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Abstract—In distributed real-time systems, communicating
processes cannot be delayed for arbitrary amounts of time while
waiting for messages. Thus, communication primitives used for
real-time programming usually allow the inclusion of a deadline
or timeout to limit potential delays due to synchronization. This
paper interprets timed synchronous communication as having
absolute deadlines. Various ways of implementing deadlines are
discussed, and two useful timed synchronous communication
problems are identified which differ in the number of participat-
ing senders and receivers and type of synchronous communica-
tion. For each problem, a simple algorithm is presented and
shown to be correct. The algorithms are shown to guarantee
maximal success and to require the smallest delay intervals during
which processes wait for synchronous communication. We also
evaluate the number of messages used to reach agreement.

Index Terms—Ada, CSP, deadline, distributed system, real-
time system, synchronous communication, timed synchronous
communication.

I. INTRODUCTION

distributed program consists of a set of processes
Ainteracting with the environment and communicating
among themselves. Reasons for communication are to send
data or signal to another process, to synchronize with another
process, or to request an action from another process. There
has been considerable research in developing different com-
munication primitives depending on the degree of fault
tolerance and the nature of synchronization supported [1]. One
common primitive is synchronous communication, which is
provided in languages like CSP [2] and Ada' [3]. Synchronous
communication means that a receiving process waits to receive
a message, and a sending process waits for the message to be
received. Thus, the sender and receiver synchronize to
exchange a message. The correct implementation of synchro-
nous communication requires the processes to reach agree-
ment on when communication completes.

Consider the example of a multisensor robot system
implemented using synchronous communication. In such a
system, a coordinator process receives data from several
sensor processes, and integrates the sensory data to determine
the next task for each process [4]. Examples of a next task
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could be a new position for an arm with proximity sensors, or
a new region for image processing. The coordinator then sends
the next task to the sensor processes. Sensor processes wait for
the coordinator to inform them of their next task, and then
preprocess new sensory data to send to the coordinator.

Processes communicating synchronously may be delayed
for arbitrary time periods while waiting for each other.
Although unbounded delays may be (marginally) acceptable
for processes without timing constraints, real-time processes
simply cannot be delayed for arbitrary time periods. In the
previous example, if one sensor process is slow to provide its
sensory data, the coordinator will be delayed in its decision
making, which in turn will cause other sensor processes to
wait. This could cause large discontinuities in input sensory
data, or discontinuities in next tasks for the sensor processes;
for example, an arm with proximity sensors may have to come
to a stop rather than complete its motion. In many cases, it
would be preferable for the coordinator to make a decision
based on partial sensory data received within an acceptable
time frame than to allow the system to be stalled due to one late
process. Furthermore, it may be preferable for individual
sensor processes to continue their current operation rather than
stopping completely waiting for the coordinator’s decision.
Thus, it is important to guard processes from indefinite delays
due to synchronization.

Languages such as Ada and Occam? [5], which are desi gned
for real-time programming therefore support the notion of a
deadline with their synchronous communication constructs.
Real-time processes written in these languages can then attach
deadlines to their communication requests specifying how long
they are willing to wait for successful communication.
However, there are several interpretations of synchronous
communication using deadlines depending on how message
delays are handled and whether the deadlines are interpreted
with respect to the sender’s or receiver’s clock. Our interpre-
tation is that each process involved in the communication can
specify a deadline; when the deadline of a process on its own
clock is reached, the process must decide whether or not the
communication was successful; that is, deadlines are absolute
and are measured on the local clock of each process (see [6]
for other interpretations). This interpretation makes it possible
to statically determine the timing behavior of each process
without having to consider run-time commiunication delays
and clock discrepancies of a particular implementation.

This paper reviews three different implementations for

? Occam is a trademark of the INMOS Group of Companies.
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deadlines associated with synchronous communication. Two
variations of timed synchronous communication, illustrated in
the example, are then identified: communication between
multiple senders and a single receiver (as between several
sensor processes and the coordinator for current sensory data),
and N-way communication between multiple processes (an
important special case being N = 2, as between the
coordinator and a sensor process for a new task). Simple
algorithms for these forms of timed synchronous communica-
tion are presented, shown to be correct, and to have good
performance. The tradeoffs involved in using each implemen-
tation of a deadline are discussed along with the algorithms.

The rest of the paper is organized as follows. In the next
section, we present our assumptions and correctness criteria,
discuss the implementation of deadlines, and review related
research. Section III presents the case of multiple senders and
a single receiver; Section IV extends this to N-way synchro-
nous communication. The last section summarizes the pros
and cons of the chosen interpretation, discusses how to
improve the fault tolerance of the algorithms, and closes with
directions for future research.

