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Abstract. This article summarizes the current status of several streams 
of research that deal with the probability theory of problems of combina­
torial optimization. There is a particular emphasis on functionals of finite 
point sets. The most famous example of such functionals is the length 
associated with the Euclidean traveling salesman problem (TSP), but 
closely related problems include the minimal spanning tree problem, 
minimal matching problems and others. Progress is also surveyed on (1) 
the approximation and determination of constants whose existence is 
known by subadditive methods, (2) the central limit problems for several 
functionals closely related to Euclidean functionals, and (3) analogies in 
the asymptotic behavior between worst-case and expected-case behavior 
of Euclidean problems. 

No attempt has been made in this survey to cover the many important 
applications of probability to linear programming, arrangement search­
ing or other problems that focus on lines or planes. 

Key words and phrases: Matching, minimal spanning trees, Steiner 
trees, subadditive Euclidean functionals, traveling salesman problem, 
worst-case analyses. 

1. INTRODUCTION 
Almost all of the results surveyed here owe a debt 

of one sort or another to the classic theorem of Beard­
wood, Halton and Hammersley that lays out the basic 
behavior of the length of the shortest tour through a 
random sample from a-general distribution in Rd. 

THEOREM 1 (Beardwood, Halton and Hammersley 
1959). If X;, 1 ::;; i < oo are independently and identi­
cally distributed random variables with bounded sup­
port in Rd, then the length Ln under the usual Euclidean 
metric of the shortest path through the points {XI. X 2, 

... , Xn} satisfies 

Lnfn(d- 1)/d-+ PrsP,d r f(x)(d- 1)/d dx almost surely. 
JRd 

Here, f(x) is the density of the absolutely continuous 
part of the distribution of the Xu and PrsP.d is a positive 
constant that depends on d but not on the distribution 
of the X;. 
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The Beardwood, Halton and Hammersley (BHH) theo­
rem has led to developments of several different types. 
The first developments that we review concern general­
izations of the BHH theorem that aim to provide in­
sight into larger classes of processes. It turns out 
that the essential geometric features of the traveling 
salesman problem (TSP) are present in many of the 
problems that have been investigated in the theory of 
combinatorial optimization, and there is also a close 
connection between these properties and the notions 
of subadditivity. These subadditivity-driven general­
_izations of the BHH are addressed primarily in Sec­
tion 2. 

The second type of problem considered looks at the 
BHH theorem from the perspective of precision rather 
than generality. It turns out that Ln, the length of the 
shortest tour through an n-sample, is highly con­
centrated about its mean. The main result of this devel­
opment, the theorem of Rhee and Talagrand, is spelled 
out in Section 3. It tells us that the tails of the TSP 
functional Ln decay as rapidly as those of the nor­
mal distribution. This remarkable result has evolved 
through several intermediate stages, each of which 
offered new tools for the analysis of functionals of finite 
point sets in the plane. 

Section 4 is the last to focus explicitly on the theory 
of the TSP, and, though we start to strain the notion 
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of a Euclidean problem, the development casts light 
on problems like those just described. The main pur­
pose of Section 4 is to introduce the connection between 
Euclidean optimization problems and self-similar sets 
of fractional dimension; the principal result reviewed 
is a theorem by S. Lalley on the TSP. This is an 
intriguing result that suggests a rich connection be­
tween the rapidly developing theory of sets of fractals 
and many classic problems. 

In Sections 5 and 6 the set of problems studied is 
widened. We first consider the theory of the minimal 
spanning tree (MST) and review how one can construct 
an infinite analog to the MST that leads to answers of 
a number of classic questions. One of the best reasons 
for introducing any new mathematical structure is that 
it simplifies and strengthens earlier results, and this is 
exactly what oc~urs in this development of an "infinite 
MST." The new structure permits one to make many 
deductions that are apparently difficult (or perhaps 
impossible) to address without such a tool. 

Section 6 gives a brief survey of some of the new 
developments in the theory of matching. This subject 
began with the theorem of Ajtai, Koml6s and Tusm'ldy 
on the two-sample matching problem, but it has devel­
oped rapidly because of its rich connections to such 
topics as bin packing, scheduling and the theory of 
empirical processes. There are many engaging special 
results in this active area, and it is not possible to offer 
much more than a taste. We particularly want to call 
attention to a new theory of majorizing measure initi­
ated by M. Talagrand. This theory unifies and deepens 
many earlier results and also suggests many new con­
crete problems. 

