organized as follows. Section 2 describes the model.

Section 3 defines entrenchment and anti-entrenchment and characterizes the optimal

contract. Section 4 studies the impact of informativeness on optimal replacement

policy. Section 5 discusses extensions of the model. Section 6 concludes. All proofs

are in the Appendix.

1.2 Model

There are two periods t = 1, 2 and an initial contract stage.

Contract stage. The board (principal), hires a manager (agent) from a pool with

unknown ability ✓i 2 {0, 1} to work for the firm with common prior Pr(✓i = 1) = 1

2

.3

The ability is unknown to both sides. The board o↵ers a contract to the manager.

We describe the contract details below.

Both the board and the managers are risk-neutral. Moreover, we assume that

managers are protected by limited liability.4 Finally, we assume the value of the

outside option to the manager is 0. This assumption guarantees that the individual

3The analysis is unchanged for a di↵erent prior of ✓i.
4This assumption is necessary because it excludes the possibility that the board sells the whole

firm to the manager in order to provide the greatest possible incentive in the optimal contract.
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rationality (IR) constraint never binds and simplifies the analysis.

Period 1. The manager exerts e↵ort to create a project of quality q with cost

C(q) = 1

2

q2. Simultaneously, the board receives a signal s 2 S of the manager’s ability

and decides whether to replace the incumbent manager. If the incumbent manager

is fired, a replacement manager is hired and has ability ✓r randomly drawn from the

same pool of managers.5

Period 2. The manager who stays in o�ce implements the project with no ad-

ditional e↵ort and payo↵s are realized. Implementation is assumed to be costless

and depends only on manager’s ability.6 To formalize this idea, we assume that the

expected quality of the project is equal to q✓̃, where q is the incumbent manager’s

choice of how much e↵ort to exert and ✓̃ is the ability of the manager who stays in

o�ce at the beginning of period 2. With probability q✓̃, the project is of high quality

and yields outcome y = 1. With complementary probability 1 � q✓̃, the project is

of low quality and yields outcome y = 0. After payo↵s are realized, the incumbent

manager receives payment according to the contract signed in period 0 and the game

comes to an end.

In the optimal contract, the wage for low output is 0. A contract is defined by

the tuple (w, k), where w is the wage rate when y = 1 and k is the severance pay to

the incumbent manager if he is fired. By the limited liability assumption, w � 0 and

5The project generation process can also be interpreted as a project selection process as in
Casamatta and Guembel (2010). Assume some unknown state of the world ⌘ 2 [0, 1] is randomly
drawn, and a manager is hired to select a project a 2 [0, 1] to match the underlying state. The
quality of the project is 1 if a = ⌘ and 0 otherwise. The manager incurs cost C(q) to receive a
signal ⌫ of the true state. With probability q, the manager identifies ⌘, that is, ⌫ = ⌘, and with
probability 1� q, ⌫ is pure noise. Given q, the expected quality of the selected project is q. These
two specifications lead to the same model.

6This assumption is relaxed in Section 5.2.
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Figure 1.1: Timeline

k � 0.

Information structure. The board receives a noisy signal s 2 S about in-

cumbent manager’s ability ✓i. s is drawn from distribution with cdf F✓i(·) and pdf

f✓i(·) for ✓i 2 {0, 1}. Without loss of generality, we assume S = [0, 1] and nor-

malize s = 1

2

F
1

(s) + 1

2

F
0

(s) for s 2 [0, 1].7 The two conditional density functions

�

f
1

(s), f
0

(s)
 

su�ce to define an information structure under such normalization.

Three assumptions are imposed on the information structure.

Assumption 1 The monotone likelihood ratio property (MLRP):

f1(s)
f0(s)

is strictly in-

creasing in s for s 2 [0, 1].

7This assumption is without loss of generality due to the fact any information structure can be
normalized via integral probability transformation. See Appendix B for more details.
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For binary states, the MLRP assumption is without loss of generality because

signals can always be relabeled according to likelihood ratio to satisfy this assumption.

Assumption 2 Perfectly informative at extreme signals: lims!0

f1(s)
f0(s)

= 0 and

lims!1

f1(s)
f0(s)

= +1.

Assumption 2 guarantees that support of the posterior belief is always [0, 1]. The

last assumption imposed on the information structure is symmetry. This assumption

allows us to define the first best replacement policy on the signal space.

Assumption 3 f
1

(s) = f
0

(1� s) for all s 2 [0, 1].

By Assumption 3, f
1

(1
2

) = f
0

(1
2

). Thus the likelihood ratio at s = 1

2

is always

1 and the Bayesian update of the incumbent manager’s ability at 1

2

is equal to the

prior.

Finally we introduce an index ↵ 2 (0,1) to parameterize the information struc-

ture. We assume that f✓i(s;↵) is continuous in s and ↵ for ✓i 2
�

0, 1
 

and define the

information structures for the two extreme values of ↵ as follows.

Assumption 4 (Completely informative/uninformative information structure)

1. The information structure becomes completely uninformative when ↵ ! 0, i.e.,

lim↵!0

[f
0

(s;↵)� f
1

(s;↵)] = 0 for s 2 (0, 1).

2. The information structure becomes completely informative when ↵ ! 1, i.e.,

lim↵!1 f
1

(s;↵) = 0 for s 2 [0, 1
2

) and lim↵!1 f
0

(s;↵) = 0 for s 2 (1
2

, 1].8

8Both completely informative and uninformative information structures are defined using point-
wise convergence.
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When the information structure becomes completely uninformative (↵ ! 0), the

two conditional density functions are the same. When the information structure

becomes completely informative (↵ ! 1), the board will not observe a signal below

1

2

when the incumbent manager is of high ability and a signal above 1

2

when the

incumbent manager’s ability is low.

1.3 The Optimal Contract

1.3.1 The benchmark case: contractible e↵ort

We first pin down the socially optimal replacement policy. By Assumption 1, the

socially optimal replacement policy is a cuto↵ rule. Denote ŝ as the signal cuto↵.

Lemma 1 (First best cuto↵) Suppose the board can contract on e↵ort q of the

incumbent manager. Then the optimal e↵ort is qFB = 1

2

+ 1

4

⇥

F
0

(ŝFB) � F
1

(ŝFB)
⇤

,

where the optimal replacement cuto↵ ŝFB = 1

2

.

When e↵ort is contractible, the board is able to optimize e↵ort and selection sepa-

rately. Thus, there is no tradeo↵ between the moral hazard problem and the selection

problem. It is optimal to replace the incumbent manager when the posterior belief

about the incumbent’s ability falls below the expected value of the pool and retain the

incumbent otherwise. By Assumption 3, the likelihood ratio f1(s)
f0(s)

at s = 1

2

is always

equal to 1. Consequently, the Bayesian update of the incumbent manager’s ability

is always equal to the prior independent of the informativeness ↵ of the information

structure. Consequently, the socially optimal cuto↵ ŝFB = 1

2

for all ↵.
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Given the first best cuto↵, we can now define entrenchment. Denote (w⇤, k⇤) as

the optimal contract to the board. Let (ŝ⇤, q⇤) be the equilibrium replacement cuto↵

and e↵ort of the continuation game induced by the optimal contract.

Definition 1 We define entrenchment as a cuto↵ ŝ⇤ < 1

2

and anti-entrenchment

as ŝ⇤ > 1

2

.

For the case where ŝ⇤ = 1

2

, we say that neither entrenchment nor anti-entrenchment

is observed. The replacement policy coincides with the socially optimal policy. When

ŝ⇤ < 1

2

, the replacement policy favors the incumbent manager: the board could have

improved implementation by replacing the incumbent. Similarly, the replacement

policy is considered aggressive and places the incumbent manager at a disadvantage

when ŝ⇤ > 1

2

.

1.3.2 Characterizing the Optimal Contract

In this section, we solve the equilibrium outcome when e↵ort is non-contractible. The

board can only commit to the wage w and severance pay k in the contract. We are

interested in the cuto↵ ŝ⇤ induced by the optimal contract.

Incentives under fixed contract (w, k)

A contract (w, k) induces a simultaneous move game. We first solve the sub-game in

period 1, fixing contract (w, k). The incumbent manager’s e↵ort q and the board’s

replacement policy ŝ will be determined in a Cournot-Nash equilibrium.

11



For contract (w, k), the incumbent manager’s best response to cuto↵ ŝ is e↵ort q

that maximizes:

max
q

1

2

⇥

1� F
1

(ŝ)
⇤

qw +
1

2

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤

k � C(q).

) q(ŝ;w, k) =
1

2

⇥

1� F
1

(ŝ)
⇤

w. (1.1)

The board can provide incentive on e↵ort by increasing wage w or lowering equilibrium

cuto↵ ŝ. For a fixed contract (w, k) the board’s best response to the incumbent

manager’s e↵ort level q is cuto↵ ŝ that maximizes:

max
ŝ

1

2

⇥

1� F
1

(ŝ)
⇤

q(1� w) +
1

2

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤�1

2
q � k

�

.

) ŝ(q;w, k) solves
f
1

(ŝ)

f
1

(ŝ) + f
0

(ŝ)
q(1� w) =

1

2
q � k. (1.2)

Because a higher cuto↵ implies higher posterior belief about the incumbent man-

ager’s ability, the board chooses a cuto↵ such that the expected profit created by the

marginal incumbent manager is equal to the expected profit under replacement in

equilibrium.

Given contract (w, k), the optimal cuto↵ and e↵ort
�

ŝ(w, k), q(w, k)
�

are pinned

down by equations (1.1) and (1.2). We can calculate the corresponding contract (w, k)

that induces any tuple (ŝ, q) as follows,

w(ŝ, q) =
q

1

2

⇥

1� F
1

(ŝ)
⇤ (1.3)
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and

k(ŝ, q) =
1

2
q � f

1

(ŝ)

f
1

(ŝ) + f
0

(ŝ)
q
⇥

1� w(ŝ, q)
⇤

.9 (1.4)

Derive the optimal contract for fixed replacement policy

The board chooses contract (w, k) to maximize expected profit:

max
{w,k}

1

2

⇥

1� F
1

(ŝ)
⇤

q(1� w) +
1

2

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤�1

2
q � k

�

s.t.

q =
1

2

⇥

1� F
1

(ŝ)
⇤

w

and

f
1

(ŝ)

f
1

(ŝ) + f
0

(ŝ)
q(1� w) =

1

2
q � k.

Equivalently, the board is maximizing expected profit over (ŝ, q), with w(ŝ, q) and

k(ŝ, q) as determined in equations (1.3) and (1.4). Substituting equations (1.3) and

(1.4) into the board’s profit function yields expected profit as a function of (ŝ, q),

q



1� q
1

2

⇥

1� F
1

(ŝ)
⇤

�⇢

1

2

⇥

1� F
1

(ŝ)
⇤

+
1

2

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤ f

1

(ŝ)

f
1

(ŝ) + f
0

(ŝ)

�

.

It can be verified that q = 1

4

⇥

1 � F
1

(ŝ)
⇤

under the optimal contract. Consequently,

w⇤ = 1

2

. We summarize the results of the previous pages in a lemma.

9The non-negativity assumption on k is not always satisfied for all ŝ and q. We ignore this limited
liability constraint for the moment and solve the unconstrained problem. This is not a big concern
since it can be proved later that the optimal wage is w⇤ = 1

2 and k is non-negative for all ŝ 2 [0, 1].
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Lemma 2 Fixing ŝ, the board maximizes expected profit by o↵ering a contract,

w =
1

2

and

k(ŝ) =
1

4

⇥

1� F
1

(ŝ)
⇤



1

2
� 1

2

f
1

(ŝ)

f
1

(ŝ) + f
0

(ŝ)

�

.

Moreover, in equilibrium, the incumbent manager chooses e↵ort

q(ŝ) =
1

4

⇥

1� F
1

(ŝ)
⇤

.

By Lemma 2, k(ŝ) is decreasing in the equilibrium cuto↵ ŝ. By committing to

a higher severance pay, the board chooses a lower replacement cuto↵ in equilibrium

and is able to induce more e↵ort. The expected profit can be rewritten in terms of ŝ

alone:

⇡(ŝ) :=
1

8

⇥

1� F
1

(ŝ)
⇤

⇢

1

2

⇥

1� F
1

(ŝ)
⇤

+
1

2

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤ f

1

(ŝ)

f
1

(ŝ) + f
0

(ŝ)

�

.

The optimal cuto↵ depends on the informativeness of the information structure.

Rewrite the expected profit as follows:

⇡(ŝ) =
1

8

h

1� F
1

(ŝ)
i

| {z }

incentive e↵ect

(

h1

2

⇥

1� F
1

(ŝ)
⇤

+
1

4

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤

i

| {z }

selection e↵ect

+
1

2

h

F
1

(ŝ) + F
0

(ŝ)
i⇣ f

1

(ŝ)

f
1

(ŝ) + f
0

(ŝ)
� 1

2

⌘

| {z }

commitment e↵ect

)

.

14



Three e↵ects play a role in determining the optimal cuto↵. Because the outcome

depends on the expected ability of the manager in period 2, the board faces a selection

problem. This is captured by
h

1

2

⇥

1� F
1

(ŝ)
⇤

+ 1

4

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤

i

, which is called the

selection e↵ect . This is the expected ability of the manager in period 2. Increasing

ŝ will increase the expected ability of the manager in o�ce when ŝ < 1

2

and decrease

the expected ability when ŝ � 1

2

. To optimize selection independently, the board

would choose ŝ = 1

2

.

Because the outcome also depends on the e↵ort choice of the incumbent manager,

the board faces a moral hazard problem and needs to incentivize the incumbent.

This is captured by
⇥

1 � F
1

(ŝ)
⇤

, which is referred to as the incentive e↵ect . As the

equilibrium replacement cuto↵ ŝ increases, the incumbent manager expects a lower

retaining probability in equilibrium and exerts less e↵ort accordingly. The board

provides more job security to better incentivize the incumbent manager in response.

By this e↵ect alone, the board sets ŝ = 0.

If the selection e↵ect and the incentive e↵ect were the only e↵ects, a cuto↵ be-

low 1

2

is optimal to the board and entrenchment emerges under optimal contract.

However, because the signal is non-contractible, board lacks commitment power on

replacement policy. Severance pay serves as a costly commitment device that helps

make replacement of the incumbent less likely. As the severance pay increases, it

lowers the expected payo↵ of replacement, which creates a stronger incentive for the

board to not replace the incumbent. In equilibrium the expected profit of replace-

ment is equal to the expected profit created by the marginal incumbent manager.

When board lowers the cuto↵ (ŝ < 1

2

) to provide more incentive on e↵ort, it has to

15



increase severance pay to make the equilibrium replacement policy credible. This

generates a net loss compared to the first best replacement policy. It is captured

by 1

2

h

F
1

(ŝ) + F
0

(ŝ)
i⇣

f1(ŝ)
f1(ŝ)+f0(ŝ)

� 1

2

⌘

, which is referred to as the commitment e↵ect .

Compared to the first best cuto↵ ŝ = 1

2

, the board obtains a net commitment gain

by providing less commitment and designing a contract that induces cuto↵ above

1

2

. Similarly, the board su↵ers a commitment loss by committing to a cuto↵ that is

below 1

2

. The net commitment e↵ect is shown by
⇣

f1(ŝ)
f1(ŝ)+f0(ŝ)

� 1

2

⌘

. Multiplied by the

probability of replacement, this yields the total net commitment gain/loss. By this

e↵ect alone, the board sets ŝ = 1.

If incentive e↵ect dominates commitment e↵ect, entrenchment is optimal to the

board. Otherwise, anti-entrenchment is optimal.

1.4 The Optimal Replacement Policy

In this section, we study how the optimal replacement policy varies depending on the

informativeness of the board’s monitoring technology.

1.4.1 Replacement at limiting distribution

Proposition 1 Suppose

�

f
1

(·;↵), f
0

(·;↵)
 

satisfies Assumptions 1 - 4. Then there

exist ↵ and ↵ such that,

1. ŝ⇤(↵) > 1

2

for ↵ > ↵;

2. ŝ⇤(↵) < 1

2

for ↵ < ↵.
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When the information structure is noisy, providing incentives is more profitable

than obtaining more commitment. Choosing ŝ > 1

2

reduces severance pay by a small

amount because the Bayesian update around ŝ = 1

2

changes very slowly and the

expected ability of the incumbent manager at the cuto↵ is close to the expected

ability at a cuto↵ of 1

2

. On the other hand, choosing ŝ > 1

2

reduces the incumbent

manager’s incentive to exert e↵ort. Consequently, it is optimal for the board to design

a contract that leads to entrenchment.

When the board’s monitoring technology is su�ciently informative, the benefit

of commitment dominates and choosing ŝ < 1

2

is not optimal for the board. Since

the probability of firing a high ability manager is very small for all signals below

1

2

, lowering the equilibrium replacement cuto↵ does not have a large e↵ect on the

incumbent’s e↵ort. On the other hand, it is easy to obtain commitment gain. The

expected ability of the manager in the right neighborhood of 1

2

is very close to 1

when the information structure is su�ciently informative. That is, the board can

largely reduce the severance pay by choosing a cuto↵ slightly above 1

2

. Thus, anti-

entrenchment is optimal to the board.

1.4.2 Optimal replacement and informativeness

Proposition 1 does not characterize the equilibrium replacement policy for interme-

diate ↵. To do this, it is necessary to introduce an information order.
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Distribution of posterior beliefs

Denote p = '(s) as the posterior belief of ✓ after observing signal s. Then '(s) =

f1(s)
f1(s)+f0(s)

. By Assumption 1, '(s) is strictly increasing in s. By Assumption 2,

the support of p is [0, 1]. Denote g(p) as the corresponding density function. Since

E(E(✓|s)) = 1

2

, the only constraint we impose on g(·) is that
R

1

0

pg(p)dp = 1

2

.

Given an information structure
�

f
1

(·), f
0

(·)
 

, the density function of posterior

belief p can be calculated as follows:

g(p) =
1

2



f
1

('�1(p)) + f
0

('�1(p))

�

d'�1(p)

dp
.

Lemma 3 For any density function g(·) with support [0, 1] that satisfies
R

1

0

pg(p)dp =

1

2

, there exists a unique information structure

�

f
1

(·), f
0

(·)
 

that induces g(·).

By Lemma 3, there exists a one-to-one mapping between g(·) and information

structure
�

f
1

(·), f
0

(·)
 

. Thus working on the information structure
�

f
1

(·), f
0

(·)
 

is

equivalent to working on distribution of the posterior belief g(·). Consequently, we can

define information order on g(·). By Assumption 3 on
�

f
1

(·), f
0

(·)
 

, g(p) = g(1� p)

and G(p) = 1�G(1� p) for p 2 [0, 1]. Thus, it su�ces to order di↵erent information

structures based on G(p) for p 2 [0, 1
2

].
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The ⇢-concave order

We use ⇢-concavity to define the informativeness of the information structure.10 To

the best of our knowledge, this is the first paper that defines information order using

⇢-concavity.

Given G(·), define local ⇢-concavity at p as,

⇢(p) := 1� G(p)g0(p)

g2(p)
.

By definition, ⇢(p) is the power of G(·) such that the second order Taylor expansion

at p drops out. Thus, ⇢(p) is a measure of the concavity of G(·) at point p. Log-

concavity is equivalent to ⇢(p) � 0 and concavity is equivalent to ⇢(p) � 1. We

focus on the distributions such that ⇢(p) 2 (0,1). This assumption is a necessary

condition to guarantee the initial condition G(0) = 0 is satisfied.11

Definition 2 (⇢-concave order) G
1

(p) is said to be more informative than G
2

(p)

in the ⇢-concave order if ⇢(p|G
1

) > ⇢(p|G
2

) for all p 2 [0, 1
2

].

By definition, G
1

(p) is more informative than G
2

(p) if G
1

(p) is everywhere more

concave than G
2

(p) measured by local ⇢-concavity. The ⇢-concave order is a stronger

condition than the rotation order and Blackwell’s order: if a family of distributions

is ordered according to the ⇢-concave order, then it is rotation-ordered and ordered

in the sense of Blackwell.12

10For more applications of ⇢-concavity in economics, see Mares and Swinkels (2014) on auction
theory; Anderson and Renault (2003), Weyl and Fabinger (2013) on industry organization.

11Imposing this non-negativity assumption on ⇢(·) is without loss of generality: a completely
uninformative information structure can still be defined under this constraint.

12See Appendix C for more details.
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Assume that maxp2[0, 12 ]
�

⇢(p;↵)
 

and maxp2[0, 12 ]
�

⇢(p;↵)
 

exist for all ↵ 2 (0,1).

Denote ⇢(↵) = maxp2[0, 12 ]
�

⇢(p;↵)
 

and ⇢(↵) = minp2[0, 12 ]
�

⇢(p;↵)
 

for notational

convenience.

Lemma 4 Suppose 0 < ⇢  ⇢ < 1. Then

1

2

(2p)
1
⇢  G(p)  1

2

(2p)
1
⇢
for p 2 [0, 1

2

].

By Lemma 4, G(p) can be bounded by two constant cumulative density functions

with constant ⇢-concavity. A completely informative information structure corre-

sponds to the case where lim↵!1 ⇢(↵) = 1 and a completely uninformative infor-

mation structure is equivalent to lim↵!1 ⇢(↵) = 0.13 The following assumptions are

imposed on the family of distribution
�

G(·;↵)
 

indexed by ↵ 2 (0,1).

Assumption 5 (a) Log concavity: ⇢(p;↵) 2 (0,1) for (p,↵) 2 [0, 1
2

]⇥ (0,1).

(b) ⇢-concave order: If ↵
1

> ↵
2

, ⇢(p;↵
1

) > ⇢(p;↵
2

) for p 2 [0, 1
2

].

(c) Regularity 1: 8↵, ⇢(p;↵) is weakly decreasing in p for p 2 [0, 1
2

].14

(d) Regularity 2: There exists ↵ such that ⇢(p;↵) = 1 for all p 2 [0, 1
2

].

(e) Normalization: lim↵!1 ⇢(↵) = 1 and lim↵!0

⇢(↵) = 0.

By Assumption 5(a), we focus on G(p;↵) which is log-concave in p 2 [0, 1
2

]. To-

gether with Assumption 5(c), Assumption 5(d) guarantees that the concavity/convexity

of G(·) will not change for given ↵. Assumption 5(e) restates Assumption 4 in the

language of the ⇢-concavity.

13See Appendix C for detailed proof.
14As will be clear later, this assumption generates a well-behaved profit function for p 2 [0, 1

2 ].
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The optimal replacement policy

Denote p̂ as the cuto↵ of the posterior belief and ⇡̃(p̂) as the board’s profit as a

function of p̂. Then

⇡̃(p̂) =
1

4

Z

1

p̂

tg(t)dt

| {z }

incentive e↵ect

⇢

1

2
G(p̂) +

Z

1

p̂

tg(t)dt

| {z }

selection e↵ect

+
�

p̂� 1

2

�

Z p̂

0

g(t)dt
| {z }

commitment e↵ect

�

.

