
POLICY IMPLEMENTATION AND ENGINEERING FOR

TAGGED ARCHITECTURES

Nick Roessler

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2021

Supervisor of Dissertation

André DeHon, Professor of Electrical and Systems Engineering

Graduate Group Chairperson

Mayur Naik, Professor of Computer and Information Science

Dissertation Committee

Jonathan M. Smith, Professor of Computer and Information Science

Benjamin Pierce, Professor of Computer and Information Science

Joseph Devietti, Associate Professor of Computer and Information Science

Dr. Greg Sullivan, Chief Scientist Dover Microsystems

POLICY IMPLEMENTATION AND ENGINEERING FOR

TAGGED ARCHITECTURES

c© COPYRIGHT

2021

Nick E Roessler

ACKNOWLEDGEMENTS

First, I’d like to thank my advisor André DeHon for his support and guidance on my journey;

he demonstrated the courage to think big and challenge assumptions. I’m also grateful to

the other members of my committee, Jonathan Smith, Benjamin Pierce, Greg Sullivan, and

Joseph Devietti, for their valuable feedback on this work.

Luke Valenta has been a close friend and I’m thankful for the adventures and inspiring

conversations we shared while going through this phase of our lives together. I can’t thank

Rafi Rubin enough for his wise words, calming perspective, and teaching me sysadmining

skills; he always made lab a fun place to be. Marcella Hastings, Stephen Phillips and Nikos

Vasilakis have been wonderful friends that made my grad school experience such a pleasure.

Alex Pezzati, Justin Goodrich, William Marshall and Jinesh Desai have enriched my life

and I feel incredibly lucky to know them.

Lastly, I’d like to thank Ariella Mansfield for her love and support. Unexpectedly, we

survived a pandemic quarantined together and I cherish the time we had.

This work was supported by National Science Foundation grant TWC-1513854 and DARPA

contract HR0011-18-C-0011 under the System Security Integrated Through Hardware And

Firmware (SSITH) program.

iii

ABSTRACT

POLICY IMPLEMENTATION AND ENGINEERING

FOR TAGGED ARCHITECTURES

Nick Roessler

André DeHon

Tagged architectures have seen renewed interest as a means to improve the security and

reliability of computing systems. Rich, programmable tag-based hardware security moni-

tors like the PUMP [43] allow software-defined security policies to benefit from hardware

acceleration. The thesis of this work is that policies for programmable tagged architectures

(1) can be engineered to enforce critical security properties at low cost, (2) can protect real

programs running on real ISAs, and (3) can be applied automatically to programs—that is

with compilation passes or automatic analysis—so that the benefits of such an architecture

can be brought to existing and new software with minimal human intervention.

To support this claim, I have constructed a range of security policies that run on real

workloads automatically, modeled their overheads using architectural simulations, explored

tradeoffs in policy design and engineering to reduce their costs, and finally characterized

them by their security properties. As examplar policies, I have created stack and heap

memory protection policies that can thwart traditional memory corruption vulnerabilities.

Additionally, I have built a compartmentalization framework that allows a security engineer

to automatically generate and evaluate a wide range of tag-based compartmentalization

strategies. To generate compartments automatically, the framework includes algorithms

for quantitatively minimizing overprivilege and packing the rules required for those policies

into manageable sets that can be cached favorably for high performance. Across these

three categories of policies, I present the following policy engineering contributions: (1)

lazy tagging, an optimization that reduces the cost of tagging memory objects, (2) rule

packing, a technique for relaxing policies in key ways to improve their performance, and (3)

rule prefetching, a technique that can exploit predictable rule sequences by preemptively

fetching and installing rules before they are needed.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF ILLUSTRATIONS . viii