In the last three s~ctions the pace is quickened, 
but the work that is surveyed represents many recent 
developments that can be expected to lead to much 
further research. In Section 7, recent progress is re­
viewed in the calculations of the constants that appear 
in results such as the BHH theorem. Section 8 then 
considers the very recent progress on the central limit 
problem for some geometric problems closely related 
to Euclidean functionals. Finally, in Section 9 we see 
~orne tight analogies between the probabilistic analysis 
of Euclidean functionals and their worst-case behavior. 
The' concluding section mainly focuses on the omis­
sions that have been occasioned by our focus on func­
tionals on points rather than on the full range of 
Euclidean structures. 

The Connection to Algorithms. Before going to the 
survey just outlined, there is one top-level observation 
about the BHH theorem that should be made. It is 
likely that this remarkable 1959 result would have 
remained relatively undeveloped if it had not been for 
the striking use of the BHH theorem in the polynomial­
time probabilistic TSP algorithm of Karp (1976, 1977). 
The TSP was among the first of the traditional prob-

lems of geometric optimization to be proved to be 
NP-hard, and it is also a problem of genuine practical 
interest, so it is not surprising that considerable excite­
ment was generated when Karp showed that the TSP 
is perfectly tractable under the plausible stochastic 
assumption that the sites to be visited by the tour 
can be modeled as a random uniform sample. In this 
context, Karp showed that, given any e > 0, there is a 
(simple!) polynomial time algorithm that produces a 
tour of length no more than (1 +e) times the optimal 
tour length with probability that converges to one as 
the size of the problem is increased. This discovery 
launched an important branch of the field of proba­
bilistic algorithms. Moreover, it generated powerful 
interest in the BHH theorem, its generalizations and 
sharpenings that are at the center of this survey. 

2. SUBADDITIVE EUCLIDEAN FUNCTIONALS 

By abstracting from the traveling salesman tour just 
a few of its basic properties, it is possible to suggest 
a very general result that provides information compa­
rable to that given by the BHH theorem for a large 
number of problems of combinatorial optimization in 
Euclidean space. 

Let L be a function that associates a real number to 
each finite subset {xi. x 2 , • • • , Xn} C Rd. To spell out 
the most innocent properties of L that mimic the behav­
ior of the TSP, we first note that for the TSP, L exhibits 
homogeneity and translation invariance; that is, 

(1) L(axl, ax2, . .. 'axn) = aL(xh X2, ... 'Xn) 
for all a> 0, 

and 

(2) 
L(xl + y,x2 + y, ... ,Xn + y) 

= L(x1, X2, ... , Xn)for ally e Rd. 

The TSP's length also has some strong smoothness 
and regularity properties, but these turn out not to be 

· too important for most purposes. All that is needed is 
that L be Borel-measurable when viewed as a function 
from Rnd to R. This condition is almost always trivial 
to obtain, but still one has to have it to be able to talk 
honestly about probabilities involving L. 

Functions on the finite subsets of Rd that are measur­
able in the sense just described and that are homoge­
neous of order one and translation-invariant are called 
Euclidean functionals. These three properties are com­
monplace but bland. One should not expect to be able 
to prove much in such a limited context, but, with the 
addition of just a couple of other structural features, 
a rich and useful theory emerges. 

The first additional property of the TSP functional 
that we consider is that it is monotone in the sense 
that 
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L(XI, X2, . .. , Xn) :S L(XI, X2, . .. , Xn, Xn+I) 
(3) for n ~ 1, and L(q.~) = 0. 

The final feature of the TSP functional that we ab· 
stract is the most substantial one. It expresses both 
the geometry of the underlying space and the funda· 
mental suboptimality of one of the most natural TSP 
heuristics, the partitioning heuristic. If {Qi}rt1 is a 
partition of [0, t]d into smaller cubes of edge length tim, 
the subadditive property says there exists a constant B 
independent of m and t such that 

L({XI. X2, . .. 'Xn} n [0, t]d) 

(4) md 

:S 2:; L({x1,X2, . .. 'Xn} n Q;) + Btmd-1 
i=1 

for all integers m ~ 1 and real t ~ 0. 
Euclidean functionals that satisfy equations (3) and 

(4) will be called monotone subadditive Euclidean func· 
tionals. This class of processes seems to abstract the 
most essential features of the TSP that are needed 
for an effective asymptotic analysis of the functional 
applied to finite samples of independent random vari· 
abies with values in Rd. 

To see how subadditive Euclidean functionals arise 
(and to see how some problems just barely elude the 
framework), it is useful to consider two additional ex· 
amples. 

