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ABSTRACT

The Iterative Wigner Filter (IWF) for speech enhancement in addi-
tive noise is an effective and simple algorithm 10 implement. One
of its main disadvantages is the lack of proper criteria for con-
vergence, which has been shown to infroduce severe degradation
1o the estimated clean signal. Here, an improvement of the IWF
algorithm is proposed, when additional information is available
for the signal to be enhanced. If a small amount of clean speech
data is available, spectral conversion techniques can be applied
Jor estimating the clean short-term spectral envelope of the speech
signal from the roisy signal, with significant noise reduction. Qur
results show an average improvement compared to the original
IWF that can reach 2 dB in the segmental outpur Signal-to-Noise
Ratio (SNR), in low input SNR’s, which is percepiually significant.

1. INTRODUCTION

According to the Iterative Wiener Filter ({IWF) algorithm [1] for
speech enhancement in additive noise, the non-causal Wiener fil-
ter [2] is applied to the noisy speech iteratively, while the spectral
estimate of the speech signal is based on all-pole medeling of the
enhanced signal at each iteration. One of its main disadvantages is
the lack of proper criteria for convergence, which has been shown
to introduce severe degradation to the estimated clean signal, an
issue that has been mainly attacked by introducing constraints dur-
ing the all-pole estimation [3, 4]. In this paper, we show that spec-
tral cenversion techniques can be applied to the speech enhance-
ment problem within the IWF framework, with the assumption that
a small amount of clean speech data is initially available. Spectral
conversion has been applied previously to voice conversion, whose
objective is to modify the speech characteristics of a particular
speaker in such manner, as to sound like speech by a different tar-
get speaker [3, 6, 7]. Here, we show that there are valid analogies
between these two different fields of speech processing, which can
be exploited and produce satisfactory resuits. More specifically,
we view the problem of speech enhancement in additive noise as
similar to voice conversion, where the source speech is the noisy
speech, and the target speech is the clean speech. There are some
difficulties that arise from this assumption, that are detailed next.
The common characteristic of voice conversion approaches is
that they focus on the short-term spectral properties of the speech
signals, which they modify according to a conversion function de-
sigiied during the training phase, This was in fact our motiva-
tion for applying these approaches to the IWF, whose performance
greatly depends on the estimation of the short-term properties of
the speech signal. During training. the parameters of this conver-
sion function are derived based on minimizing some error mea-
sure. In order to achieve this, a speech corpus is needed that con-
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tains the same utlerances (words, sentences, etc.) from both the
source and target speakers (parallel corpus). If a corpus containing
the same utterances of the noisy and clean speech is available, we
show that spectral conversion applies to this problem favorably.

In Fig. i, the block diagram of the proposed algorithms is
given. During the first iteration of the IWF algorithm, the ail-pole
coefficients of the speech are directly derived from the noisy sig-
nal. Spectral conversion is then applied, resulting in better estima-
tion of the clean speech parameters based on the training phase,
After the first iteration, the IWF algorithm proceeds as usual, al-
though our simulations showed that additional iterations do not
offer significant improvement in most cases. For parallel training,
clean and noisy speech data are required, with the additional con-
straint that the same utterances must be available from the clean
and noisy speech, It is often difficult or even impossible to collect
such a corpus. In [8], we proposed a conversion algorithm that
relaxes this constraint. Qur approach was to adapt the conversion
parameters for a given pair of source and target speakers, to the
particular pair of speakers for which no parallel corpus is avail-
able, Similarly here, we assume that a parallel corpus is available
for noisy speech 2 and clean speech 2 in Fig. 1, and for this pair a
conversion function is derived by employing a conversion methed
given in the literature [7]. For the particular pair of clean and noisy
speech that we focus on, a non-parallel corpus is available for
training. Constrained adaptation techniques allow for deriving the
needed conversion parameters by relating the non-parallel corpus
to the parallel corpus. We show that the speaker and noise char-
acteristics in the two pairs of speech data can differ, while noise
stationarity is assumed. The training phase is greatly simplified
with this latter approach, since only few sentences of clean speech
are needed, while the noisy speech is readily available.