CHAPTER 1 : Introduction . 1

1.1 Motivation . 1

1.2 Outline . 3

1.3 Contributions From Others . 6

CHAPTER 2 : Background . 7

2.1 The PUMP Architecture . 7

2.2 Security and Threat Model . 9

CHAPTER 3 : Stack Protection Policies . 11

3.1 Introduction . 11

3.2 Threat Model and Assumptions . 14

3.3 Stack Protection Policies . 15

3.4 Evaluation . 29

3.5 Optimizations: Lazy Tagging . 33

3.6 Security Characterization . 38

3.7 Policy Compatibility . 40

3.8 Discussion and Conclusion . 43

CHAPTER 4 : Heap Protection Policies . 48

4.1 Introduction . 48

4.2 Background . 49

v

4.3 Threat Model and Assumptions . 54

4.4 Policy Formulation and Implementation . 54

4.5 Evaluation . 60

4.6 Security Characterization . 66

4.7 Policy Compatibility . 71

4.8 Limitations and Future Work . 74

4.9 Conclusion . 75

CHAPTER 5 : Compartmentalization Policies . 77

5.1 Introduction . 77

5.2 Background and Related Work . 81

5.3 Threat Model . 84

5.4 Privilege Reduction and Compartmentalization 85

5.5 Compartmentalization Tag Policy Formulation 86

5.6 The Tracing Policy . 89

5.7 Privilege Quantification Model . 91

5.8 Policy Exploration . 92

5.9 Performance Model . 100

5.10 Evaluation . 101

5.11 Prefetching . 108

5.12 Security, Overprivilege and Work-factor . 114

5.13 Future Work . 117

5.14 Comparisons with Related Embedded System Security Work 119

5.15 Runtime Modes and Dynamic Analysis . 120

5.16 Conclusion . 121

CHAPTER 6 : Conclusion . 122

BIBLIOGRAPHY . 123

vi

LIST OF ILLUSTRATIONS

FIGURE 1 : Typical Alpha stack maintenance code 15

FIGURE 2 : Return Address Protection rules 19

FIGURE 3 : Static Authorities example . 22

FIGURE 4 : Static Authorities rules . 26

FIGURE 5 : Depth Isolation rules . 28

FIGURE 6 : Evaluation Framework . 28

FIGURE 7 : Return Address Protection overhead 32

FIGURE 8 : Static Authorities overhead . 32

FIGURE 9 : Depth Isolation overhead . 32

FIGURE 10 : Optimizations applied to Static Authorities 37

FIGURE 11 : Optimizations applied to Depth Isolation 37

FIGURE 12 : Stack threat taxonomy . 39

FIGURE 13 : The layout of the malloc chunk structure 50

FIGURE 14 : An example heap overflow . 54

FIGURE 15 : Rules vs number of heap colors . 61

FIGURE 16 : Overhead of N-Color heap policy 63

FIGURE 17 : Overhead of the Allocation-Site heap policy 64

FIGURE 18 : Relaxing the heap policy on omnetpp. 65

FIGURE 19 : Security characterization of heap policy variations 71

FIGURE 20 : Pointer tag propagation ambiguities for and opcode 72

FIGURE 21 : Sub-word data manipulation in a Quicksort implementation. . . . 74

FIGURE 22 : The PIPE Architecture . 81

FIGURE 23 : The output of the tracing policy 90

vii

FIGURE 24 : Automated compartmentalization algorithms and the resulting num-

ber of compartments, rules, overprivilege and miss rates. 96

FIGURE 25 : Rule savings calculation example for the Working-Set algorithm . 98

FIGURE 26 : The impact of the WSmax parameter on the rule cache miss rate . 103

FIGURE 27 : Overhead vs Overprivilege Ratio from SCALPEL’s algorithms . . 106

FIGURE 28 : Syntactic Domains and Syntactic Constraints 107

FIGURE 29 : The Rule-Successor Graph . 110

FIGURE 30 : The results of the SCALPEL’s rule prefetching system. 113

FIGURE 31 : A buffer overflow example . 115

viii

CHAPTER 1 : Introduction

1.1. Motivation

Conventional computing systems are highly insecure. Substantial portions of their soft-

ware stacks, including operating systems, device drivers, runtime environments, and web

browsers, are written in languages such as C, C++, and assembly. These languages have

seen widespread adoption in the systems development world due to the precise low-level

control that they expose to programmers and their fast execution speeds, but they are

also notoriously insecure. Notably, they lack array bounds checking, they rely on manual

memory management which can lead to use-after-free and double-free errors, they permit

undefined behavior which compilers may exploit to unexpectedly remove security checks

or do other surprising code transformations [130], they employ complicated implicit type

casting rules and expose low-level architectural behavior (e.g., integer overflows) that may

lead to hard-to-detect bugs in application logic—and the list goes on. Repeated studies

have shown that essentially all software contains bugs [15, 60, 88], and bugs in programs

written in unsafe languages produce executable artifacts that may violate language-level

abstractions (such as isolating memory objects from each other), thus paving the path for

attackers to manipulate computing systems to malicious and devastating ends.

Many security properties of programs that could be enforced to prevent these kinds of

errors (or at least mitigate their malicious effects) have been identified in the literature.

For example, memory pointers created to reference objects should not be permitted to

access memory outside of the object’s bounds; when a machine transfers control-flow from

one instruction to another, the edge taken should be in the expected control-flow graph of

the program; when an operation takes place on or between objects, the operation should be

valid in terms of the types of the objects; errors in one component of a system should not be

able to affect other unrelated components—many other such properties could be described.