II. ProBLEM DEFINITION

The timed synchronous communication problem can be
defined as follows. Processes execute at their own speed and
wish at various times to synchronously communicate with
other processes. Sending and receiving processes both specify
deadlines, which indicate the time by which communication
must be achieved. The deadline D, of a sending process P,
measured according to P’s local clock, means that P must
know by D, at the latest that the message has either been
accepted by Q or that communication has failed. The deadline
D, of a receiving process Q, measured according to Q’s local
clock, indicates the deadline by which the message must be
received. Furthermore, P and Q must agree on whether or not
the message was accepted. Thus, the sending process can start
executing its subsequent statement by time D,, and the
receiving process can start executing its next statement by time
D,.
This paper considers implementation issues for two varia-
tions of the timed synchronous communication problem
defined above. The first problem assumes that there are many
senders and one receiver; the receiver accepts a message from
at most one sender [2]. Timed synchronous communication is

achieved if the chosen sender and the receiver both decide

within their respective deadlines that the message has been
received, and all other senders know that their communication
failed. In the second problem there are N processes, and each
process sends a message to the other N — 1 processes [7]. N-
way synchronous communication succeeds if each process
receives the N — 1 other messages before its deadline, and
knows that the other processes will also receive all their
messages before their deadlines. The fundamental difference
between these problems is that the first involves the element of
choice while the second does not. Thus, in the first problem,
since a sender does not necessarily know about the existence of
other senders or of the decision process of the receiver, the
chosen sender must be explicitly notified by the receiver.
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Communication between a single sender and a single receiver
is therefore considered to be a special case of the second
problem.

A. Assumptions and Definitions

The environment assumed is a system of distributed
processes which exchange information using the primitive
operations send(M ), which places message M on the trans-
mission queue of the sending process, and receive(M ), which
takes a waiting message off the receiving queue of the
receiving process. We say that a message is delivered to or
has arrived at a target process if the message has been
transmitted and is queued to be received by the target process.
A message is received by a target process when the process
executes a receive command for the message. For simplicity,
we make the following assumptions about the network and
processes:

Assumption 1: The system is a completely connected
network of perfect processors.

This is a very strong assumption, and is made to simplify
presentation of the basic algorithm. Failures are considered in
the conclusion.

We make two common assumptions about messages and
their delivery. The first is that messages are sequenced
correctly with respect to their sender, and the second that the
delivery time d is bounded.

Assumption 2: Messages from the same process are
received in the order in which they are sent.

Assumption 3: If process P sends a message to process Q
at time ¢ (measured according to process P’s clock), then the
message will arrive at process Q by time / + d (measured
according to process P’s clock).

The next two assumptions are that messages can be sent and
delivered asynchronously; that is, if a message is sent at time
¢, it will be delivered to Q by time ¢ + d, although Q may not
actually receive the message until a later time. Furthermore, Q
does not have foreknowledge of when delivery will occur. Q
also does not know what P’s deadline is unless P explicitly
communicates the information.

Assumption 4: If a message arrives at a process Q before Q
is ready to receive the message, the message is queued.

Assumption 5: It is not known a priori when a process is
ready to communicate and when its deadline will be. Only
when a process is ready to communicate does its deadline
become known.

When presenting the algorithms we need to express timing
constraints within a program, and will therefore use the notion
of temporal scopes presented in [8]. The syntax of a temporal
scope is

within D do

(statement list)

when a message arrives do

(statement list)

end when

(statement list)
exception

(exception handling statements)
end within.
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If the current time reaches deadline D while the process is
waiting for message arrival, the deadline exception is raised
and handled within the exception handler part of the temporal
scope. We assume that deadlines cannot expire while execut-
ing other parts of its program since the execution times of
statement lists are negligible compared to the transmission
delay and the granularity of a clock.

B. Timing and Deadlines

It is well known that local clocks are not perfectly accurate
and that maintaining some approximation of time is a difficult
problem in a network of distributed processes [9]-[12]. Since
deadlines build on the notion of time, it seems strange that no
assumptions were made about local clocks in the previous
section. Assumption 3, however, is an implicit assumption
about local clocks: the bound on message delivery d is an
elapsed time and must be guaranteed to be accurately
measured by each process on its local clock. As will become
clear later in this section, Assumption 3 is the weakest
assumption about local clocks that we can make. Whether or
not further assumptions must be made depends on the way
deadlines are implemented.

