
TABLE I11 
NUMERICAL  RESULT^ 

CONTAINERSHIP AT 32 KNOTS 

Solutions of t he  ME 

- [  1 0.1768 x 10-1 -0.1282 X 1 n2 fl.1775 x 10-1 

P+ = -0.1281 X l o 2  0.1236 X lo4 0.2285 x l o 2  

0.1775 x 10-1 0.2285 x l o2  0.4257 x 101 

-0.2828 x 103 -0.5973 x 100 
-0.6442 x lo5 -0.8872 x l o 2  

-0.8872 x 10’ -0.4497 x 101 3 
S t a t e  Feedback Gains (Stabi l iz ing  Control)  

Eigenvalues o f  t he  Closed Loop System, (A’) 
-0.7115 x 10-1 0.1292 x 102 o.1oao X loo 

-0.16777 x 10’ -0.10081 x 10’ -0.23708 x 

Eigenvalues o f  P+ - P- Matrix: 
0.37515 x 10’ 0.65655 x l o5  0.8567 x lo1 

250000 DWT TANKER AT 15  KNOTS (FULL LOAO) 
Solutions of t he  WE 

0.7520 x 10’ -0.3245 x lo3 -0.9354 x 

- [  -0.9354 x 10-2 0.61172 x lo3 0.4469 x l o2  1 
[ 

P’ = -0.3245 x l o3  0.5441 x lo5 0.6872 x lo3 

-0.1942 x 102 -0.5705 x-104 -0.1215 x l o2 ]  

-0.1215 x l o2  -0.2551 x lo4 -a.vol x 102 J - P- = -0.5705 x lo4 -0.1997 x lo7 -0.2251 X lo4 

S t a t e  Feedback Gains (Stabi l iz ing  Control) :  

Eigenvalues o f  t he  Closed Loop System.  (A+): 
-0.2019 x 100 0.4782 x 10‘ 0.3162 x 10’ 

-0.62846 x 10-1 -0.27199 x 10-1  -0.23213 x IO-‘ 
Eigenvalues o f  P+ - P- Matrix: 

0 .5908~  X la1 o. 21151 3 X 1 o7 0.91736 x 102 

The quadratic criterion of (7) is physically well motivated, with the 
weighting coefficient X being completely defined a priori from the dy- 
namics of the problem. It  is possible that many other optimization 
problems can be successfully posed in this framework and solved in a 
more truly optimal manner rather  than by the classical LR (Q 2 01 
formulation where the quadratic weighting coefficients (generally) are 
iteratively specified by trial-and-error by the system designer on the basis 
of experimental studies. 
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Stabilizability of Second-Order Bilinear Systems 

DANIEL E. KODITSCHEK AND KUMPATI S. NARENDRA 

Ahshact-This note states necessary and sufficient  conditions for the 
existence of a  linear state feedback  controller  such  that  a  second-order 
bilinear  system has a  globally  asymptotically  stable  closed  loop. A suitable 
controller is constructed for each  system which satisfies the  conditions. 

I. INTRODUCTION 

This note concerns the stabilizability of second-order bilinear systems 

k = A x + u ( D x + b )  (1) 

where A,  D E R Z x 2  and x ,  b E R2. While a great amount of literature 
devoted to the structural properties of such systems has developed over 
the past decade [1]-[3], it is fair to say that  little is understood regarding 
the qualitative behavior of trajectories of (1). Recently, several authors 
have investigated the stabilizability of systems of the form 

nr 

x = A x +  ~ u , ( D , x + b i )  (2) 
r = l  

in R ”  [4],  [6], [7]. These papers derive sufficient conditions and  construct 
controllers to stabilize systems which meet specific and quite restrictive 
requirements. In our opinion, a significant understanding of bilinear 
systems will not be possible until more systematic analysis has been. 
accomplished. and this note represents a step in that direction. Specifi- 
cally, we give necessary and sufficient conditions for  the existence of a 
constant linear feedback controller to stabilize (1). Even  given  the limited 
scope of this problem, it is safe to say that the statement of necessaq  and 
sufficient conditions is deceptively simple, and  is possible only because of 
recent results in the stability of quadratic systems developed by the 
authors [5]. These results depend heavily upon  that work. 