Despite the security community both knowing these properties and how to enforce them—or

1

at least relaxed versions of them—on critical software, they have not been widely deployed

to protect computing systems; one of the key reasons is that the overheads imposed by

enforcing them are deemed to be too high to justify their benefits. For a defense to be

used in practice, it must sit favorably in the performance cost versus protection tradeoff

space. The few mitigations that have seen widespread adoption, such as stack canaries [33],

address space layout randomization (ASLR), and Write-XOR-Execute memory permissions

(W⊕X), not surprisingly, are all mitigations that do not impose substantial overheads.

As the cost of transistors goes down, the opportunity to invest hardware resources to accel-

erate security policies becomes increasingly viable. With hardware support, the acceptable

points in the protection-versus-overhead tradeoff space can shift favorably towards stronger

mitigations. In this dissertation I focus specifically on a software/hardware co-designed

programmable tag-based hardware security monitor, the Programmable Unit for Metadata

Processing (PUMP) [43]. In this architecture, the CPU maintains a metadata tag on each

word of memory in the system, on each register in the register file, and on the program

counter. As each instruction executes, a software security monitor is consulted. It inspects

the tags relevant to the instruction, determines if the operation should be permitted ac-

cording to a specified policy (or policies), and if so, supplies tags for the results of the

operation. To accelerate the behavior of the security monitor, the CPU maintains a cache

of the recently encountered rules—properly designed [42], such a cache can be consulted in

a single cycle without stalling the CPU. This means that policies can be enforced at low

costs as long the rule locality is high i.e., misses in the rule cache are rare.

To be useful, that is to identify and halt invalid or malicious executions, the PUMP must

be provided with a software-defined policy (or set of policies) expressed in a fine-grained

and low-level fashion suitable for the PUMP: we call such policies micropolicies. This

dissertation is about the construction and engineering of useful micropolicies.

While previous research has shown that micropolicies can be formulated and proven to be

correct for abstract symbolic machines [11], this dissertation takes a pragmatic approach.

2

Concretely, (1) it models policies on a full and real RISC ISA and deals with the nuances

of real architectures and compilers, (2) it pays heed to the overhead imposed by the en-

forcement of policies by modeling a concrete PUMP with a finite rule cache, a limitation

that influences policy design, and (3) it is concerned with policies that can be applied auto-

matically—that is, with compilation passes or automatic analysis, so that minimal human

intervention is required to bring the benefits of the PUMP to existing and new software.

1.2. Outline

Chapter 2 covers the background material for this dissertation. It introduces the PUMP

architecture and the C-based threat model that our policies are built to protect against.

Chapter 3 is about policies for protecting the program call stack; its contents are drawn

from a published paper on the topic [106]. The runtime stack is a critical system component

with a long history of being exploited by attackers [5]. The call stack serves as a storage

repository for a range of uses to support the abstraction of a function call. In memory

unsafe languages, attackers can tamper with data items stored in the stack to hijack the

control-flow of the machine or otherwise maliciously manipulate or read program data. The

chapter presents three stack protection policies that secure the stack abstraction at various

levels of protection and costs. The goal of the policies is to carry forward information

available to the compiler about correct program behavior (such as which instruction should

access which fields of a frame) and to enforce them at runtime with tags and rules. The

first policy, Return Address Protection, is designed as a lightweight and simple policy; it

uses tags to protect return addresses stored in stack memory by limiting access to them

to just the compiler-generated instructions explicitly emitted for stack management. The

policy has an overhead of only 1.2% and provides protection comparable to stack canaries.

The chapter then presents two richer policies that protect all stack objects—to do so, these

policies (1) insert instrumentation to tag all stack elements as stack frames are pushed and

popped from the stack, and (2) tag program code to communicate the expected behavior of

those instructions such that they can be validated at runtime. Most of the overhead of these

3

policies comes from the cost of tagging and then clearing stack memory—consequently, we

investigate optimizations for lazily tagging and clearing stack memory to reduce these costs

while still providing object-level protection of all stack elements. With these optimizations,

the stack protection policies impose an overhead of only 3-4%. The chapter concludes

with an attack taxonomy to characterize the security properties of the policies and their

optimizations.