There are basically three ways to implement deadlines. The
correctness of each implementation follows trivially from
Assumption 3 and whatever additional assumptions are made;
proofs are therefore omitted. In the remainder of this section,
P represents a sending process with deadline D,, and Q
represents a receiving process. We assume that an initial
message from P contains both data and control information
and an accept message from Q contains only control informa-
tion.

The first approach makes an additional assumption about the
synchronization of local clocks [13]: if the maximum drift
between any two clocks in the network can be bounded by e
and processes advertise their deadlines?, then d, e, and D, can
be used by process Q to determine the latest time an accept
message can be sent and guaranteed to be delivered to P by
D,.

Protocol 1 (Clock Drift): If Q sends an accept message to
P before D, — d — e according to Qs clock, then it will be
delivered to P before D, according to process P’s clock.
However, if Q sends an accept message to P after D, — d —
e, delivery before D, cannot be guaranteed.

Therefore, if process Q wants to make sure that process P
receives a message before deadline D, (P’s clock), then Q
must send the message before D, — d — e (Q’s clock).

A variation on advertising deadlines is to advertise A, = D,
— R,, and make an assumption about clock rates to translate
this time period for P to that for the receiver Q [14]. Assume
that P and Q are fame during the time that they attempt
communication: process P is said to be tame if the rate at
which its clock ticks with respect to some imaginary perfect
clock can be bound by two fixed constants Fnin, 7max. If P sends
out an initial message advertising the time duration that it is
willing to wait, A,, then Q can interpret this with respect to its
clock as | (Fmin/7max)Ap ] ticks. Note that P and Q are assumed

3 Note that e is also an elapsed time which needs to be accurately measured
by processes when necessary.
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to be tame only during the interval that they attempt
communication.

Protocol 2 (Clock Rate): Let A, , be the time at which P’s
initial message is delivered to Q according to Q’s clock. If Q
sends an accept message to P before A, , — 2d + (Fmwn/
'max)A, according to Qs clock, then it will be delivered to P
before D, according to P’s clock. However, if Q sends an
accept message to P after A, ; — 2d + (Fmin/Fmax)Ap, delivery
before D, cannot be guaranteed.

The third approach uses only d, and does not assume that
deadlines are advertised in any way. However, process P must
send a last call message to define the latest time by which an
accept message must be sent by Q to guarantee that it is
delivered by D,.

Protocol 3 (Last Call): If P sends a last call message to Q
at D, — 2d according to process P’s clock, then an accept
message sent by Q before the last call message is delivered to
Q will be delivered to P before D, according to process P’s
clock.

All of the above implementations of deadlines use the
assumption of a maximum communication delay. Since this is
a strong assumption, and since d is large compared to an
execution step of a program or even the actual delivery time of
a message, it would be nice if there were an implementation
that did not need d. Unfortunately, we cannot remove this
assumption, as the next lemma shows.

Lemma 1: If maximum communication delay is not bound,
there is no nontrivial algorithm guaranteeing that two asyn-
chronous processes will reach agreement within their respec-
tive deadlines.

Proof: If maximum communication delay is not bound,
then message delivery can be infinite, i.e, it can fail.
However, it is well known that if communication is unreliable,
it is not possible for two processes to reach agreement [15].
This is true even if there is no deadline involved, i.e.,
deadlines are infinite. |

In some environments, d is much smaller than e due to
relatively large clock resolution compared to message transmit
time. In [16], it is noted that 60 Hz “‘line’’ clocks commonly
used on current work stations are only accurate to 16 ms. On
the other hand, 4-8 ms intersite message transit times are
common and 1-2 ms are reported increasingly often. Thus, it
is impossible to synchronize clocks to better than 32-48 ms,
enough time for a pair of sites to exchange between 4 and 50
messages. However, it is reasonable to assume that elapsed-
time clocks are accurate, that is, 7'pin/Imax is generally close to
1. For example, a VAX 750 is accurate to 1 pus + 0.01
percent, SO Fin/Tmax = 0.9998.

In other environments, d may change as a function of the
load on the network and thus become quite large. For
example, when contention is high on a shared bus, d can grow.
Note that Protocol 1 only requires that the receiver knows the
current value of d before sending an accept message, and can
therefore be used when d is not a fixed constant or when a
message is broadcast without underlying system support for
the capability. On the other hand, Protocol 2 requires that the
receiver knows d for both the initial and accept messages;
whereas, Protocol 3 requires the sender to know d for both its
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last call message and an accept message. Having said this, we
will use d loosely throughout the rest of the paper as if it were
a constant.

C. Evaluation Criteria

Algorithms for solving timed synchronous communication
problems should not only be correct but have good perform-
ance. Correctness implies two conditions.

1) Processes must agree on the success or failure of the
communication.