The first is the Steiner minimum tree. For any finite 
set of n points, s = {XI. X2, . .. 'Xn} c Rd, a Steiner 
minimum tree for S is a tree T whose vertex set con· 
tains S such that the sum of the lengths of the edges 
in Tis minimal over all such trees. Note that the vertex 
set of T may contain points not in S; these are called 
Steiner points. If Lsr(XI. x 2, ... , Xn) is the length of a 
Steiner tree of XI. x2, ... , Xno and if we let lei be the 
length of an edge e, another way of defining Lsr is just 

Lsr(S) =min {2:; lei: Tis a tree 
T eeT 

containing S c Ra, S finite} 

The second example is closely related, yet it points 
out that the innocuous monotonicity property of the 
TSP can fail even in natural problems. The example 
we have in mind is the minimum spanning tree. For 
{X1, X2, . . . ' Xn} c Rd, let LMsT(XI. X2, . . . ' Xnl = 
min L;.eT lei, where the minimum is over all connected 
graphs T with vertex set {xi. x2, ... , Xn}. It is an easy 
matter to check that any minimizing graph must in· 
deed be a spanning tree. 

The functional LMsT is ea~ily seen to be homoge· 
neous, translation-invariant and measurable. One can 
also check without much .trouble that it is subadditive 
in the sense required above. Still, many simple exam· 
ples such as the sets S = {(0, 0), (0, 2), (2, 0), (2, 2)} and 
S U {(1, I)} will show that LMsT fails to be monotone. 

One should suspect that this failure is of an exceptional 
sort that would not have great influence on asymptotic 
behavior, and this suspicion is well justified. Still, the 
example puts us on warning that nonmonotone func· 
tionals can require delicate considerations that are not 
needed in cases that mimic the TSP more closely. 

The main theorem of this section shows that the 
properties (1) through (4), together with a modest mo· 
ment condition, are sufficient to determine the asymp· 
totic behavior of L(X1,X2, ... ,Xnl when the Xi are 
independent and identically distributed. 

THEOREM 2 (Steele, 1981b). Let L be a monotone 
subadditive Euclidean functional. If {Xi}, i = 1, 2, ... , 
are independent random variables with the uniform 
distribution on [0, l]d and var {L(Xb X 2, ... , Xn)} < oo 

for each n ~ 1, then as n -+ oo, 

L(X1,X2, ... ,Xn)ln1d-1)1d-+ PL,d 

with probability 1, where PL,a ~ 0 is a constant de· 
pending only on L and d. 

The restrictions that this theorem imposes on a Euclid· 
ean functional are as few as one can reasonably expect 
to yield a generally useful limit theorem, and because of 
this generality the restriction to uniformly distributed 
random variables is palatable. Moreover, since many of 
the probabilistic models studied in operations research 
and computer science also focus on the uniformly dis­
tributed case, the theorem has immediate applications. 
Still, one cannot be long content with a theory confined 
to uniformly distributed random variables. Fortu· 
nately, with the addition of just a couple of additional 
constraints, the limit theory of subadditive Euclidean 
functionals can be extended to quite generally distrib· 
uted variables. 

To get to the essence of the extension, we first con· 
sider the case of random variables with a singular 
component, that is, variables such that there is a mea· 
surable set E C Rd with Lebesgue measure zero such 
that P(Xi e E) > 0. Random variables with a singular 
component provide a kind of geometrical worst case 
and hence provide a useful test case. 

To deal with such random variables, we need to 
draw out three additional properties shared by many 
subadditive Euclidean functionals. The first of these, 
called scale·boundedness, holds provided there is a con· 
stant C such that 

(5) 

for all {xi. x 2 , ••• , Xn} C [0, t]a. The second property, 
called simple subadditivity, holds provided there is a 
constant D such that 

(6) L(A1 U A2l s L(A1l + L(A2) + Dt 

for any finite subsets A1 and A 2 contained in [0, t]a. 
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These two properties hold for many natural exam­
ples, and in particular they are easily checked for the 
TSP. The key benefit of scale-boundedness and simple 
subadditivity comes from their showing that the singu­
lar component of a distribution makes a contribution 
that is of lower order than that of the absolutely contin­
uous component. 

LEMMA 1. Let L be a monotone subadditive Euclid­
ean functional that is scale-bounded (5) and simply 
subadditive (6). If {Xi} are independent identically dis­
tributed (i.i.d.) random variables and E is any bounded 
set of Lebesgue measure zero, then as n -+ co 

L( {XI,X2, ... ,Xn} n E)/n(d-I)id-+ 0 

with probability 1. 

