
JOURNAL OF APPLIED PHYSICS VOLUME 37. NUMBER 3 1 MARCH 1966 

Relaxation in Antiferromagnets due to Spin-Wave Interactions 

A. BROOKS HARRIS* 

AERE, Harwell, Didcat, Berkshire, England 

For an antiferromagnet it is shown that within perturbation theory the Holstein-Primakoff and Dyson­
Maleev transformations do not lead to identical results for either the static or dynamic properties. By exam­
ining the spin Green's functions we justify the use of the Dyson-Maleev transformation when there are few 
spin waves present. Using second-order perturbation theory we find the antiferromagnetic resonance line­
width to be 

and 
t.wo= (64WAWO/1r3S2WE) (kT/hwE)2 exp( -hwo/kT) for kT«hwo 

t.WO=[40WA,(3)/1r3S2](kT/hwE)3 for hwo«kT«hwE, 

in qualitative agreement with the experimental results for MnF2. 

RECENTLY the dynamical properties of magnetic 
insulators have been the subject of several ex­

perimentaP and theoretica12-6 investigations. The aim 
of these studies was to determine the imaginary or 
absorptive part x" (w, k) of the wave vector and fre­
quency-dependent susceptibility. Although the theo­
retical interpretation might be expected to be simpler 
for ferromagnets, technical factors have thus far influ­
enced the experimentalists to study antiferromagnets 
such as MnF2• However, the various calculations which 
can be found in the literature of x" CW, k) for an anti­
ferromagnet2- 5 are in disagreement with one another. 
The reasons for these discrepancies are partly due to 
algebraic difficulties and partly due to different methods 
of calculation. 

To illustrate the latter point we now discuss for a 
ferromagnet the relative merits of the Holstein-Prima­
koff7 (HP) as opposed to the Dyson-Maleev8 (DM) 
transformation to bosons. Neglecting kinematic effects, 
Oguchi9 has shown that if the terms in the perturbation 
series for the free energy are arranged in powers of 1/ S, 
then the HP and DM transformations lead to identical 
low-temperature results, at least to order 1/ S. One 
can also compare the lifetime of HP and DM bosons. 
We write JC=Xo+ V with 

JCo= L~kak+ak=2JzSL(1-/'k)ak+ak' (1) 
k k 

where /'k=z-lLa exp(ik·S) in the usual9 notation. 
The form of V depends on which transformation to 
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bosons is used: 

VDM = (Jz/2N) Lad+A+ae-A+aead(n-e+YA+d 
Ade 

-n -n+d-e), (2a) 

VHP = VHP(O) + (1/ S) V HP(I)+(1/ S)2VHP (21, (2b) 

VHP(O)=t(VDM+VDM+). (2c) 

The lifetime of spin waves follows from the golden rule 
formula: 

T(k)-l= (7r/2h) LI (k"-I V I k+~, ,,--~) 
Ae 

X<k+~, J..-~ I V I k"-)[exp(.B~A)-1J-l 

X [1-exp( -.B~k) JO(~k+~A -~k+e-~A-e) }, (3) 

where I kk') = ak +ak'+ I 0> and I 0> is the state with 
no spin waves. Following Oguchi9 we write VDM = 
VHP(O)+A, where 

A = (Jz/4N) Lad+A+ae-A+aead(~e+~d-~d+A -~e-A)' 
Aed 

Using Eq. (3) one sees that 

T(k)-IHP-T(k)-IDM = (7r/2h) 

X L I I (kJ.. I A I k+~, J..- ~ > 12[exp(.B~A) -1J-l 
Ae 

(4) 

X [l-exp( -.B~k) JOh+~A -~k+9-EA-e) }. (5) 

Therefore, by Eq. (4) T(k)nM=T(k)HP. 
For an antiferromagnet the DM Hamiltonian is 

JC=KLI (2S-1) (an+an+bn+bn) 

+ IL' I 2S(an +an+bn,+bn+an +bn,++anbn,) 