Chapter 4 presents policies for protecting the heap, a source of dynamic memory. In manu-

ally managed languages such as C/C++, programmers must explicitly allocate and deallo-

cate memory objects by invoking a software component called an allocator. Manual memory

management of this form is notoriously error prone, introducing new error classes such as

use-after-frees and double-frees that can also lead to memory corruption. Heap-based ex-

ploits have become very popular among attacks against real systems [17], even overtaking

other kinds of memory errors in recent years [127]. To protect the heap, we introduce poli-

cies based upon the dynamic tainting and checking technique introduced in [30]. In these

policies, the allocator is modified to tag the memory chunks that it allocates with a color

identifier, and also to tag the pointer it returns to the program with the same color. On

each memory access performed by the program, the color of the pointer is compared against

the color of the memory word, and if they do not match then the access can be determined

to be illegal and a violation is raised. Unlike the stack policies, programs do not require

instrumentation to benefit from the protection of the heap policies. The range of heap

policies we present vary only in their coloring schemes i.e., how many identifiers are used

to differentiate allocations and how they are assigned to those allocations. We introduce

a simple One-Color policy that can protect against a range of common vulnerability types

with an overhead of only around 1%, as well as an Infinite-Color policy that provides com-

plete spatial and temporal memory safety for heap memory at a higher cost 37% (although

for many workloads the overhead is less than 10%). Between these two extremes, we explore

several other variations and additionally how the Infinite-Color policy can be relaxed in key

places to reduce its costs while maintaining as much protection as possible.

4

Chapter 5 is about compartmentalization policies. Compartmentalized systems are more

robust to attacks than monolithic systems, because when a breach occurs the attacker is

constrained to just the data and privileges available in the compromised compartment. In

this chapter we present SCALPEL, a tool for automatically compartmentalizing systems

and enforcing those compartments with tags and rules. In the first phase, SCALPEL

uses a tracing policy to record the set of fine-grained privileges required by a program to

perform its tasks, including both control-flow transitions and memory access patterns. The

tracing policy is implemented as a drop-in policy replacement, allowing to run on the same

software and hardware without any other system changes. After running the tracing policy,

SCALPEL then uses the tracing data to systematically generate a wide range of possible

system decompositions. To generate its decompositions, SCALPEL treats compartment

generation as an optimization problem over the privilege-performance space. To produce

high-performance compartmentalizations, SCALPEL targets the number of rules that are

needed by a program during any of its phases and packs those rules down into manageable

sets that can be favorably cached. To decide how to relax the decompositions to achieve its

rule targets, it introduces a quantitative privilege representation and uses overprivilege as

an objective function to minimize. At the extreme, SCALPEL can target packing an entire

compartmentalization policy into a set of rules small enough to fit into the rule cache, thus

achieving no runtime rule misses and the predictable performance profile required for real-

time systems. Lastly, a final optimization used by SCALPEL is a rule prefetching system.

When a program enters a compartment, many of the rules that will be required by that

program can be predicted in advance, which means they can be installed preemptively to

avert future misses. We show that prefetching can reduce the overhead costs of fine-grained

separations by almost 4X, allowing tighter separations to run at lower overheads.

The common thread throughout the chapters is policy engineering, i.e., the design of security

policies that achieve useful security properties while managing the number of tags, rules,

and other runtime costs for enforcement. In the stack policies, the dominant source of

overhead arose from tagging and clearing stack memory, which we solved with the lazy

5

tagging and lazy clearing clearing policy designs. In both the stack and the heap policies,

we found that generating unique identifiers for each dynamic stack frame or each heap object

could challenge the rule cache, and a possible policy design strategy to reduce costs is to

map identifiers to static entities, i.e., Static Authorities for the stack and the Allocation-

Site policy for the heap policies. For the compartmentalization policies, we introduce rule

packing, a technique in which the set of rules required for each program phase is packed into

a set that can be cached favorably. Lastly, we design and evaluate a rule prefetching system

that exploits predictable rule sequences to reduce the number of runtime rule resolutions.

1.3. Contributions From Others

The stack work in Chapter 3, including both the stack policies and the lazy tagging opti-

mization, was done by me under the guidance of André DeHon.

The initial N-Color heap policy implementation in Chapter 4 was developed by Udit Dhawan,

which I then refined substantially. The Allocation-Site variations and the security charac-

terization were done by me.

The compartmentalization work in Chapter 5 began as a joint effort between myself, André

DeHon, and Nathan Dautenhahn, in which the privilege representation model, the privilege

quantification model, and compartmentalization algorithms were developed. The transla-

tion of the compartmentalization framework from Linux to FreeRTOS and the development

of a tag-based back-end, as well as tracing policy, rule packing, syntactic constraints and

prefetching were done by me and advised by André. The tag-based framework was sup-

ported by Arun Thomas and Chris Casinghino at Draper Laboratory and was built on top

of the PIPE framework that was developed there.