2) Processes must decide by their respective deadlines.

Criteria for good performance should, in our opinion,
include the following:

1) How often communication succeeds. Trivial algorithms
can easily be thought up that are ‘“‘correct’” but never allow
successful communication.

2) The number of messages exchanged to reach agreement
about the success or failure of synchronous communication.

3) The delay interval during which each process waits for
successful synchronous communication. This includes the
overhead necessary to achieve a consensus among participat-
ing processes.

D. Related Work

A recent paper has considered various implementations of
the timed entry call for distributed Ada programs [6]. The
motivation for their work is the rendezvous construct, in
which the sender is blocked until the remote entry code is
executed; to avoid delay, Ada allows the sender process to
specify a deadline D,. The authors choose to interpret this
deadline as the latest time by which the receiver must be ready
to execute the entry code. This means that the sender may be
delayed beyond D, if the rendezvous fails since knowledge
that the receiver cannot meet the deadline has to be relayed
back to the sender. In this context, the inability of the sender to
specify an absolute deadline by which time it must know of the
failure of the rendezvous makes sense since even if the timed
entry call succeeds the sender is blocked until the code is
completed, which may be beyond D,. This is an inherent
problem with Ada [17]. In the setting of synchronous
communication where the sender is not blocked if communica-
tion is successful, we feel that senders and receivers should be
treated uniformly with absolute deadlines.

Reif and Spirakis also propose a probabilistic implementa-
tion for synchronous interprocess communication [14]. The
method guarantees the following ‘‘real-time’’ response: if a
pair of processes are mutually willing to communicate during
some global time interval A and are tame during A, then they
establish communication within A with high likelihood in the
worst case. Note that our definition of real-time differs from
theirs in two respects: 1) deadlines are defined the minute a
process is willing to communicate, not when two processes are
mutually willing to communicate, and 2) deadlines are
guaranteed, not probable.

III. TiMeD SyNcHRONOUS COMMUNICATION BETWEEN MULTIPLE
SENDERS AND ONE RECEIVER

The problem of timed synchronous communication with
multiple senders and one receiver is as follows. The receiver
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accepts at most one message within its deadline. Each sender
must be able to determine by its deadline whether its message
is accepted. Communication succeeds if some message is
accepted by the receiver.

We assume one-way naming for communication as in Ada:
that is, only the senders identify the receiver. We also assume
that the senders do not know the identities of other sending
processes. Since the senders, therefore, cannot communicate
with each other, the receiver must choose a sender and notify it
of successful communication. Obviously, the receiver cannot
decide which sender will be successful until it accepts a
message from the sender. In order to guarantee that the chosen
sender and the receiver agree on the success of communica-
tion, the deadline of the chosen sender must be late enough to
be able to receive the accept message from the receiver.
Finally, the receiver cannot conclude with certainty that
communication has failed until it has unsuccessfully received
messages from all senders, or timed out, whichever is earlier.

Let Py, - -+, P, be senders and Q be the receiver. Let [R;,
D;] be the time interval during which process P; is willing to
communicate. If there are no timing constraints, then the D;’s
are assumed to be co. Let A4; be the time at which process Q
receives a message from process P; (according to Q’s clock).
Fig. 1 describes our algorithm using deadlines implemented
with clock drifts. The main idea is that the receiver waits for a
message from senders and accepts the message if the deadline
of the sender is late enough to receive the accept message.

Theorem 1: Algorithm 1 is correct.

Proof: To be correct, the algorithm must guarantee that

i) all processes decide by their respective deadlines;

ii) at most one sender succeeds in communication; and

iif) decisions are consistent.

The fact that i) and ii) are true is trivial due to the “*within®’
construct and the return statement in the loop of the send
function. To see that iii) is true, note that an accept message is
only sent to a sender if it is successful. Therefore, unsuccess-
ful senders will timeout and fail. Now let P; be the sending
process whose message is accepted. Since Dy > current time
+ d + e, the accept message must arrive at Py in time, and Py
will return SUCCESS. O

We now show that Algorithm 1 guarantees maximal success
in communication among all algorithms based on clock drifts
for reaching agreement.

Lemma 2: For every algorithm using clock drifts to solve
the multiple senders and one receiver problem, if communica-
tion succeeds, then there is a process P; such that i) A; = D,
andi)D; = A, + d + e.

Proof: Since the receiver does not know the identities of
senders until it receives messages from them, it must initially
wait for messages. To show that i) is necessary, suppose that
there is no P; such that A; < D,. Then no messages arrive by
D,, and communication cannot possibly succeed. To show
that ii) is also necessary, assume that a message arrives at 4;
< D,, containing deadline D; < A; + d + e. Q cannot
accept this message since it cannot be sure whether its message
will be delivered before D;. =]

Theorem 2: The algorithm guarantees maximal success in
communication.