Problem Statement: Characterize the properties of the triple ( A ,  b. D )  
such that for some c E R *, for u 9 c’x, the resulting second-order closed- 
loop system 

X = A , x  + c’.x D X   A ,  A A + bc’ (3) 

is globally asymptotically stable (GAS). 
This problem is completely resolved by Theorem 1, stated below. It is 

worth remarking that a scalar bilinear system can never be made GAS 
using constant linear state feedback [8]; hence, the apparently restrictive 
conditions of Theorem 1 should not seem surprising. In the sequel, we 
assume that b # 0 and ID1 # 0, and we  will adopt the notation and 
definitions used in [SI. Briefly, Ix ,  yI denotes the determinant of the array 
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[x .  J ] .  A,  denotes the symmetric part of the matrix A ,  J is the  skew-sym- 
metric matrix 

[:, -:I 
and nodal, critical, or focal matrices have two distinct, one distinct, or no 
real eigenvectors, respectively. 

Theorem I :  The triple ( A ,  b, D) is stabilizable under constant linear 
state feedback if and only if either 

i) D has complex conjugate eigenvalues and V.x, IDx. .VI has the same 
sign as IAD- 'h ,  61. If IAD-Ib,  61 = 0 then the special conditions given in 
Proposition 2. Section I11 hold; or, 

ii) D is singular and  its nonzero eigenvector is a stable eigenvector of A .  
If D is singular with a unique real eigenspace, then the special conditions 
given in Proposition 4, Section IV hold. 

We present some preliminary results in Section 11. then discuss condi- 
tion i) of Theorem 1 in Section 111. condition ii) in Section IV. and finally 
provide a proof of Theorem 1 by  way of summaq in Section V. A 
construction for a stabilizing linear constant controller is provided in the 
proof of each case, and reviewed in the summary. 

11. PRELIMINARY RESULTS 

Evidently. system (3) is an autonomous quadratic differential equation. 
In order  to characterize the stabdizability of the triple ( A ,  b,  D) under 
constant linear state feedback, we must, therefore, know something about 
the stability of such systems. 

Theorem 2 /5/: System (3) is GAS if and only if: 
i) A,. has eigenvalues with a nonpositive real part; 
ii) [JD],  and [ DTJA,], are sign definite or semidefinite with the same 

iii) one of the following two mutually exclusive conditions holds: 
sign; 

a) D is  focal and D-'A,.  is either focal or x-critical where s E ( e  I ) 
iff IA,I  f 0; 

b) D is x-critical and singular. IA,J + 0. and A;'D = y D  for some 
scalar y. 

The two distinct cases listed under condition iii) form a  natural 
framework for the presentation of stabilizability conditions. In Section 
111.  we discuss the properties of the triple ( A .  b,  D) when D is focal, 
corresponding to condition iii-a), above. In Section IV. we consider the 
case where D is singular. corresponding to condition iii-b). above. It is an 
immediate consequence of Theorem 2 that we need consider no  other 
cases. 

Lenzmu 1: If D is not focal and not singular, then system (1) cannot be 
stabilized by constant linear state feedback. 

Proof: If D is nodal  and nonsingular, then [JD], is indefinite. and 
(3) biolates condition ii) of Theorem 2 for any c E W '. If D is x-critical 
and nonsingular, then (3) violates condition iii) of Theorem 2 for any 

As a  further consequence of Theorem 2,  we must choose a linear 
control law, u p  c'x, for system (1) such that [ D'JA,], is sign definite or 
semidefinite depending upon the sign of [JD],. Thus, we may naturally 
inquire when a vector c E R 2  exists such that DrJA, = D'JA + D'Jbc' 
has  a definite symmetric part. This question is resolved  by  the following 
lemma and its corollaries. 

Lentmu?: ForanyQ€WB'X2andg€W2, the reex i s t sac€R ' such  
that [ Q  + gc'], > 0 if and only if g T Q g ,  > 0, and [ Q  + gc'], > 0 if and 
only if g; Qg > 0. 

Proof; i) Necessitj*: If g T Q g ,  < 0. then g: [ Q  - g c T l 5 g ,  = g r  
Q g , < O . I f g ~ Q g , = O , t h e n g ~ [ Q + g c r ] , g , = O .  

ii) Suffieiet~cy; If g: Qg I = 0, then Q = [ gd'], for some d E W I. Hence. 
if c e - d + y g  for y E W + + ,  then [ Q ~ g e 7 ] , = [ g d r ~ g c T ] S = y g g T > , 0 .  
h'ote that any other choice of c leads to  an indefinite form for [Q + gr'],. 