The last property we will require for the extension 
of this theorem to general distributions calls on a 
type of restricted converse of simple subadditivity. A 
Euclidean functional L is called upper-linear provided 
we have the following: for every finite collection of 
cubes Qi, where 1 ::5 j ::5 M and the edges of the Qi are 
parallel to the axes, and for every infinite sequence Xi, 

where 1 ::5 i < co and Xi E Ra, we have 
M 

~L( {XI.X2, ••• , Xn} n Qi) 
j=I 

3. TAIL PROBABILITIES 

The theory just outlined has a number of extensions 
and refinements. The first of these that we consider is 
the work of Rhee and!J'alagrand (1989) on the behavior 
of the tail probabilities of the TSP and related function­
als under the model of independent uniformly distrib­
uted random variables in the unit d-cube. In Steele 
(1981a), it was observed that in dimension 2 Var (Ln) is 
bounded independently of n. This somewhat surprising 
result motivated the search for a more detailed under­
standing of the tail probabilities P(Ln ~ t), and, in 
particular, it opened the question of determining if 

, these probabilities might decay at the Gaussian rate 
exp(-ct2/2). 

After introducing several methods from martingale 
theory and interpolation theory that led to interesting 
intermediate results, Rhee and Talagrand (1989) finally 
provided a remarkable proof that in d = 2 the TSP (and 
many related functionals) do indeed have Gaussian tail 
bounds. 

THEOREM 3 (Rhee and Talagrand, 1989). Suppose f 
is a Borel measurable function that assigns to each 
finite subset F C [0, 1]2 a real value f(F) such that 

f(F) ::5 f(F U x) ::5 f(F) + min ( d(x, y) : y E F). 

There is then a constant K = Kr such that if Xi are 
independent and uniformly distributed in [0, 1]2, then 
the random variables defined by Un = f( {XI, X2, . .. , 
Xn}) satisfy 

P(IUn -E(Un)l >t) ::5 exp(-t2/K). 

The proof of this result rests on the systematic 
exploitation of the martingale versions of the Hoeff­
ding and Prokhorov large-deviation inequalities to­
gether with a powerful bare-hands construction that 
helps articulate technical features of a random sample 
being well spread out. 

4. THE TSP IN FRACTAL SPACES 

The BHH theorem may seem like a result that is 
wedded to Ra; certainly the growth rate n(d-I)/d emerges 
as a natural characteristic of the dimension. Lalley 
(1990) has provided a set of results that cast new light 
on the role of dimension in problems like the TSP by 
developing limit results for TSP tours in fractal spaces. 
Lalley considered finite random samples chosen uni­
formly (in an appropriate sense) from self-similar sub­
sets of R2 that have Hausdorff dimension strictly less 
than two. Lalley obtained an almost-sure limit law for 
the length Ln of the shortest tour through {XI, x2. 
... , Xn}, but now the normalizing denominator is no 
longer .JTi but a power of n that depends on the struc­
ture of the self-similar set. 

To give the flavor of the results obtained by Lalley, 
we will consider one specific example. The main condi­
tion for a compact set K to be called a strongly self­
similar subset of R 2 is that there is a finite collection 
of transformations Ti : K -+ K so that 

m 

K= U Ti(K), 
i=I 

where each Ti is a transformation that can be written 
as a strict affine contraction (with contraction factor 
ri < 1) followed by a rigid motion. The strong self­
similarity of K requires moreover that the intersections 
Ti(K) n Ti(K), where i * j, be negligibly small in a 
technical sense that we will not detail. Self-similar sets 
can be provided with a natural "uniform measure" that 
generalizes the measure one gets on the product of 
Cantor sets by "choosing the ternary expansion 0 or 2 
according to fair coinfiips." 

THEOREM 4 (Lalley, 1990). If Xi, 1 ::5 i <co, are in­
dependent random variables with the "uniform dis­
tribution" on a strongly self-similar set K that has 
representation 

m 

K= U Ti(K), 
i=I 

where IITi(X) - Ti(y)ll = rd lx - Yll· If K has Hausdorff 
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dimension strictly larger than 1, then the length Ln of 
the shortest tour through the point set {Xi : 1 ~ i ~ n} 
satisfies 

with probability 1, where CK > 0 and 0 < () ~ 1/2 is a 
constant uniquely determined by the similarity ratios ri. 

5. MINIMAL SPANNING TREES 

If x = {x1, . . . , xn} is a finite set of points in Rd for 
d ~ 2, a minimal spanning tree (MST) t of x is a 
connected graph with vertex set x such that the sum 
of the edge lengths of t is minimal; that is, 

. ~ lei = min~ lei, 
eet G eeG 

where lei = lxi- xil is the Euclidean length of the 
edge e = (xi, xi) and the minimum is over all connected 
graphs G. 