Proof: 1t suffices to show that if there is process P; such




LEE AND DAVIDSON: ADDING TIME TO SYNCHRONOUS PROCESS COMMUNICATIONS

Algorithm 1

function send (: processid; msg: msg.type; D;: time)
begin
transmit {msg.D;) to process Q
within [); do
when {“accepted”) from @ arrives do
return (SUCCESS)
end when
exception
return (TIMEOUT)
end within
end send

function receive (var P : process_id; var buf: msg_type; D;: time)
begin
within D, do
loop
when (msg,D} from process P arrives do
if D > current time + d + ¢
then transmit (“accepted”) to process P
buf := msg
return (SUCCESS)
end when
forever
exception
return (TIMEOUT)
end within
end receive

Fig. 1. Timed communication between many senders and one receiver based
on clock drifts.

that A, = D, and D; = A; + d + e, then communication
succeeds. Assume that there is such a P;. If Q has not decided
by A;, then Q can accept the message from P; and send an
acknowledgment to P; before D; (P;'s clock). Otherwise,
communication has already been successful. ]

Algorithm 1 can be modified to use clock rates or last call
instead of clock drifts. To use clock rates, process P; sends 4;
with the message to the receiver; the receiver accepts the
message only if it has not accepted another message and 4; >
(Fax/Tmin) * 2d. Similarly, to use last calls instead of clock
drifts, if D; — R; < 2d, a sender P; does not send a message
and decides that communication fails. Otherwise, it sends a
message at time R;; if it does not receive an accept message
from the receiver by D; — 2d, it sends a last call message. P;
concludes that communication is successful only if it receives
an accept message before its deadline. Furthermore, the
receiver accepts a messsage from P; only if it has not received
P;’s last call message. Both of these modifications can easily
be shown to be correct and to guarantee maximal success in
communication among all algorithms based on their interpreta-
tion of deadlines.

One factor to consider in choosing between the various
implementations of deadlines for the multiple senders and one
receiver problem is the minimum deadline that can be
specified. That is, suppose a sender P wishes to have a
nontrivial solution in the best case of synchronous communica-
tion, where a receiver Q is willing to communicate at the
moment that P’s initial message is received and has a deadline
that is long enough to process the request. What is the
minimum time interval P can specify? This obviously depends
on the implementation method and values of d, e, and (Ymin/
Fmax)- Let ¢ be the actual communication delay for P’s message
to Q, and recall that A, , is the time with respect to Q’s clock
that the message is received. That is, 4, , according to P's
clock equals R, + ¢. Then Protocol 1 (Clock Drifts) requires
that D, — R, = ¢ + d + e since Q must use worst case
return message delivery assumptions to be able to accept the
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synchronization; Protocol 2 (Clock Rates) requires that D, —
R, = 8, = (Fmax/Tmin) * 2d since Q must use worst case
assumptions for interpreting A, and for delivery of the initial
and return messages; and Protocol 3 (Last Call) requires that
D, — R, = 2d since P must use worst case assumptions in
sending out its last call message at D, — 2d. Thus, ifd > e +
¢ then clock drifts allows a smaller D, — R, than either clock
rates or last call for successful communication. If d < e + ¢
then last call allows the smaller D, — R,; however if Fyay/Fmin
is close to one, then clock rates is preferable due to the
message overhead of a last call. In general, if e is larger than
d, or if ¢ is close to d, then clock rates and last call allow
smaller deadlines than clock drifts.

Another factor is the number of messages exchanged. Since
senders do not know about each other and only senders know
the receiver, the minimal number of messages is n + 1, which
is achieved by our algorithms based on clock drifts or rates.
For unsuccessful senders, there is a tradeoff between messages
and delay. In our algorithms, each unsuccessful sender must
timeout.* If the unsuccessful sender’s message reaches the
receiver in time, but not in time for a guaranteed response, a
“‘reject”” message could be sent. However, since it is not
guaranteed to reach the sender before its deadline and the
action is the same in either case, we do not feel the overhead is
worthwhile.

IV. N-wAY SyNcHrRoONOUS COMMUNICATION WITH DEADLINES

The problem of timed N-way synchronous communication
can be stated as follows. Let P, - - -, P, be a set of processes.
Each process executes independently and wishes at various
times to synchronize with the other processes. For each
process P;, there is a deadline D; by which the process must
decide whether the N-way communication was successful.
Furthermore, processes P, - - -, P, must agree on the result.
For N = 2, this problem is synchronous communication
between two processes, where each process knows the identity
of the other.

