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Abstract— Given an arbitrary network of interconnected
nodes, each with an initial value, we study the number of time-
steps required for some (or all) of the nodes to gather all of the
initial values via a linear iterative strategy. At each time-step
in this strategy, each node in the network transmits a weighted
linear combination of its previous transmission and the most
recent transmissions of its neighbors. We show that for almost
any choice of real-valued weights in the linear iteration (i.e.,
for all but a set of measure zero), the number of time-steps
required for any node to accumulate all of the initial values
is upper-bounded by the size of the largest tree in a certain
subgraph of the network; we use this fact to show that the linear
iterative strategy is time-optimal for information dissemination
in certain networks. In the process of deriving our results, we
also obtain a characterization of the observability index for a
class of linear structured systems.

I. INTRODUCTION

A key requirement in distributed systems and networks is

to disseminate information from some or all of the nodes

in the network to the other nodes. Various algorithms to

achieve this have been developed by the computer science,

communication, and control communities over the past few

decades [1], [2], [3], [4]. A particular strategy that has

attracted significant attention in the control systems com-

munity is that of linear iterations; in this strategy, each

node in the network repeatedly updates its value to be a

weighted linear combination of its own value and those of

its neighbors (e.g., see [5] and the references therein). These

works have revealed that if the network topology satisfies

certain conditions, the weights for the linear iteration can be

chosen so that all of the nodes asymptotically converge to

the same value (usually a weighted linear combination of the

initial values of the nodes); in this case, the nodes are said

to reach asymptotic consensus. Recently, it was shown in

[6] that this linear iterative strategy can actually be applied

to the more general data aggregation problem, allowing any

node in networks with time-invariant topologies to obtain all
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of the initial node values in a finite number of time-steps –

this number was shown to be upper-bounded by N − degi

for node xi in the network, where N is the total number

of nodes, and degi is the number of neighbors of node xi.

This bound was derived in [6] via a direct application of

techniques from observability theory.

Linear iterative strategies can also be viewed as a form

of network coding, a topic that has been extensively studied

by the communications community over the past few years

[3]. The works [7] and [8] studied the average number of

time-steps required by a node to gather all of the data

with a gossip-based algorithm, whereby every node in the

network periodically sends a random linear combination of

the messages that it has previously received to a randomly

chosen neighbor. The paper [9] studied a network with a

source node connected to multiple receivers via unreliable

links, and showed that allowing the source node to send

random linear combinations of the source packets allows the

receivers to recover all of the packets in fewer time-steps

than having the source node send a particular packet at each

time-step.

There is a great deal of analysis of the time-complexity

for other algorithms for information dissemination under

varying assumptions on the underlying topology and commu-

nications modality [10]. Tree-based schemes, in particular,

have received a great deal of attention for data aggregation,

partly due to their simplicity of analysis and implementation.

For example, [11], [12] consider the use of trees to either

broadcast or aggregate data, under the assumption that the

network is operating in a wireless environment where col-

lisions are possible (i.e., only one neighbor of any given

node is allowed to transmit at any given time-step). Optimal

scheduling of transmissions in such cases is known to be a

NP-hard problem [12], and tree-based schemes are shown to

offer good approximations to the optimal solution.

In contrast to the above works, this paper studies the time-

complexity of aggregating information in networks where

multiple nodes are allowed to simultaneously exchange in-

formation, and when collisions are not an issue (e.g., as

would be the case in wireless networks operating under a

multiple-access protocol). We perform a careful analysis of

linear iterative strategies for such networks, and prove that

linear strategies are at least as fast as tree-based schemes

for aggregating information (strictly faster in some cases).

Furthermore, for certain networks, we show that no other

strategy can outperform the linear iterative strategy in terms

of the number of time-steps required to accumulate all of

the initial values. In the process of obtaining this result,
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we derive an upper bound on the observability index of

structured linear systems, which is of independent interest.

II. NOTATION AND BACKGROUND ON GRAPH THEORY

We use ei,l to denote the column vector of length l with

a “1” in its i-th position and “0” elsewhere. The symbol 1l

denotes the column vector of length l with all entries equal to

“1”, and IN denotes the N×N identity matrix. The transpose

of matrix A is denoted by A′. We denote the cardinality of

a set S by |S|, and for two sets A and B, we use A \ B to

indicate all elements of A that are not in B.