The profit function can be further simplified by combining the selection e↵ect and

the commitment e↵ect,

⇡̃(p̂) =
1

4

Z

1

p̂

tg(t)dt

| {z }

incentive e↵ect

⇢

Z

1

p̂

tg(t)dt + p̂G(p̂)

| {z }

selection+commitment e↵ect

�

.

The expression of the total selection and commitment e↵ect is intuitive. In equi-

librium, the board’s expected profit of replacement is equal to the expected profit

created by the marginal incumbent manager with expected ability p̂. Hence the

board is replacing the incumbent manager of ability p  p̂ with p̂ taking commitment

into consideration. It can be verified that the total of the selection e↵ect and the

commitment e↵ect is increasing in p̂ and thus is maximized at p̂ = 1.

The first order derivative with respect to p̂ yields,

⇡̃0(p̂) =
1

4

2

4�p̂g(p̂)

 

1�
Z

1

p̂

G(t)dt

!

+G(p̂)

Z

1

p̂

tg(t)dt

3

5 .
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) ⇡̃0(p̂) S 0 , p̂g(p̂)

G(p̂)
T

R

1

p̂
tg(t)dt

1�
R

1

p̂
G(t)dt

.

From the first order condition, p̂g(p̂) is the marginal incentive e↵ect and G(p̂) is the

marginal selection plus commitment e↵ect. Whether profit is increasing or decreasing

in p̂ largely depends on the ratio of these two marginal e↵ects, which is also the elas-

ticity of G(·) at point p̂. Since ⇡̃(1) = 0, the incentive e↵ect dominates the selection

plus commitment e↵ect when p̂ is close to 1. To relate ⇢-concavity to the profit func-

tion, notice that p̂g(p̂)
G(p̂)

=
�

R p̂
0 ⇢(t)dt

p̂

��1

, which is the inverse of the average ⇢-concavity

of G(·) from 0 to p̂. This ratio is weakly increasing if ⇢(p;↵) is weakly decreasing in

p for p 2 [0, 1
2

] by Assumption 5(c). This assumption guarantees that the marginal

incentive e↵ect changes faster than the marginal selection plus commitment e↵ect

and yields a well-behaved profit function for p̂ 2 [0, 1
2

]. Assumption 5(b) (⇢-concave

order) guarantees that the marginal selection plus commitment e↵ect changes faster

than the marginal incentive e↵ect for given p̂ 2 [0, 1
2

] as ↵ increases. Consequently,

the selection plus commitment e↵ect takes over as board’s monitoring technology

improves and anti-entrenchment is more likely to emerge.

Proposition 2 Suppose the family of distribution

�

G(·;↵)
 

, indexed by ↵ 2 (0,1),

satisfies Assumption 5. Then there exists ↵
1

and ↵
2

such that

1. ŝ⇤(↵) = 0 for ↵ 2 (0,↵
1

];

2. ŝ⇤(↵) 2 (0, 1
2

) for ↵ 2 (↵
1

,↵
2

);

3. ŝ⇤(↵) 2 (1
2

, 1) for ↵ 2 (↵
2

,1),
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where ↵
1

satisfies ⇢(p;↵
1

) = 1 8 p 2 [0, 1
2

] and ↵
2

> ↵
1

.

Proposition 2 characterizes the optimal replacement policy for all ↵. When ↵ is

small, the board provides full job security and never fires the incumbent manager.

When ↵ is moderate, the board replaces the incumbent manager less frequently than

the socially optimal level and entrenchment is optimal. When ↵ is large, the board

uses an aggressive replacement policy and anti-entrenchment emerges. There exists

a clear cuto↵ between entrenchment and anti-entrenchment: once anti-entrenchment

is optimal for informativeness level ↵0, the optimal replacement policy is never en-

trenchment under a more informative information structure ↵ > ↵0.

A tractable example

Example 1 Suppose G(p) has the following functional form,

G(p) =

8

>

>

>

<

>

>

>

:

1

2

(2p)
1
↵

for p̂ 2 [0, 1
2

]

1� 1

2

[2(1� p)]
1
↵

for p̂ 2 (1
2

, 1]

.

Then the optimal cuto↵ is

1. for ↵  1, p̂⇤(↵) = 0;

2. for 1 < ↵ <
p
5+1

2

, p̂⇤ 2 (0, 1
2

);

3. for ↵ >
p
5+1

2

, p̂⇤ 2 (1
2

, 1).
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Figure 1.2: The optimal replacement policy

Given G(·), the two corresponding conditional density functions are

f
1

(s) =

8

>

>

>

<

>

>

>

:

(2s)↵ for s 2 [0, 1
2

]

2�
⇥

2(1� s)
⇤↵

for s 2 (1
2

, 1]

and

f
0

(s) =

8

>

>

>

<

>

>

>

:

2� (2s)↵ for s 2 [0, 1
2

]

⇥

2(1� s)
⇤↵

for s 2 (1
2

, 1]

.

Figure 1.2 shows the optimal cuto↵ for di↵erent informativeness levels of the

monitoring technology. Turnover is increasing for ↵ 2
⇥

1,
p
5+1

2

⇤

when the manager is

entrenched. The relationship between turnover and the informativeness of the board’s

monitoring technology is an inverted-U shape for ↵ >
p
5+1

2

. As ↵ approaches infinity,
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Figure 1.3: Severance pay in the optimal contract

the optimal cuto↵ converges to 1

2

.

Figure 1.3 shows that severance pay in the optimal contract is decreasing in the in-

formativeness of the board’s monitoring technology. When the information structure

becomes more informative, it is easier for the board to obtain net commitment gain.

Thus the board is less willing to commit to not replacing the incumbent manager and

the size of severance pay o↵ered in the optimal contract decreases as a result. This

generates a testable implication of the model: the size of the severance package is

decreasing in the informativeness of the board’s monitoring technology.

1.4.3 Discussion

An optimal replacement policy that di↵ers from the first best stems from two impor-

tant assumptions: the signal is non-contractible and severance pay is constant with
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respect to outcome, i.e., the board cannot provide performance-based severance pay.

Without either of these assumptions, neither entrenchment nor anti-entrenchment

emerges: the optimal replacement policy is always ŝ⇤ = 1

2

.

First consider what happens if the board’s signal is contractible, while maintaining

the assumption that severance pay is constant. A contract is fully characterized by

�

w(s), r(s), k(s)
 

, where s 2 [0, 1].
�

w(s), k(s)
 

is the promised wage and severance

pay after signal s. r(s) 2 [0, 1] specifies the retaining probability of the incumbent

manager at signal s. In particular, r(s) = 1 indicates that the incumbent manager is

retained while r(s) = 0 indicates that the incumbent is fired.15

Proposition 3 Suppose that the signal is contractible and severance pay is constant

with respect to outcome. Then k⇤(s) = 0. Moreover, r⇤(s) = 1 for s 2 [1
2

, 1] and

r⇤(s) = 0 for s 2 [0, 1
2

).

Allowing the board to contract on signals gives the board commitment power on

its retention decision at no cost. Severance pay is a costly commitment device, and

is no longer used in the optimal contract.

The board can design a contract to induce any e↵ort level without deviating from

the socially optimal replacement cuto↵. The manager is risk-neutral and only cares

about the expected wage. Thus, the board can incentivize the incumbent manager

by increasing the expected wage payment, which is determined by both the wage

function w(s) and the replacement policy r(s). For given e↵ort q and replacement

15Due to the board’s risk neutrality, randomization is not optimal except for the case where the
board is indi↵erent between retaining and firing the incumbent manager, in which we assume the
incumbent manager is retained with probability 1.
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policy r(s), the board can adjust the wage function w(s) to induce q without changing

r(s). That is, the board can optimize e↵ort and selection separately if the signal is

contractible, and the replacement cuto↵ is equal to 1

2

in the optimal contract.

Next consider what happens when the board can condition the severance pay on

the outcome, while maintaining the assumption that the signal is non-contractible. A

contract is in the form of a triple (w
1

, w
2

, k). w
1

is the wage rate when the incumbent

manager stays as in the baseline model. The tuple (w
2

, k) constitutes a severance

package. w
2

is the payment to the incumbent manager if he is forced out and y = 1.

k is the constant severance pay as in the baseline model.

Proposition 4 Suppose that the signal is non-contractible and the board can provide

performance-based severance pay. Then k⇤ = 0, w⇤
1

= w⇤
2

and ŝ⇤ = 1

2

.

Constant severance pay is less e↵ective to the board than performance-based sev-

erance pay when the incumbent manager is no longer in o�ce because a lump-sum

payment rewards failure. Thus, only performance-based severance pay is employed

in the optimal contract.

Again the board has no incentive to deviate from the first best cuto↵. Due to man-

ager’s risk neutrality, the e↵ort choice of the incumbent manager is only determined

by the expected wage. For a given e↵ort level q that the board wants to motivate, the

expected wage is fixed, which is also the total cost to hire the incumbent manager.

Since q is fixed, it remains to maximize the expected ability of the manager who

stays in o�ce in period 2. Hence the replacement cuto↵ stays at the first best in the

optimal contract.16

16In practice, a severance package usually comes in the form of a combination of a lump-sum
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1.5 Extensions

In this section, we show that the main result of the optimal replacement policy is

robust to several di↵erent specifications.

1.5.1 More e↵ort vs. better selection

It is interesting to study whether the main result on entrenchment (anti-entrenchment)

remains optimal when e↵ort becomes more important than ability. Anti-entrenchment

is less likely to emerge when selection becomes less important. We model this by de-

creasing the variance of the manager’s ability or increasing the importance of e↵ort

relative to ability in the success probability.

Assume the ability space is ✓ 2
�

1

2

� �, 1
2

+ �
 

, where � 2
�

0, 1
2

⇤

and the success

probability is equal to q1+⌧✓, where ⌧ 2 (�1, 1). � is a measure of the variance of

manager’s ability ex ante while ⌧ is a measure of the relative importance of e↵ort

compared to selection. The baseline model corresponds to (�, ⌧) = (1
2

, 0). It is

intuitive that entrenchment remains optimal as ↵ approaches 0. Thus we focus on

the case where ↵ approaches infinity.

Proposition 5 (Comparative static)

1. if � > 1

2

1�⌧
2 � 1

2

, there exists ↵̄A such that anti-entrenchment is optimal for

↵ > ↵̄A;

2. if � < 1

2

1�⌧
2 � 1

2

, there exists ↵̄E such that entrenchment is optimal for ↵ > ↵̄E.

payment and a stock option. This can be rationalized by the assumption that the manager is more
risk-averse than the board. If that is the case, the optimal contract will involve some degree of
lump-sum payment in response to risk sharing.
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Figure 1.4: The optimal replacement policy at the limiting distribution

Fixing ⌧ , selection becomes more important as the variance of the manager’s

ability increases. The intuition from the baseline model applies when � is large, and

anti-entrenchment emerges in the optimal contract. When � is small, the marginal

productivity of a low ability manager is close to that of a high ability manager. Since

motivating the low ability manager is also important, the optimal contract leads to

entrenchment as ↵ ! 1.

1.5.2 Costly execution

Suppose the outcome depends on the incumbent manager’s e↵ort q in period 1, e↵ort

e of the manager in period 2 as well as the ability of the manager in o�ce in period

2. E↵ort q can be interpreted as the project quality of the project selected by the

incumbent manager and e can be interpreted as the e↵ort required to execute the
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project. Now the board needs to also o↵er a contract to the replacement manager.

Moreover, the optimal contract with the incumbent manager must balance a two-

dimensional moral hazard problem as well as the selection problem.

Assume the success probability is equal to ✓̃
⇥

(1 � �)q + �ẽ
⇤

, where ✓̃ 2 {0, 1} is

the manager’s ability in period 2, q 2 [0, 1] is the e↵ort of the incumbent manager

in period 1 and ẽ 2 [0, 1] is the e↵ort of the manager in period 2. Period 1 e↵ort q

and period 2 e↵ort e are substitutes and � 2 [0, 1] measures the relative importance

of period 1 e↵ort. When � = 0 the model simplifies to the baseline model. After the

board makes a retention decision, the manager in o�ce at the beginning of period 2

exerts e↵ort e to execute the project. The cost function to the incumbent manager is

assumed to be separable and quadratic, i.e., Ci(q, e) =
1

2

q2 + 1

2

e2. The cost function

to the replacement manager is assumed to be Cr(q, e) = Ci(0, e).

Lemma 5 (First best outcome with costly execution) The socially optimal cut-

o↵ is equal to

1

2

.

The proof is similar to Lemma 1 and is omitted. With costly execution, the first

best replacement cuto↵ remains at 1

2

. In fact, this result is very general. The optimal

cuto↵ is always 1

2

as long as the marginal impact of manager’s ability is positive.

The board provides two contracts, contract (w, k) to the incumbent manager and

a wage wr to the replacement manager. Denote variables with subscript r as the

variables related to the replacement manager after retention.

We first calculate the optimal contract with the replacement manager wr after

the incumbent’s departure for a given belief of period 1 e↵ort q. Given q and wr, the
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replacement manager chooses er to maximize:

1

2

⇥

(1� �)q + �er
⇤

wr �
1

2
e2r ) er(wr) =

1

2
�wr.

Note that the replacement manager’s e↵ort on execution is independent of q. This is

because q and e are assumed to be substitutes. The board chooses wr to maximize:

1

2

⇥

(1� �)q + �er
⇤

(1� wr) ) w⇤
r = max

n1

2
� 1� �

�2
q, 0
o

.

Since q and e are substitutes by assumption, the optimal wage to the replacement

manager is weakly decreasing in the belief about q. When first period e↵ort q is large

or � is small, the board provides a contract with wr = 0 to the replacement manager.

Let ⇡(q) be the board’s expected profit under optimal contract after replacement.

⇡(q) can be calculated as follows,

⇡(q) =

8

>

>

>

<

>

>

>

:

1

4

⇣

1

2

�+ 1��
�
q
⌘

2

for q  1

2

�2

1��

1

2

(1� �)q for q > 1

2

�2

1��

.

Next we calculate the equilibrium for a given contract (w, k) with the incumbent

manager. For a fixed contract (w, k) and belief about cuto↵ ŝ, the incumbent manager

chooses (q, e) to maximize:

1

2
[1�F

1

(ŝ)]
⇥

(1��)q+�e
⇤

w+
1

2
[F

1

(ŝ)+F
0

(ŝ)]k� 1

2
q2� 1

4
[(1�F

1

(ŝ))+(1�F
0

(ŝ))]e2.

) q = (1� �)
1� F

1

(ŝ)

2
w and e = �

1� F
1

(ŝ)

[1� F
1

(ŝ)] + [1� F
0

(ŝ)]
w.
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Note that q is decreasing in ŝ while e is increasing in ŝ. A higher equilibrium replace-

ment cuto↵ leads to a lower first period e↵ort q and higher second period e↵ort e by

the incumbent manager. The first period e↵ort q is decreasing in ŝ because a higher

cuto↵ implies lower retaining probability in period 2 and dis-incentivizes the incum-

bent manager as in the baseline model. Conditional on the fact that the incumbent

manager is retained, a higher cuto↵ yields a higher estimate of the incumbent’s ability

and thus the incumbent is willing to exert more e↵ort in period 2 (✓ and e are assumed

to be compliments). As a result, e is increasing in equilibrium cuto↵ ŝ. Similarly to

Casamatta and Guembel (2010), the incumbent is easier to motivate, but for di↵erent

reasons. The incumbent manager is easier to motivate in Casamatta and Guembel

(2010) due to his reputational concern while in our model it is due to the incumbent’s

learning of his ability. For a given wage rate w, the replacement manager chooses

er =
1

2

�w while the incumbent manager chooses e = � 1�F1(ŝ)
[1�F1(ŝ)]+[1�F0(ŝ)]

w > 1

2

�w. The

incumbent manager learns from his retention that his ability is above average. Since

ability and e↵ort are assumed to be compliments, a higher estimate of ability implies

a higher marginal return on e↵ort. Thus, the incumbent manager exerts more e↵ort

in period 2 than the potential replacement manager given the same wage.

For a fixed contract (w, k) and belief about e↵ort (q, e), the board chooses cuto↵

ŝ to maximize:

1

2
[1� F

1

(ŝ)]
⇥

(1� �)q + �e
⇤

(1� w) +
1

2
[F

1

(ŝ) + F
0

(ŝ)]
⇥

⇡(q)� k
⇤

.

32



) f
1

(ŝ)

f
1

(ŝ) + f
0

(ŝ)

⇥

(1� �)q + �e
⇤

(1� w) = ⇡(q)� k.

Not every ŝ can be implemented. For instance, ŝ very close to 1 cannot be induced by

a contract. This is due to the limited liability assumption of severance pay. Extremely

high cuto↵ can only be induced if severance pay is allowed to be negative. This is

di↵erent from the baseline model. Using an aggressive replacement policy results in

a small q, making the board’s outside option very unattractive. On the other hand,

an aggressive replacement policy improves learning and makes e very high, increasing

the value of keeping the current manager. Thus, unless the board is compensated by

negative severance pay, a very aggressive replacement policy cannot be induced by a

contract subject to the limited liability constraint.

Similarly to the baseline model, the expected profit can be written as a function

of cuto↵ ŝ alone, assuming away the limited liability constraint of k,17

⇡(ŝ) =
1

8

(

(1� �)2
1� F

1

(ŝ)

2
| {z }

incentive e↵ect

+�2
1� F

1

(ŝ)

[1� F
1

(ŝ)] + [1� F
0

(ŝ)]
| {z }

learning e↵ect

)

·
(

h

⇥

1� F
1

(ŝ)
⇤

+
1

2

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤

i

| {z }

selection e↵ect

+
h

F
1

(ŝ) + F
0

(ŝ)
i⇣ f

1

(ŝ)

f
1

(ŝ) + f
0

(ŝ)
� 1

2

⌘

| {z }

commitment e↵ect

)

.

Proposition 6 (Optimal replacement policy with costly execution) 1. If � 2

[0,
p
2� 1), there exists ↵ such that ŝ⇤(↵) > 1

2

for ↵ > ↵.

2. For � 2 [0, 1], there exists ↵ such that ŝ⇤(↵) < 1

2

for ↵ < ↵.

17The intuition can be clearly illustrated assuming that every ŝ can be induced. The limited
liability constraint of severance pay is taken into consideration in the proof of Proposition 6.
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A learning e↵ect enters into the board’s profit function along with the three afore-

mentioned e↵ects. When the information structure is su�ciently noisy (↵ ! 0), the

incumbent’s learning is very slow for all s 2 (0, 1). The learning e↵ect plays a minor

role in determining the optimal replacement policy since 1�F1(ŝ)
[1�F1(ŝ)]+[1�F0(ŝ)]

�2 can be

considered as a constant. Thus, entrenchment is expected to be optimal when ↵ is

su�ciently small independent of the size of �.

When the information structure is su�ciently informative (↵ ! 1), the incum-

bent’s learning becomes very fast. When execution becomes su�ciently important,

entrenchment can be optimal to the board. When period 1 e↵ort q is su�ciently

important relative to period 2 e↵ort e (i.e., � <
p
2� 1), the incentive e↵ect is more

important than the learning e↵ect in board’s contractual problem. Thus, the main

insight in the baseline model follows through and entrenchment is expected to emerge

in the optimal contract.

1.5.3 Signal of outcome instead of ability

In the baseline model, it is assumed that the board observes a signal of the incumbent

manager’s ability rather than the outcome under the incumbent’s management. Since

the signal is not related to the incumbent manager’s e↵ort, the incumbent cannot

increase his probability of retention by exerting more e↵ort. When the board receives

a signal related to e↵ort, the incumbent manager is able to increase his probability

of being retained by exerting more e↵ort.

Suppose for outcome y 2 {0, 1}, signal s is drawn from a distribution with density
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hy(·) and cdf Hy(·). Similarly, we assume
�

h
1

(·), h
0

(·)
 

satisfies Assumptions 1 -

4. The signal provides information about the expected outcome and the incumbent

manager’s ability.

The social planner chooses (ŝ, q) to maximize:

max
{ŝ,q}

1

2
q
⇥

1�H
1

(ŝ)
⇤

+
1

2
q
h1

2
qH

1

(ŝ) +
�

1� 1

2
q
�

H
0

(ŝ)
i

� 1

2
q2.

Lemma 6 (First best outcome) ŝFB = 1

2

and qFB =
1+H0(

1
2 )�H1(

1
2 )

2+H0(
1
2 )�H1(

1
2 )

in the first best

outcome.

The proof is similar to Lemma 1 and is omitted. Given e↵ort level q, the Bayesian

update of the incumbent manager’s ability is

'(ŝ, q) =
1

2

qh
1

(ŝ) + 1

2

(1� q)h
0

(ŝ)
1

2

qh
1

(ŝ) +
�

1� 1

2

q
�

h
0

(ŝ)
.

It can be verified that '(1
2

, q) = 1

2

independent of q and ↵. Thus it is socially optimal

to replace the incumbent manager if and only if the posterior belief of his ability falls

below the prior.

Given a contract (w, k) and belief about replacement cuto↵ ŝ, the manager chooses

q to maximize:

1

2
q[1�H

1

(ŝ)]w +

(

1

2
qH

1

(ŝ) +

✓

1� 1

2
q

◆

H
0

(ŝ)

)

k � 1

2
q2.

The manager’s best response is:
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q = max

⇢

1

2
[1�H

1

(ŝ)]w � 1

2
[H

0

(ŝ)�H
1

(ŝ)]k, 0

�

.

Unlike the baseline model, here the incumbent manager is directly dis-incentivized by

severance pay. An increase in severance pay increases the opportunity cost of exerting

e↵ort and leads directly to a decrease in e↵ort. If the severance pay is high enough,

the incumbent manager exerts no e↵ort at all and is willing to be fired. Under this

extension, severance pay is a double-edged sword. By the direct e↵ect (better outside

option if the incumbent manager is replaced), e↵ort decreases. By the indirect e↵ect

(better job security with lower equilibrium replacement cuto↵), e↵ort increases. The

design of the optimal contract should take this non-trivial incentive of k on q into

consideration.

Fixed (w, k) and q, the board chooses ŝ to maximize:

1

2
q
⇥

1�H
1

(ŝ)
⇤

(1� w) +

(

1

2
qH

1

(ŝ) +

✓

1� 1

2
q

◆

H
0

(ŝ)

)

✓

1

2
q � k

◆

.