C € R ? .  0 

Let g; Qg , L- 0. Note that 

I[Q+gcCTlII=IQ,I+ug:QgI 

and 

t ' { [Q+g~ ' ] , }= t~{Q~}+yg 'g  

and the matrix is positive definite for large enough y > 0. 0 
Corollur). 2.1: If D is focal, then there exists a c E W 2  such that [JD], 

and [ D'JA,], agree in sign if and only if IDx, .x l - IAD- 'h.  bl> 0. 
Proo/c Assume [JD], > 0. According to Lemma 2. [ D T J A , ] ,  > 0 iff 

[D'Jh]: DrJA[DrJb]  ~ > 0. But 

[ D T J ~ ] T D ' J , ~ [  D'Jb] 1 = bTJTDJT[ D'JAIJD'Jb = IDl'bTJAD-'b. 

Hence. [ D 7 J A , ] , 2 0  iff Odh'JAD- 'b=(AD- 'h ,b l  since IDI'>O. 
The identical proof holds for [JD], < 0. 0 

Corollurr. 2.2: If D is focal and IDx. x l . IAD- 'h ,  bl> 0, then if y E R, 
c y D %  implies [ J D ] ,  and [ D'JA, 1 ,  agree in sign  when IyI is large 
enough and sgny = sgn xT[JD],x. In this case, D-'A ,  is focal. 

ProoJ This follows directly from the construction of g in the proof 
of Lemma 2 when Q D'JA. 0 

Corollurr. 2.3: If D is focal and IAD-'h .  bl= 0 ( b  # 0). then [ J D ] ,  and 
[ D'JA,.], agree in sign iff c 5 D7J( - d + yb) where d is the other 
eigenvector of AD-' and  sgny=sgn.xT[JD],s.' In h s  case, D-'A,. is 
D-'h-critical. 

Proof: Again, this follows from the proof of Lemma 2. 0 
We  may  now proceed to consider the cases listed above in correspon- 

dence \\ith the conditions of Theorem 2. 

111. STABILIZABILITY WHEN D Is FOCAL 

According to Lemma 2  and its corollaries. if D is focal. then a c exists 
such that conditions ii) and iii-a) of Theorem 2 hold when IAD-'b, bl and 
[JD], have the same sign. Surprisingly enough, if IAD-'b. bl* 0, the 
same sign condition assures the stabilizability of ( A .  b )  in the sense of 
LTI pole-placement [8] and, thereby. of ( A ,  b, D) in our sense. The 
follolving proposition exploits this coincidence, specifying stabilizability 
conditions which make implicit use of this fact. 

Proposition 1: If D is focal and IAD-'b. b( f 0, then there exists a 
c ~ W ~ s u c h t h a t ( 3 ) i s G A S i f a n d o n l y i f I A D ~ ' b , b 1 . I D . ~ . . ~ I > O .  

Proof: 
i )  Secessin: According to Corollary 2.1. condition ii) of Theorem 2 

holds only if \DX. s l . I A D - ' b ,  bJ > 0 under the assumptions above. 
ii) Suffiemzn.: Since IAD-'b.  bl.lDs. 1 1  > 0 implies condition ii) and 

iii-a) of Theorem 2 according to Corollary 2.2  when r yDTJb where 
sgny = sgn.V'JDx = sgn1D.x. .VI and IyI is large enough, it remains to 
sho\v that i) holds under this choice of feedback. 
Sincetr{A,}=tr(A)+yb'J'Db=tr(A}-y~Db.b~andy~Dx,x~~O 

for all x E 88 '. n e  have tr { A ,  ] < 0 when JyI is large enough. 
Since 

I A , ( = J A I - ~ ~ ~ ' ( + ~ T { J ~ ~ ~ ~ ~ J A }  

= 1Al+ ybTJAJrDrJb 

= J A l i  y p l b T J A D - ' b  

= IAI+ y lDIIAD- 'b .  bl 

we have IA,.I > 0 when IyI is large enough, since I Dl > 0 (D is focal) and 
yIAD-'b,bl>Osincesgny=sgnID.V..Vl=sgnIAD-'b,bl. 