Minimal spanning trees are among the most studied 
objects in combinatorial optimization, and even the 
probability theory of MST is rather well developed. 
For example, in Steele (1989) one finds results that 
cover the basic almost-sure asymptotic behavior of the 
MST that parallels the BHH theorem and even deals 
with edge weights that are more complicated than 
those given by the basic edge lengths. In particular, it 
is shown that if Xi are i.i.d. with compactly supported 
density f and 0 < a < d, then 

n-(d-a)ld~lela-+c(a,d) r f(x)d-a)/ddx a.s., 
eet J Rd 

where c(a, d) depends only on a and d. 
One peculiar aspect of this result is that it fails to 

cover the extreme case a = d. This failure was particu­
larly intriguing since the case a = d ford = 2 had been 
the source of an interesting conjecture by R. Bland, 
who by direct computational experience had been led 
to believe that if one takes the sum of the squares of 
the edges of the MST of a sample of points chosen 
randomly from the unit square, then as n -+ oo the sum 
converges to a constant. This result is hinted at by the 
limit cited above, but the specifically desired result fell 
just outside of its domain. 

In Aldous and Steele (1992) an approach to such 
limit problems was taken that differs completely from 
the subadditivity-based analyses such as that men­
tioned in Section 2 or the more ad hoc method used in 
Steele (1989). The new approach is based on the study 
of an analog of the MST for an infinite set of points, 
in particular the points of a Poisson process on all Rd. 
The basic philosophy that guided the analysis is that 
because .the empirical distributions of any independent 
uniform sequences look locally like a realization of the 
Poisson process, one should be able to relate the MST 

of a uniform sample to the MST of the (unbounded) 
Poisson process. Though this sounds a little like the 
"Poissonization" trick that goes back even as far as 
Beardwood, Halton and Hammersley, it is really radi­
cally different in concept and detail. To give a forward 
hint of that difference, note that we have no idea how 
to apply the method to the TSP. 

To sketch the basic idea, let x = (x;) be -a finite or 
countably infinite subset of Rd, d ~ -2. We call x nice 
if (1) x is locally finite, that is, has only finitely many 
elements in bounded subsets of Rd, and (2) the in­
terpoint distances (lxi- x;j, i <J1 are all distinct. Now, 
given a pair (x, x) with x nice and x e x, we can define 
trees tm(x, x) with vertices from x as follows: Let c;1 = x, 
and let t1 be the single vertex c;1. Let t2 be the tree 

·consisting of the vertex c;1 and the vertex c;2 ex\ {c;1} 
that is closest to c;1 in Euclidean distance, together 
with the edge (straight line segment) connecting c;1 and 
c;2. We then proceed inductively in a greedy fashion 
and define tm = tm(x, x) to be tm-1 together with a new 
edge (c;im• c;m), where im ~ m - 1 and c;m e x\{c;1, ... , 
c;m-1} are chosen so that the edge length lc;m - e.;ml is 
minimal (over all possible edges connecting tm-1 to 
x \ tm-1·) In the finite case where n = lxl < oo, this 
procedure terminates with the tree tn(x, x), and in that 
circumstance the tree obtained does not depend on the 
choice of the starting vertex x. 

When x is infinite, the situation is more complex. 
We write t.,(x, x) for the set Untn(X, x), but some work 
is required to obtain useful structural information 
about this graph. In fact, it turns out to be technically 
useful to look at a different but related graph, described 
in the next lemma. 

LEMMA 2. Let g = g(x) be the graph on an infinite 
nice vertex set x defined by taking any pair (xh x 2) as 
an edge in g if it is an edge in either t .. (xh x) or t .. (x2, x). 
Then the graph g is a forest and each component of g 
is an infinite tree. 

The main object of Aldous and Steele (1992) is the 
random tree ~ constructed by taking a Poisson point 
process m. = {17i} of rate 1 in Rd, letting & 0 = m. U {0}. 
Let g = g(fft0) be the forest constructed as in the 
lemma, and finally take the connected graph ~ to be 
the largest tree containing 0. 

It is natural to conjecture that g is itself a tree with 
probability 1, but this possibility seems to be related 
to deep issues in continuum percolation, and the intro­
duction of ~ permits one to finesse that subtle issue. 