2. ITERATIVE WIENER FILTER

For the case examined here, the noisy signal y(n) is given by
y(n} = s(n) + d(n) m

where s(n) is the clean speech signal and d{r) is the uncorrelated

with 3(n) additive noise. The IWF algorithm estimates the speech

signal from noisy speech by iteratively applying the non-causal
Wiener filter

Py{w)
P_.j (w) -+ Pd(w)
where H (w) denotes the frequency response of the filter, Py{w) is
the power spectral density (psd) of s(n) and Py(w) is the psd of
d(n). The psd of the speech signal in FWF is estimated from
G2
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H(w) = 2

Py(w) (3
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i.e. the all-pole model of erder p of the noisy speech. while the psd
of the noise can be estimated from the noisy speech during regions
of silence. The constant term ( can be estimated from the energy
difference between the noisy signal and the estimated noise. The
algorithm operates in short-time segments of the speech signal,
and a new filter applics for each segment. Usually a small num-
ber of iterations for each segment is required for convergence, so
the computational requirements of the algorithm are limited. How-
ever, there is no proper criterion for convergence of the IWF proce-
dure, which is an important disadvantage since it has been shown
that after a few iterations the solution greatly deviates from the
correct estimate, Towards addressing this issue, several improve-
ments have been propesed that constrain the all-pole estimate at
each iteration so that the parameters retain speech-like properties.

3. SPECTRAL CONVERSION

From the reference and target training waveforms, we extract the
parameters that model their short-term spectral properties (in this
paper we use the line spectral frequencies - LSF’s - due to their de-
sirable interpolation properties [7]). This results in two vector se-
quences, [€1z2 ... 2n] and (g, ¥y, - . . ¥y, ), of reference and target
spectral vectors respectively, The objective of spectral conversion
methods is to derive a function F(-) which, when applied to vector
i, produces a vector close in some sense to vector y,. For the
noise enhancement problem, the vector sequence & corresponds
to the noisy speech, while the sequence ¥, corresponds to the
clean speech. Gaussian mixture models (GMM’s) have been suc-
cessfully applied to the voice conversion problem [6, 7]. GMM’s
approximate the unknown probability density function (pdf) of
a random vector & as a mixture of Gaussians whose parameters
(mean vectors, covariance matrices and prior probabilities of each
Gaussian class), can be estimated from the observed data using the
expectation maximization (EM) algorithm [9].

We focus on the spectral conversion method of [7], which of-
fers great insight as to what the conversion parameters represent.
Assuming that o and y are jointly Gaussian for each class w;, then,
in mean-squared sense. the optimal choice for the function F is

Flzk) E(y &) C]
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where E(+) denotes the expectation operator and the conditional
probabilities p(w; @k} are given from

P((JJi mk) - P(%)N(Ek;uf: E“n) .
L p(ws)N (s p2, BF)
All the parameters in the two above equations are estimated us-
ing the EM algorithm on the joint model of & and y. In practice
this means that the EM algorithm is performed during training on
the concaienated vectors @£, and y,. A time-alignment procedure
is required in this case, and this is only possible when a parallel
corpus is used. Another issue is that performance considerations,
when using the adaptation procedure described in the next para-
graph, dictaie that the covariance matrices used in this conversion
method be of diagonal form. In order to achieve this restriction
some issues must be addressed due to the joint model used [10].

I
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4. CONSTRAINED GMM ESTIMATION

In the previous section we described the spectral conversion al-
gorithm that can result in estimates of the clean speech spectral
features from the noisy speech. These estimates can then be di-
rectly used in the IWF algorithm when applied to (3) during the
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Fig. 1. Block diagram outlining spectral conversion for a paralle!
and non-parallel corpus within the TWF framework. Non-paraltel
training is achieved by adaptation of the parameters derived from
parallel training of a different speaker and noise conditions,

first iteration. However, a parallel training corpus is needed for
this method, which sometimes might be difficult to acquire. As an
alternative, we propose in this section a procedure which is based
on the spectral conversion method of the previous paragraph, but
allows for a non-parallel corpus. We show that this is possible un-
der the assutnption that a parallel speech corpus is available for
a different reference and target speech pair (i.e. different speaker
and noise conditions). [n order to achieve this result, we apply the
maximum-likelihood constrained adaptation method [11], which
offers the advantage of a simple probabilistic linear transformation
leading to a mathematically tractable solution.

As mentioned, we also assume that a parallel speech corpus
is available for a different speaker and noise conditions, in addi-
tion to the particular pair of speaker and noise for which only a
non-parallel corpus exists. From the parallel corpus, we obtain a
joint GMM model, derived as explained in Section 3. The spectral
vectors that corvespond to the reference speech are considered as
realizations of random vector z, while y corresponds to the target
speech of the parallel corpus. From the non-parallel corpus, we
also obtain a sequence of spectral vectors, considered as realiza-

tions of random vector & for the reference speech and y' for the
target speech. We then relate the random variables 2’ and x, as
well as y’ and v, in order to derive a conversion function for the
non-parallel corpus based on the parallel corpus parameters.