A graph is an ordered pair G = {X , E}, where X =
{x1, . . . , xN} is a set of vertices, and E is a set of ordered

pairs of different vertices, called directed edges. If (xi, xj) ∈
E ⇔ (xj , xi) ∈ E , the graph is said to be undirected. The

nodes in the set Ni = {xj |(xj , xi) ∈ E} are said to be

neighbors of node xi, and the in-degree of node xi is denoted

by degi = |Ni|. A subgraph of G is a graph H = {X̄ , Ē},

with X̄ ⊆ X and Ē ⊆ E (where all edges in Ē are between

vertices in X̄ ).

A path P from vertex xi0 to vertex xit
is a sequence of

vertices xi0xi1 · · ·xit
such that (xij

, xij+1
) ∈ E for 0 ≤ j ≤

t−1, and no vertex appears more than once in the sequence.

The nonnegative integer t is called the length of the path.

The distance between node xj and node xi in a graph is the

length of the shortest path between node xj and node xi in

the graph. The eccentricity of node xi is the distance from

the node that is farthest away from xi in the graph. A path is

called a cycle if its start vertex and end vertex are the same,

and no other vertex appears more than once in the path.

A graph is called acyclic if it contains no cycles. A

graph G is a spanning tree rooted at xi if it is an acyclic

graph where every node in the graph has a path to xi,

and every node except xi has an outgoing edge to exactly

one node. Similarly, a graph is a spanning forest rooted at

R = {xi1 , xi2 , . . . , xip
} if it is a disjoint union of a set

of trees, each of which is rooted at one of the vertices in

R. An example of a spanning tree rooted at x1 is shown

in Fig. 1.a, and an example of a spanning forest rooted at

R = {x1, x2, x3} is shown in Fig. 1.b. A graph is strongly-

connected if there is a path from every node to every other

node. Further background on graph theory can be found in

standard texts, such as [13].

III. MOTIVATING EXAMPLE

Consider again the network G shown in Fig. 1.a; each node

in this network possesses a single value from a field1
F, and

node x1 needs to obtain all of these values. Each node in the

network is allowed to transmit a single value from the field

F at each time-step. Under these conditions, note that x1 can

obtain at most one new value at each time-step from each

1In this paper, we will focus on the case where nodes are allowed to
manipulate real numbers, and perform our analysis over the field of complex
numbers. However, the analysis also carries over to finite fields after suitable
modifications; this is useful when the nodes are only allowed to transmit a
finite number of bits at each time-step (e.g., due to bandwidth constraints).
The extension of linear iterative strategies to such cases is described in [14],
but we will forego the details here in the interest of conciseness.
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x10x10

(a) (b)

Fig. 1. (a) Spanning tree rooted at x1. (b) Spanning forest rooted at
{x1, x2, x4, x7}. Note that this spanning forest is also a subgraph of the
graph in (a).

of its neighbors. Since the values of both x2 and x3 have to

pass through x2, it will take exactly two time-steps for x1 to

receive those values. In parallel, x1 is also receiving values

from x4 and x7; it will take exactly three time-steps for x1 to

receive the values of x4, x5, x6, and exactly four time-steps

to receive the values of x7, x8, x9 and x10. Thus, x1 can

receive all values in the network after exactly four time-steps.

This example suggests that one bottleneck in the network

is related to the number of values that must pass through

any given neighbor of x1. To state this in a form that will

be easier for us to analyze, we remove certain edges from

the network to form a spanning forest rooted at {x1} ∪ N1

(shown in Fig. 1.b). Each tree in this forest contains all of

the values that must pass through a given neighbor of x1.

The largest tree in this forest has four nodes, which is equal

to the number of time-steps required for x1 to obtain all of

the values.2

Now consider the network G shown in Fig. 2.a, which is

no longer a simple spanning tree rooted at x1. To determine

the number of time-steps it will take for x1 to obtain all

of the values in this network, note that the forest shown in

Fig. 1.b is a subgraph of G, and thus it is definitely possible

for x1 to obtain the values of all nodes in four time-steps.