LEMMA 3. Let D be the degree of vertex 0 in ~ and 
let Lh ... , Ln be the lengths of the edges of~ incident 
to 0. We then have: 

1. D ~ bd, a constant, 
2. ED= 2, and 
3. ld = ~~iEU < oo. 
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Now let &n denote the point process consisting of n 
points (1'/i : 1 s i s n) that are independent and uni­
formly distributed on the unit cube [0, 1]d. With proba­
bility 1, &n is a nice subset of Rd. Let Sn = tn(1'/I. &n) 
be the minimal spanning tree of these n vertices. It 
is intuitive that Sn, after a suitable rescaling, should 
converge locally to g. 

THEOREM 5. (Aldous and Steele, 1992). (a) If {leil} 
denotes the set of lengths of the edges of Sn, then 

n-1 L2 

~ ledd -+ld as n-+ oo • 
i=1 

(b) If 11n,i denotes the proportion of vertices of Sn with 
degree ~ then for each ~ 

E11n,i -+ P(D = i) as n -+ oo • 

The existence of limits in (b) was proved by different 
methods in Steele, Shepp and Eddy (1987), where one 
also finds a proof of almost sure convergence. The 
analogous question in the model in which the cost 
assigned to each edge is independent and identically 
distributed is solved in Aldous (1990) using ''limit pro­
cess" arguments such as those reviewed above. 

6. MATCHING PROBLEMS 

The problem of determining the least weight match­
ing in a graph (G, E) for which there is a function that 
assigns a real value to the edges of G is a central 
problem of combinatorial optimization. The matching 
problem is intermediate in complexity between the 
MST problem and the TSP. The minimal matching 
problem cannot be solved by a naive greedy algorithm 
such as that used for~ the MST, but there is still a 
polynomial-time algorithm that does solve the prob­
lem- in contrast to the TSP. 

There are two natural Euclidean versions of the 
matching problem. The simplest version considers 2n 
points in Rd and asks for the perfect matching of the 
set for which the total edge length is minimum. This 
matching problem has a theory that is almost perfectly 
parallel to the theory of the MST. 
, A more subtle set of issues arises- when one instead 
considers two distinguished subsets {x1, x 2, . . . , Xn} 
and {y11 y2, . . . , Yn}. Here the probability theory 
becomes much trickier, and new phenomena arise. A 
first taste of the new behavior is given by the results 
of Ajtai, Koml6s and 'fusnady, one of which we note 
below: 

THEOREM 6 (Ajtai, Koml6s. and Tusnltdy, 1984). If 
xi and yi are independent and uniformly distributed 
in R2 for 1 s i s n, then there are constants K 1 and 
K2 such that 

n 

K1.Jn log n s Mn =min~ IXi- Yo1ill s K2../n log n 
a i=l 

with probability that approaches 1 as n -+ oo. 

The .Jlog n term in this result adds a new spin to the 
theory of Euclidean functionals for several reasons. 
First, it shows that the scaling arguments and self­
similarity ideas that were useful for the TSP and the 
MST are no longer accurate enough to lead to the right 
orders. Still, the basic motivation remains substan­
tially intact, and for d <::: 3 one again finds the charac­
teristic growth rates of n(d-111d. 

As an added impetus to the theory of Euclidean 
matching, there are some powerful connections with 
other parts of combinatorial optimization. It was 
through their work on bin packing and scheduling that 
Leighton and Shor were led to the investigation of 
the maximum length that must exist in a two-sample 
matching. The following example from their work again 
exhibits a curious logarithmic term. 

THEOREM 7 (Leighton and Shor, 1989). If xi and yi 
are independent and uniformly distributed in [0, 1]2 for 
1 s i s n, then there is a constant K such that 

min max IXi - Y o1•11 s Kn -v.(log n)314 
a l!!:is;n 

with probability that approaches 1 as n -+ oo. 

In one of the most recent and most sweeping studies 
reviewed for this survey, Talagrand (1991) has unified 
the two preceding results as well as many others. 
The details of that development are too substantial to 
review here, but it is possible to indicate some of the 
sources of the new power. 

Begin by noting that there is a basic relation between 
the behavior of the two-sample matching problems and 
the theory of empirical discrepancy. We recall that if e 
is any class of functions from [0, 1] to [0, 1], the empiri­
cal discrepancy associated with e is defined by 

Dn(e) = s,~f I i~ (f(Xi)- JR/(x)dx)l, 

where the Xi are i.i.d. random variables with density 
· f. Even before the work of Ajtai, Koml6s and 'fusnltdy, 
it was well understood that there was a close connec­
tion between Mn and Dn when e is taken to be the 
class of Lipschitz functions. It was also known that 
the theory associated with Dn was closely linked to the 
epsilon entropy of the class e, and finally people were 
beginning to understand that the issues addressed by 
epsilon entropy could in some cases be more effectively 
addressed by an emerging method of majorizing mea­
sures. 