But tr ( A ,  } < 0, IA,I 4 0 implies A,  stable. 
If D is focal, but b is an eigenvector of AD- ' ,  then according to Lemma 

2 and its corollaries. D-l.4,  cannot be made focal by arbitrary choice of C. 

By Corollary 2.3, there exists a unique c E R 2  such that conditions ii) and 
iii-a) of Theorem 2 hold: however, there is no guarantee that ( A .  b )  is 

' I f  4 0 - '  is Ixntical. then there is no "other rlgenvector" and the result follows with 
d E ( 1 , )  as urn from the proof of Lemma 2. Houever. II 4 D - l  is  nodal. then we require 
(1 E ( 1 , )  In order for this construction to work. Accordingly. In the  sequel.  the icrminology 
~ r h ~ ~ ~ r ~ ~ g ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r h a l l d c s i g n a t c d E ( h ~ i l . ~ D " i s n o d a l . a n d r l ~ ( h ~ i f d D ~ ' i s h - c r i t i c a l .  Hence, if c yg. then 
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stabilizable in the sense of LTI pole-placement. Hence, the conditions for 
stabilizability in this case are more restrictive, and are given as follows. 

Proposition -7; Let D be focal, IAD-’b,  hl = 0 (h  f 0). and let d be the 
other eigenvector of AD- ’ with eigenvalue 8.’ Then there exists a c E W’ 
such that (3) is GAS if and only if either 

i) AD-’ is h-critical and I A l >  0 or 
ii) AD- ’  is nodal and Sld, hi= lAl / lDl .  

i) Necessiq: Assume [JD], > 0 without loss of generality. By Theorem 
2, it is necessary that [ DrJAc] > 0, and this is true iff c D7J( - d + y b )  
(where s p y  = sgn 1D.x. .xD according to Corollary 2.3. in which case 
D-’A, is D-’h-critical. Hence, by condition iii-a) of Theorem 2, it is 
necessary that c I E (D-’h) iff / A ,  I + 0. By construction, c - = JD7J( - d 
+yh)=lDlD-’(d-yh);  hence, c L  E(D-’h)  iff d ~ ( h ) .  Thus, we 
r equ i r e~Ac~>Oi f4D- ’ i sh -c r i t i ca l andO=~A,~=~A~+t r ( J7cb7JA}i f  
AD-’  is nodal. Since tr{JTch7JA) = ID/ I A D - ’ ( - d  + yh), hl = 
- lDlSld. bl. condition ii), above, follows. 

ii) Sufficienq: By the foregoing construction of c, all requirements of 
Theorem 2 have been met except the demonstration that t r (  A,} < 0. But 
tr{A,}=tr{A)-tr(hd7J7D}++tr{hh7J7D},andthelasttermisequal 
to - ylDb. bl< 0 since sgny = sgnlDx, SI for all x. Hence, tr{ A c )  < 0 
when Iyl is large enough. 

Prooj 

IV. STABILIZABILITY WHEN D Is SINGULAR 

If D is nonsingular and not focal, then system (3) violates Theorem 2 as 
shown by Lemma 1. However, if ID1 = 0. then for some d,  e E R’. 
D = deT. Hence, cTx D X  = eT.uD’x, and by choosing c E ( d  I ), D’ in 
system (2) is d-critical and singular (if e E ( d  ). then D is d-critical and 
singular to begin with). Therefore, when D is singular, it is possible to 
stabilize (1) in some cases. Before presenting these cases. we state the 
following useful result. 

k t 7 2 m c l  3; If D is singular and d-critical and IAl > 0. then condition ii) 
of Theorem 2 holds iff Ad = a d  and a < 0. 

Prooj Since x7DTJAx = I A x ,  D s l  and x7JD.x = IDx, X I .  condition ii) 
is equivalent to 

which  is  true. assuming 1.41 > 0, if and only if 0 < I x .  A -’dl. Id, XI. The 
latter is possible if and only if A -‘d = ad.  a < 0. 

In general, when D = de7, d E ( e  I ), hence, D is nodal  as well as 
singular. In this case, stabilizability conditions are quite simple to  state. 