Fig. 2 describes an algorithm for N-way synchronous
communication using deadlines implemented as clock drifts.
We use EA, for the expected arrival time of a message sent by
P; measured according to P;’s clock (i.e., EA; = R; + d). For
this problem, we extend Assumption | so that d denotes the
maximum communication delay for broadcasting a message
from P;to P,, -+ *, P,. The main idea behind the algorithm is
as follows: each process broadcasts a message with an
expected arrival time and deadline. Processes that receive
messages from all other processes use this information to
decide whether the other processes also accept all other
messages before their deadlines.

Lemma 3: Let EA and EA’ be the two largest EA;’s (EA
> EA’)and D and D’ be the two smallest D/'s (D < D’). If
either i) EA and D belong to two different processes and £A
< D — e, orii) EA and D belong to the same process and EA
< D' — eand EA’ = D — e, then every process receives all
messages before its deadline.

¢ In the algorithm based on last call. a sender with not enough slack (i.e.,
less than 2d) in deadline immediately decides that communication must fail
without sending a message.
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Algorithm 2
function CheckTiming (FA,,...,EAq Dy, ..., Dy time)
begin

Let EA and EA’ be the two largest EA;'s in that order
Let D and D' be the two smallest D)'s in that order
if EA and D are from the same process
thenif EAL/'<D—cand EA<S D —¢
then return (SUCCESS)
else return (TIMEQUT)
else if EA< D -¢
then return {SUCCESS)
else return (TIMEOQUT)
end CheckTiming

funetion n_synchromization ([P, ..., P.): set of processad; D;: time)
varcount : f.n—1=10
begin
EA, := current time + d
beoadeast (msg, P, EA,, Dy to Py, F s
within D, do
while count < n—1do
when (EA;, D;) from process P arrives do
count 1= count + 1
end when
end while
exception
return (TIMEOUT)
end within
if CheckTiming (EAy,...,EA,, Dy,...,D,) = SUCCESS
then return (SUCCESS)
else return (TIMEOUT)
end n_synchronization

Fig. 2. Timed N-way synchronous communication based on clock drifts.

Proof i) Since for every P;and P;, EA; < EA and D=
D,if EA < D — ethen EA; < D; — e. Therefore, every P;
receives a message from every P; by its deadline. This
condition is stronger than necessary if EA and D belong to the
same process, and is weakened in ii).

ii) Let EA and D belong to the same process P;. If EA <
D' — e, then EA; = D; — e for every other P;, hence P/’s
message will arrive at every other P; in time. Similarly, if
EA’ <= D — e, then EA; < D; — e for every other process
P;, hence P; will receive a message from every other FP; in
time. Now, since EA’ < D’ — e, we can use the same
reasoning as in i) to show that for every j, k # i, P; and P
receive messages from each other by their deadlines. ]

Theorem 3: Algorithm 2 is correct.

Proof: To be correct, the algorithm must guarantee that

i) all processes decide by their respective deadlines, and

ii) decisions are consistent.

The fact that i) is true is trivial since it is guaranteed by the
“‘within’* construct. To prove ii), suppose that for some i # J,
P, returns SUCCESS, but P, returns TIMEOUT. Then P; must
have received messages from every other process and exe-
cuted Check Timing. Furthermore, since Check Timing eval-
uates the conditions in Lemma 3 and returns SUCCESS only if
they are true, every other process must have received all
messages in time. Therefore, P; must also have executed
CheckTiming. But this is a contradiction since if P; had
executed CheckTiming, it also would have had to return
SUCCESS. O

We now show that Algorithm 2 guarantees maximal success
in communication among all algorithms based on clock drifts
for reaching agreement. We first show the necessary condition
for successful communication and then prove that the neces-
sary condition is also a sufficient condition for our algorithm.

Lemma 4: For every algorithm based on clock drifts, if for
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some j # I
Ri+d+e>D;

then synchronous communication within deadlines among P,
+++, P, must fail.

Proof: Let P;and P;, i # j, be such processes. If R; + d
> D; — e, then the message from P; cannot be guaranteed to
be delivered before D;. If R; = D; and the actual delay and
clock drift are 0, the message may in fact be delivered at P;
by D;. Since P; cannot know for sure that the message has
been delivered, some form of acknowledgments would have to
be used. However, even if acknowledgments are used to verify
this fact, there is no finite algorithm to guarantee that both
processes will know that the message is accepted. This is due
to the “‘unreliability’’ of the acknowledgments, which can be
thought of as lost if it arrives after the deadline of the receiving
process. Therefore, P; must decide not to accept the message
since P; cannot be sure of the outcome.