The board’s indi↵erence condition is:

1

2

qh
1

(ŝ)
1

2

qh
1

(ŝ) +
�

1� 1

2

q
�

h
0

(ŝ)
(1� w) =

1

2
q � k.

ŝ is the solution to ⇣(ŝ, q) = max
n

min
�

1
2 q�k

1�w
, 1
 

, 0
o

, where ⇣(ŝ, q) is the estimate of

the outcome under the incumbent’s management at ŝ given q,

⇣(ŝ, q) ⌘
1

2

qh
1

(ŝ)
1

2

qh
1

(ŝ) +
�

1� 1

2

q
�

h
0

(ŝ)
.
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It is di�cult to write the expected profit as a function of ŝ alone because q is now

a↵ected by (w, k) directly and by equilibrium cuto↵ ŝ indirectly. However, we can

still discuss the optimal replacement policy under extreme information structure.

Multiple equilibria may exist for some contract (w, k) because incentive on e↵ort

q is not monotone in k as in the baseline model. For the same reason, equilibria may

not be Pareto-ranked. We further assume that the equilibrium most favorable to the

board is selected when multiple equilibria exist.

Proposition 7 (Optimal replacement policy) There exist ↵ and ↵ such that,

1. ŝ⇤(↵) > 1

2

for ↵ > ↵;

2. ŝ⇤(↵) < 1

2

for ↵ < ↵.

When the information structure is su�ciently noisy (↵ ! 0), H
0

(s) is very close

to H
1

(s) for s 2 [0, 1]. The direct negative e↵ect of severance pay on e↵ort is small

and the model is back to the baseline in the limit. Knowing that the board has noisy

monitoring technology, the incumbent manager has little incentive to manipulate the

realization of the signal. Entrenchment is expected to be optimal when ↵ is su�ciently

small.

When the information structure is su�ciently informative (↵ ! 1), the magni-

tude of the direct negative e↵ect of k (i.e., 1

2

[H
0

(ŝ) � H
1

(ŝ)]) is very large. Under

this scenario, the board can simply avoid the disadvantage of k by setting k = 0.

Moreover, this does not contradict the possibility of obtaining a net commitment

gain. In fact, we can construct a contract with high wage and zero severance pay
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that yields anti-entrenchment and dominates all possible contracts that yield en-

trenchment. Thus, anti-entrenchment emerges in the optimal contract as the board’s

information structure becomes su�ciently informative.

1.6 Conclusion

This paper explores how the problem of motivating the incumbent manager to exert

e↵ort and keeping the flexibility to choose a high ability manager interacts with the

equilibrium replacement policy. We focus on the situation where the board observes

a non-contractible signal after the incumbent manager exerts e↵ort and solve for the

optimal contract. We show that the information technology that the board uses to

assess the incumbent manager’s ability is an important determinant of the optimal

contract and of managerial turnover. Unlike the existing literature on managerial

turnover, which aims to rationalize entrenchment, we show that anti-entrenchment

can also be optimal for shareholders in some situations. This result is robust to

allowing costly execution and the possibility that the board observes a signal of the

outcome rather than incumbent manager’s ability. The model highlights the board’s

monitoring technology as an important determinant of managerial turnover.

There are several interesting questions that can be pursued using the stylized

model introduced in this paper. For future research, it would be interesting to en-

dogenize the informativeness of the board’s monitoring technology. In practice, in-

formativeness is often the choice of the board. Some boards actively monitor their

CEOs while some tend to be passive monitors. Endogenizing the board’s monitoring
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technology could help us better understand the di↵erences of monitoring intensity

that occur across industries.

Another intriguing research avenue would be to incorporate voluntary departure

into the model by allowing the possibility that manager possesses private information

about the firm’s profit. As Inderst and Mueller (2010) point out, managers sometimes

have private information about a firm’s performance. In such scenarios, the optimal

contract needs to provide incentives for the incumbent manager to step down volun-

tarily. It would be interesting to build a unified model with both forced departure

and voluntary departure and study the interaction between them.
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Chapter 2

Life Settlement Market with

Overconfident Policyholders

This chapter is a joint work with Hanming Fang.

2.1 Introduction

Life insurance is a prevalent long-term contract for people to keep their dependents

from economic disaster when the policyholders die. The life insurance is a large and

growing industry. According to Life Insurance Marketing and Research Association

International (LIMRA international), 70% of U.S. households owned some type of life

insurance in 2010. U.S. families purchased $2.8 trillion of insurance coverage in 2013

and the total life insurance coverage in the US was $19.7 trillion by the end of 2013.

The average face amount of the individual life insurance policies purchased increased

from $81 thousand in 1993 to $165 thousand in 2013 at an average annual growth
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rate of 3.56%1.

An important feature of the the life insurance market is that policyholders lapse

their policies before the period of coverage and receive the cash surrender value (CSV)

that is a substantially small fraction (typically 3-5%) of the policy’s face value2.

Policyholders may lapse the contract if they lose the demand for life insurance (i.e.,

lost of bequest motive) or need for liquidity (i.e., negative income shock).3 Recently,

the secondary market for life insurance – life settlement market – emerged and o↵ers

the policyholders the option of selling their unwanted policy for more than the CSV.

Although the life settlement market is in its infancy, it draws attentions from the

life insurance firms who put intensive e↵ort into lobbying to prohibit the securitization

of life settlement contracts.4 They argue that the life insurance contract is designed

taking into consideration of the fact that a fraction of policyholders lapse the contract

without receiving the death benefit. The existence of the settlement market forces the

insurance firms to pay death benefits on more policies than expected, which will lead

to higher premiums for policyholders in the long run and hurt consumers eventually.

The life settlement industry has been working hard to justify its existence, empha-

sizing its role of enhancing liquidity to policyholders.5 It is interesting to note that

the life settlement industry has gained some success recently. In 2010, the General

1See American Council of Life Insurers (2014).
2See http://www.lisa.org/content/13/What-is-a-Life-Settlement.aspx/
3Fang and Kung (2012) show that income shocks are relatively more important than bequest

motive in explaining lapsation when policyholders are young. As policyholders age, bequest motive
shocks become more important.

4See Martin (2010) for detailed dicussions of life insurance and life settlement market.
5As mentioned in Martin (2010): “In 2008, the executive of the life settlement industry’s national

trade organizaton testifies to the Florida O�ce of Insurance Regulation that the ‘secondary market
for life insurance has brought great benefits to consumers, unlocking the value of life insurance
policies.”
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Assembly in Kentucky passed a bill requiring insurers to inform policyholders who are

considering surrendering their policy that the settlement is a potential alternative.6

Should the life settlement industry be banned? To resolve this theoretically and

empirically interesting question, it would be useful to understand the role of the life

settlement market and its impact on policyholders’ welfare. In this paper we extend

the models of Daily, Hendel, and Lizzeri (2008) and Fang and Kung (2010) to study

the welfare implication of the life settlement market by assuming that consumers are

overconfident about the probability of losing their bequest motives at the time they

purchase the contract.7 Fang and Kung (2010) show that when lapsation is due to lost

of bequest motive, introducing life settlement market reduces consumer welfare. We

prove that this result depends on the full rationality assumption on policyholders.

When policyholders exhibit overconfidence, the presence of the settlement market

provides them a channel to correct their mistakes and undercut the loss due to their

misperception. This new role of the settlement market generates a potential welfare

gain which is not present when consumers are fully rational and may lead to increase

in consumer welfare in equilibrium. Our results may contribute to the debate over

banning life settlement market.

This paper is related to the growing life insurance literature. In a seminal paper,

6Similar requirements exist in Maine, Oregon, Washington (See Martin, 2010) and U.K (See
Januário and Naik, 2014).

7Many studies document that people are unrealistically optimistic about future life events. For
instance, Weinstein (1980) finds strong evidence of over-optimism in a lab experiment setting with
258 college students. Subjects overwhelmingly predict themselves to be better than a median indi-
vidual regarding positive events and below average regarding negative events. Robb et al. (2004)
also detects underestimation of risk among patients who participated in cancer examination. They
find that the self perceived risk is lower than the actual risk of colorectal cancer determined by
flexible sigmoidoscopy screening.
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Hendel and Lizzeri (2003) use a two-period model to analyze the role of commitment

on long-term life insurance contract. In their model, risk-neutral life insurance firms

compete to o↵er contracts to risk averse consumers who are subject to mortality

risk. Consumers’ health status may change over time and thus face reclassification

risk . Insurance firms is able to commit to contractual terms while consumers can

lapse the contract in the second period, lacking commitment power (i.e., one-sided

commitment). They prove that the equilibrium contract is front-loaded : consumers

are o↵ered a contract with first period premium that is higher than actuarially fair

in exchange for reclassification risk in the second period. Daily et al. (2008) and

Fang and Kung (2010) investigate this problem further by introducing a settlement

market and analyze its e↵ect on the equilibrium contract and consumer welfare. In

their models, policyholders may lose bequest motive in the second period, facilitating

lapsation and the demand for the settlement market. Using a model similar to Hendel

and Lizzeri (2003), Fang and Kung (2010) show that the shape of the equilibrium

contract is fundamentally changed in the presence of the settlement market. Instead

of flat premiums, a contract with premium discounts is o↵ered in the second period.

They conclude that consumer welfare is reduced in the presence of the settlement

market. In recent independent research, Gottlieb and Smetters (2014) investigate the

equilibrium life insurance contracts where lapsation is motivated by a negative income

shock. Similar to our paper, consumers are overconfident in the sense that they place

zero probability on the event of experiencing the liquidity shock. Unlike Hendel and

Lizzeri (2003), the equilibrium contract is front-loaded because insurance firms have

incentives to make the policy look better given policyholders’ misperception of the

43



probability of lapsing the contract. They show that the presence of the settlement

market would increase consumer welfare if lapsation is due to liquidity shock.

This paper also belongs to the strand of literature on behavioral contract theory.8

Most papers assume consumers exhibit some type of behavioral bias and investigate

how firms design contracts accordingly. For instance, De la Rosa (2011) and Santos-

Pinto (2008) study the incentive contract in a principal-agent model of moral hazard

when agent is overconfident. Grubb (2009) proposes a model of contracting over-

confident consumers in US cellular phone services market and confirms evidence of

overconfidence. In the context of insurance market, Sandroni and Squintani (2007)

modify the textbook Rothschild-Stiglitz model to study the equilibrium contract by

assuming that part of the insurees are overconfident about their risk types. They find

that when a significant fraction of individuals are overconfident, compulsory insurance

serves as a transfer of income between di↵erent types of agents. Their results have

much di↵erent implications than Rothschild and Stiglitz (1976) on government inter-

vention in insurance market. Spinnewijn (2012) studies the optimal unemployment

insurance contract under perfect competition where the insuree has misperception on

the probability of finding a job. Our paper contributes to this strand of literature by

pointing out the role of a secondary market in alleviating the negative consequences

caused by consumers’ behavioral bias.

The remainder of the paper is organized as follows. Section 2 presents the baseline

model of dynamic life insurance without the life settlement market when policyholders

exhibit overconfidence and characterizes the set of equilibrium contracts. Section

8See Kőszegi (2014) for a comprehensive survey on this topic.
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3 incorporates the settlement market into the baseline model. Section 4 studies

the welfare e↵ect of the settlement market under di↵erent levels of policyholders’

overconfidence. Section 5 concludes. All proofs are presented in the Appendix.

2.2 The Baseline Model without the Settlement

Market

In this section, we propose a model of dynamic life insurance slightly modified from

Fang and Kung (2010), Daily, Hendel, and Lizzeri (2008) and Hendel and Lizzeri

(2003).

2.2.1 The Model

Consider a perfectly competitive life insurance market with insurance buyers (policy-

holders) and sellers (life insurance firms). The market operates for two periods.

Income, health and preference. The policyholder receives an income of y�g in

the first period and y+g in the second period, where g 2 [0, y) is a measure of income

growth. In the first period, the policyholder has a death probability of p
1

2 (0, 1),

which is common knowledge between policyholders and insurance firms. The dealth

probability is interpreted as the health status of the policyholder. In the second

period, the mortality risk p
2

2 [0, 1] is randomly drawn from a distribution with

continuous density �(·) and corresponding cdf �(·). Health status p
2

is not known in

the first period when the policyholder purchases the insurance and is symmetrically
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learned by the insurance firms and the policyholders at the beginning of the second

period.

A policyholder has two sources of utility: utility from his own consumption if he

is alive and utility from his dependent’s consumption if he dies. If the policyholder

is alive and consumes c � 0, his utility is given by u(c). If the policyholder dies,

his utility is given by v(c), where c is the consumption of his dependent. We assume

that both u(·) and v(·) are strictly increasing, twice di↵erentiable and strictly concave.

Furthermore, we assume that u(·) and v(·) satisfy the Inada conditions: limc!0

u0(c) =

1, limc!0

v0(c) = 1 and limc!1 v0(c) = 0.

Bequest motives and overconfidence. A policyholder does not lose his be-

quest motive in the first period. However, the policyholder may lose his bequest

motive with probability q 2 (0, 1) at the beginning of period 2. If the policyholder

loses his bequest motive, he no longer derives utility from his dependent’s consump-

tion. Under such scenario, his utility is u(·) if he is alive and some constant normalized

to zero if he dies. The policyholder believes his probability of losing bequest motive

is q̃  q. When q̃ = q, the policyholder is rational and the model degenerates to

Fang and Kung (2010). When q̃ < q, the policyholder exhibits overconfidence and

underestimates the probability of losing his bequest motive. Both q̃ and q are as-

sumed to be common knowledge. For ease of our exposition, denote q�q̃
q

by �. The

variable � 2 [0, 1] is a measure of policyholders’ overconfidence. In particular, when

� = 0, policyholder is fully rational and forms correct belief about q. When � = 1,

a policyholder is extremely overconfident and never expects himself to lose bequest
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motive in the second period.

Timing, commitment and contracts. At the beginning of the first period,

the consumer may choose to purchase a long-term life insurance contract after he

learns the period-1 health status p
1

. A long-term insurance contract is in the form of

h(Q
1

, F
1

), (Q
2

(p
2

), F
2

(p
2

)) : p
2

2 [0, 1]i, where hQ
1

, F
1

i specifies a premium and face

value for the first period, and hQ
2

(p
2

), F
2

(p
2

)i specifies the corresponding premium

and face value for each health status p
2

2 [0, 1] for the second period. Note that the

second period premium and face value are state dependent.

At the end of the first period, a fraction p
1

of policyholders die and their depen-

dents receive the face value F
1

. The remaining policyholders continue to period 2,

where a perfectly competitive spot market exists. We assume one-sided commitment:

insurance firms can commit to future premiums and face values while the policyhold-

ers are free to opt out of the contract. After the policyholder learns the period-2

health status p
2

, he can choose to continue with the long-term contract purchased in

the first period, or terminate the contract and purchase a spot contract, or just lapse

the contract and stay uninsured in the absence of the life settlement market.

2.2.2 Equilibrium contracts

We characterize the equilibrium contract without the settlement market. Competition

among the life insurance firms drives their profits to zero in the long run. Therefore
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the long-term equilibrium contract h(Q
1

, F
1

), (Q
2

(p
2

), F
2

(p
2

)) : p
2

2 [0, 1]i solves:

max[u(y � g �Q
1

) + p
1

v(F
1

)] (2.1)

+ (1� p
1

)

Z

1

0

{(1� q̃)[u(y + g �Q
2

(p
2

))) + p
2

v(F
2

(p
2

))] + q̃u(y + g)}d�(p
2

)

s.t. (Q
1

� p
1

F
1

) + (1� p
1

)(1� q)

Z

1

0

[Q
2

(p
2

)� p
2

F
2

(p
2

)]d�(p
2

) = 0, (2.2)

Q
2

(p
2

)� p
2

F
2

(p
2

)  0 for all p
2

2 [0, 1], (2.3)

Q
2

(p
2

) � 0 for all p
2

2 [0, 1]. (2.4)

Note that the set of equilibrium contracts maximizes policyholders’ expected per-

ceived utility instead of the utility based on the actual probability of losing bequest

motive.9 Constraint (2.2) is the zero-profit condition that captures the competition

in the primary market. Constraint (2.3) is the no-lapsation condition for policyhold-

ers whose bequest motives remain in period 2.10 The intuition is as follows. For any

contract hQ
2

(p
2

), F
2

(p
2

)i in the second period, p
2

F
2

(p
2

)�Q
2

(p
2

) is the actuarial value

of the contract for health state p
2

. Since the spot market is perfectly competitive,

the actuarial value of the spot contract is zero. In order to avoid the policyhold-

ers to lapse the long-term contract and substitute for a spot contract, the primary

insurance firms have to provide a contract with actuarial value no less than 0, i.e.,

p
2

F
2

(p
2

)�Q
2

(p
2

) � 0. Finally, constraint (2.4) simply states that the second period

premium for any health status can not be negative.11

9Policyholders’ expected utility according to the correct probability of losing beqeust motive is
used when we evaluate the welfare e↵ect of introducing the life settlement market.

10For a formal argument of constraint (2.3), see Hendel and Lizzeri (2003).
11The non-negativity constraint of the period 2 face value F2(p2) never binds by the Inada condi-

tion of v(·).
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The first order conditions for problem (2.1) with respect to Q
1

, F
1

, Q
2

(p
2

) F
2

(p
2

)

yield:

u0(y � g �Q
1

) = µ, (2.5a)

v0(F
1

) = µ, (2.5b)

(1� q̃)u0(y + g �Q
2

(p
2

)) = (1� q)µ+
�(p

2

) + �(p
2

)

(1� p
1

)�(p
2

)
, (2.5c)

(1� q̃)v0(F
2

(p
2

)) = (1� q)µ+
�(p

2

)

(1� p
1

)�(p
2

)
, (2.5d)

where µ, �(p
2

) and �(p
2

) are the Lagrange multipliers for constraint (2.2), (2.3) and

(2.4), with µ > 0, �(p
2

)  0 and �(p
2

) � 0 satisfying complementary slackness

conditions:

�(p
2

)[Q
2

(p
2

)� p
2

F
2

(p
2

)] = 0, (2.6a)

�(p
2

)Q
2

(p
2

) = 0. (2.6b)

The first order conditions (2.5) imply that:

u0(y � g �Q
1

) = v0(F
1

). (2.7)

In equilibrium, the marginal utility of policyholder’s consumption is equal to the

marginal utility of his dependent’s consumption in period 1. This is referred to as

the full-event insurance in Fang and Kung (2010).

To characterize the equilibrium contracts, we follow Fang and Kung (2010) and

divide the support of the second period health states p
2

into two subsets B and
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NB: for p
2

2 B, the no-lapsation constraint (2.3) binds; for p
2

2 NB, the no-

lapsation constraint (2.3) does not bind. It would also be useful to define the fair

premium and face amount for the full-event second period insurance contract with

health state p
2

2 [0, 1], denoted by QFI
2

(p
2

) and F FI
2

(p
2

) respectively, as the solution

to the following pair of equations:

u0(y + g �QFI
2

(p
2

)) = v0(F FI
2

(p
2

)), (2.8a)

QFI
2

(p
2

)� p
2

F FI
2

(p
2

) = 0. (2.8b)

This is indeed the equilibrium spot contract with health state p
2

in period 2.12

Lemma 7 (Fang and Kung 2010) If p
2

2 B and p0
2

2 NB, then p
2

< p0
2

, Q
2

(p
2

) 

Q
2

(p0
2

) and F
2

(p
2

) � F
2

(p0
2

).

The proof is similar to that of Lemma 1 in Fang and Kung (2010). Lemma 7

indicates that there exists a threshold p⇤
2

such that p
2

2 B if p
2

< p⇤
2

and p
2

2 NB if

p
2

> p⇤
2

.

Lemma 8 If there exists one health state pi
2

6= 0 such that Q
2

(pi
2

) = 0, then Q
2

(p
2

) =

0 for all p
2

2 [0, 1].

Lemma 8 greatly narrows down the set of period 2 equilibrium premiums to two

possibilities: either Q
2

(p
2

) > 0 or Q
2

(p
2

) = 0 for all p
2

2 (0, 1]. If Q
2

(pi
2

) > 0 for

12The second period spot contract hQ2(p2), F2(p2)i sovles maxu(y + g � Q2(p2)) + p2v(F2(p2))
subject to Q2(p2)� p2F2(p2) = 0, which leads to the same conditions as in (2.8).
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some pi
2

, �(p
2

) = 0 for all p
2

2 (0, 1] and policyholders obtain full-event insurance in

period 2 for all health states p
2

:

u0(y + g �Q
2

(p
2

)) = v0(F
2

(p
2

)) for all p
2

2 (0, 1]. (2.9)

If Q
2

(pi
2

) = 0 for some pi
2

6= 0, �(p
2

) = 0 for all p
2

2 (0, 1]; together with the first

order conditions (2.5b) and (2.5d), we must have:

(1� q̃)v0(F
2

(p
2

)) = (1� q)v0(F
1

) for all p
2

2 (0, 1]. (2.10)

If p⇤
2

= 1, the no-lapsation condition (2.3) binds for all period-2 health states,

i.e., Q
2

(p
2

)� p
2

F
2

(p
2

) = 0 for all p
2

2 (0, 1]. Meanwhile, the Inada condition of v(·)

implies that F
2

(p
2

) > 0 for all p
2

. Therefore Q
2

(p
2

) = p
2

F
2

(p
2

) > 0 for all p
2

2 (0, 1],

which in turn implies that conditions (2.9) hold. Thus, the equilibrium contract in

period 2 is the set of spot contracts.

If p⇤
2

= 0, we must have:

Q
2

(p
2

) = 0 for all p
2

2 (0, 1]. (2.11)

To see this, suppose to the contrary that Q
2

(p
2

) > 0 for all p
2

2 (0, 1]. The first order

conditions (2.5) imply that u0(y+ g�Q
2

(p
2

)) = v0(F
2

(p
2

)) = 1�q
1�q̃

u0(y� g�Q
1

) for all

p
2

2 (0, 1]. Thus, F
2

(p
2

) and Q
2

(p
2

) remain constant for all p
2

2 (0, 1]. When p
2

is

su�ciently small, Q
2

(p
2

)� p
2

F
2

(p
2

) is strictly positive, contradicting (2.3). Threfore

the set of equilibrium contracts is fully characterized by (2.2), (2.7), (2.10) and (2.11).
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If 0 < p⇤
2

< 1, the no-lapsation constraint (2.3) binds and �(p
2

) = 013 for p
2

< p⇤
2

.