However, one can actually do better by noting that G also

contains the spanning forest rooted at {x1} ∪ N1 shown in

Fig. 2.b, which only has three nodes in any tree. Thus, x1

can receive the values of all nodes in three time-steps (e.g.,

by following the routing scheme specified by the spanning

forest in Fig. 2.b); one cannot do any better in this network,

since the eccentricity of node x1 is three.

The above examples show that the amount of time required

by a node to obtain all of the values is upper bounded by

the size of the largest tree in a subgraph of the network that

is a spanning forest rooted at that node and its neighbors.

The bound becomes tighter if one can find the “best” such

subgraph – this concept will play a recurring role in this

2Note that the analysis for this network holds regardless of the ac-
tual algorithm that is used for information dissemination (i.e., nodes can
simply schedule and forward incoming values, or they can perform more
complicated operations). However, in general networks, tree-based schemes
represent a special case of scheduling and routing; each node sends its value
toward the root along the path that exists between that node and the root.
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Fig. 2. (a) Node x1 needs to receive the values of all of the nodes in this
network. (b) A subgraph of the original network that is a spanning forest
rooted at x1, x2, x4 and x7, with only three nodes in the largest tree.

paper, and so we will use the following definition throughout

the paper.

Definition 1: Let G denote the (directed) graph of a fixed

strongly-connected network, and for any set R ⊂ X , con-

sider a subgraph H of G that is a spanning forest rooted at

R, with the property that the size of the largest tree in H
is minimal over all possible spanning forests rooted at R.

We call H an optimal spanning forest rooted at R. When

R = {xi} ∪ Ni for some node xi ∈ X , we simply say that

H is an optimal spanning forest for xi.

Note that there are several challenges presented by the

above analysis. First, given an arbitrary network, it is not

clear how to efficiently find the optimal spanning forest for

a given node. Second, even if the optimal forest could be

found, the case where multiple nodes in the network have

to receive all of the values would need a different analysis

(since by removing edges to create an optimal forest for a

certain node, we could be preventing some other node from

receiving all of the values). Third, while the above tree-based

characterization provides an upper bound on the number of

time-steps required for any node to gather the data, it is

unclear at this point in the narrative whether it is possible to

do better (we will show later that we can, in fact, do better).

In this paper, we will demonstrate that linear iterative

strategies provide a novel, simple and effective solution to

these problems. Specifically, we will show that these strate-

gies do not require any complicated analysis or manipulation

of the network topology, and disseminate information at least

as quickly as trees, simultaneously for all of the nodes in the

network. This will reveal that linear iterative strategies are

simple and powerful methods for disseminating information

rapidly in networks.

IV. PROBLEM FORMULATION

Consider a network modeled by the directed strongly-

connected3 graph G = {X , E}, where X = {x1, . . . , xN} is

the set of nodes and directed edge (xj , xi) ∈ E if node xi can

receive information directly from node xj . Each node xi has

some initial value xi[0] that is potentially required by other

nodes. We study a linear iterative strategy to disseminate

3This assumption is made in the interest of clarity, but the results can be
extended to more general graphs without too much difficulty.

these values through the network; specifically, at each time-

step k, each node xi updates its value as

xi[k + 1] = wiixi[k] +
∑

j∈Ni

wijxj [k],

where the wij ’s are a set of weights. For ease of analysis,

we aggregate the values of all nodes at time-step k into the

vector x[k] =
[
x1[k] x2[k] · · · xN [k]

]′
, so that

x[k + 1] = Wx[k] (1)

for k = 0, 1, . . ., where the (i, j) entry of W is the weight

wij if xj ∈ Ni, and zero otherwise. For the above strategy,

we will demonstrate the following key result in this paper.

Theorem 1: Let G denote the graph of a fixed strongly-

connected network, and for each xi ∈ X , consider a

subgraph Hi that is an optimal spanning forest for xi. Let

Di denote the size of the largest tree in Hi. Then for almost

any choice of real-valued weight matrix (with the constraint

that wij = 0 if j /∈ Ni), each node xi can obtain all of the

initial values after running the linear iteration (1) for at most

Di time-steps.