To see that R; + d > D; — e implies that communication
must fail, note that P; cannot conclude with certainty that
communication was successful unless it receives some mes-
sage from P;. However, as argued above, even if R; + d >
D; — e, P; may receive a response from P; if R; < D;and the
actual clock drift and communication are 0. P; cannot count on
this response being received by P;. Some form of acknowledg-
ment is therefore necessary, which does not work as shown
above. O

Theorem 4: The algorithm guarantees maximal success in
N-way synchronization.

Proof: Because of Lemma 4, it suffices to show that if R;
+ d; < D, — eforall i # jthen communication succeeds.
However, this is implicitly tested in CheckTiming (see proof
of Lemma 3). O

Algorithm 2 can also be modified to use clock rates or last
call instead of clock drifts. To use clock rates, a process P;
broadcasts a message including A; when it becomes ready to
synchronize. Communication succeeds if P; receives messages
from all other processes and, for all j, &,

AJ‘+AJ'J2AI'I,#'+ (rm.ax/rmin) *2d,

where A;; = R;, and A;;, j # i, is the time at which P;’s
message is arrived at P; according to P;’s clock. To use last
call, a process P; does not send any messages if D; — R; < 2d
or it received a last call message from some P;. Otherwise, it
broadcasts a message at time R; and waits for messages from
others. If it does not receive messages from all the others by D;
— R; — 2d, then it broadcasts the last call message. It then
eventually times out or receives messages from all other
processes, in which case communication succeeds. The
modified algorithms can easily be shown to be correct and to
guarantee maximal success among all algorithms based on
their interpretation of deadlines as in Theorems 3 and 4.
Ideally, N-way synchronous communication should succeed
whenever the synchronizing periods overlap in some global
time frame. While this is a necessary condition as shown in the
following lemma, it cannot always be achieved due to clock
synchronization and message delays. Let [R;, D;], be the time
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interval with respect to a global time frame r (such as EST)
corresponding to [R;, D;] according to P;’s clock.

Lemma 5: If P, with [R,, D], - -+, and P, with [R,, D,]
successfully synchronize, then

M (R, D) #¢.
i=1
Proof: Let P;and P;, i # j, be any two processes. If D;
occurs before R; in r, then even a message with no delay
cannot arrive in time to be accepted by P;. Similarly, D; must
be greater than or equal to R;. Thus, [R;, D;], and [R;, D;l,
must overlap. The lemma follows from the fact that the
intersection of all closed intervals on real numbers that are
pairwise nondisjoint is not empty. O

This lemma confirms our intuitive notion of what it means
to synchronize N processes. That is, under any protocol, if N
processes succeed in synchronization within their respective
deadlines, there is a common time (interval) during which all
N processes are willing to synchronize. In our protocol, each
process decides on the success of communication as soon as it
possibly can, that is, when it receives all the messages from
the other processes, or (in the absence of any message) at its
deadline.

As was the case for the multiple senders and one receiver
problem, the minimal time intervals needed by the P;’s for
successful communication depend on the protocol used and
values of d, e, and (rmin/rmax). Suppose all P;’s are ready to
communicate at the same time with respect to some global
clock. Then, for successful communication, clock drifts
requires that D; — R; = d + e for all P;; clock rates requires
that D; — R; = A; = (Fiax/Tmin) * 2d for all P;; and last call
requires that D; — R; = 2d for all P;. Thus, if d > e then
clock drifts requires a smaller D; — R, than either clock rates
or last call for successful communication. If d < e then last
call requires the smaller D; — R;; however, if (Fma/Fmin) is
close to one, then clock rates is preferable due to the message
overhead of last calls. If the minimum communication delay,
say dpin, is known, the algorithm based on clock rates can be
improved to require A; = (Fpax/Tmin) * 2d — dnin for
successful communication.

Each process sends a message to N — 1 other processes.
Thus, the algorithms based on clock drifts and rates generate
N(N — 1) messages and the algorithm based on last calls
generates 2N(N — 1) messages in the worst case. If the
underlying communication medium supports broadcasting, the
cost may be close to linear in the number of processes involved
(rather than quadratic). To reduce the number of messages to
O(N), a coordinator could be used. However, this would also
reduce the interval during which successful communication
could take place since the coordinator would have to broadcast
the result to the participants. Note that for N = 2, the
algorithms based on clock drifts and rates use the minimum
number of messages since at least two messages are needed in
any algorithm.