Thus, u0(y+ g�Q
2

(p
2

)) = v0(F
2

(p
2

)) and hQ
2

(p
2

), F
2

(p
2

)i = hQFI
2

(p
2

), F FI
2

(p
2

)i. For

p
2

> p⇤
2

, p
2

2 NB and �(p
2

) = 0, which implies that F
2

(p
2

) must remain constant

by the first order condition (2.5d). Since Q
2

(p
2

) > 0 for p < p⇤
2

, �(p
2

) = 0 for all

p
2

2 (0, 1]. This implies that u0(y + g � Q
2

(p
2

)) = v0(F
2

(p
2

)) for all p
2

2 (0, 1].

Thus, the second period equilibrium premium Q
2

(p
2

) for p
2

> p⇤
2

is front-loaded (i.e.,

Q
2

(p
2

) < QFI
2

(p
2

)) and remains constant. In equilibrium, the insurance firms charge

the policyholders a low premium for health state p
2

> p⇤
2

relative to the fair premium

and insure the policyholders against reclassification risk via “level premiums”. The

next lemma characterizes the equilibrium contract at p
2

= p⇤
2

.

Lemma 9 Suppose p⇤
2

2 (0, 1). The equilibrium contract at p
2

= p⇤
2

solves:

Q
2

(p⇤
2

) = QFI
2

(p⇤
2

), (2.12)

(1� q̃)u0(y + g �QFI
2

(p⇤
2

)) = (1� q)u0(y � g �Q
1

). (2.13)

The proof of Lemma 9 replicates that of Lemma 2 in Fang and Kung (2010) and

is omitted. When p⇤
2

2 (0, 1), the equilibrium second period premiums Q
2

(p
2

) must

satisfy

Q
2

(p
2

) =

8

>

>

>

<

>

>

>

:

QFI
2

(p
2

) if p
2

 p⇤
2

QFI
2

(p⇤
2

) if p
2

> p⇤
2

, (2.14)

and the set of equilibrium contracts is fully characterized by (2.2), (2.7), (2.9) and

13Because F2(p2) > 0 by the Inada condition of v(·), it follows immediately that Q2(p2) =
p2F2(p2) > 0 for p2 2 (0, p⇤2).
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(2.14).

Lemma 10 (Period-2 equilibrium premiums) There exists a threshold q 2 (0, 1)

such that:

1. if q < q, Q
2

(p
2

) > 0 for all p
2

2 (0, 1] and � 2 [0, 1].

2. if q � q, there exists a threshold �(q) such that

(a) if � < �(q), Q
2

(p
2

) > 0 for all p
2

2 (0, 1];

(b) if � > �(q), Q
2

(p
2

) = 0 for all p
2

2 (0, 1].

When � = 0, the non-negativity constraint of the second period premium Q
2

(p
2

)

never binds (i.e. �(p
2

) = 0).14 Hence policyholders always obtain full-event insurance

in period 2 when they have correct belief about the probability of losing bequest mo-

tives. This result does not always hold when policyholders exhibit behavioral bias.

In particular, for su�ciently high probability of losing bequest motive and overconfi-

dence level, policyholders no longer obtain full-event insurance in period 2. Insurance

firms instead o↵er contracts with zero premiums for all health states in period 2 and

fully insure against reclassification risk. The intuition is as follows. Firstly, given

that policyholders are rational (i.e. � = 0), increasing q lowers equilibrium premi-

ums in period 2 for all health states p
2

. The variable 1 � q can be interpreted as

the cost for life insurance firms to provide long-term insurance contracts. When q

increases, the insurance firms face a lower probability of paying the death benefits,

which leads to a net profit if the set of equilibrium contract remains the same. From

14See Lemma B1 for the proof.
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the perfect competition assumption, these profits are passed onto the policyholders

in terms of a higher degree of reclassification risk in period 2: more health states

are o↵ered actuarially favorable premiums (i.e. a higher p⇤
2

). Secondly, fixing q, the

second period premiums decrease for all health states when policyholders become

more overconfident. This is because under such scenario the policyholders care more

about their dependents’ utility in period 2 as well as the expected utility generated

by the period 2 contracts. As a result, the insurance firms respond by raising the first

period premium and lowering the second period premiums. When these two e↵ects

are strong enough (i.e. for su�ciently high q and �), contracts with zero period-2

premiums can emerge in equilibrium.

The above discussions are summarized below:

Proposition 8 (Equilibrium contracts) The set of equilibrium contracts satisfies

the following properties:

1. All policyholders receive full-event insurance in period 1.

2. There is a period-2 threshold health state p⇤
2

2 [0, 1] such that p
2

2 B if p
2

< p⇤
2

and p
2

2 NB if p
2

> p⇤
2

.

3. (a) If p⇤
2

= 0, all policyholders lose full-event insurance in period 2. The set of

equilibrium contracts solves (2.2), (2.7), (2.10) and (2.11).

(b) If 0 < p⇤
2

< 1, all policyholders receive full-event insurance in period 2.

The set of equilibrium contracts solves (2.2), (2.7), (2.9) and (2.14).

(c) If p⇤
2

= 1, the equilibrium contract is the set of spot contracts.
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Figure 2.1: Equilibrium Period-2 Premium Profiles without the Settlement Market.

4. When q and � are su�ciently large, p⇤
2

= 0. Policyholders are fully insured

against reclassification risk, receiving zero premiums in period 2 for all health

states.

2.2.3 E↵ect of the policyholder’s overconfidence

Proposition 9 (Comparative statics of equilibrium contracts) Suppose �̂ <

�. Let hF̂
1

, Q̂
1

i and hF
1

, Q
1

i be the equilibrium contract for the first period with �̂

and � respectively. If 0 < p̂⇤
2

< 1, then F̂
1

> F
1

, Q̂
1

< Q
1

and p̂⇤
2

> p⇤
2

.

When the level of policyholders’ overconfidence increases from �̂ to �, the first

period premium will be higher and a higher degree of reclassification risk is o↵ered

in the second period. Figure 2.1 illustrates the equilibrium period 2 premiums under

�̂ and �. The intuition is as follows. As policyholders become more overconfident,
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they place more weight on the expected utility from the set of period 2 contracts

and prefer a more actuarially favorable period 2 contract terms. To maximize the

perceived expected utility of the policyholders, the life insurance firms respond by

lowering the period 2 premiums and covering a higher degree of reclassification risk

in the second period. Fixing q, this implies the insurance firms will su↵er a greater

loss in period 2. This loss is compensated by a more front-loading contract in the first

period in equilibrium. This argument is reminisce of Gottlieb and Smetters (2014):

overconfidence leads to (more) front-loading life insurance contract in equilibrium.

Once the equilibrium contract h(Q
1

, F
1

), (Q
2

(p
2

), F
2

(p
2

)) : p
2

2 [0, 1]i is pinned

down, consumer welfare can be calculated accordingly. Denote the consumer welfare

with actual probability of losing bequest motive q and overconfidence level � by

W (q,�). Then

W (q,�) := [u(y � g �Q
1

) + p
1

v(F
1

)]

+ (1� p
1

)

Z

1

0

{(1� q)[u(y + g �Q
2

(p
2

))) + p
2

v(F
2

(p
2

))] + qu(y + g)}d�(p
2

).

Note that q instead of q̃ enters into the calculation of consumer welfare.

Proposition 10 (Welfare implication of overconfidence) Fixing q 2 (0, 1), W (q,�)

is weakly decreasing in �.

Consumer welfare is weakly reduced if consumers become more overconfident. When

consumers have unbiased belief, the socially optimal contract and the set of equi-

librium contracts proposed by the life insurance firms coincide. Therefore consumer
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welfare is maximized. However, when consumers have biased belief about the prob-

ability of losing bequest motive, the set of equilibrium contracts departs from the

socially optimal contract. With biased belief, policyholders obtain a higher expected

utility in period 2 at the cost of obtaining a lower period 1 expected utility. A higher

behavioral bias leads to more deviation from the socially optimal contract and the

welfare loss in the first period exceeds the welfare gain in the second period. Thus,

consumer welfare is decreasing in the level of policyholders’ overconfidence.

2.3 Introducing the Life Settlement Market

In this section, we introduce the life settlement market at the beginning of period 2 to

the baseline model. After the policyholders learn the period 2 health status p
2

and the

realization of their bequest motives, they can sell the contracts to the settlement firms

before the death uncertainty is realized. Instead of lapsing the contract, policyholders

that lose their bequest motives in period 2 have a better option: they can now sell

their contracts to the settlement market and receive a fraction � 2 (0, 1) of the

actuarial value of the contract. The actuarial value of a life insurance contract is

the expected cash benefit that is paid by the contract, as opposed to being paid out

of pocket by the policyholders. The life settlement firms continue to pay the second

period premiums for policyholders. In return, the life settlement firms become the

beneficiaries of such policies and collect all the death benefits from life insurance firms

once policyholders die by the end of period 2.
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2.3.1 Equilibrium contracts with the settlement market

The presence of the settlement market shapes equilibrium life insurance contract

in a di↵erent way. Without the settlement market, life insurance firms can avoid

paying death benefits if policyholders lose their bequest motives. This is because

lapsing the contract is the optimal choice for policyholders if they lose their bequest

motives in the absence of settlement market. However, with the settlement market,

they can cash out a fraction of the actuarial value of the contract by selling the

contract to the settlement firms. Thus, the life insurance firms have to pay the death

benefits no matter policyholders lose bequest motives or not. As will be clear later,

this di↵erence fundamentally varies the way insurance firms provide the long-term

insurance contracts in equilibrium.

The life insurance firms solve the following maximization problem to provide the

equilibrium contracts:

max[u(y � g �Q
1s) + p

1

v(F
1s)] (2.15)

+ (1� p
1

)

Z

1

0

8

>

>

>

<

>

>

>

:

(1� q̃)

"

u(y + g �Q
2s(p2)))

+p
2

v(F
2s(p2))

#

+ q̃u(y + g + �V
2s(p2))

9

>

>

>

=

>

>

>

;

d�(p
2

)

s.t. (Q
1s � p

1

F
1s) + (1� p

1

)

Z

1

0

[Q
2s(p2)� p

2

F
2s(p2)]d�(p2) = 0, (2.16)

Q
2s(p2)� p

2

F
2s(p2)  0 for all p

2

2 [0, 1], (2.17)

Q
2s(p2) � 0 for all p

2

2 [0, 1], (2.18)

where V
2s(p2) ⌘ p

2

F
2s(p2) � Q

2s(p2) is the actuarial value of the period 2 contract
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with health status p
2

. From the no-lapsation condition (2.17), V
2s(p2) is always non-

negative. The first order conditions with respect to Q
1s, F1s, Q2s(p2) F

2s(p2) are:

u0(y � g �Q
1s) = µ, (2.19a)

v0(F
1s) = µ, (2.19b)

(1� q̃)u0(y + g �Q
2s(p2)) + �q̃u0(y + g + �V

2s(p2)) = µ+
�(p

2

) + �(p
2

)

(1� p
1

)�(p
2

)
, (2.19c)

(1� q̃)v0(F
2s(p2)) + �q̃u0(y + g + �V

2s(p2)) = µ+
�(p

2

)

(1� p
1

)�(p
2

)
. (2.19d)

Note that q enters into neither the zero-profit condition (2.16) nor the first order

conditions (2.19). Hence, fixing q̃, the set of equilibrium contracts is independent of q.

This is because life insurance firms have to pay the face amount when policyholders

die in period 2 no matter they lose bequest motives or not. Therefore the life insurance

firms does not take into account the actual probability of losing bequest motive when

they maximize policyholders’ perceived utility.

Lemma 11 Fixing (q,�) 2 [0, 1)⇥ [0, 1], Q
2s(p2) > 0 for all p

2

2 (0, 1].

Lemma 11 states that the non-negativity condition of Q
2s(p2) never binds. This

result provides a stark contrast to Lemma 10. When the life settlement market is

not present, contracts with zero premiums in the second period can be sustained in

equilibrium when q and � are su�ciently large because insurance firms expect a large

fraction of policyholders at the beginning of period 2 (i.e. q�) to lapse the contract

due to their misperception and the death benefits will not be paid. However, in the
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presence of the settlement market, providing a set of contracts with zero premiums

in period 2 is too costly for the insurance firms because the settlement firms collect

all the death benefits from policyholders that lapse their contracts.

Lemma 11 implies immediately that �(p
2

) = 0 for all p
2

2 (0, 1]; together with

the first order conditions (2.19), we have:

u0(y � g �Q
1s) = v0(F

1s) (2.20)

u0(y + g �Q
2s(p2)) = v0(F

2s(p2)) for all p2 2 (0, 1]. (2.21)

Thus, in the presence of the life settlement market, policyholders always obtain full-

event insurance in both period 1 and all health states in period 2.

The characterization of the equilibrium contracts replicates that in Fang and Kung

(2010) by replacing the variable q with q̃. Similar to the case without the settlement

market, all the period 2 health states can be divided into two subsets Bs and NBs

depending on whether the no-lapsation constraint binds.

Lemma 12 (Fang and Kung 2010) If p
2

2 Bs and p0
2

2 NBs, then p
2

< p0
2

and

Q
2

(p
2

) < Q
2

(p0
2

).

The proof is the same as in Fang and Kung (2010) and hence omitted. Lemma

12 implies that there is a threshold p⇤
2s such that p

2

2 Bs if p2 < p⇤
2s and p

2

2 NBs if

p
2

> p⇤
2s.

Lemma 13 For all (q,�) 2 [0, 1)⇥ [0, 1], p⇤
2s � p

1

.
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Lemma 13 rules out the possibility that p⇤
2s = 0 (p⇤

2s � p
1

> 0). If p⇤
2s = 1, the set

of equilibrium contracts in period 2 is the set of spot contracts. The following lemma

characterizes the period-2 premiums Q
2s(p2) as a function of p⇤

2s if p
⇤
2s < 1.

Lemma 14 If p⇤
2s 2 (0, 1), the equilibrium period 2 premiums Q

2s(p2) satisfy:

1. for p
2

 p⇤
2s, Q2s(p2) = QFI

2

(p
2

);

2. for p
2

> p⇤
2s, Q2s(p2) solves:

(1� q̃)u0(y + g �Q
2s(p2)) + �q̃u0(y + g + �V

2s(p2))

= (1� q̃)u0(y + g �QFI
2

(p⇤
2s)) + �q̃u0(y + g). (2.22)

By Lemma 14, the set of period-2 contracts is fully characterized by p⇤
2s alone.

Moreover, it can be proved from (2.22) that both Q
2s(p2) and V

2s(p2) are strictly

increasing in p
2

.15 From the first order conditions (2.19a), (2.19c) and Lemma 14,

the period 1 premium Q
1s is the solution to:

u0(y � g �Q
1s) = (1� q̃)u0(y + g �QFI

2

(p⇤
2s)) + �q̃u0(y + g). (2.23)

To characterize the equilibrium insurance contract, it remains to pin down p⇤
2s,

which is determined by the zero-profit condition (2.16). The following proposition

summarizes the above discussions.

Proposition 11 (Equilibrium contracts with the settlement market) The set

of equilibrium contracts satisfies the following properties:

15See the proof of Proposition 3 in Fang and Kung (2010).
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1. All policyholders receive full-event insurance in period 1 and 2 as defined by

(2.20) and (2.21).

2. There exists a threshold p⇤
2s 2 [p

1

, 1] such that p
2

2 Bs if p2 < p⇤
2s and p

2

2 NBs

if p
2

> p⇤
2s.

3. (a) If p
2s < 1, the set of equilibrium contracts is determined by (2.16), (2.20),

(2.21) and Lemma 14. Moreover, Q
2s(p2) and V

2s(p2) are strictly increas-

ing in p
2

.

(b) If p
2s = 1, the equilibrium contract is the set of spot contracts.

In the presence of the settlement market, the life insurance firms no long provide

flat premiums in period 2. Instead, they provide partial insurance against reclassifi-

cation risk in equilibrium. The set of period-2 equilibrium contract is in the form of

premium discounts relative to the spot market contracts. Policyholders with higher

mortality risk are charged higher premiums. The equilibrium contract is still in favor

of higher p
2

in the sense the that policyholders with higher p
2

are o↵ered contracts

with higher actuarial values.

2.3.2 E↵ect of overconfidence with settlement market

Proposition 12 Suppose �̂ < �. Let (F̂
1s, Q̂1s) and (F

1s, Q1s) be the equilibrium

contract in period 1 with �̂ and � respectively. Then F̂
1s > F

1s and Q̂
1s < Q

1s.

When consumers become more overconfident, the life insurance firms respond by

o↵ering a set of contracts with a higher degree of front-loading (i.e. a higher premium
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Figure 2.2: Equilibrium Period-2 Premium Profiles with the Settlement Market: Case
I.

and lower face value) in the first period. The intuition is similar to that of Proposition

9. When policyholders become more overconfident, they demand actuarially more

favorable contract terms in period 2 in expectation. To keep budget balanced, the

first period premium increases as a result.

Di↵erent from Proposition 9, we can not obtain clean comparative statics on the

threshold p⇤
2s with respect to �, i.e., increasing � can not guarantee a higher degree of

reclassification risk (i.e. lower p⇤
2s). Figure 2.2 and 2.3 depict the change of equilibrium

premiums in the second period as the level of policyholders’ overconfidence increases

from �̂ to � from simulations. Increasing � can lead to a lower/higher threshold p⇤
2s

as shown in Figure 2.2/Figure 2.3.

When there is no settlement market, the set of optimal period 2 contracts is

o↵ered in the form of flat premiums, which depend only on p⇤
2

. Therefore the only
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Figure 2.3: Equilibrium Period-2 Premium Profiles with the Settlement Market: Case
II.

way to o↵er a better set of period 2 contracts is to decrease p⇤
2

. When the secondary

life settlement market is introduced, insurance firms provide contracts with premium

discounts rather than flat premiums, whose shape depends on not only p⇤
2s but also

u(·) and v(·) (see equation (2.22)). Unlike the situation where the settlement market

is not present, without further assumptions on the utility functions, it is possible

for the insurance firms to o↵er period 2 contracts without increasing the degree of

reclassification risk as � increases. Specifically, as shown by Figure 2.3, insurance

firms can provide a set of period 2 contracts of a higher expected actuarial value

and a higher p⇤
2s by lowering the premiums for some health states and increasing the

premiums for the other.

Given the set of equilibrium contracts h(Q
1s, F1s), (Q2s(p2), F2s(p2)) : p2 2 [0, 1]i,
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the consumer welfare, denoted by Ws(q,�), can be derived as:

Ws(q,�) := [u(y � g �Q
1s) + p

1

v(F
1s)]

+ (1� p
1

)

Z

1

0

8

>

>

>

<

>

>

>

:

(1� q)

"

u(y + g �Q
2s(p2)))

+p
2

v(F
2s(p2))

#

+ qu(y + g + �V
2s(p2))

9

>

>

>

=

>

>

>

;

d�(p
2

).

Again, q rather than q̃ is used in the calculation of consumer welfare.

Proposition 13 (Welfare implication of overconfidence) Fixing q 2 (0, 1), Ws(q,�)

is weakly decreasing in �.

Proposition 13 establishes a similar comparative statics of consumer welfare with

respect to the level of policyholders’ overconfidence. The intuition is similar to Propo-

sition 10. In general, overconfidence reduces consumer welfare regardless of the pres-

ence of the settlement market.

2.4 Welfare Comparison

Lemma 15 (Fang and Kung 2010) W (q,�) � Ws(q,�) if � = 0.

When the policyholder has correct belief about the probability of losing his be-

quest motive, introducing the life settlement market weakly reduces consumer welfare

in equilibrium. The proof replicates Proposition 7 in Fang and Kung (2010) and is

omitted. Because policyholders lack commitment power of not lapsing the long-term

contract in period 2, we deviate from complete markets and are in a second-best
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world. As argued in Fang and Kung (2010), although the settlement market allows

policyholders to access the actuarial value of their contracts and thus contribute to

market completeness, it also contributes market incompleteness by weakening poli-

cyholders’ ability to commit to not asking for a return when they lose their bequest

motives. Therefore introducing the settlement market can lead to a decrease in con-

sumer welfare. The next proposition provides su�cient conditions under which the

welfare result in Lemma 15 can be overturned.

For ease of our exposition, let ⌘(c) = � v0(c)
cv00(c) denote the intertemporal elasticity

of substitution (IES) of v(·) at c by ⌘(c).

Proposition 14 Suppose ⌘(c) � ↵ > 1 for all c > 0. There exists a threshold q such

that for q � q, Ws(q,�) > W (q,�) if � is su�ciently large.

The intuition can be better explained by assuming utility v(·) with constant IES

⇢, i.e., v(c) = c
1� 1

⇢�1

1� 1
⇢

. From Lemma 10, when q and � are su�ciently large, Q
2

(p
2

) =

0 for all p
2

; together with first order conditions (2.5b) and (2.5d), we must have

v0(F2(p2))
v0(F1)

= 1�q
1�q̃

for all p
2

. This in turn implies that:

F
2

(p
2

)

F
1

=

✓

1� q̃

1� q

◆⇢

=

✓

1 +
q

1� q
�

◆⇢

. (2.24)

From (2.24) we know that the IES measures policyholders’ propensity to smooth

consumption for their dependents. Specifically, when ⇢ > 1, the equilibrium con-

sumption growth is sensitive to changes in the level of policyholders’ overconfidence

�. This indicates that policyholders’ consumption smoothing motive is weak rela-

tive to that under ⇢ < 1. In the absence of the settlement market, policyholders
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obtain a contract with a very low face value and a high premium in the first period

in exchange for the set of period 2 contracts of high actuarial values as they become

su�ciently overconfident. This indeed harms policyholders especially when q and �

are su�ciently large. In equilibrium, a large portion (i.e. q�) of the expected utility

promised by the set of the equilibrium contracts in the second period is not realized

due to policyholders’ misperception of the probability of losing bequest motives. To

summarize, policyholders with a high value of IES are more vulnerable from their

overconfidence and can potentially benefit more from the presence of the settlement

market than those with a low value of IES.

In the presence of the settlement market, the set of equilibrium contracts do not

deviate too much from the socially optimal contracts in terms of the degree of front-

loading as policyholders become more overconfident. In fact, we can establish a lower

bound of the expected utility for policyholders in the first period. To see this, note

that p⇤
2s � p

1

from Lemma 13. Therefore contracts with zero premiums in period 2

can not be sustained in equilibrium and the degree of reclassification risk insurance is

limited by the threat of life settlement market. From the zero-profit condition (2.16),

this in turn implies that there is an upper bound of the amount of front-loading. Thus

the presence of the settlement market protects policyholders from obtaining contracts

with too much front-loading in the first period as they become more overconfident.

Such protection is more valuable to the vulnerable policyholders with high IES than

those with a low value of IES and leads the consumer welfare with settlement market

to be greater than that without.

Another way to understand the welfare result is the following. As argued by Fang
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and Kung (2010), when policyholders are fully rational, introducing life settlement

market further contributes to market incompleteness and reduces consumer welfare.