We assume that the target random vector '’ is related to refer-
ence random vector & by a probabilistic linear transformation

# = Ajz +b; withprobability p(A; w;), 3 =1,...,N.(6)

Each of the component transformations j is related with a specific
Gaussian  of z with probability p(A; ws) satisfying

N
Zp(/\jwi)=1, i=1,...,M. €]
j=1

In the above equations A{ {s the number of Gaussians of the GMM
that corresponds to the joint vector sequence of the parallel corpus,
Aj; isa K x K matrix (K is the dimensionality of %), and b;

is a vector of the same dimension with z. Random vectors ¥

and y are related by another probabilistic linear transformation,
similar to {6), where matrix A is now substituted by C,, vector b;
becomes d,, and p(A; w;) becomes p(x, w;). Note that classes w;
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Method || IWF
ASSNR || 3.6839

Tdeal | S8 SC_ [ SCA
73654 | 3.0678 | 6.8538 | 6.7877

Table 1. Resulting ASSNR (dB) for input SNR of 0 dB for [tera-
tive Wiener Filter (IWF), perfect prediction (Ideal). Spectral Sub-
traction (88), Spectral Conversion with IWF (SC), and Spectral
Conversion followed by adaptation and IWF (SC-A),

are the same for 2 and y by design in Section 3. All the unknown
parameters can be estimated by use of the non-parallel corpus and
the GMM of the parallel corpus. by applying the EM algorithm.
Based on the linearity of the transformations and the fact that for a
specific class the pdf’s are Gaussian, it can be shown [8], that the
conversion function for the non-parallel case is
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5. SIMULATION RESULTS

In this section we test the performance of the spectral conversion
and adaptation methods described in the previous paragraphs to the
speech enhancement problem within the IWF framework. We use
40 ms. windows (the sampling rate is 22.050 kHz) and the spectral
vectors used here are the LSF's (28" order) due to their favor-
able interpolation properties, For these experiments we use white
Gaussian noise, while preliminary results verify the validity of our
methods to various types of noise, such as pink and car notse. The
error measure employed is the output average segmental SNR,

ASSNR(dB) = 1 zn: 10lo z{z;
B =R AT Ny - g

where . is the clean speech signal for segment %, and £}, is the
estimated speech signai for segment k. We test the performance
of the algorithms using the ASSNR for various values of input
(global) SNR. The corpus used is the VOICES corpus, available
from OGI's CSLU (12, 13]. This is a parallel corpus and is used
for buth the parallel and non-parallel training cases that are exam-
ined in this section, in a manner explained in the next paragraph.
We test the performance of the two algorithms proposed here {(one
case (4) for parallel training and one (8) for nen-parallel traini ng),
in comparison to the unconstrained IWF and spectral subtraction
[14]. The ideal error for the IWF method is given as well (i.e. per-
fect prediction of the all-pole coefficients, which are available only
in the simulation environment). It is important to note that the cor-
pus used contains a total of 50 sentences, of which a total of 40 is
used for training purposes (as explained next) and the remaining
10 are used for testing, All the resuits given in this section are av-
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Fig. 2. Resulting ASSNR (dB) for different values of input SNR,
for the five cases tested, ie perfect prediction (Ideal Error), the
Iterative Wiener Filter (IWF), Spectral Conversion for IWF (SC-
IWF, parallel corpus), Spectral Conversion by adaptation for IWF
(5C-Adapt-IWF, non-parallel corpus), and Spectral Subtraction.

eraged over these 10 sentences and, in addition, for each sentence
the result is the average of 10 different realizations of noise.

In Fig. 2, the ASSNR is given for the five cases tested. for
various values of {nput SNR. As mentioned in the previous para-
graph, we test the two algorithms proposed here (for parallel train-
ing (SC-IWF) and non-parallel training (SC-Adapt-IWF)), com-
pared with the IWF algorithm, spectral subtraction, and the theo-
retically best possible performance of the IWF. For SC-IWF, the
number of GMM parameters for training is 16 and the number of
vectors in tratning is 5,000, which corresponds to about 15 sen-
tences. For SC-Adapt-IWF, the number of adaptation parameters
84 (L = N = 4), and the number of training vectors is 5,000.
From the figure it is evident that the SC-I'WF algorithm improves
on the [WF aigorithm, especially in low input SNR’s, which is
exactly what is desired. In many cases in our simulations the per-
formance improvement reached 2 dB, which is quite significant
perceptually in low SNR's. The SC-IWF algorithm can only be im-
plemented when a parallel training dataset is available. When this
is not possible, the SC-Adapt-TWF method was proposed, which is

‘based on adapting the conversion parameters of a different pair of

speaker/noise conditions. In this figure, we plot the performance
of the SC-Adapt-IWF algorithm based on a different speaker from
our corpus in white Gaussian noise of 10 dB SNR. We can con-
clude that the adaptation is very successful in low SNR’s, when
it performs only marginally worse than SC-IWF. In higher SNR’s
the training corpus, parallel or non-parallel, does not seem to offer
any advantage when compared to TWF, which is sensible since the
all-pole parameters can be estimated by the IWF quite efficiently
in this low-noise case. The results for input SNR of 0 dB are also
given in Table 1 for comparison with the results in Tables 2 and 3.