V. ConcLusioNs AND DIRecTiONS FOR FUTURE WORK

Timed synchronous communication is an important concept
for real-time systems. In this paper, we first talked about the
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general problem of implementing deadlines, and then pre-
sented two timed synchronous communication primitives. We
described simple algorithms for implementing these primitives
in a distributed system, and discussed how the various
implementations of deadlines would change the basic al-
gorithm. Each algorithm was shown to be correct and to
guarantee maximal success; the number of messages ex-
changed to reach agreement on the success or failure of
synchronous communication was also evaluated.

Both of the primitives presented in this paper require a
bound on communication delay d. This adversely affects the
minimum deadline that can be specified since it must be larger
than d under any of the proposed implementations. However,
d is commonly quite large compared to the actual communica-
tion delay, and in some cases simply cannot be measured, i.e.,
is infinite. Unfortunately, if deadlines are absolute and
processes must always agree on the success or failure of
communication, this bound is necessary as shown in Lemma
1. That is, either timed synchronous communication is
interpreted with absolute deadlines for both the sender and the
receiver and minimal deadlines must be longer than d, or
minimum deadlines can be shorter than d, in which case not all
processes can be guaranteed to know by their deadlines as to
the success of communication (the approach taken in [6]) or
processes will only have some ‘‘probability’’ of success by
their deadlines.

To counter this objection about minimum deadlines, one
should remember that the deadline specified by a process
under the proposed implementation is a ‘‘worst case’" state-
ment of how long the process will have to wait to know the
outcome of the desired communication. Frequently, processes
will know much sooner than their deadlines, especially in the
case that processes are well matched and wish to communicate
at approximately the same time. Absolute deadlines for all
processes also makes it possible to statically reason about the
temporal behavior of a program. We feel that relaxing the
deadline of some process not only makes it difficult to
determine the temporal behavior of a set of communicating
processes, but elevates implementation dependent consider-
ations to the programmer level. That is, the brunt of the
problem of bounding communication has been shifted from the
system to the programmer.

A more serious consequence of needing an upper bound on
d is that the algorithms cannot tolerate message failures and
guarantee consistent decisions. In the multiple senders case, if
the accept message from the receiver is lost or takes longer
than d, the successful sender will timeout and decide that
communication failed, while the receiver will assume that it
was successful. In fact, under this failure assumption, no finite
protocol can guarantee agreement between the sender and the
receiver [15]. That is, if decisions are to be consistent, the
guarantee that the sender will know by its deadline should be
relaxed. One technique for doing this is to assume that
messages will be delivered within d’ with some high
probability p < 1. The use of d’ requires slight changes to the
algorithms. For the case of multiple sends and one receiver,
the receiver sends a reject message to a sender if communica-
tion is not successful. Each sender sends a message only if its

I
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deadline is greater than 2 * d’ + ¢, where ¢ takes into account
discrepancies between local clocks, and waits for an accept or
reject message from the receiver. Senders will wait beyond
their deadline with very low probability, much less than 2 * (1
— p) if deadlines are greater than 2 * d’. Exception handling
techniques could also be used if messages were not received
within an acceptable time [6]. For N-way synchronization, a
process broadcasts to others a reject message if it is not ready
to synchronize by the earliest deadline of messages received so
far, and broadcasts an accept message otherwise. Here, a
process succeeds if it has not sent a reject message and
received accept messages from all others. In this scheme, a
reject message may have to be sent even if a process is not
ready to communicate when a message arrives.

The algorithms can, however, handle ‘‘clean’” processor
failures in which the state prior to failure is remembered and
messages delivered during failure are remembered. In the
multiple senders case, if the receiver fails before sending its
decision, all senders will assume that communication is not
successful; if it fails after sending the decision, the successful
sender will receive the accept message, and the receiver will
remember its decision upon recovery. If a sender fails, it will
receive outstanding messages upon recovery and make the
correct decision. If faulty processes can be identified, the
multiple senders case can be changed so the receiver attempts
to synchronize with a nonfaulty process before its deadline, at
the expense of longer delays. The N-way communication
could also be reinterpreted to avoid failing whenever some
process fails, and extended to identify the set of processes that
succeed in synchronization.

It is probably not reasonable to consider more drastic or
bizarre types of failures in this environment. Agreement
problems such as two-phase commit have been found to have
fairly severe limitations in the face of failures which partition
the network (see [18]), making it unlikely that N-way
synchronization will succeed under this failure assumption.
The problem of reaching agreement with Byzantine failures
has also been extensively studied (see [19], [20] for overviews
of the problem and solutions). The solutions necessarily allow
the agreement to take time proportional to the number of
processes that can fail. This is not acceptable in a real-time
environment.
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