When policyholders are overconfident, the settlement market has a new role: it helps

policyholders correct their biased beliefs in the second period. In particular, a fraction

q� of policyholders no long remain bequest motives in the second period as expected

at the time of purchasing insurance policies. When there is no settlement market, they

can only lapse the contract and su↵er the utility loss caused by their misperception.

However, with the settlement market, policyholders can cash out part of the actuarial

value of their contracts and undercut the utility loss. This generates a potential

welfare gain. If the magnitude of this welfare gain is large enough to o↵set the

welfare loss due to the lower degree of market completeness, introducing a secondary

settlement market can potentially benefit consumers in equilibrium.

2.5 Conclusion and Future Research

In this paper, we provide su�cient conditions under which consumer surplus can be

higher in the presence of the life settlement market than in its absence. Specifically,

we prove that introducing life settlement market can lead to an increase in consumer

welfare when policyholders su�ciently underestimate the probability of losing their

bequest motives. There are several directions for future research. First, it would be

interesting to empirically test the existence of policyholders’ overconfidence based on

the predictions in this paper. It would also be interesting study the welfare e↵ect of

the settlement market when consumers are overconfident about their health status in
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the second period. Another intriguing research avenue would be to analyze the welfare

implications of the secondary market in a unified framework when lapsation is driven

by negative income shocks in addition to policyholders’ lost of bequest motives.
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Appendix A

Appendix for Chapter 1

A.1 Appendix: Proofs of the propositions

Proof of Lemma 1. The first best outcome is the solution to the following

maximization problem:

max
{ŝ,q}

1

2

⇥

1� F
1

(ŝ)
⇤

q +
1

4

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤

q � 1

2
q2.

The first order condition with respect to ŝ yields:

f
1

(ŝ) = f
0

(ŝ) ) ŝFB =
1

2
.

The first order condition with respect to q yields:

qFB =
1

2
+

1

4

⇥

F
0

(ŝFB)� F
1

(ŝFB)
⇤

.
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Proof of Proposition 1. It is useful to first prove the two lemmas.

Lemma A1 (Uniform convergence of F
1

(·) as ↵ ! 1) For any given ✏ > 0,

there exists N such that for ↵ > N , F
1

(s;↵) < ✏ for s 2 [0, 1
2

] and F
1

(s;↵) <

(2s� 1) + ✏ for s 2 [1
2

, 1].

Proof. By the definition of the completely informative information structure, given

✏0 = 1

2

✏ and � 2 (0, 1
2

), there exists N such that f
1

(�;↵) < ✏0 for ↵ > N . Thus,

F
1

⇣1

2
;↵
⌘

=

Z

1
2

0

f
1

(t;↵)dt =

Z

�

0

f
1

(t;↵)dt+

Z

1
2

�

f
1

(t;↵)dt  �✏0 +
⇣1

2
��

⌘

.

Let � = 1

2

� ✏0. F
1

⇣

1

2

;↵
⌘

can be bounded above by

F
1

(s;↵)  F
1

⇣1

2
;↵
⌘

 ✏0
⇣1

2
� ✏0

⌘

+ ✏0 < 2✏0 = ✏ for s 2 [0,
1

2
].

Similarly, for all s 2 [1
2

, 1],

F
1

(s;↵) = 2s� F
0

(s;↵) = (2s� 1) + F
1

(1� s;↵) < (2s� 1) + ✏ for ↵ > N.

Lemma A2 (Uniform convergence of F
1

(·) as ↵ ! 0) For any given ✏ > 0, there

exists N such that for ↵ < N , F
1

(s;↵) > s� ✏ for all s 2 [0, 1].

Proof. By the definition of the completely uninformative information structure, for
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any given ✏ and � 2 (0, 1
2

), there exists N such that f
1

(�;↵) > 1� ✏. Thus,

s� F
1

(s;↵) =

Z s

0

⇥

1� f
1

(t;↵)
⇤

dt 
Z

1
2

0

⇥

1� f
1

(t;↵)
⇤

dt

=

Z

�

0

⇥

1� f
1

(t;↵)
⇤

dt+

Z

1
2

�

⇥

1� f
1

(t;↵)
⇤

dt

 �+ ✏(
1

2
��) for s 2 [0,

1

2
].

Let � = 1

2

✏. s� F
1

(s;↵) can be bounded above by

s� F
1

(s;↵)  �+ ✏(
1

2
��) <

1

2
✏+

1

2
✏ = ✏ for s 2 [0,

1

2
].

Similarly, for all s 2 [1
2

, 1],

s� F
1

(s;↵) = s�
⇥

2s� F
0

(s;↵)
⇤

= (1� s)� F
1

(1� s;↵) < ✏.

Recall that the expected profit function is

⇡(ŝ) =
1

8

⇥

1� F
1

(ŝ)
⇤

⇢

1

2

⇥

1� F
1

(ŝ)
⇤

+
1

2

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤ f

1

(ŝ)

f
1

(ŝ) + f
0

(ŝ)

�

.

By Assumption 3, f
0

(s) = f
1

(1� s) and F
0

(s) = 1� F
1

(1� s). The expected profit

function can be written as

⇡(ŝ) =
1

16

⇥

1� F
1

(ŝ)
⇤

h

⇥

1� F
1

(ŝ)
⇤

+ ŝf
1

(ŝ)
i

.
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1. Anti-entrenchment:

⇡(ŝ;↵) <
1

16
(1 + ŝ) <

3

32
for all ŝ 2 [0,

1

2
].

By Lemma A1, for any ✏, there exists N such that for ↵ > N , 1 � F
1

(ŝ;↵) >

2� 2ŝ� ✏ for ŝ 2 (1
2

, 1). Moreover, given ŝ 2 (1
2

, 1) and ✏0, there exists N 0 such

that 1

2

f
1

(ŝ) = f1(ŝ)
f1(ŝ)+f0(ŝ)

> 1� ✏0 for ↵ > N 0.

Let ↵ = max{N,N 0}. Then for ↵ > ↵,

⇡(ŝ;↵) >
1

16

�

2� 2ŝ� ✏
� ⇥

(2� 2ŝ� ✏) + 2ŝ(1� ✏0)
⇤

.

Let ŝ = 1

2

(1 + ✏) and ✏0 = ✏
1+✏

. Then,

⇡
⇣1

2
(1 + ✏);↵

⌘

>
1

16
(1� 2✏)

⇥

(1� 2✏) + (1 + ✏)(1� ✏0)
⇤

=
1

8
(1� 2✏)(1� ✏).

To prove the proposition, it su�ces to find ✏ such that

1

8
(1� 2✏)(1� ✏) � 3

32
.

This inequality holds when ✏  3�
p
7

4

.

2. Entrenchment:

It su�ces to prove that there exists ↵ such that for ↵ < ↵ and, ⇡(ŝ) < ⇡(0) = 1

16

for all ŝ 2 [1
2

, 1]. Since f
1

(s) < 2 for s 2 [0, 1) by normalization, it directly
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follows that 1� F
1

(s) < 2(1� s). Thus, 1� F
1

(1��) < 2� for � 2 (0, 1
2

).

) ⇡(ŝ) <
1

4
�(�+ 1) for ŝ 2 [1��, 1].

For � to be su�ciently small, 1

4

�(� + 1) < 1

16

. In particular, let � =
p
2�1

2

.

Then ŝ 2 [1��, 1] cannot be optimal replacement policy.

It remains to prove that there extists ↵ such that for ↵ < ↵, ⇡(ŝ) < ⇡(0) for all

ŝ 2 [1
2

, 1 � �]. By the definition of the completely uninformative information

structure, for any ✏0, there exists N 0 such that 1

2

f
1

(ŝ) = f1(ŝ)
f1(ŝ)+f0(ŝ)

< 1

2

+ ✏0 for

ŝ 2 [1
2

, 1��] and ↵ < N 0.

By Lemma A2, for any ✏, there exists N such that for ↵ < N , F
1

(ŝ;↵) > ŝ� ✏

for ŝ 2 [0, 1]. Thus,

⇡(ŝ) <
1

16
(1� ŝ+ ✏)

⇥

(1� ŝ+ ✏) + (1 + 2✏0)
⇤

.

Let ✏0 = ✏ =
p
3

3

� 1

2

and ↵ = min{N,N 0}. Then for ↵ < ↵,

⇡(ŝ) <
1

16
(1� ŝ+ ✏)(2� ŝ+ 3✏)  3

16

�1

2
+ ✏
�

2

=
1

16
for all ŝ 2 [

1

2
, 1].

Proof of Lemma 3. For existence, it su�ces to construct an example. Suppose
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�

f
1

(·), f
0

(·)
 

induces g(·). By the definition of the information structure,

1

2
F
1

(s) +
1

2
F
0

(s) = s for all s 2 [0, 1] , 1

2
f
1

(s) +
1

2
f
0

(s) = 1 for all s 2 [0, 1].

Meanwhile, we have

g(p) =
h1

2
f
1

('�1(p)) +
1

2
f
0

('�1(p)))
id'�1(p)

dp
.

Thus, g(p)dp = d'�1(p) ) '(G(p)) = p ) f̃
1

(x) = 2G�1(x) and f̃
0

(x) = 2[1 �

G�1(x)]. This finishes the proof of existence.

For uniqueness, suppose two information structures {f
1

(s), f
0

(s)} and {f †
1

(s), f †
1

(s)}

induce the same g(p). By the definition of the information structure,

1

2
f †
1

(s) +
1

2
f †
0

(s) = 1 =
1

2
f
1

(s) +
1

2
f
0

(s).

By the definition of p,

1

2
f
1

(s) +
1

2
f
0

(s) =
f
1

(s)

2p
=

f
0

(s)

2(1� p)
.

By the derivation of g(p),

g(p) =



1

2
f
1

('�1(p)) +
1

2
f
0

('�1(p))

�

d'�1(p)

dp
.

) pg(p) =
1

2
f
1

('�1(p))
d'�1(p)

dp
.
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)
Z p

0

tg(t)dt =
1

2
F
1

('�1(p)) =
1

2
F †
1

('†�1(p)).

Similarly,

(1� p)g(p) =
1

2
f
0

('�1(p))
d'�1(p)

dp
.

)
Z p

0

(1� t)g(t)dt =
1

2
F
0

('�1(p)) =
1

2
F †
0

('†�1(p)).

Thus,

1

2
F †
1

('†�1(p)) +
1

2
F †
0

('†�1(p)) =
1

2
F
1

('�1(p)) +
1

2
F
0

('�1(p)).

) '†�1(p) = '�1(p) ) f †
1

(s) = f
1

(s).

Since 1

2

f †
1

(s) + 1

2

f †
0

(s) = 1

2

f
1

(s) + 1

2

f
0

(s), it follows directly that f †
0

(s) = f
0

(s). This

finishes the proof of uniqueness.

Proof of Lemma 4. By definition, ⇢  1 � G(p)g0(p)
g2(p)

 ⇢. Integrating both sides

from 0 to p yields

⇢p  G(p)

g(p)
� G(0)

g(0)
 ⇢p.

) 1

⇢

1

p
 g(p)

G(p)
 1

⇢

1

p
, 1

⇢
 pg(p)

G(p)
 1

⇢
.

Integrating both sides from p to 1

2

yields

1

2
(2p)

1
⇢  G(p)  1

2
(2p)

1
⇢ .

Proof of Proposition 2.

Lemma A3 If G(p)  p for all p 2 [0, 1
2

], entrenchment is optimal to the board.
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Moreover, if G(p) is convex in p for p 2 [0, 1
2

], p̂⇤ = 0.

Proof. We finish the proof in two steps:

1. ⇡̃(1� p̂) < ⇡̃(0) for p̂ 2 [0, 1
2

].

It is equivalent to prove that

Z

1

1�p̂

tg(t)dt

✓

1�
Z

1

1�p̂

G(t)dt

◆

<

Z

1

0

tg(t)dt

✓

1�
Z

1

0

G(t)dt

◆

.

Because G(1� p̂) = 1�G(p̂),
R

1

0

G(t)dt = 1

2

. Thus, the right-hand side can be

further simplified as

Z

1

0

tg(t)dt

✓

1�
Z

1

0

G(t)dt

◆

=

✓

1�
Z

1

0

G(t)dt

◆

2

=
1

4
.

For the left-hand side,

Z

1

1�p̂

tg(t)dt

✓

1�
Z

1

1�p̂

G(t)dt

◆

=

✓

1�
Z

1

1�p̂

G(t)dt� (1� p̂)G(1� p̂)

◆✓

1�
Z

1

1�p̂

G(t)dt

◆

<

✓

1�
Z p̂

0

(1�G(t))dt� 1

2
(1� p̂)[1�G(p̂)]

◆

2

=

✓

1� p̂

2
(1 +G(p̂)) +

Z p̂

0

G(t)dt

◆

2


✓

1� p̂

2
(1 + p̂) +

Z p̂

0

tdt

◆

2

=
1

4
.

2. ⇡̃(p̂) is strictly decreasing in p̂ for p̂ 2 [0, 1
2

] if G(p) is convex in p for p 2 [0, 1
2

].
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First, notice that

Z

1

p̂

tg(t)dt =

Z

1

p̂

tdG(t) = 1�
Z

1

p̂

G(t)dt�p̂G(p̂) < 1�
Z

1

p̂

G(t)dt for p̂ 2 (0,
1

2
].

Second, when g(p̂) is increasing in p̂, we have

G(p̂) =

Z p̂

0

g(t)dt 
Z p̂

0

g(t)dt = p̂g(p̂).

Thus, ⇡̃0(p) < 0 for p 2 (0, 1
2

].

It directly follows that p̂⇤ = 0 for ↵  ↵
1

by Lemma A3. For ↵ > ↵
1

, it is useful

to first prove the following two lemmas.

Lemma A4 If ⇢(p;↵) is weakly decreasing in p, G(p)
pg(p̂)

is weakly decreasing in p for

p 2 [0, 1
2

].

Proof. By the definition of ⇢-concavity,

⇢(t) = 1� G(t)g0(t)

g2(t)
.

Integrating both sides from 0 to p yields,

Z p

0

⇢(t)dt =
G(p)

g(p)
) G(p)

pg(p)
=

R p

0

⇢(t)dt

p
.

)
✓

R p

0

⇢(t)dt

p

◆0

=
⇢(p)p�

R p

0

⇢(t)dt

p2
=

R p

0

⇥

⇢(p)� ⇢(t)
⇤

dt

p2
 0.
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Lemma A5 For ↵
1

> ↵
2

, G(p;↵
1

) > G(p;↵
2

) for p 2 (0, 1
2

).

Proof. By Lemma A4,

Z p

0

⇢(t)dt =
G(p)

g(p)
) ln

�1

2

�

� lnG(p;↵) =

Z

1
2

p

1
R !

0

⇢(t;↵)dt
d!.

It can be verified that
R

1
2
p

1R !
0 ⇢(t;↵)dt

d! is decreasing in ↵ by the definition of ⇢-concave

order. Thus, G(p;↵) is increasing in ↵.

Rearranging the first order condition with respect to p̂ yields

⇡̃0(p̂) ? 0 , G(p̂)

p̂g(p̂)
?

1�
R

1

p̂
G(t)dt

R

1

p̂
tg(t)dt

=
1

2

+
R p̂

0

G(t)dt
1

2

+
R p̂

0

G(t)dt� pG(p)
.

By Lemma A4, the left-hand side is decreasing in p̂. It is can be verified that the

right-hand side is increasing in p̂. Thus, the board’s profit function for p̂ 2 [0, 1
2

] is

well-behaved.

Notice that limp!0

G(p̂)
p̂g(p̂)

= ⇢(0) > 1 for ↵ > ↵
1

, and limp!0

1�
R 1
p̂ G(t)dt

R 1
p̂ tg(t)dt

= 1. It

su�ces to compare the end points of the two curves.

If 2
R

1
2
0

⇢(t;↵)dt >
1
2+

R 1
2
0̂

G(t)dt

1
4+

R 1
2
0̂

G(t)dt
, ⇡̃(p̂) is increasing in p̂ 2 [0, 1

2

] and the optimal cuto↵

p̂⇤ lies between 1

2

and 1.

If 2
R

1
2
0

⇢(t;↵)dt <
1
2+

R 1
2
0̂

G(t)dt

1
4+

R 1
2
0̂

G(t)dt
, ⇡̃(p̂) is first increasing and then decreasing in p̂ 2

[0, 1
2

]. The maximal can be pinned down by the first order condition for p̂ 2 [0, 1
2

].

We further argue that this local maximal is indeed the global maximal for p̂ 2 [0, 1].
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To see this, notice that second order derivative of the profit function with respect to

p̂ is

⇡̃00(p̂) =
1

4



� p̂g0(p̂)
⇣

1�
Z

1

ˆp̂

G(t)dt
⌘

� 3p̂g(p̂)G(p̂)

�

.

Because G(p) is concave for p 2 [0, 1
2

] for ↵ > ↵
1

, G(p) is convex for p 2 [1
2

, 1]. This

directly implies g0(p) > 0 for p 2 [1
2

, 1]. Thus ⇡00(p̂) < 0 for p 2 [1
2

, 1]. Because

⇡̃0(1
2

) < 0, profit is decreasing in p̂ for p̂ 2 [1
2

, 1].

By the definition of ⇢-concavity, 2
R

1
2
0

⇢(t;↵)dt is increasing in ↵. By Lemma A5,

R

1
2
0

G(t;↵)dt is increasing in ↵ )
1
2+

R 1
2
0 G(t)dt

1
4+

R 1
2
0 G(t)dt

is decreasing in ↵. By Assumptions 5(d)

and 5(e),

lim
↵!↵1

2

Z

1
2

0

⇢(t;↵)dt = 1 and lim
↵!1

2

Z

1
2

0

⇢(t;↵)dt = 1.

Thus, there exists ↵
2

> ↵
1

such that for ↵ > ↵
2

, anti-entrenchment is optimal; for

↵ < ↵
2

, entrenchment is optimal.

Proof of Example 1. Given the functional form of g(·), it can be verified that the

board’s profit function is

⇡̃(p̂;↵) =

8

>

>

>

<

>

>

>

:

1

4

h

1

2

+ 1

4

↵
↵+1

(2p̂)
↵+1
↵

i h

1

2

� 1

4

1

1+↵
(2p̂)

↵+1
↵

i

for p̂ 2 [0, 1
2

]

1

16

[2(1� p̂)]
↵+1
↵

h

↵
↵+1

+ p̂
1�p̂

i h

p̂+ 1

4

↵
↵+1

[2(1� p̂)]
↵+1
↵

i

for p̂ 2 (1
2

, 1]

.

It is obvious that ↵
1

= 1. By the proof of Proposition 2, ↵
2

is the informativeness

such that the first derivative of profit at p̂ = 1

2

is equal to 0. ) ↵
2

=
p
5+1

2

.

Proof of Proposition 3. Designing a contract based on the signal is equivalent

to designing a contract based on the posterior belief about the incumbent’s ability
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p 2 [0, 1]. By abuse of notation, denote
�

w(p), r(p), k(p)
 

as the contract based on

the board’s posterior belief. It su�ces to prove that r⇤(p) = 1 for p 2 [1
2

, 1] and

r⇤(p) = 0 for p 2 [0, 1
2

) in the optimal contract.

Given contract
�

w(p), r(p), k(p)
 

, the incumbent manager chooses q to maximize:

Z

1

0

�

r(p)qpw(p) + [1� r(p)]k(p)
 

g(p)dp� C(q).

The first order condition with respect to q yields

C 0(q) =

Z

1

0

r(p)qw(p)g(p)dp.

Note that k(p) cannot provide incentive on the e↵ort level. Because the incumbent

manager is protected by limited liability, k⇤(p) = 0 in the optimal contract.

The board chooses
�

w(p), r(p)
 

to maximize

Z

1

0

n

⇥

r(p)qp(1� w(p))
⇤

+
1

2
q(1� r(p))

o

g(p)dp

= q

✓

Z

1

0

h

r(p)p+
1

2
(1� r(p))

i

g(p)dp�
Z

1

0

r(p)pw(p)g(p)dp

◆

.

Given e↵ort level q,
R

1

0

r(p)pw(p)g(p)dp = C 0(q) is a constant by the incumbent

manager’s first order condition. It is equivalent to maximize:

Z

1

0

h

r(p)p+
1

2
(1� r(p))

i

g(p)dp.
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The integral is maximized by setting r(p) = 1 for p 2 [1
2

, 1] and r(p) = 0 for p 2 [0, 1
2

).

Proof of Proposition 4. We first proved that k⇤ = 0 in the optimal contract.

Given (w
1

, w
2

, k) and belief of cuto↵ ŝ, the incumbent manager chooses q to maximize

1

2
[1� F

1

(ŝ)]qw
1

+
1

2

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤

⇣1

2
qw

2

+ k
⌘

� C(q).

) q =
1

2
[1� F

1

(ŝ)]w
1

+
1

4

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤

w
2

.

Given (w
1

, w
2

, k) and belief of project quality q, the board’s indi↵erence condition

yields:

1

2
q(1� w

2

)� k =
f
1

(ŝ)

f
1

(ŝ) + f
0

(ŝ)
q(1� w

1

).

The board chooses (w
1

, w
2

, k) to maximize expected profit:

1

2

⇥

1� F
1

(ŝ)
⇤

q(1� w
1

) +
1

2

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤

h1

2
q(1� w

2

)� k
i

= q(1� w
1

)

⇢

1

2

⇥

1� F
1

(ŝ)
⇤

+
1

2

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤ f

1

(ŝ)

f
1

(ŝ) + f
0

(ŝ)

�

.

Given (q, ŝ) the board would like to induce, it is obvious that profit is decreasing in

w
1

. By the two equilibrium conditions, it is easy to verify that w
1

(k) is increasing in

k and w
2

(k) is decreasing in k. Thus, k⇤ = 0.

The board’s profit maximization problem can be written as

max
{w1,w2,q,ŝ}

⇡(w
1

, w
2

, q, ŝ) :=
1

2

⇥

1� F
1

(ŝ)
⇤

q(1� w
1

) +
1

4

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤

q(1� w
2

)

82



s.t.

q �
⇣1

2
[1� F

1

(ŝ)]w
1

+
1

4

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤

w
2

⌘

= 0

and

1

2
(1� w

2

)� '(ŝ)(1� w
1

) = 0.

Let L be the Lagrangian and denote �
1

and �
2

as Lagrangian multipliers on the two

constraints respectively.

@L(w
1

, w
2

, q, ŝ,�
1

,�
2

)

@w
1

= 0 ) �1

2

�

q + �
1

�⇥

1� F
1

(ŝ)
⇤

+ '(ŝ)�
2

= 0.