In the above theorem, the phrase “almost any” means

that the set of weights for which the theorem does not

hold has Lebesgue measure zero. Theorem 1 (which we will

prove later in the paper) reveals that linear iterative strategies

essentially bypass the problem of finding an optimal span-

ning forest in graphs – one can simply choose weights at

random, and the linear iterative strategy will allow all nodes

to simultaneously receive all of the values, and furthermore,

each node xi will do so in at most Di time-steps (where Di

is the size of the largest tree in the optimal spanning forest

for xi).

Remark 1: A lower bound on the number of time-steps

required by node xi to obtain all of the data is given by the

eccentricity of node xi (since it takes one time-step for a

value to propagate along an edge).

V. DATA ACCUMULATION VIA THE LINEAR ITERATIVE

STRATEGY

Let yi[k] denote the vector of outputs (node values) that

node xi receives at the k–th time-step. Specifically, since

node xi has access to its own value as well as the values

of its neighbors, we can write yi[k] = Cix[k], 1 ≤ i ≤ N ,

where Ci is the (degi +1)× N matrix with a single “1” in

each row denoting the positions of the state-vector x[k] that

are available to node xi (i.e., these positions correspond to

the nodes that are neighbors of node xi, along with node xi

itself). Since x[k] = Wkx[0], the set of all outputs seen by

node xi over L + 1 time-steps is given by







yi[0]
yi[1]

...

yi[L]








︸ ︷︷ ︸

yi[0:L]

=








Ci

CiW
...

CiW
L








︸ ︷︷ ︸

Oi,L

x[0] . (2)

When L = N − 1, the matrix Oi,L in the above equation

is the observability matrix for the pair (W,Ci) [15]; in this
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paper, we will use the term observability matrix to refer to

Oi,L for any L. If rank(Oi,L) = N , the pair (W,Ci) is

said to be observable, and node xi can determine the entire

initial value vector x[0] from the outputs of the system.

An important feature of the observability matrix is that

there exists an integer νi, termed the observability index, such

that the rank of the matrix Oi,L monotonically increases with

L until L = νi − 1, at which point it stops increasing. To

see this, note that if rank(Oi,L) = rank(Oi,L−1) for some L,

then it must be the case that CiW
L = KOi,L−1 for some

matrix K. Then,

CiW
L+1 = CiW

LW = KOi,L−1W =
[
0 K

]
Oi,L,

and thus rank(Oi,L+1) = rank(Oi,L). This means that every

new set of rows of the form CiW
k must increase the rank of

Oi,k−1 by at least one until the observability matrix reaches

its maximum rank.

Based on the above discussion, we see that we can recast

our analysis of the time-complexity of data accumulation

via the linear iterative strategy as a weight matrix design

problem, where the objective is to choose the weight matrix

W (subject to the constraint that wij = 0 if xj /∈ Ni) to

maximize the rank of the observability matrix for each node

in the fewest number of time-steps. To do this, we will start

in the next section by characterizing the observability index

for a class of linear structured systems.

VI. OBSERVABILITY INDEX OF STRUCTURED LINEAR

SYSTEMS

A linear system of the form

x[k + 1] = Ax[k] + Bu[k], y[k] = Cx[k]

with state vector x ∈ R
N , input u ∈ R

m, output y ∈ R
p

and system matrices A ∈ R
N×N ,B ∈ R

N×m,C ∈ R
p×N

is said to be structured if each entry in the system matrices

is either identically zero, or an independent free parameter.

A structured linear system is said to have a certain property

(such as observability, controllability, etc.) if that property

holds for some (real-valued) choice of free parameters. In

fact, structural properties are generic (i.e., if the property

holds for some choice of free parameters, it will hold for

almost any choice of free parameters) [16].

In this section, we will derive a characterization of the

generic observability index of a given structured system,

which we will define to be the observability index that is

attained for almost any real-valued choice of free parameters.