Proposilion 3: If D = de7 is nodal then there exists a c E R’ such that 
(3) is GAS iff Ad = ad.  a < 0. 

Prooj 
i) .Vecessify: According to condition ii) of Theorem 2 we require 

c E ( d  , ) or c PJd for D’ to not be nodal. In this case. condition iii-b) 
applies, and we require IAcl f 0 which necessitates IA,I > 0 according to 
condition i) of Theorem 2. Hence, condition ii) holds iff  A,.d = ad ,  a 4 0 
according to Lemma 3. But A,d = Ad  by construction of c, hence Ad = ad ,  
a <  0. 

ii) Sufficient-v: Since c BJd satisfies conditions ii) and iii) of Theorem 
2, it suffices to show that  i) holds for suitable 8. Since tr { A ,  } = tr { A ) + 
pld,hl  and IA.I=IAl+ph‘JAd=IAl+apId.hl. IpI large and s g n p =  
- sgn Id. bl implies A ,  stable. 0 

If, however. d E ( e  ), then a much greater choice of c is available and 
stabihability conditions are more complex. 

Propositiot~ 4; If D = dd T, then there exists a c E R such that ( 3 )  is 
GAS iff either 

a) h is an eigenvector of A in the null space of D and ( A .  h) is a 
stabilizable pair  (in  the sense of LTI theon.) or 

b) there exists a y E R such that 

’See Footnote 1 

Proof: According to conditions i) and iii-b) of Theorem 2. IA,I > 0 
and A,’D = y D ,  hence, A,d = yd, or 0 = IAJ,  dl = IAd, dl+ cTdlb, dl. 
If Id, hl= 0, then we require 0 = I A d ,  dl = IAb, bl, hence, ( A ,  h) is not 
controllable, and we must have LTI stabilizability, in which case any c 
such that A,. is stable meets the conditions of Theorem 2. This accounts 
for case a), above. 
If~d,h~iO,then~A,d.d~=Oiffc~(yd~-A7dh.)l/~d,h~(forsome 

-{ E R). Hence, 

tr{A,}=tr{A}-- 
d: Ah 

+y=tr{A}--  IAb, dl + 

d ;  h  lh.  dl 

and 

giving rise to the condition in b), above 0 

V. SUMMARY AND CONCLUSION 

The central result of this paper is the statement of necessary and 
sufficient conditions for the stabilizability of (1) under constant  linear 
state feedback as given  by Theorem 1 in the Introduction. As a formal 
proof of that theorem Lve may summarize the results of Sections 11-IV. 

If D is focal and IAD-’h. hl + 0, then (3) is GAS iff sgnplAD-’b, 1 5 1  = 

sgn (DX. XI, according to Proposition 1 (Section 111). In this case, a 
stabilizing controller is  given  by c d yDrJh, sgny = sgn IDx, XI, and Iyl 
suitably large. If IAD-lh, 1 5 1  = 0 and d is the other eigenvector of AD-’ ,  
then a stabilizing controller given  by c DTJ( -  d + yb) ,  sgny = 

sgn [DX, x may be chosen iff the conditions of Proposition 2 (Section 111) 
hold. Thus, if D is f o c a l ,  condition i) of Theorem 1 is necessq and 
sufficient for stabilizability. 

If D is singular and  nodal then (3) is GAS iff d, its nonzero eigenvector, 
is a stable eigenvector of A ,  according to Proposition 3 (Section IV). In 
this case, c BJd,  sgnb = - sgn Id, hl, and IpI suitably large is a stabiliz- 
ing controller. If D is singular and critical. then (3) is GAS iff the 
conditions of Proposition 4 (Section J3‘) hold. If D is h-critical and those 
conditions are met. then any c which stabilizes ( A ,  b )  in the sense of LTI 
pole-placement, stabilizes (1). If D is d-critical. h Z (d). and the condi- 
tions are met. then c p  (yd, - ATdI )l / ld,  61 is a stabilizing controller. 
Thus, if D is singular, condition ii) of Theorem 1 is necessary and 
sufficient for stabilizability. 

If D is neither focal nor singular. then (3) is never GAS, according to 
Lemma 1 (Section 11). Thus, Theorem 1 lists complete necessary and 
sufficient conditions for stabilizability, as claimed. 
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