@L(w
1

, w
2

, q, ŝ,�
1

,�
2

)

@w
2

= 0 ) �1

2
(q + �

1

)
⇥

F
1

(ŝ) + F
0

(ŝ)
⇤

� �
2

= 0.

It can be verified that ŝ = 0 is never optimal. Thus, '(x̂) > 0. Then �
2

= 0 and

�
1

= �q must be true. The first order condition of the Lagrangian with respect to ŝ

yields

@L(w
1

, w
2

, q, ŝ,�
1

,�
2

)

@ŝ
= 0.

) �q(1� w
1

)f
1

(ŝ) +
1

2

⇥

f
1

(ŝ) + f
0

(ŝ)
⇤

q(1� w
2

)

+ �
1

✓

f
1

(ŝ)w
1

� 1

2

⇥

f
1

(ŝ) + f
0

(ŝ)
⇤

w
2

◆

= 0

) '(ŝ) =
1

2
) ŝ⇤ =

1

2
.

Because 1

2

(1� w
2

)� '(ŝ)(1� w
1

) = 0, it follows directly that w⇤
1

= w⇤
2

.

Proof of Proposition 5. Given contract (w, k) and ŝ, the incumbent manager’s
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best response is

q =

⇢

(1 + ⌧)
h1

2

�1

2
+ �
�⇥

1� F
1

(ŝ)
⇤

+
1

2

�1

2
� �
�⇥

1� F
0

(ŝ)
⇤

i

w

�

1
1�⌧

.

Similarly, the board’s indi↵erence condition is

1

2
q1+⌧ � k =



1

2
+

f
1

(ŝ)� f
0

(ŝ)

f
1

(ŝ) + f
0

(ŝ)
�

�

q1+⌧ (1� w).

Plugging the two equilibrium conditions into the board’s profit function yields

⇡(ŝ) = M
h

�1

2
+ �
�⇥

1� F
1

(ŝ)
⇤

+
�1

2
� �
�⇥

1� F
0

(ŝ)
⇤

i

1+⌧
1�⌧

·
⇢

h

�1

2
+ �
�⇥

1� F
1

(ŝ)
⇤

+
�1

2
� �
�⇥

1� F
0

(ŝ)
⇤

i

+
⇥

F
1

(ŝ) + F
0

(ŝ)
⇤

h1

2
+

f
1

(ŝ)� f
0

(ŝ)

f
1

(ŝ) + f
0

(ŝ)
�
i

�

,

where M = 1

4

2
1�⌧ (1� ⌧)(1 + ⌧)

2+2⌧
1�⌧ .

Next, we calculate the board’s expected profit for a given cuto↵ ŝ as ↵ ! 1:

lim
↵!1

⇡(ŝ;↵) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

M
h

1� (1� 2�)ŝ
i

1+⌧
1�⌧

for ŝ 2 [0, 1
2

)

M
h

� + 1

2

i

1+⌧
1�⌧

(1 + �) for ŝ = 1

2

M
h

(1 + 2�)(1� ŝ)
i

1+⌧
1�⌧

(1 + 2�) for ŝ 2 (1
2

, 1]

.

1. Entrenchment as ↵ ! 1:
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Notice that f1(ŝ)�f0(ŝ)
f1(ŝ)+f0(ŝ)

 1. Then ⇡(ŝ;↵) can be bounded above by

⇡(ŝ;↵) M
h

�1

2
+ �
�⇥

1� F
1

(ŝ)
⇤

+
�1

2
� �
�⇥

1� F
0

(ŝ)
⇤

i

1+⌧
1�⌧

·
⇢

h

�1

2
+ �
�⇥

1� F
1

(ŝ)
⇤

+
�1

2
� �
�⇥

1� F
0

(ŝ)
⇤

i

+
⇥

F
1

(ŝ) + F
0

(ŝ)
⇤

h1

2
+ �
i

�

.

Denote the right-hand side as ⇡E(ŝ;↵). By Lemma A1, F
1

(ŝ;↵) converges

uniformly to max
�

0, 2ŝ� 1
 

as ↵ ! 1. Thus, ⇡E(ŝ;↵) converges uniformly to

M
h

(1 + 2�)(1� ŝ)
i

1+⌧
1�⌧

(1 + 2�) for ŝ 2 [1
2

, 1] as ↵ ! 1. Because ⇡(0;↵) = M ,

entrenchment is optimal for su�ciently large ↵ if

M > max
ŝ2[ 12 ,1]

n

M
⇥

(1 + 2�)(1� ŝ)
⇤

1+⌧
1�⌧
�

1 + 2�
�

o

) � <
1

2

1�⌧
2

� 1

2
.

2. Anti-entrenchment as ↵ ! 1:

Notice that f1(ŝ)�f0(ŝ)
f1(ŝ)+f0(ŝ)

 0 for ŝ 2 [0, 1
2

]. Then ⇡(ŝ;↵) can be bounded above by

⇡(ŝ;↵) M
h

�1

2
+ �
�⇥

1� F
1

(ŝ)
⇤

+
�1

2
� �
�⇥

1� F
0

(ŝ)
⇤

i

1+⌧
1�⌧

·
⇢

h

�1

2
+ �
�⇥

1� F
1

(ŝ)
⇤

+
�1

2
� �
�⇥

1� F
0

(ŝ)
⇤

i

+
1

2

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤

�

.

Denote the right-hand side as ⇡A(ŝ;↵). By Lemma A1, F
1

(ŝ;↵) converges

uniformly to max
�

0, 2ŝ�1
 

. Thus, ⇡A(ŝ;↵) converges uniformly to ⇠(ŝ; �, ⌧) =

M
h

1� (1� 2�)ŝ
i

1+⌧
1�⌧ �

1 + 2�ŝ
�

for ŝ 2 [0, 1
2

] as ↵ ! 1.

Given (�, ⌧) 2 (0, 1
2

)⇥(�1, 1), it can be verified that there exists ⌫(�, ⌧) < 1

2

such

that ⇠(ŝ; �, ⌧) < M
⇥

� + 1

2

⇤

1+⌧
1�⌧ (1 + 2�) for ŝ 2 [⌫(�, ⌧), 1

2

]. Thus, ŝ 2 [⌫(�, ⌧), 1
2

]
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can never be optimal for su�ciently large ↵.

Because f
1

(ŝ) is strictly increasing in ŝ and lim↵!1 f
1

(ŝ;↵) = 0 for all ŝ 2 [0, 1
2

),

f
1

(ŝ;↵) converges uniformly to 0 for ŝ 2 [0, ⌫(�, ⌧)] as ↵ ! 1. Then ⇡(ŝ;↵)

converges uniformly to M
h

1�(1�2�)ŝ
i

1+⌧
1�⌧

for ŝ 2 [0, ⌫(�, ⌧)] as ↵ ! 1. Thus,

entrenchment is optimal for su�ciently large ↵ if

max
ŝ2[0,⌫(�,⌧)]

M
h

1� (1� 2�)ŝ
i

1+⌧
1�⌧

< M
h

� +
1

2

i

1+⌧
1�⌧

(1 + 2�) ) � >
1

2

1�⌧
2

� 1

2
.

Proof of Proposition 6. Given ŝ, a contract can always be constructed to induce

ŝ. However, it is not necessarily w = 1

2

. k � 0 does not hold for all ŝ 2 [0, 1] when

w = 1

2

. To see this, notice that the severance pay k is

k(ŝ, w) = ⇡
�

q(ŝ, w)
�

� f
1

(ŝ)

f
1

(ŝ) + f
0

(ŝ)

⇥

(1� �)q(ŝ, w) + �e(ŝ, w)
⇤

(1� w).

Given ŝ, letting w be su�ciently close to 1 generates a positive severance pay k.

Define Ŝ =
n

ŝ
�

�k(ŝ, 1
2

) � 0 & ŝ 2 [0, 1]
o

, which is the the set of cuto↵s that can be

induced by contracts that satisfy w = 1

2

and k � 0. If ŝ 2 Ŝ, the board’s expected

profit can be written as

⇡(ŝ) =
1

16

h

1� F
1

(ŝ)
ih

(1� �)2 + �2
1

1� ŝ

ih

[1� F
1

(ŝ)] + ŝf
1

(ŝ)
i

.

If ŝ /2 Ŝ, w = 1

2

cannot be sustained. Define W(ŝ) =
n

w
�

�k(ŝ, w) � 0 & w 2 [0, 1]
o

,
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which is the set of wages that can induce ŝ without violating the limited liability

constraint of k.

1. Entrenchment:

It su�ces to prove that ⇡(ŝ;↵) < ⇡(0;↵) for all ŝ 2 [1
2

, 1] for su�ciently small

↵. ⇡(0;↵) is independent of ↵ and can be calculated as

⇡(0;↵) =
1

16

⇥

(1� �)2 + �2
⇤

.

Lemma A6 There exist � 2 (0, 1
2

) and N such that for ↵ < N , ⇡(ŝ;↵) <

⇡(0;↵) for all ŝ 2 [1��, 1].

Proof. By Lemma A2, for any ✏ > 0 there exists N such that for ↵ < N ,

1� F
1

(1��) < �+ ✏ for all � 2 [0, 1]. Note that 1

4

⇣

1

2

�+ 1��
�
q
⌘

2

� 1

2

(1� �)q

for all q.

The expected profit of replacement can be bounded above by

⇡(q)� k  1

4

⇣1

2
�+

1� �

�
q
⌘

2

=
1

16

⇣

�+
(1� �)2

�

⇥

1� F
1

(ŝ)
⇤

w
⌘

2

 1

16

⇣

�+
(1� �)2

�

⇥

1� F
1

(ŝ)
⇤

⌘

2

.
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Thus, the board’s expected profit can be bounded for ŝ 2 [1��, 1]:

⇡(ŝ)  1

2

⇥

1� F
1

(ŝ)
⇤

⇢

1� F
1

(ŝ)

2
(1� �)2 +

1� F
1

(ŝ)

[1� F
1

(ŝ)] + [1� F
0

(ŝ)]
�2
�

w(1� w)

+
1

32

⇥

F
1

(ŝ) + F
0

(ŝ)
⇤

⇣

�+
(1� �)2

�

⇥

1� F
1

(ŝ)
⇤

⌘

2

 1

8

⇥

1� F
1

(ŝ)
⇤

⇢

1� F
1

(ŝ)

2
(1� �)2 +

1� F
1

(ŝ)

[1� F
1

(ŝ)] + [1� F
0

(ŝ)]
�2
�

+
1

16

⇣

�+
(1� �)2

�

⇥

1� F
1

(ŝ)
⇤

⌘

2

<
1

8
(�+ ✏)

h�+ ✏

2
(1� �)2 + �2

i

+
1

16

h

�+
(1� �)2

�
(�+ ✏)

i

2

.

Note that the last expression is increasing in �+ ✏. It su�ces to prove that

1

16
�2 <

1

16

⇥

(1� �)2 + �2
⇤

.

Consequently, we can always find su�ciently small � and ✏ such that

1

8
(�+ ✏)

h�+ ✏

2
(1��)2+�2

i

+
1

16

h

�+
(1� �)2

�
(�+ ✏)

i

2

<
1

16

⇥

(1��)2+�2
⇤

.

Next, notice that ⇡(ŝ) is the maximum expected profit without the limited

liability constraint of k. Thus ⇡(ŝ)  ⇡(ŝ) for all ŝ 2 [0, 1].

Given ✏, the expected profit for ↵ < N for all ŝ 2 [1
2

, 1 ��] is bounded above
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by

⇡(ŝ)  1

16

h

1� F
1

(ŝ)
ih

(1� �)2 + �2
1

1� ŝ

ih

[1� F
1

(ŝ)] + x̂f
1

(ŝ)
i

 1

16
(1� ŝ+ ✏)

h

(1� �)2 + �2
1

1� ŝ

i

⇥

(1� ŝ+ ✏) + ŝ(1 + ✏)
⇤

 1

16

⇣

1 +
✏

�

⌘h1

2
(1� �)2 + �2

i

(1 + 2✏).

It remains to prove that 1

16

h

1

2

(1��)2+�2
i

< 1

16

⇥

(1��)2+�2
⇤

, which is obvious.

2. Anti-entrenchment:

For ŝ 2 [0, 1
2

], the expected profit can be bounded above by

⇡(ŝ;↵)  1

16

h

1� F
1

(ŝ;↵)
ih

(1� �)2 + �2
1

1� ŝ

ih

[1� F
1

(ŝ;↵)] + x̂f
1

(ŝ;↵)
i

<
3

32

h

(1� �)2 + 2�2
i

.

It remains to find ŝ > 1

2

that yields a profit no less than 3

32

[(1� �)2 + 2�2]. For

notational convenience, let  =
�

�
1��

�

2

. � <
p
2�1 directly implies that  < 1

2

.

By the limited liability constraint of k, we have

f
1

(ŝ)

f
1

(ŝ) + f
0

(ŝ)

⇥

(1� �)q + �e
⇤

(1� w)  ⇡(q).

Notice that f1(ŝ)
f1(ŝ)+f0(ŝ)

< 1, it su�ces to satisfy

1� F
1

(ŝ)

4
(1��)2w �

⇢

1� F
1

(ŝ)

2
(1� �)2 +

1� F
1

(ŝ)

[1� F
1

(ŝ)] + [1� F
0

(ŝ)]
�2
�

w(1�w),
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and

1� F
1

(ŝ;↵)

2
w � 1

2
 .

The second inequality comes from the construction that the board will not

induce e↵ort from the replacement manager. Let ŝ = 1

2

+(�) and w = 1

2

+◆(�).

Then it su�ces to find (, ◆) that yields a higher expected profit given �. Note

that the first inequality is independent of ↵. By Lemma A1, 1�F1(ŝ;↵)
2

can be

arbitrarily close to 1� ŝ when ↵ is su�ciently large. Thus, these two conditions

can be further simplified as

1

2

⇣1

2
� 
⌘

�
h⇣1

2
� 
⌘

+  
i⇣1

2
� ◆
⌘

,

and

2
⇣1

2
+ ◆
⌘⇣1

2
� 
⌘

�  .

) ◆ � max
n

1

2

 
1

2

� +  
,

 

1� 2
� 1

2

o

.

Let ◆ =
1
2 

1
2�+ 

. It can be verified that  < 1

4

if  < 1

2

� . The board’s expected

profit from the contract with the incumbent manager (w, k) that induces ŝ =

1

2

+  with wage w = 1

2

+ ◆ as ↵ ! 1 is

lim
↵!1

⇡(ŝ;↵) =
h

(1� �)2
�1

2
� 
�

+ �2
i⇣1

4
�

1

2

 
1

2

� +  

2

⌘

.
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Note that

lim
!0

lim
↵!1

⇡(ŝ;↵) = lim
!0

⇢

h

(1� �)2
�1

2
� 
�

+ �2
ih1

4
�
⇣

1

2

 
1

2

� +  

⌘

2

i

�

=
1

2

⇥

(1� �)2 + 2�2
⇤

h1

4
�
⇣

1

2

 
1

2

+  

⌘

2

i

>
3

32

⇥

(1� �)2 + 2�2
⇤

.

Thus, we can find su�ciently small  such that lim↵!1 ⇡(ŝ;↵) > 3

32

⇥

(1� �)2 +

2�2
⇤

. That is, anti-entrenchment is optimal to the board when ↵ is su�ciently

large and � <
p
2� 1.

Proof of Proposition 7.

1. Entrenchment:

It can be verified that ⇡(0;↵) = 1

16

. Similarly, ⇡(1;↵) = 0. Thus, ŝ = 1 is

never optimal. It su�ces to prove that there exists N such that for ↵ < N ,

⇡(ŝ) < ⇡(0) for all ŝ 2 [1
2

, 1].

Lemma A7 There exist � 2 (0, 1
2

) and N such that for ↵ < N , ⇡(ŝ;↵) <

⇡(0;↵) for all ŝ 2 [1��, 1].

Proof. Since q = max
�

1

2

[1�H
1

(ŝ)]w � 1

2

[H
0

(ŝ)�H
1

(ŝ)]k, 0
 

, the e↵ort level

of the incumbent manager can be bounded above by

q  1

2
[1�H

1

(ŝ)]w.
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Thus, the expected profit can be bounded above by

⇡(ŝ, q)  1

2
q[1�H

1

(ŝ)](1� w) +

(

1

2
qH

1

(ŝ) +

✓

1� 1

2
q

◆

H
0

(ŝ)

)

✓

1

2
q � k

◆

 1

2
q[1�H

1

(ŝ)](1� w) +
1

2
q

(

1

2
qH

1

(ŝ) +

✓

1� 1

2
q

◆

H
0

(ŝ)

)

 1

2
q
⇥

[1�H
1

(ŝ)] + 1
⇤

 q < 1�H
1

(ŝ).

Let � = 1

32

. By Lemma A2, for ✏0 = 1

32

, there exists N such that for ↵ < N ,

H
1

(ŝ) � ŝ� ✏0 for all ŝ 2 [0, 1]. Since ŝ � 1��, we have

⇡(ŝ, q) < 1�H
1

(ŝ)  1� ŝ+ ✏0  �+ ✏0 =
1

16
= ⇡(0;↵).

Lemma A8 Given any � 2 (0, 1
2

) and q 2 [0, 1], for any ✏ > 0, there exists N 0

such that for ↵ < N 0
,

1
2 qh1(ŝ)

1
2 qh1(ŝ)+(1� 1

2 q)h0(ŝ)
 1

2

q + ✏ for ŝ 2 [1
2

, 1��].

Proof. For any ✏ > 0, let ✏0 = ✏
1+✏

. By the definition of the completely

uninformative information structure, there exists N 0 such that for ↵ < N 0,

h
1

(1� �;↵) < 1 + ✏0.

1

2

qh
1

(ŝ)
1

2

qh
1

(ŝ) +
�

1� 1

2

q
�

h
0

(ŝ)
� 1

2
q =

1

2
q
⇣

1� 1

2
q
⌘ h

1

(ŝ)� h
0

(ŝ)
1

2

qh
1

(ŝ) +
�

1� 1

2

q
�

h
0

(ŝ)

 1

2

h
1

(ŝ)� h
0

(ŝ)

h
0

(ŝ)
=

h
1

(ŝ)� 1

2� h
1

(ŝ)

 h
1

(1� �;↵)� 1

2� h
1

(1� �;↵)
 ✏0

1� ✏0
= ✏.
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By Lemma A8, for all ŝ 2 [1
2

, 1��], ⇡(ŝ, q) can be bounded above by

⇡(ŝ, q)  1

2
q[1�H

1

(ŝ)](1� w) +

(

1

2
qH

1

(ŝ) +

✓

1� 1

2
q

◆

H
0

(ŝ)

)

✓

1

2
q + ✏

◆

(1� w)

 1

2
q(1� w)



⇥

1�H
1

(ŝ)
⇤

+
1

2
qH

1

(ŝ) +
⇣

1� 1

2
q
⌘

H
0

(ŝ)

�

+ ✏

 1

4
[1�H

1

(ŝ)][2�H
1

(ŝ)]w(1� w) + ✏

 1

16
(1� ŝ+ ✏)(2� ŝ+ ✏) + ✏ =

1

16

⇣1

2
+ ✏
⌘⇣3

2
+ ✏
⌘

+ ✏.

The last expression is strictly less than 1

16

for su�ciently small ✏.

2. Anti-entrenchment:

For ŝ 2 [0, 1
2

], ⇣(ŝ, q)  1

2

q. Thus,

⇡(ŝ, q) =
1

2
q[1�H

1

(ŝ)](1� w) +

(

1

2
qH

1

(ŝ) +

✓

1� 1

2
q

◆

H
0

(ŝ)

)

✓

1

2
q � k

◆

 1

2
q[1�H

1

(ŝ)](1� w) + ⇣(ŝ, q)(1� w)H
0

(ŝ)

 1

2
q(1� w)

⇥

1 +H
0

(ŝ)�H
1

(ŝ)
⇤

 1

4
w(1� w)

⇥

1�H
1

(ŝ)
⇤⇥

1 +H
0

(ŝ)�H
1

(ŝ)
⇤

 1

8
.

Next, we consider a fixed contract (w0, k0) = (4
5

, 0). It can be verified that this

contract will not yield an equilibrium with a replacement cuto↵ ŝ below 1

2

. To
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see this, notice that the e↵ort level under this contract is

q =
2

5
[1�H

1

(ŝ)].

The expected profit of replacement is,

1

2
q � k =

1

5
[1�H

1

(ŝ)].

The expected profit created by the manager on the margin is

1

2

qh
1

(ŝ)
1

2

qh
1

(ŝ) +
�

1� 1

2

q
�

h
0

(ŝ)
(1� w)  1

2
q(1� w) =

1

25
[1�H

1

(ŝ)], for ŝ 2 [0,
1

2
].

The indi↵erence condition of the board never holds for ŝ 2 [0, 1
2

]. Thus, the

only possible equilibrium replacement policy under this contract is ŝ > 1

2

. It

remains to prove that the profit of the contract is above 1

8

for su�ciently large

↵.

Lemma A9 For any � 2 (0, 1
2

), there exists N such that for ↵ > N , ŝ(↵) <

1

2

+� with contract (w0, k0) = (4
5

, 0).

Proof. It su�ces to prove that for any � 2 (0, 1
2

), there exists N such that for

↵ > N , the board’s indi↵erence condition never holds for all ŝ 2 [1
2

+�, 1] with

contract (w0, k0) = (4
5

, 0).
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The board’s indi↵erence condition can be simplified as

h
1

(ŝ;↵)

h
0

(ŝ;↵)
= 1 +

4

H
1

(ŝ;↵)
.

Since H
1

(ŝ) � 2ŝ� 1,

1 +
4

H
1

(ŝ;↵)
 1 +

4

H
1

(1
2

+�;↵)
 1 +

2

�
.

h1(ŝ;↵)
h0(ŝ;↵)

approaches infinity as ↵ ! 1 while 1 + 4

H1(ŝ;↵)
is bounded, which is a

contradiction.

For notational convenience, define ⇤(ŝ;↵) = 1 � H
1

(ŝ). The board’s expected

profit can be written as

⇡
�

ŝ(w0, k0;↵), q(w0, k0;↵)
�

=
1

5
⇤2(ŝ;↵)

⇣7

5
� 2

5
⇤(ŝ;↵)

⌘

+
1

5
⇤(ŝ;↵)

⇣

1� 1

5
⇤(ŝ;↵)

⌘

(2ŝ� 1)

� 1

5
⇤2(ŝ;↵)

⇣7

5
� 2

5
⇤(ŝ;↵)

⌘

� 1

5
⇤2(ŝ;↵).