We will start by investigating the observability of matrix pairs

of the form (A, e′1,N ), where A is an N × N matrix, and

e′1,N is a row-vector of length N with a 1 in its first position

and zeros elsewhere. Matrix A may be structured (i.e., every

entry of A is either zero, or an independent free parameter),

or it may be numerically specified. As commonly done in the

study of structured systems [16], our analysis will be based

on a graph representation H of matrix A, which we obtain

as follows. The vertex set of H is X = {x1, x2, . . . , xN},

and the edge set is given by E = {(xj , xi) | Aij 6= 0}. The

weight on edge (xj , xi) is set to the value of Aij (this can

be a free parameter if A a structured matrix). Note that if A

is the weight matrix for a linear iteration, H is simply the

graph of the network G augmented with a self-loop on node

xi if Aii 6= 0.

The following theorem from [14] shows that the matrix

pair (A, e′1,N ) will be observable under certain conditions.

Theorem 2 ([14]): Consider the matrix pair (A, e′1,N ),
where A is an N × N matrix with elements from a field F

of size at least N . Suppose that the following two conditions

hold:

• The graph H associated with A is a spanning tree rooted

at x1, augmented with self-loops on every node.

• The weights on the self-loops are different elements of

F for every node, and the weights on the edges between

different nodes are equal to 1.

Then the pair (A, e′1,N ) is observable over the field F.

We now generalize the above theorem to the case where the

graph of the system is a spanning forest (i.e., it consists of

disjoint trees rooted at certain nodes).

Theorem 3: Consider the matrix pair (A,C), where A is

an N × N matrix with elements from a field F, and C is a

p×N matrix of the form C =
[
ei1,N ei2,N · · · eip,N

]′
.

Suppose the graph H associated with the matrix A satisfies

the following two conditions:

• The graph H is a spanning forest rooted at

{xi1 , xi2 , . . . , xip
}, with self-loops on every node.

• No two nodes in the same tree have the same weight on

their self-loops, and the weights on the edges between

different nodes are equal to 1.

Let D denote the maximum number of nodes in any tree in

H. Then, the pair (A,C) is observable with observability

index equal to D.

Proof: Let T1, T2, . . . , Tp denote the trees in H, and

let ri denote the number of nodes in tree Ti (so that N =
r1 + r2 + · · · + rp). Since the graph associated with A is

a spanning forest rooted at {xi1 , xi2 , . . . , xip
}, there exists

a numbering of the nodes such that the pair (A,C) has the

form














A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ap








,








e′1,r1
0 · · · 0

0 e′1,r2
· · · 0

...
...

. . .
...

0 0 · · · e′1,rp















,

where the ri×ri matrix Ai corresponds to the tree Ti. If we

denote the observability matrix for the pair (A,C) over D
time-steps by OD−1, and the observability matrix for the pair

(Ai, e
′
1,ri

) as Oi,D−1, it is easy to see that rank(OD−1) =
∑p

i=1 rank(Oi,D−1). Since each matrix Ai is a spanning tree

rooted at the first node in Ai, and this matrix satisfies the

conditions in Theorem 2, we see that the pair (Ai, e
′
1,ri

) will

be observable; specifically, the matrix Oi,ri−1 will have rank

equal to ri. Since D is the maximum value of all the ri’s,

the above expression for the rank of the observability matrix

becomes rank(OD−1) =
∑p

i=1 ri = N , which concludes the

proof of the theorem.
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Corollary 1: Consider the matrix pair (A,C), where A

is an N × N structured matrix, and C is a p × N matrix

of the form C =
[
ei1,N ei2,N · · · eip,N

]′
. Suppose the

graph H associated with the matrix A contains a path from

every node to at least one node in the set {xi1 , xi2 , . . . , xip
},

and furthermore, every node has a self-loop (i.e., the di-

agonal elements of A are free parameters). Let H̄ be a

subgraph of H that is an optimal spanning forest rooted at

{xi1 , xi2 , . . . , xip
}. Let D denote the size of the largest tree

in H̄. Then if F has size at least D, there exists a choice

of parameters from F such that the observability matrix

corresponding to the pair (A,C) has rank N over that field,

with observability index equal to D.