Unfortunately, even defining all these terms would 
take us rather far afield, but hopefully it is meaningful 
to say that epsilon entropy is a tool for measuring the 
complexity of a class of functions by counting the 
number of epsilon balls that are needed to cover certain 
compact subsets, whereas the method of majorizing 
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measures refines the theory of epsilon entropy to deal 
more effectively with aspects of inhomogeneity in e. 
The substantial achievement of Talagrand (1991) was 
to develop the concrete tools of the theory of majoriz­
ing measures that make it directly useful in the theory 
of Mn and Dn and then to show how those tools could 
be used to deepen and unify the investigations initiated 
by Ajtai, Koml6s and 'fu.snady and broadened by Leigh­
ton and Shor. 

7. THE VALUES OF THE CONSTANTS 

There is a long history of effort devoted to the deter­
mination of the limiting constraints in results like the 
BHH theorem. There is also a substantial literature 
that addresses the constraints associated with worst­
case upper bounds. 

Work by Supowit, Reingold and Plaisted (1983), 
Moran (1984) and Goldstein and Reingold (1987) pro­
vide recent progress on the worst-case bounds and 
provide surveys of the older literature. Two particu­
larly noteworthy contributions for the TSP are those 
of Goddyn (1990) and Karloff (1987). The latter broke 
the J2 barrier in dimension 2 by showing that arsP,2 ::5 

0.984../2, whereas Goddyn (1990) obtained the best 
bounds in general dimension by means of a powerful 
technique that uses an infinite number of translations 
of quantizers other than cubical cylinders. 

After the constraints on the TSP, the best studied 
value is aRsT. d, the constant associated with the worst­
case length of a rectilinear Steiner minimum tree in 
the unit d-cube. Chung and Graham (1981) proved that 
aRsr. 2 = 1, which is significant in that it is the only 
nontrivial worst-case constant for which we have an 
exact expression. The problem of determining aRsT. d 

in higher dimensions is still open, the bounds being 
max( 1, d/(4e)) ::5 aRsr. d ::5 d4(l-d)/d for d ~ 1 (cf. Sny­
der, 1990, 1991; Salowe, 1991). 

Other than these bounds, little progress concerning 
the PL. d was made until Bertsimas and van Ryzin 
(1990) developed exact expressions for the probabilistic 
minimum spanning tree and matching constants as d 
gets large. Specifically, they showed that PMsx d -

.Jdl2ne and PM. d - (1!2).Jd/2ne as d -+ oo. 
The crowning achievement concerning the probabi­

listic constants was the determination of an exact 
expression for PMsx d for all d ~ 2 by Avram and Bertsi­
mas (1992). The expression for PMsx dis a series expan­
sion, each term of which requires a rather difficult 
integration. Still, the first few terms of the series in 
dimension 2 have been computed to yield a numerical 
lower bound of PMsT. 2 ~ 0.599, which agrees well with 
experimental data. We note that the proof employed 
by Avram and Bertsimas relies strongly on the fact 
that a greedy construction is guaranteed. to yield an 
MST. Unfortunately, such a construction fails for many 
objects of interest, including the TSP. It is therefore 

evident that entirely new methods probably will be 
required to develop exact expressions for constants 
such as PrsP. d that arise from NP-hard problems. 

As a final note, we return to the rectilinear Steiner 
minimum tree problem. Bern (1988) showed that, for a 
Poisson process with intensity Non the unit square, 
the value of the rectilinear M ST constant is at least 
that of the rectilinear Steiner tree constant plus 0.0014. 
This separation of the constants was increased by 
Hwang and Yao (1990), who also extended the results 
to include points uniformly distributed in the unit 
square. 

8. THE CENTRAL LIMIT PROBLEM 

The recent work of Avram and Bertsimas (1992) 
provides enticing progress on the important and long­
standing problem of providing a central limit theory 
(CLT) for Euclidean functionals. Their method falls 
short of providing a CLT for the MST problem or the 
TSP, but it provides very useful CLTs for somewhat 
easier problems, including the kth nearest neighbor 
problem, the Delauney triangulation and the length of 
the Voronoi diagram. 