- (bn,+bn,bn,an+bn,+an+an+an+2an+bn,+anbn')}' . (6) 

where a n+ (bn +) creates spin deviations on the up 
(down) sublattice at Rn (Rn+o;) with Rn= (n1i+ 
n2j+nak)a and r=t(i+j+k)a. Here I and K are 
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constant so that the exchange and anisotropy frequen­
cies, WE and WA, are hWE=2JzS and hWA=K(2S-1). 
The double sum is restricted so that Rn and (Rn'+'t') 
are nearest neighboring lattice sites. If one attempts 
to transcribe to the case of an antiferromagnet the 
analysis given above, one finds that to order (1/ S)O 
the free energy is independent of whichever transforma­
tion is used. However, by explicit calculation we have 
shownlO that the perturbation series for the free en­
ergy using the DM and HP transformations differ 
in order (1/ S). To see that this result is not simply 
due to an algebraic error we apply the analog of 
Eq. (5) to the case of an antiferromagnet. We find 
that (kll A I k+'t', l-'t') is in general nonzero even 
for Ek+Ej,.=Ek+~+Ej,._~ so that TDM>THP. The fact that 
DM bosons are longer lived than HP bosons is evi­
dence that the former are more nearly the correct 
normal modes of the system:. Two possible explana­
tions of this inequivalence between the two trans­
formations suggest themselves. Firstly, the two per­
turbation series may not converge, and secondly, the 
two transformations may induce differing contribu­
tions from the "unphysical" states. Accordingly it is 
necessary to discuss the kinematic effects. 

For this purpose we study the spin Green's func­
tions, 

G"i3(R, t; R', t') == -i (T(S,,+(R, t) S,9-(R' , t') ). 

Here a and {3 indicate the sublattice, + or -, R indi­
cates the unit cell, the times t and t' are restricted to 
the interval (0, -i(3) on the imaginary axis, and T 
orders the operators with increasingly negative imagi­
nary times to the left. Wortisll has given an elegant 
treatment of the ferromagnet using these Green's func­
tions. We follow his suggestion and write 

G"{j(k, w) = LB"l'(k, w)Dl',9(k, w), (7) 
l' 

where we have taken space and time transforms. The 
equations of motion for G,,{j(k, w) lead to coupled 
equations for B"l'(k, w) and Dl'{j(k, w). It is possible 
to require that B"l'(k, w) obey an equation which for 
Dl',9(k, w) = 0",9 is identical to that of a Green's func­
tion of a system of bosons. Then Dl',9(k, w) represents 
the kinematic effects which distinguish spins from 
bosons. This treatment is similar to, but more rigorous 
than that of Ref. 6. The advantage of the decomposi-
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tion of Eq. (7) is that we can use a boson formalism 
to calculate Bal'(k, w) and yet we can discuss the 
kinematic effect by analyzing Dl'i3(k, w). We find that 
in the approximation where we assume only a low 
density of spin waves, Bal'(k, w) is identical to the 
DM boson Green's function. Furthermore Dl',9(k, w) 
probably displays no resonance behavior, so that the 
variation in x"(k, w) near resonance is mostly due to 
the variation in Bal'(k, w). Accordingly we feel it 
justified to calculate x"(k, w) using DM bosons pro­
viding w is near resonance. Far from resonance and 
for the calculations of the thermodynamic functions 
it is necessary to calculate Dl',9(k, w) accurately. 

In analogy with the ferromagnet6 ,1l,12 one should 
sum the contributions of all the low-density diagrams. 
Unfortunately, for the antiferromagnet this does not 
seem to be feasible owing to the complex structure of 
the low-density diagrams. However, from Dyson's re­
sults12 one sees that the resulting series in (1/ S) for a 
ferromagnet converges rapidly. Hence for spin S, e.g., 
for Mn+ +, second-order perturbation theory will prob­
ably give adequate accuracy. Such contributions are 
of the form of Eq. (3) since it is easily seenlO that it is 
impossible to conserve energy and momentum in proc­
esses where the number of spin waves is not conserved. 

Results for nonzero k will be given elsewhere.1° For 
k=O we find the linewidth .:1wk=4·n-!Tk by evaluating 
the right-hand side of Eq. (3), taking V from Eq. (6). 
The computations are straightforward but lengthy and 
hence cannot be given here. The results are 

.:1wo= (64wAwo/1r3S2wE) (kT /hwE)2 exp( -hwo/kT), 

kT<<iu,)o, (8a) 

(8b) 

where Wo= (2WAWE)t and r(3) = Ll,,,,n-3• From the ex­
perimental results13 for MnF2 it is apparent that another 
relaxation mechanism, perhaps involving impurities, is 
operative. Therefore we have compared the experimen­
tal values of [.:1w( T) - .:1w(O) ] with Eqs. (8) and find 
qualitative agreement for temperature below 45°K. 
In contrast the results of other authors2,6 overestimate 
the linewidth by a factor of two. 
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