The proof of the above corollary is readily obtained by

setting the values of all parameters corresponding to edges

that are not in H̄ to zero, and then choosing the weights for

edges in H̄ to satisfy Theorem 3. Thus, one can explicitly

choose parameters from a field of size D or greater in order

to make the pair (A,C) observable, with observability index

D. However, we will also be interested in characterizing the

generic observability index of a given matrix pair, and this

is the subject of the following theorem.

Theorem 4: Consider the matrix pair (A,C), where A is

an N × N structured matrix, and C is a p × N matrix of

the form C =
[
ei1,N ei2,N · · · eip,N

]′
. Suppose the

graph H associated with the matrix A contains a path from

every node to at least one node in the set {xi1 , xi2 , . . . , xip
},

and furthermore, every node has a self-loop (i.e., the di-

agonal elements of A are free parameters). Let H̄ be a

subgraph of H that is an optimal spanning forest rooted

at {xi1 , xi2 , . . . , xip
}. Let D denote the size of the largest

tree in H̄. Then for almost any real-valued choice of free

parameters in A, the pair (A,C) will be observable and the

observability index will be upper bounded by D.

Proof: Let the free parameters of matrix A be given

by λ1, λ2, . . . , λl ∈ R. When convenient, we will aggregate

these parameters into a vector λ ∈ R
l. With this notation,

the matrix A will also be denoted as A(λ) to explicitly

show its dependence on the free parameters. Any particular

choice of the free parameters will be denoted by λ∗, with

corresponding numerical matrix A(λ∗).

If the graph of matrix A satisfies the conditions in the

theorem, then we know from Corollary 1 that there exists

a choice of parameters λ∗ ∈ R
l such that the observability

matrix O(λ∗)D−1 for the pair (A(λ∗),C) has rank N . This

means that O(λ∗)D−1 contains an N×N submatrix (denoted

by Z(λ∗)) whose determinant will be nonzero. Next, consider

the matrix Z(λ) (which is obtained by reverting the special

choice of parameters λ∗ back to the original symbolic param-

eters). The determinant of Z(λ) will therefore be a nonzero

polynomial in these parameters (since this polynomial is

nonzero after a specific choice of parameters). Now, note that

the set of parameters (λ∗
1, λ

∗
2, . . . , λ

∗
l ) for which detZ(λ∗) =

0 forms an algebraic variety,4 which has measure zero in

4An algebraic variety is the set of points in a space that are the common
roots of a given set of polynomials.

the space R
l [16]. Thus, for almost any real-valued choice

of parameters, the observability matrix has full rank after

at most D time-steps, and the observability index is upper

bounded by D.

VII. DESIGNING THE WEIGHT MATRIX

Noting that the matrix W in (1) is a structured matrix

(since each entry is either identically zero, or an independent

free parameter), we can now use Theorem 4 to prove

Theorem 1 (introduced at the end of Section III).

Proof: [Theorem 1] Consider the graph H associated

with the matrix W. In this case, H is obtained by taking

the graph of the network G and adding a self-loop to

every node to correspond to the free parameters wjj on

the diagonal of the matrix W. Every node in H has a

path to Ni (since the network G is strongly-connected), and

furthermore, every node has a self-loop, which satisfies the

conditions in Theorem 4. This implies that, with probability

1, the observability matrix for the pair (W,Ci) will have

full column rank and the observability index will be at most

Di. Furthermore, since this holds for any node xi with

probability 1, it will hold simultaneously for all nodes with

probability 1. Thus each node xi can recover x[0] from the

outputs of the system over at most Di time-steps.

VIII. TIME-OPTIMALITY OF LINEAR ITERATIVE

STRATEGIES FOR INFORMATION DISSEMINATION

Note that Theorem 1 only provides an upper bound on

the number of time-steps required to disseminate information

via a linear iterative strategy. Specifically, it says that linear

iterative strategies perform at least as well as any tree-

based scheme for information dissemination. The following

example shows that there are circumstances where linear

iterative strategies strictly outperform tree-based schemes.

x1x1

x2x2

x4x4

x3x3

x5x5

x7x7

x6x6

(a) (b)

Fig. 3. (a) Network for information dissemination. (b) A subgraph of the
original network that is an optimal spanning forest rooted at x1, x2 and x3.