There are two keys to the approach used by Avram 
and Bertsimas. The first is the observation of the 
applicability of the relatively recent CLT for dependent 
random variables due to Baldi and Rinott (1989). This 
new CLT deals with the dependence relations within a 
collection of random variables through the structure 
of a dependency graph Gn and offers an explicit Berry­
Essen type bound where the maximal degree DnGn 
plays a critical role. The second key observation is that 
one achieves a considerable simplification of the CLT 
problem by first conditioning on the event An that, in 
the subdivision of [0, 1] into subcubes of approximate 
size n!log n, each subcube contains at least one and at 
most e log n of the sample points. The specifics of the 
problems handled by the Avram-Bertsimas method 
are such that once one conditions on An, one finds a 
problem that is within range of the Baldi-Rinott CLT. 
Any given problem has a number of details that must 
be directly resolved . 

9. WORST -CASE GROWTH RATES 

One engaging aspect of the asymptotic theory of 
combinatorial optimization of point functionals is the 
persistent similarity between the probabilistic rates of 
growth that have been reviewed and the behavior of 
the corresponding functionals in worst-case settings. 

As a primary example of a worst-case growth rate, 
consider the worst-case length of an optimal traveling 
salesman tour in the unit d-cube: 

(8) Prsp(n) = max min{~ llel: Tis a tour of S}. 
Sc[O,l]d T eeT 
ISI=n 
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In words, Prsp(n) is the maximum length over all n 
point sets in [0, 1]a that an optimal traveling salesman 
tour can attain. There is absolutely no probability 
theory here, for the point sets and tours are determinis­
tic, yet there is a theory for this function that parallels 
the BHH theorem as closely as one could hope. 

THEOREM 8 (Steele and Snyder, 1989). As n-+ oo, 

Prsp(n) - arsP, a n(d-l)ld, 

where arsP, a > 0 is a constant depending only on the 
dimension d. 

The proof of this theorem and several related results 
all call on the subadditivity and smoothness properties 
of the underlying functional. The following elementary 
lemma often helps focus one's investigation of these 
problems by putting a finger on one clear set of suffi­
cient conditions. 

LEMMA 4. If p(1) = 0 and there exists a constant c ;e: 

0 such that for all integers m ;e: 1 and k ;e: 1, we have: 

1. p(n + 1)::;; p(n) + cn-lldand 
2. md-1 p(k) - md-1 k(d-1)/dr(k) ::;; p(mak), 

where r(k)-+ 0 as k-+ oo, then as n-+ oo, 

p(n) - an(d-1)/d 

for a constant a ;e: 0. 

For the analysis of any particular problem, there is 
almost always serious work to be done to make the 
problem amenable to this lemma or its variant. Still, 
the lemma has already proved its effectiveness in a 
number of problems, including minimum matchings 
(Snyder, 1987), minimum spanning trees (Steele and 
Snyder, 1989), greedy matchings (Snyder and Steele, 
1990) and rectilinear Steiner minimum trees (Snyder, 
1991). 

10. CONCLUDING REMARKS 

In the areas in which this survey has been forced to 
make the most substantial omissions, there are good 
sources to which one can turn. One important class of 
r~sults that we have touched upon concerns the study 
of discrepancies of sequences that are more general 
than ' random samples. This subject goes under the 
name of irregularity of distribution, and it is closely 
allied in many technical ways with the work surveyed 
here. The volume by Beck and Chen (1987) gives one 
a view of the subject that it would be wrong to try to 
reprise, though it would have been interesting to make 
more explicit some of the relationships to questions 
such as the MST and Steiner trees. 

Another huge area of related problems that have not 
been engaged here falls in the domain of the recent 
book Intersection and Decomposition Algorithms for 
Planar Arrangements, by F. K. Agarwal (1991). The 

work of K. Clarkson, D. Dobkin, H. Edelsbrunner, L. 
Guibas, E. Welzl and many others is surveyed there, 
and the volume offers a compelling view of the power 
that emerges from a detailed understanding of the way 
a set of lines cut up the plane. Duality is one of the 
powerful tools of that subject, so the restriction that 
is made here to focus on problems involving only "sets 
of points" and not "sets of lines" would not show up as 
a valid distinction in the context of that theory. Still, 
a division had to be drawn, and there can be practical 
differences even where there are formal isomorphisms. 

A third class of related results that have only been 
touched on here concern bin packing and its relation 
to scheduling. This topic is surveyed by Coffman et al. 
in this issue as well as in the beautiful recent book by 
Coffman and Lueker (1991) that is devoted to the topic. 

Galileo is supposed to have said, ''To study science, 
one must speak the language of science, and the language 
of science is written in circles, lines, and squares." With 
luck, this survey reveals that there is something a 
priori appropriate about the probability theory of com­
binatorial optimization. The subject has not strayed 
far from motivations that would have had meaning for 
Galileo. Still, the development has been extensive, and 
the methods have become powerful and diverse. 
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