By Lemma A1, given any ✏ > 0, there exists N such that for ↵ > N , ⇤(ŝ;↵) >

2(1� ŝ)� ✏ for all ŝ 2 [1
2

, 1]. Thus,

⇡
�

ŝ(w0, k0;↵), q(w0, k0;↵)
�

� 1

5

⇥

2(1� ŝ)� ✏
⇤

2 � 1

5
(1� 2�� ✏)2.
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Let � = ✏ = 1

24

. Then,

⇡
�

ŝ(w0, k0;↵), q(w0, k0;↵)
�

� 1

5
(1� 2�� ✏)2 =

49

320
� 1

8
.

A.2 Appendix: Normalization of information struc-

ture

In this section we first show that normalizing the signal space S to [0, 1] and assuming

1

2

F
1

(s) + 1

2

F
0

(s) = s are without loss of generality. Next we show that the three

assumptions imposed on
�

f
1

(·), f
0

(·)
 

can be derived from similar assumptions on

information structures without such normalization.

Suppose instead the board receives a noisy signal x 2 X about the incumbent

manager’s ability ✓i. x is drawn from distribution with cdf F̃✓i(·) and pdf f̃✓i(·) for

✓i 2 {0, 1} with support X = [x, x], where �1  x < x  1. Together with the

signal space X , the two conditional distributions
�

f̃
1

(·), f̃
0

(·)
 

define an information

structure.

Given an information structure
�

f̃
1

(·), f̃
0

(·),X
 

, define a new signal x by ap-

plying the probability integral transformation to x = 1

2

F̃
1

(x) + 1

2

F̃
0

(x). Then the

unconditional distribution of s is uniform on [0, 1]. Let F✓(s) and f✓(s) be the corre-

sponding conditional cdf and pdf for ✓i 2 {0, 1} respectively. It can be verified that

1

2

F
1

(s) + 1

2

F
0

(s) = s for all s 2 [0, 1].

96



Assumption 6 The monotone likelihood ratio property (MLRP):

˜f1(x)
˜f0(x)

is strictly in-

creasing in x 2 [x, x].

Assumption 6 directly implies Assumption 1. For binary states, the MLRP as-

sumption is without loss of generality since it can always be satisfied by relabeling

signals according to the likelihood ratio.

Lemma A10 Suppose two information structures {f̃
1

(·), f̃
0

(·),X} and {f̃ †
1

(·), f̃ †
0

(·),X †}

generate the same distribution of posterior beliefs with prior Pr(✓i = 1) = 1

2

. Then

they yield the same distribution of posterior beliefs with all prior Pr(✓i = 1) 2 (0, 1).

The proof of Lemma A10 is similar to Lemma 3 and thus is omitted. Since

entrenchment (anti-entrenchment) is defined by comparing the expected ability of the

incumbent manager with that of the replacement manager, only the posterior belief

about the incumbent manager matters. By Lemma A10, we can restrict attention to

the information structures that satisfy 1

2

F
1

(s) + 1

2

F
0

(s) = s for s 2 [0, 1] without loss

of generality.

Assumption 7 Perfectly informative at extreme signals: limx!x
˜f1(x)
˜f0(x)

= 0 and

limx!x
˜f1(x)
˜f0(x)

= +1.

Assumption 8 There exists x̌ 2 (x, x) such that f̃
0

(x) = f̃
1

(2x̌� x).

Assumptions 7 and 8 directly imply Assumptions 2 and 3, respectively. We close

this section by introducing two indexed families of information structures that satisfy

Assumptions 6 – 8. The corresponding normalized signals after probability integral

transformation also satisfy Assumption 4.
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Example 2 (Normal Distribution) Suppose x = ✓i + ✏ for ✓i 2 {0, 1}, where

✏ ⇠ N (0,↵�1). Then x|✓ ⇠ N (✓,↵�1).

Example 3 (Beta Distribution) Suppose f̃
1

(x;↵) = (1 + ↵)x↵ and f̃
0

(x;↵) =

(1 + ↵)(1 � x)↵ for x 2 [0, 1]. Then F̃
1

(x;↵) = x1+↵
and F̃

0

(s;↵) = 1 � (1 � x)1+↵.

This example is borrowed from Taylor and Yildirim (2011).

For both examples, ↵ 2 (0,1) is interpreted as the informativeness of the infor-

mation structure.

A.3 Appendix: Properties of the ⇢-concave order

By Lemma A5, the ⇢-concave order implies the rotation order first introduced by

Johnson and Myatt (2006) with Pr(✓i =
1

2

). It can be verified that for a di↵erent

prior, the rotation order does not remain. Intuitively, if the information structure

becomes more informative, more densities concentrate on p = 0 and p = 1, and the

distribution becomes more disperse.

Lemma A11 (Bayesian update) Suppose G
1

(·) is more informative than G
2

(·) in

the ⇢-concave order. Then '(s|G
1

) � '(s|G
2

) for s 2 (1
2

, 1] and '(s|G
1

)  '(s|G
2

)

for s 2 (0, 1
2

].

Proof. Since G
1

(0) = G
2

(0) = 0 and G
1

(1
2

) = G
2

(1
2

) = 1

2

and G
1

(p) � G
2

(p)

for p 2 [0, 1
2

] by Lemma A5, G�1

1

(s)  G�1

2

(s) for s 2 [0, 1
2

]. Thus '(s|G
1

) =

G�1
1 (s)

G�1
1 (s)+[1�G�1

1 (s)]
 G�1

2 (s)

G�1
2 (s)+[1�G�1

2 (s)]
= '(s, |G

2

). The proof for s 2 (1
2

, 1] is similar.
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Lemma A11 shows the implication of the ⇢-concave order on the Bayesian update

of the incumbent manager’s ability. The posterior belief '(x;↵) rotates counter-

clockwise via (1
2

, 1
2

) the as information structure becomes more informative. In other

words, a fixed signal x has more information value to the board as the information

structure becomes more informative.

Lemma A12 (Comparison with Blackwell’s su�ciency) If G
1

(·) is more in-

formative than G
2

(·) in the ⇢-concave order, G
1

(·) is more informative than G
2

(·) in

the sense of Blackwell.

Proof.

Lemma A13 F
1

(s|G
1

)  F
1

(s|G
2

) and F
0

(s|G
1

) � F
0

(s|G
2

) for s 2 [0, 1].

Proof. From the proof of Lemma A11, G�1

1

(s)  G�1

2

(s) for s 2 [0, 1
2

].

1. For s 2 [0, 1
2

],

F
1

(s|G
1

) =

Z s

0

f
1

(t|G
1

)dt =

Z s

0

2G�1

1

(t)dt 
Z s

0

2G�1

2

(t)dt = F
1

(s|G
2

).

2. For s 2 (1
2

, 1],

F
1

(s|G
1

) =

Z s

0

f
1

(t|G
1

)dt =

Z

1�s

0

f
1

(t|G
1

)dt+

Z s

1�s

f
1

(t|G
1

)dt

=

Z

1�s

0

f
1

(t|G
1

)dt+
1

2
(2s� 1)


Z

1�s

0

f
1

(t|G
2

)dt+

Z s

1�s

f
1

(t|G
2

)dt = F
1

(s|G
2

).
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Thus, F
1

(s|G
1

)  F
1

(s|G
2

) for s 2 [0, 1]. Similarly, F
0

(s|G
1

) � F
0

(s|G
2

).

Note that for binary states, Blackwell’s order is equivalent to Lehmann’s order.

Thus, it su�ces to prove that for ! 2 (0, 1),

F
1

(F�1

0

(!|G
1

)|G
1

)  F
1

(F�1

0

(!|G
2

)|G
2

).

Suppose we have the contrary, then there exists !0 such that,

F
1

(F�1

0

(!0|G
1

)|G
1

) > F
1

(F�1

0

(!0|G
2

)|G
2

).

By Lemma A13, it follows directly that F�1

0

(!0|G
1

) > F�1

0

(!0|G
2

). However, F�1

0

(!0|G
1

) >

F�1

0

(!0|G
2

) cannot be true. To see this, let s
1

= F�1

0

(!0|G
1

) and s
2

= F�1

0

(!0|G
2

).

Then s
1

> s
2

and F
0

(s
1

|G
1

) = F
0

(s
2

|G
1

) = !0. Again by Lemma A13, we have

F
0

(s
1

|G
1

) > F
0

(s
2

|G
1

) � F
0

(s
2

|G
2

), which is a contradiction.
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Appendix B

Appendix for Chapter 2

B.1 Appendix: Proofs of the propositions

Proof of Lemma 7. Suppose p
2

2 B and p0
2

2 NB, conditions (2.6) implies that

�(p
2

)  0 and �(p0
2

) = 0. Thus, Q
2

(p
2

) = p
2

F
2

(p
2

) > 0 ) �(p
2

) = 0. The first order

conditions (2.5c) imply that:

(1� q̃)u0(y + g �Q
2

(p
2

)) = (1� q)µ+
�(p

2

) + �(p
2

)

(1� p
1

)�(p
2

)

 (1� q)µ+
�(p0

2

) + �(p0
2

)

(1� p
1

)�(p0
2

)
= (1� q̃)u0(y + g �Q

2

(p0
2

)).

Since u(·) is strictly concave, it must be that Q
2

(p
2

)  Q
2

(p0
2

). Similarly, it can be

proved that F
2

(p
2

) � F
2

(p0
2

).

To prove p
2

< p0
2

, suppose p
2

� p0
2

instead. Then we have

Q
2

(p
2

)  Q
2

(p0
2

) < p0
2

F
2

(p0
2

)  p
2

F
2

(p
2

),
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which is a contradiction to p
2

2 B.

Proof of Lemma 8. Suppose there exist two health states pi
2

6= 0 and pj
2

6= 0 such

that Q
2

(pi
2

) > 0 and Q
2

(pj
2

) = 0, then �(pi
2

) = 0 and �(pj
2

) � 0. Moreover, �(pi
2

)  0

and �(pj
2

) = 0. From the first order conditions (2.5c) we have:

(1� q̃)u0(y + g �Q
2

(pi
2

)) = (1� q)µ+
�(pi

2

) + �(pi
2

)

(1� p
1

)�(pi
2

)

 (1� q)µ+
�(pj

2

) + �(pj
2

)

(1� p
1

)�(pj
2

)
= (1� q̃)u0(y + g �Q

2

(pj
2

)).

Thus, u0(y + g � Q
2

(pi
2

))  u0(y + g � Q
2

(pj
2

)). By the strict concavity of u(·),

Q
2

(pi
2

)  Q
2

(pj
2

), which is a contradiction.

Proof of Lemma 10.

Lemma B1 If � = 0, Q
2

(p
2

) > 0 for all p
2

2 (0, 1].

Proof. Suppose there exists a health state p̂
2

2 (0, 1] such that Q
2

(p̂
2

) = 0, then

�(p̂
2

) > 0. Since F
2

(p
2

) > 0 for all p
2

> 0, p̂
2

F
2

(p̂
2

) � Q
2

(p̂
2

) > 0 ) �(p̂
2

) = 0.

Since � = 0, combining first order conditions (2.5a) and (2.5c) yields u0(y + g) =

u0(y + g �Q
2

(p̂
2

)) � µ = u0(y � g �Q
1

), which is a contradiction.

Lemma B2 Fixing q, if there exist � and �0
such that Q

2

(p
2

) > 0 and Q0
2

(p
2

) = 0

for all p
2

2 (0, 1], then � < �0
.

Proof. Suppose � � �0 instead, then q̃  q̃0. Since Q0
2

(p
2

) = 0 for all p
2

2 (0, 1],

�0(p
2

) � 0 and �0(p
2

) = 0 for all p
2

2 (0, 1]. Similarly, �(p
2

) = 0 and �(p
2

)  0 for all
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p
2

2 (0, 1]. From (2.5c) and (2.5d), we have:

v0(F 0
2

(p
2

)) = u0(y + g �Q0
2

(p
2

))� �0(p
2

)

(1� q̃0)(1� p
1

)�(p
2

)

< u0(y + g �Q
2

(p
2

)) = v0(F
2

(p
2

)) for all p
2

2 (0, 1].

The last strict inequality follows from that �(p
2

) = 0 and Q
2

(p
2

) > Q0
2

(p
2

) = 0. Thus,

F 0
2

(p
2

) > F
2

(p
2

) for all p
2

2 (0, 1] by the strict concavity of v(·).

Combining conditions (2.5b) and (2.5c) yields:

(1� q)v0(F
1

) = (1� q̃)u0(y + g �Q
2

(p
2

))� �(p
2

) + �(p
2

)

(1� p
1

)�(p
2

)

� (1� q̃)u0(y + g �Q
2

(p
2

))

> (1� q̃0)u0(y + g �Q0
2

(p
2

))

� (1� q̃0)u0(y + g �Q0
2

(p
2

))� �0(p
2

) + �0(p
2

)

(1� p
1

)�(p
2

)
= (1� q)v0(F 0

1

).

Therefore (1� q)v0(F 0
1

) < (1� q)v0(F
1

) ) F 0
1

> F
1

andQ0
1

< Q
1

.

Hence,

0 = (Q0
1

� p
1

F 0
1

) + (1� p
1

)(1� q)

Z

1

0

[Q0
2

(p
2

)� p
2

F 0
2

(p
2

)]d�(p
2

)

< (Q
1

� p
1

F
1

) + (1� p
1

)(1� q)

Z

1

0

[Q
2

(p
2

)� p
2

F
2

(p
2

)]d�(p
2

) = 0,

which is a contradiction.

Lemma B3 Fixing q̃, there exists at least one q 2 [q̃, 1) such that Q
2

(pi
2

) = 0 for
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some pi
2

6= 0.

Proof. Suppose to the contrary that there exists a q̃ such that Q
2

(p
2

) > 0 for all

q 2 [q̃, 1). This implies that �(p
2

)  0 and �(p
2

) = 0 for all p
2

2 (0, 1]. We must have

v0(F
2

(p
2

)) = u0(y+g�Q
2

(p
2

)) > u0(y+g) for all p
2

2 (0, 1]. Hence F
2

(p
2

) is bounded

from above by v0�1(u0(y + g)). The first period profit is bounded from above by,

0  Q
1

� p
1

F
1

< (1� p
1

)(1� q)p
2

v0
�1(u0(y + g)), (B.1)

where, p
2

⌘
R

1

0

p
2

d�(p
2

) is the expected mortality rate in period 2. Taking left limit

of (B.1) yields:

0  lim
q!1

�
(Q

1

� p
1

F
1

)  lim
q!1

�
(1� p)(1� q)p

2

v0
�1(u0(y + g)) = 0.

Thus, limq!1

�(Q
1

� p
1

F
1

) = 0 ) limq!1

� F
1

= F FI
1

and limq!1

� Q
1

= QFI
1

, where

hQFI
1

, F FI
1

i is the solution to the following pair of equations:

u0(y � g �Q
1

FI) = v0(F
1

FI),

p
1

F
1

FI �Q
1

FI = 0.

Plugging (2.5b) into (2.5d) yields:

(1� q̃)v0(F
2

(p
2

)) = (1� q)v0(F
1

) +
�(p

2

)

(1� p
1

)�(p
2

)
.

Note that limq!1

�(1� q̃)v0(F
2

(p
2

)) � limq!1

�(1� q̃)u0(y + g) > 0 while limq!1

�(1�
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q)v0(F
1

) + �(p2)
(1�p1)�(p2)

 0, which is a contradiction.

Lemma B4 Fixing q̃, there exists a threshold q
0

(q̃) < 1 such that Q
2

(p
2

)=0 for all

p
2

2 (0, 1] if q > q
0

(q̃) and Q
2

(p
2

) > 0 for all p
2

2 (0, 1] if q < q
0

(q̃). Moreover, q
0

(q̃)

is weakly increasing in q̃.

Proof. Lemma B1 states that Q
2

(p
2

) > 0 for all p
2

2 (0, 1] if q = q̃. Similarly,

Lemma B3 together with Lemma B2 tells that there exists at least one q with q > q̃

such that Q
2

(p
2

) > 0 for all p
2

2 (0, 1]. To prove the existence of threshold q
0

(q̃),

suppose to the contrary that there exist q0 and q with q0 > q such that Q
2

(p
2

) = 0 and

Q0
2

(p
2

) > 0 for all p
2

2 (0, 1]. Then �(p
2

) = 0, �0(p
2

)  0, �(p
2

) � 0 and �0(p
2

) = 0.

From (2.5c) and (2.5d), we have:

v0(F
2

(p
2

)) = u0(y + g �Q
2

(p
2

))� �(p
2

)

(1� q̃)(1� p
1

)�(p
2

)

< u0(y + g �Q0
2

(p
2

)) = v0(F 0
2

(p
2

)) for all p
2

2 (0, 1].

The last strict inequality follows from that �(p
2

) � 0 and Q0
2

(p
2

) > Q
2

(p
2

) = 0.

Therefore F
2

(p
2

) > F 0
2

(p
2

) for all p
2

2 (0, 1] by the strict concavity of v(·). Combining
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conditions (2.5b) and (2.5c) yields:

v0(F
1

) =
1� q̃

1� q
u0(y + g �Q

2

(p
2

))� �(p
2

) + �(p
2

)

(1� p
1

)(1� q)�(p
2

)

 1� q̃

1� q
u0(y + g �Q

2

(p
2

))

<
1� q̃

1� q0
u0(y + g �Q0

2

(p
2

))

 1� q̃

1� q0
u0(y + g �Q0

2

(p
2

))� �0(p
2

) + �0(p
2

)

(1� p
1

)(1� q0)�(p
2

)
= v0(F 0

1

).

Thus, F
1

> F 0
1

and Q
1

< Q0
1

. Hence,

0 = (Q0
1

� p
1

F 0
1

) + (1� p
1

)(1� q0)

Z

1

0

[Q0
2

(p
2

)� p
2

F 0
2

(p
2

)]d�(p
2

)

> (Q
1

� p
1

F
1

) + (1� p
1

)(1� q)

Z

1

0

[Q
2

(p
2

)� p
2

F
2

(p
2

)]d�(p
2

) = 0,

which is a contradiction.

To prove that q
0

(q̃) is weakly increasing in q̃, suppose there exists q̃
1

> q̃
2

such that

q
0

(q̃
1

) < q
0

(q̃
2

). It follows directly that q̃
2

< q̃
1

< q
0

(q̃
1

) < q
0

(q̃
2

). Fix q = q0(q̃1)+q0(q̃2)
2

.

Because q < q
0

(q̃
2

), all period 2 premiums except health state p
2

= 0 are positive

if q̃ = q̃
2

. Similarly, because q > q
0

(q̃
1

), all period 2 premiums are zero if q̃ = q̃
1

.

However, Lemma B2 implies that q̃
2

> q̃
1

, which is a contradiction.

Let q = q
0

(0). Suppose q < q. We want to show that Q
2

(p
2

) > 0 for all p
2

2 (0, 1]

and � 2 [0, 1]. Suppose to the contrary that there exists a q̃ such that Q
2

(p
2

) = 0

for all p
2

2 (0, 1]. By Lemma B4, q � q
0

(q̃) � q
0

(0) = q, which is a contradiction.
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Suppose q > q. If q̃ = 0 (i.e. � = 1), Lemma B4 implies that Q
2

(p
2

) = 0 for

all p
2

2 (0, 1]. If q̃ = q (i.e. � = 0), Lemma B1 implies that Q
2

(p
2

) > 0 for all

p
2

2 (0, 1]. Thus, from Lemma B2 there exists a threshold �(q) < 1 for q > q such

that Q
2

(p
2

) = 0 for all p
2

2 (0, 1] if � > �(q) and Q
2

(p
2

) > 0 for all p
2

2 (0, 1] if

� < �.

Proof of Proposition 9. Suppose to the contrary that �̂ < � (ˆ̃q > q̃) and

Q̂
1

� Q
1

. Equation (2.7) implies that F̂
1

 F
1

. If health state p
2

binds under �̂,

then Q̂
2

(p
2

)� p
2

F̂
2

(p
2

) = 0 � Q
2

(p
2

)� p
2

F
2

(p
2

).

If health state p
2

does not bind under �̂, we have:

(1� q̃)v0(F
2

(p
2

)) = (1� q)v0(F
1

) +
�(p

2

)

(1� p
1

)�(p
2

)

 (1� q)v0(F̂
1

) = (1� ˆ̃q)v0(F̂
2

(p
2

)).

Because ˆ̃q > q̃, we must have (1� ˆ̃q)v0(F̂
2

(p
2

)) � (1� q̃)v0(F
2

(p
2

)). Thus, v0(F̂
2

(p
2

)) >

v0(F
2

(p
2

)). By the strict concavity of v(·), F̂
2

(p
2

) < F
2

(p
2

) if p
2

2 NB under �̂.

If �(p
2

) = 0, we have (1 � ˆ̃q)u0(y + g � Q̂
2

(p
2

)) � (1 � q̃)u0(y + g � Q
2

(p
2

)) )

Q̂
2

(p
2

) � Q
2

(p
2

). If �(p
2

) > 0, then we have Q̂
2

(p
2

) � Q
2

(p
2

) = 0. Either way,

Q̂
2

(p
2

) � Q
2

(p
2

). The profit under �̂ is:

(Q̂
1

� p
1

F̂
1

) + (1� p
1

)(1� q)

Z

1

0

[Q̂
2

(p
2

)� p
2

F̂
2

(p
2

)]d�(p
2

)

> (Q
1

� p
1

F
1

) + (1� p
1

)(1� q)

Z

1

0

[Q
2

(p
2

)� p
2

F
2

(p
2

)]d�(p
2

) = 0,
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where the last inequality follows from postulated p⇤
2

< 1. This is a contradiction to

the zero-profit condition (2.2).

To prove that p̂⇤
2

> p⇤
2

, suppose instead p̂⇤
2

 p⇤
2

. It follows immediately that

Q̂⇤
2

 Q⇤
2

and F̂ ⇤
2

� F ⇤
2

. Moreover, we have Q̂
1

< Q
1

and F̂
1

> F
1

. The profit under

�̂ is bounded above by

(Q̂
1

� p
1

F̂
1

) + (1� p
1

)(1� q)

(

Z p̂⇤2

0

[Q̂
2

� p
2

F̂
2

]d�(p
2

) +

Z

1

p̂⇤2

[Q̂
2

� p
2

F̂
2

]d�(p
2

)

)

= (Q̂
1

� p
1

F̂
1

) + (1� p
1

)(1� q)

Z

1

p̂⇤2

[Q̂⇤
2

� p
2

F̂ ⇤
2

]d�(p
2

)

= (Q̂
1

� p
1

F̂
1

) + (1� p
1

)(1� q)

(

Z p⇤2

p̂⇤2

[Q̂⇤
2

� p
2

F̂ ⇤
2

]d�(p
2

) +

Z

1

p⇤2

[Q̂⇤
2

� p
2

F̂ ⇤
2

]d�(p
2

)

)

< (Q
1

� p
1

F
1

) + (1� p
1

)(1� q)

Z

1

p⇤2

[Q⇤
2

� p
2

F ⇤
2

]d�(p
2

) = 0,

which again is a contradiction to the zero-profit condition (2.2).