Example 1: Consider the strongly-connected network

shown in Fig. 3.a. Theorem 1 indicates that for almost any

real-valued choice of weights, a linear iterative strategy will

allow each node xi to obtain all of the initial values in the

network after at most Di time-steps, where Di is the size

of the largest tree in the optimal spanning forest rooted at

{xi} ∪ Ni. For example, if we consider x1, it is easy to

verify that the spanning forest that minimizes the size of the

largest tree is the one in Fig. 3.b (this forest is not unique).
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The largest tree in this forest has D1 = 4 nodes, and thus a

tree-based (routing) approach would require four time-steps

in order for x1 to accumulate all of the data.

Now let us consider a linear iterative strategy with weights

chosen independently from a uniform distribution in the

range [a, b] (for any b > a). One can readily verify (by

picking such a set of weights) that the observability matrix

for the pair (W,C1) (where C1 =
[
I3 0

]
) becomes full

rank after three time-steps, Thus node x1 can actually obtain

all of the initial values in the network after using a linear

iterative strategy for just three time-steps (i.e., as described

in Section V). Note that this is the best possible result for

this network, since the eccentricity of node x1 is three. The

linear strategy has outperformed the tree-based scheme in

this example.

While the above example shows that there are cases where

the tree-based upper bound in Theorem 1 is not tight, a

full characterization of all networks for which this is true

is an avenue for future research. On the other hand, our

development does provide us with a way to prove time-

optimality of linear iterative strategies in certain networks

(i.e., in these networks, no scheme can perform faster than

the linear iterative strategy for gathering all of the data).

Theorem 5: Let G denote the (directed) graph of a fixed

strongly-connected network where there is a unique path

between any two nodes. Then, the linear iterative strategy is

time-optimal for information dissemination in this network.

Proof: Consider node xi, and let xj be any other node.

Since there is only one path between any two nodes in the

network, xj’s value must pass through a unique neighbor

of xi in order to get to xi. For each xl ∈ Ni, let Di,l be

the number of values that have to pass through xl in order

to get to xi. Thus, any algorithm will require at least Di =
maxxl∈Ni

Di,l time-steps in order to convey all of the data to

xi (since each neighbor of xi can only transmit one value to

xi at each time-step). This network has a unique spanning

forest rooted at {xi} ∪ Ni: simply take the edges of the

forest to be those on the unique paths from each node to the

corresponding unique neighbor of xi. The largest tree in this

spanning forest has Di nodes. Theorem 1 indicates that the

linear iterative strategy will take at most Di time-steps, and

since any algorithm will require at least Di time-steps, the

linear iterative strategy is time-optimal for this network.

Theorem 6: Let G denote the graph of a fixed undirected

ring network. Then, the linear iterative strategy is time-

optimal for information dissemination in this network.

Proof: Consider node xi, with neighbors xi−1 and xi+1

(if these indices are larger than N or smaller than 1, we can

just have them wrap around). We form a spanning forest

rooted at {xi, xi−1, xi+1} as follows. Take the tree rooted

at xi−1 to be a path consisting of all nodes in X \ xi that

are strictly closer to xi−1 than to xi+1. Similarly, take the

tree rooted at xi+1 to be a path consisting of all nodes in

X \ xi that are closer to xi+1 than to xi−1 (including any

node that is equidistant to both). Since the network is a ring,

the trees rooted at xi−1 and xi+1 will have exactly ⌊N−1
2 ⌋

nodes and ⌈N−1
2 ⌉ nodes, respectively (both of these trees

will be paths). Thus, Di = ⌈N−1
2 ⌉. However, it is easy to

verify that the eccentricity of node xi is precisely ⌈N−1
2 ⌉,

and thus the linear iterative strategy is time-optimal in this

network.

IX. SUMMARY

We showed that for almost any choice of real-valued

weights in the linear strategy, the number of time-steps

required for any node to gather all of the initial values is

upper bounded by the size of the largest tree in a certain

subgraph of the network. This means that linear iterative

strategies perform at least as well as any tree-based scheme

for information dissemination, and in some cases, perform

faster (as we showed through an example). Furthermore, our

upper bound is tight in certain networks, implying that linear

iterative strategies are time-optimal for those networks.
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