In Table 2, the ASSNR is given for the parallel case (SC-
IWF) for 0 dB input SNR, for various numbers of GMM param-
eters and vectors in training. When comparing the performance
of the various numbers of GMM parameters, the vectors in train-
ing are 5,000. We can see from the table that when increasing the
number of GMM parameters in training, the performance of the
algorithm improves as expected (since this corresponds to more
accurate modeling of the spectral vectors). We must keep in mind
that a 0.5 dB improvement is perceptibe in low SNR. For the sec-
ond case examined in this table, namely the effect of the training
dataset size on the performance of the algorithm, the number of
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GMM's 2 4 8 16 32

ASSNR || 6.3655 | 6.4737 | 6.7932 | 6.8538 | 6.8966
Vectors 500 1000 2000 5000 10000
ASSNR || 6.5838 | 6.7402 | 6.8172 | 6.8538 | 7.0362

Table 2. Resulting ASSNR in dB {(parallel training, 0 dB input
SNR), for different numbers of GMM parameters (for 5,000 vec-
tors) and training vectors (for 16 GMM parameters).

GMM parameters is 16. From the table we can see that the perfor-
mance of the algorithm improves when more training vectors are
available, although not significantly for more than 2,000 vectors.
The fact that only a small number of training data results in signif-
icant improvement over IWF is important, since this corresponds
to requiring only a small amount of clean speech data.

In Table 3. the ASSNR is given for the non-parallel case and
inpui SNR of 0 dB, for various choices of adaptation parameters
(again, in (8) L = NN) and training dataset size. When varying
the number of adaptation parameters, the training dataset contains
5,000 vectors, and when varying the number of vectors in the train-
ing dataset, the number of adaptation parametersis L = N = 4.
It is important to note that for all cases examined, the sentences
used for adaptation are different than those used to obtain the con-
version parameters (i.e. from the different speaker and noise con-
ditions, for which a parallel corpus is used with 16 GMM param-
eters and 5,000 training vectors), From the table we can see that
increasing the number of adaptation parameters improves the al-
gorithm performance, which is an intuitive result since a larger
number of adaptation parameters better models the statistics of the
spectral vectors. Adaptation of 0 parameters corresponds to the
case when no adaptation takes place, i.e. when the derived param-
eters for a different speaker and noise conditions are applied to the
non-parallel case. It is evident that adaptation is indeed required,
reducing the error considerably. Performance improvement is also
noticed when increasing the number of training data, noting again
that only few training data can produce desirable results.

1t is important to note that the results given here correspond
to the ideal case when it is known when the IWF algorithm con-
verges. In reality, proper convergence criteria for the IWF algo-
rithm do not exist, and as mentioned this can severely degrade
its performance. In contrast, the spectral conversion based algo-
rithms proposed here were found to not require additional itera-
tions for achieving minimal error. This should be expected since
the spectral conversion methods result in a good approximation of
the all-pole parameters of the clean speech, thus no significant im-
provement is achieved with additional iterations. This is an impor-
tant advantage of the proposed algorithms when compared to other
IWF-based speech enhancement methods. Another issue is that in
segments of very low speech energy, resulting in very low SNR,
the methods proposed here might result in abrupt noise. These
cases can be identified by applying a threshold, derived from the
noisy speech energy as a pre-processing step.

6. CONCLUSIONS

In this paper we applied spectral conversion techniques, originaily
developed for voice conversion, to the speech enhancement prob-
lem. The two algorithms given here, one for parallel and ene for
non-parallel training, can estimate the clean speech all-pole param-
cters from the noisy signal. These parameters can then be applied
within the IWF framework. instead of the IWF initial parameter
estimation directly from the noisy signal. The results verified that
this spectral conversion approach results in a better estimate of the
clean speech, with the additional advantage that the iterative esti-
mation procedure, 2 major drawback for the IWF algorithm. can
usually be circumvented with minimal effects on the performance

Param. [¢ 1 2 4 [

ASSNR 62211 | 6.6679 | 6.7513 | 6.7877 | 6.6305
Vectors 500 1000 2000 5000 10000
ASSNR || 5.9452 1 6.7106 | 6.7404 | 6.7877 | 6.8523

Table 3. Resulting ASSNR in dB (non-parallel training, 0 dB input
SNR), for different numbers of adaptation parameters (for 5,000
vectors) and training vectors (for 4 adaptation parameters).

of the proposed algorithms. Our future plans include testing our
methods for various types of stationary and quasi-stationary neise.
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