Proof of Proposition 10. Similar to the proof of Proposition 9, we can show

that if p⇤
2

= 1 for some �̂, p⇤
2

= 1 for all � < �̂. Therefore it su�ces to discuss the

following three cases.

Case I: If the period 2 equilibrium contracts for all p
2

are spot contracts under some

(q,�). It is obvious that decreasing� does not change the equilibrium contracts

and consumer welfare stays constant.

Case II: Suppose p⇤
2

= 0. By Lemma 10, p⇤
2

0 = 0 for�0 > �. In this case, Q
2

(p
2

) = 0

and F
2

(p
2

) remain constant. Define F
2

by F
2

⌘ F
2

(p
2

). The optimal contracts
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can be pinned down by the following system of equations:

(1� q̃)v0(F
2

) = (1� q)v0(F
1

), (B.2a)

v0(F
1

) = u0(y � g �Q
1

), (B.2b)

(Q
1

� p
1

F
1

)� (1� p
1

)(1� q)p
2

F
2

= 0. (B.2c)

Taking derivative with respect to � for (B.2c) yields:

dQ
1

d�
� p

1

dF
1

d�
= (1� p

1

)(1� q)p
2

dF
2

d�
. (B.3)

The derivative with respect to � for W (q,�) can be simplified as:

@W (q,�)

@�

= �u0(y � g �Q
1

)
dQ

1

d�
+ p

1

v0(F
1

)
dF

1

d�
+ (1� p

1

)(1� q)p
2

v0(F
2

)
dF

2

d�

= v0(F
1

)

✓

�dQ
1

d�
+ p

1

dF
1

d�

◆

+ (1� p
1

)(1� q)p
2

v0(F
2

)
dF

2

d�

= �(v0(F
1

)� v0(F
2

))

✓

dQ
1

d�
� p

1

dF
1

d�

◆

.

Noting that v0(F
1

)� v0(F
2

) = q�q̃
1�q

v0(F
2

) � 0 by (B.2a) and dQ1

d�
> 0 and dF1

d�
< 0

by Proposition 9, we must have @W (q,�)

@�
 0.

Case III: Suppose 0 < p⇤
2

< 1, p⇤
2

is strictly decreasing � by Proposition 9. Thus,

there exists a one-to-one mapping between � and p⇤
2

. Once p⇤
2

is determined,

the optimal contract is pinned down. Hence, to show W (q,�) is decreasing in
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� is equivalent to show that consumer welfare is increasing in p⇤
2

.

Denote W p(p⇤
2

) by:

W p(p⇤
2

) =[u(y � g �Q
1

(p⇤
2

)) + p
1

v(F
1

(p⇤
2

))]

+ (1� p
1

)(1� q)

Z p⇤2

0

[u(y + g �QFI
2

(p
2

)) + p
2

v(F FI
2

(p
2

))]d�(p
2

)

+ (1� p
1

)(1� q)

Z

1

p⇤2

[u(y + g �QFI
2

(p⇤
2

)) + p
2

v(F FI
2

(p⇤
2

))]d�(p
2

),

where hQ
1

(p⇤
2

), F
1

(p⇤
2

)i is the solution to the following pair of equations:

u0(y � g �Q
1

(p⇤
2

)) = v0(F
1

(p⇤
2

)), (B.4a)

Q
1

(p⇤
2

)� p
1

F
1

(p⇤
2

) = (1� p
1

)(1� q)

Z

1

p⇤2

[p
2

F FI
2

(p⇤
2

)�QFI
2

(p⇤
2

)]d�(p
2

). (B.4b)

Taking derivative with respect to p⇤
2

for (B.4b) yields:

(1� p
1

)(1� q)

Z

1

p⇤2

 

p
2

dF FI
2

dp⇤
2

� dQFI
2

dp⇤
2

!

d�(p
2

) = �
✓

p
1

dF
1

dp⇤
2

� dQ
1

dp⇤
2

◆

.
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Taking derivative with respect to p⇤
2

for W p(p⇤
2

) yields:

dW p(p⇤
2

)

dp⇤
2

= v0(F
1

)

✓

p
1

dF
1

dp⇤
2

� dQ
1

dp⇤
2

◆

+ (1� p
1

)(1� q)[u(y + g �QFI
2

(p⇤
2

)) + p
2

v(F FI
2

(p⇤
2

))]

+ (1� p
1

)(1� q)

Z

1

p⇤2

v0(F
2

)

 

p
2

dF FI
2

dp⇤
2

� dQFI
2

dp⇤
2

!

d�(p
2

)

� (1� p
1

)(1� q)[u(y + g �QFI
2

(p⇤
2

)) + p
2

v(F FI
2

(p⇤
2

))]

= v0(F
1

)

✓

p
1

dF
1

dp⇤
2

� dQ
1

dp⇤
2

◆

+ (1� p
1

)(1� q)

Z

1

p⇤2

v0(F
2

)

 

p
2

dF FI
2

dp⇤
2

� dQFI
2

dp⇤
2

!

d�(p
2

)

= [v0(F
1

)� v0(F
2

)]

✓

p
1

dF
1

dp⇤
2

� dQ
1

dp⇤
2

◆

.

By Proposition 9, p⇤
2

and F
1

are decreasing in �, and Q
1

is increasing in �.

Thus, dF1
dp⇤2

� 0 and dQ1

dp⇤2
 0. Thus, dW p

(p⇤2)
dp⇤2

� 0 ) @W (q,�)

@�
� 0.

Proof of Lemma 11. Suppose to the contrary that there exists a tuple (q,�) such

that Q
2s(pi

2

) = 0 for some health state pi
2

2 (0, 1]. This implies that �(pi
2

) � 0 and

�(pi
2

) = 0. From (2.19a) and (2.19c), we have:

(1�q̃)u0(y+g)+�q̃u0(y+g+�V
2s(p

i
2

)) = u0(y�g�Q
1s)+

�(pi
2

) + �(pi
2

)

(1� p
1

)�(pi
2

)
� u0(y�g�Q

1s),

which is a contradiction since (1 � q̃)u0(y + g) + �q̃u0(y + g + �V
2s(pi

2

))  [1 � (1 �

�)q̃]u0(y + g) < u0(y � g �Q
1s).

Proof of Lemma 13. Suppose there exists a tuple (q,�) such that p⇤
2s < p

1

, then
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the no-lapsation condition (2.17) of the period 2 health state p
2

= p
1

does not bind

(i.e. �(p
1

) = 0) and Q
2s(p1)� p

1

F
2s(p1) < 0.

Noting that u0(y+g�Q
2s(p1)) > (1�q̃)u0(y+g�Q

2s(p1))+�q̃u0(y+g+�V
2s(p1)) =

u0(y � g �Q
1s), we must have Q

2s(p1) > Q
1s + 2g and F

2s(p1) < F
1s.

Hence, 0 > Q
2s(p1) � p

1

F
2s(p1) > Q

1s + 2g � p
1

F
1s ) Q

1s � p
1

F
1s < �2g  0,

which is a contradiction to (2.16).

Proof of Proposition 12. Suppose �̂ < � (ˆ̃q > q̃) and F̂
1s  F

1s. This implies

directly that Q̂
1s � Q

1s.

If health state p
2

binds under �̂, then Q̂
2s(p2) � p

2

F̂
2s(p2) = 0 � Q

2s(p2) �

p
2

F
2s(p2).

If health state p
2

does not bind under �̂, from (2.19b) and (2.19d) we have:

(1� q̃)v0(F
2s(p2)) + �q̃u0(y + g + �V

2s(p2))

= v0(F
1s) +

�(p
2

)

(1� p
1

)�(p
2

)

 v0(F̂
1s)

= (1� ˆ̃q)v0(F̂
2s(p2)) + � ˆ̃qu0(y + g + �V̂

2s(p2)). (B.5)

Next, we prove that F̂
2s(p2) < F

2s(p2). Suppose not, then we must have F̂
2s(p2) �
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F
2s(p2) and Q̂

2s(p2)  Q
2s(p2). This implies that V̂

2s(p2) � V
2s(p2). Thus,

(1� q̃)v0(F
2s(p2)) + �q̃u0(y + g + �V

2s(p2))

> (1� ˆ̃q)v0(F
2s(p2)) + � ˆ̃qu0(y + g + �V

2s(p2))

� (1� ˆ̃q)v0(F̂
2s(p2)) + � ˆ̃qu0(y + g + �V̂

2s(p2)),

which is a contradiction to (B.5). Thus, when health state p
2

does not bind under

�̂, we must have F̂
2s(p2) < F

2s(p2) and Q̂
2s(p2) > Q

2s(p2) ) Q̂
2s(p2) � p

2

F̂
2s(p2) >

Q
2s(p2)� p

2

F
2s(p2). Hence,

(Q̂
1s � p

1

F̂
1s) + (1� p

1

)

Z

1

0

[Q̂
2s(p2)� p

2

F̂
2s(p2)]d�(p2)

> (Q
1s � p

1

F
1s) + (1� p

1

)

Z

1

0

[Q
2s(p2)� p

2

F
2s(p2)]d�(p2) = 0,

which is a contradiction to (2.16).

Proof of Proposition 13.

Lemma B5 Fixing q 2 [0, 1), if p⇤
2s < 1 under � and p̂⇤

2s = 1 under �̂, then � > �̂.

Proof. Suppose instead �  �̂ (i.e. q̃ � ˆ̃q). The threshold p̂⇤
2s = 1 implies

that the period 2 contracts with �̂ are spot contracts for all p
2

2 [0, 1]. Thus,

Q̂
2s(p2) = QFI

2

(p
2

). From (2.19a) and (2.19c), we have:

(1� ˆ̃q)u0(y + g �QFI
2

(p⇤
2s)) + � ˆ̃qu0(y + g)  u0(y � g � Q̂

1

).
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Similarly, we have:

(1� q̃)u0(y + g �Q
2

(p⇤
2s)) + �q̃u0(y + g + �V

2

(p⇤
2s)) = u0(y � g �Q

1

).

Since p⇤
2s < 1 and p̂⇤

2s = 1, we must have Q
1

> Q̂
1

from (2.16), which implies that

u0(y � g �Q
1

) > u0(y � g � Q̂
1

). Thus,

(1�ˆ̃q)u0(y+g�QFI
2

(p⇤
2s))+� ˆ̃qu

0(y+g) < (1�q̃)u0(y+g�Q
2

(p⇤
2s))+�q̃u

0(y+g+�V
2

(p⇤
2s)),

which is a contradiction since

(1� ˆ̃q)u0(y + g �QFI
2

(p⇤
2s)) + � ˆ̃qu0(y + g)

� (1� q̃)u0(y + g �QFI
2

(p⇤
2s)) + �q̃u0(y + g)

= (1� q̃)u0(y + g �Q
2

(p⇤
2s)) + �q̃u0(y + g + �V

2

(p⇤
2s)),

where the inequality follows from postulated q̃ � ˆ̃q and the equality follows from

Lemma 14.

By Lemma B5, it su�ces to discuss two cases:

Case I: For all �, p⇤
2s(q̃) = 1. Because the period 2 equilibrium contracts are spot

contracts for all p
2

2 [0, 1], hQ
2s(p2), F2s(p2) : p2 2 [0, 1]i are independent of �

and Ws(q,�) is constant with respect to �.

Case II: There exists a threshold � such that p⇤
2s < 1 if � > � and p⇤

2s = 1

if � < �. If � < �, the argument in Case I applies. If � > �, by implicit
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function theorem, p⇤
2s(�) is continuous and di↵erentiable. Notice that �(p

2

)  0

if p
2

2 Bs and �(p
2

) = 0 if p
2

2 NBs. The zero-profit condition (2.16) can be

written as:

(Q
1s � p

1

F
1s) + (1� p

1

)

Z

1

p⇤2s

[Q
2s(p2)� p

2

F
2s(p2)]d�(p2) = 0.

Taking derivative with respect to � for the above equation yields:

✓

@Q
1s

@�
� p

1

@F
1s

@�

◆

+(1�p
1

)

Z

1

p⇤2s

✓

@Q
2s(p2)

@�
� p

2

@F
2s(p2)

@�

◆

d�(p
2

) = 0. (B.6)

Taking derivative with respect to � for Ws(q,�) yields:

@Ws(q,�)

@�

= v0(F
1s)

✓

p
1

@F
1s

@�
� @Q

1s

@�

◆

+ (1� p
1

)

Z

1

p⇤2s

"

(1� q)v0(F
2s)

+�qu0(y + g + �V
2s)

#

✓

p
2

@F
2s

@�
� @Q

2s

@�

◆

d�(p
2

)

= (1� p
1

)

Z

1

p⇤2s

✓

@Q
2s

@�
� p

2

@F
2s

@�

◆

"

v0(F
1s)� (1� q)v0(F

2s)

��qu0(y + g + �V
2s)

#

d�(p
2

)

= (1� p
1

)(q � q̃)

Z

1

p⇤2s

✓

@Q
2s

@�
� p

2

@F
2s

@�

◆

"

u0(y + g �Q
2s)

��u0(y + g + �V
2s)

#

d�(p
2

),

where the second equality follows from (B.6) and the third equation follows

from the fact that (1 � q̃)v0(F
2s(p2)) + �q̃u0(y + g + �V

2s(p2)) = µ = v0(F
1s)
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if p
2

2 NB. Denote x(p
2

) ⌘ @Q2s(p2;�)

@�
� p

2

@F2s(p2;�)

@�
and y(p

2

) ⌘ u0(y + g �

Q
2s(p2;�)) � �u0(y + g + �V

2s(p2;�)). Because Q
2s(p2) and V

2s(p2) are both

non-negative, y(p
2

) � (1 � �)u0(y + g) > 0. Divide NBs into two subsets

NB+

s ⌘ {p
2

|p
2

2 NBs, x(p2) � 0} and NB�
s ⌘ {p

2

|p
2

2 NBs, x(p2) < 0}

depending on the sign of x(p
2

). For p
2

2 NBs, we must have �(p
2

) = 0. Notice

that q̃ = q(1��). Combing (2.19b) and (2.19c) yields:

(1� q̃)u0(y + g �Q
2s) + �q̃u0(y + g + �V

2s) = v0(F
1s). (B.7)

Taking derivative with respect to � for (B.7) and rearranging yields:

q
⇥

u0(y + g �Q
2s)� �u0(y + g + �V

2s)
⇤

= v00(F
1s)
@F

1s

@�
+ �2q̃u00(y + g + �V

2s)

✓

@Q
2s

@�
� p

2

@F
2s

@�

◆

+ (1� q̃)u00(y + g �Q
2s)
@Q

2s

@�
. (B.8)

Suppose pi 2 NB+

s and pj 2 NB�
s , x(pi) � 0 > x(pj) by definition. From (B.8)

we have y(pi) < y(pj) . Denote y ⌘ supp22NB+
s
y(p

2

) and y ⌘ infp22NB�
s
y(p

2

).

It follows directly that y � y. The derivative with respect to � for Ws(q,�)
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can be further simplified as:

@Ws(q,�)

@�

= (1� p
1

)(q � q̃)

Z

1

p⇤2s

x(p
2

)y(p
2

)d�(p
2

)

= (1� p
1

)(q � q̃)

 

Z

p22NB+
s

x(p
2

)y(p
2

)d�(p
2

) +

Z

p22NB�
s

x(p
2

)y(p
2

)d�(p
2

)

!

 (1� p
1

)(q � q̃)

 

Z

p22NB+
s

x(p
2

)yd�(p
2

) +

Z

p22NB�
s

x(p
2

)yd�(p
2

)

!

 (1� p
1

)(q � q̃)y

Z

1

p⇤2s

x(p
2

)d�(p
2

)

= (q � q̃)y

✓

p
1

@F
1s

@�
� @Q

1s

@�

◆

,

where the last equality follows from (B.6). Proposition 12 implies that p
1

@F1s
@�

�

@Q1s

@�
 0. Together with the fact that y > 0, we must have @Ws(q,�)

@�
 0.

Proof of Proposition 14.

Lemma B6 Fixing q̃, limq!1

(1�p
1

)(1�q)
R

1

0

[u(y+g�Q
2

(p
2

))+p
2

v(F
2

(p
2

))]d�(p
2

) =

0.

Proof. The result is obvious if v(·) is bounded. Suppose limc!1 v(c) = 1. By

Lemma B4, Q
2

(p
2

) = 0 for all p
2

2 [0, 1] if q > q
0

(q̃). Thus, limq!1

Q
2

(p
2

) = 0 and

limq!1

u(y+ g�Q
2

(p
2

)) = u(y+ g). The zero-profit condition (2.2) can be rewritten

as:

(1� p
1

)(1� q)

Z

1

0

F
2

(p
2

)d�(p
2

) = Q
1

� p
1

F
1

,
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where 0  Q
1

(q)� p
1

F
1

(q)  y � g. Thus,

0 
Z

1

0

p
2

v(F
2

(p
2

))d�(p
2

)


Z

1

0

v(p
2

F
2

(p
2

))d�(p
2

)

 v

 

Z

1

0

p
2

F
2

(p
2

)d�(p
2

)

!

 v

✓

y � g

(1� p
1

)(1� q)

◆

,

where the second and third inequalities come from the concavity of v(·). Hence,

0  lim
q!1

(1� p
1

)(1� q)

Z

1

0

p
2

v(F
2

(p
2

))d�(p
2

)

 lim
q!1

(1� p
1

)(1� q)v

✓

y � g

(1� p
1

)(1� q)

◆

= 0.

The last equality holds due to L’Hospital rule and the assumption that limc!1 v0(c) =

0. To see this,

lim
q!1

(1� p
1

)(1� q)v

✓

y � g

(1� p
1

)(1� q)

◆

= lim
x!0

v
�

y�g
x

�

1

x

= (y � g) lim
x!0

v0
✓

y � g

x

◆

= 0.

Therefore limq!1

(1 � p
1

)(1 � q)
R

1

0

p
2

v(F
2

(p
2

))d�(p
2

) = 0 ) limq!1

(1 � p
1

)(1 �

q)
R

1

0

[u(y + g �Q
2

(p
2

)) + p
2

v(F
2

(p
2

))]d�(p
2

) = 0.

Lemma B7 Let W †(q, q̃) ⌘ W (q, q�q̃
q
). If ⌘(c) � ↵ > 1 for all c, limq!1

W †(q, q̃) =

[u(0) + p
1

v(0)] + (1� p
1

)u(y + g) for all q̃ 2 [0, 1).

Proof. Fix q̃. When q > q
0

(q̃), Q
2

(p
2

) = 0 and �(p
2

) = 0 for all p
2

2 (0, 1] by Lemma
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B4. Combing (2.5b) and (2.5d) yields:

(1� q̃)v0(F
2

(p
2

)) = (1� q)v0(F
1

). (B.9)

Notice that F
2

(p
2

) � F
1

because q̃  q. Because ⌘(c) = � v0(c)
cv00(c) � ↵, 1

↵
v0(c) +

cv00(c) � 0 ) c
1
↵ v0(c) is weakly increasing in c. Thus,

F
1
↵
2

(p
2

)v0(F
2

(p
2

)) � F
1
↵
1

v0(F
1

). (B.10)

Equation (B.9), together with (B.10), implies that:

1� q

1� q̃
=

v0(F
2

(p
2

))

v0(F
1

(q))
�
✓

F
1

F
2

(p
2

)

◆

1
↵

.

Rearranging the above inequality yields:

F
2

(p
2

) � F
1

✓

1� q̃

1� q

◆↵

.

From the zero-profit condition (2.2) and the inequality above, we have:

p
1

F
1

+ (1� p
1

)(1� q)p
2

F
1

✓

1� q̃

1� q

◆↵

 p
1

F
1

+ (1� p
1

)(1� q)

Z

1

0

p
2

F
2

(p
2

)d�(p
2

) = Q
1

 y � g,
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where p
2

is defined as p
2

⌘
R

1

0

p
2

d�(p
2

). Thus,

0  F
1

 y � g

p
1

+ (1� p
1

)(1� q)p
2

⇣

1�q̃
1�q

⌘↵ .

Taking limit of the above inequality yields:

0  lim
q!1

F
1

(q)  lim
q!1

y � g

p
1

+ (1� p
1

)(1� q)p
2

⇣

1�q̃
1�q

⌘↵ = 0.

) lim
q!1

F
1

= 0 and lim
q!1

Q
1

= y � g.

Thus, limq!1

W †(q, q̃) = (u(0) + p
1

v(0)) + (1� p
1

)u(y + g).

Lemma B8 Let W †
s (q, q̃) ⌘ Ws(q,

q�q̃
q
). Suppose ⌘(c) � ↵ > 1 for all c. Fixing

q̃ 2 [0, 1), there exists a threshold q such that for q � q, W †
s (q, q̃) > W †(q, q̃).

Proof. Fixing q̃, note that the equilibrium contract with the presence of the set-

tlement market does not depend on q. Hence, limq!1

W †
s (q, q̃) = [u(y � g � Q

1s) +

p
1

v(F
1s)] + (1� p

1

)
R

1

0

u(y + g + �V
2s(p2))d�(p2).

Because (F
1s, Q1s) = (0, y�g) is possibly the most front-loading contract in period

1, we must have u(y � g � Q
1s) + p

1

v(F
1s) > u(0) + p

1

v(0). Together with the fact
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that u(y + g)  u(y + g + �V
2s(p2)), we must have

lim
q!1

W †(q, q̃)

= [u(0) + p
1

v(0)] + (1� p
1

)u(y + g)

< [u(y � g �Q
1s) + p

1

v(F
1s)] + (1� p

1

)

Z

1

0

u(y + g + �V
2s(p2))d�(p2)

= lim
q!1

W †
s (q, q̃).

Notice thatW †(q̃, q̃) � W †
s (q̃, q̃) by Lemma 15 and limq!1

W †(q, q̃) < limq!1

W †
s (q, q̃).

Fixing q̃, by the continuity ofW †(·, ·) and W †
s (·, ·), there exist a threshold q(q̃) 2 (q̃, 1)

such that W †
s (q, q̃) > W †(q, q̃) for q � q.

Let q ⌘ q(0). On the one hand, Lemma B8 implies that Ws(q, 1) = W †
s (q, 0) >

W †(q, 0) = W (q, 1) for q � q(0). On the other hand, Lemma 15 implies that

W (q, 0) � Ws(q, 0). Fix q � q. Because W (q,�) and Ws(q,�) are both contin-

uous in �, there exists a threshold � such that Ws(q,�) > W (q,�) if � > �.
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