6

CHAPTER 2 : Background

2.1. The PUMP Architecture

Classic Von Neumann computing architectures do not differentiate between code and data,

nor do they track any other kind of metadata or typing information about internal ma-

chine state. Tagged architectures, broadly speaking, aim to increase the robustness of the

machine by binding tags to pieces of internal state such that those tags can be taken into

consideration to validate the machine’s operations, e.g., to assure that data is not inter-

preted as code and executed. Early uses of tags trace their histories back to the 1960s; in

1973 Feustel [50] proposed using tags for typing data elements stored by a machine, with

types such as int, bool, vector or linked list. With increasing hardware resources as a result

of Moore’s Law, the number of bits that can be allocated for tags as well as the complexity

of the tagging hardware has increased over time [38, 128, 55].

The PUMP [43] architecture, the focus of this dissertation, generalizes prior tagged archi-

tectures by providing software-programmable, but hardware-accelerated metadata processing

over tags of unbounded size and complexity. The programmable nature of the PUMP is

important for several reasons: (1) the complete set of security policies that one might want

to enforce is both unknown and evolving in response to new threats, and (2) it permits

deployments to configure tradeoffs by updating the software—this allows a single hardware

mechanism to accommodate diverse end-user requirements, which may change depending on

the security requirements, overhead tolerance, attack-surface exposure, policy compatibility,

and even the individual application.

The core idea is that a full word-sized tag is indivisibly associated with each word of data

in the system, including on each word of data in memory, on each register, and also on the

program counter. As each instruction executes, the tags on the inputs to that instruction

are used to validate that instruction against a software policy. The policy interprets the

tags, decides if the operation is legal, and if so, it provides new tags for the output of that

7

instruction. The amount of metadata held in a tag is unbounded: the tag can be treated

as a pointer to an arbitrary data structure, which can compose data from multiple different

policies to permit the enforcement of an arbitrary set of security policies (e.g., CFI, memory

safety).

There are up to six inputs to each instruction: (1) the instruction’s opcode (e.g., add, load,

jump), (2) the tag associated with the program counter (PC), (3) the tag on the instruction

itself (CI), (4-5) the tags on the register inputs (R1, R2), and (6) the tag on the word of

memory (M), if the instruction is a load or store. Each instruction may produce up to two

outputs: (1) an new tag on the program counter (PC ′), and (2) a tag for the result of the

output of the instruction (MR), whether it is a memory word or register. For compact

short hand, a policy may be written as a collection of rules of the form:

Op : (PC,CI,R1, R2,M)→ (PC ′,MR)

While this function of six inputs to two outputs is restrictive compared to the entire set of

tags in the full machine state that a security monitor might want to consider and modify

in the general case, it is still highly expressive and importantly lends itself well to high-

performance implementations: it (1) restricts where input tags can come from to simplify the

hardware and (2) means that rules, that is, mappings of inputs to outputs, are manageable

in size. This is important, as the core accelerator of policies is the PUMP rule cache, an

additional, on-chip hardware store of the recently encountered rules. Properly designed

[42], such a cache can perform a rule match within a single cycle so that the CPU does not

stall if there is a hit in the cache. This means that the policy software runs only as a miss

handler when a rule does not match a rule that is in the cache. When such a miss occurs,

control flow is transferred to the miss handler software, which either computes a new rule

or raises a security violation. If a violation is raised, the OS handles the violation, which

will typically include terminating the offending program. If no violation is raised, then the

8

miss handler installs a new rule into the rule cache and returns control back to the program.

A consequence of the rule cache design is that tags are immutable, i.e., tags cannot change

their meaning over time which could invalidate the semantics of a cached rule.

For good performance, this means policies should keep their working sets of rules manage-

able to avoid frequent cache misses. A key thread throughout this dissertation is policy

engineering, which deals with the interaction between policy design and the resulting num-

ber of tags, rules, and thus enforcement costs that arise as a result.

While a naive implementation of the PUMP architecture would double the size of all the

registers and the on-chip caches, architectural optimizations can reduce much of this over-

head [43]. For example, one key optimization is that tags in the L1 subsystem can be

represented with a smaller number of bits, say 10, and then translated automatically back

to longer tags as needed. This allows the L1 data and rule caches to remain much smaller,

reducing the area and energy overheads associated with a PUMP implementation. This

optimization allows the architecture to be closer in costs to shorter tag designs while still

maintaining the full expressive power of word-sized tags.

The PUMP architecture has a close relative, the PIPE architecture, which is used in Chap-

ter 5. The PIPE differs from the PUMP in that it uses a dedicated coprocessor for policy

execution (the PEX core) in addition to the primary application core (the AP core). Fur-

thermore, the PIPE architecture does not change the number of bits used by the host

architecture in order to accomodate tag bits, but instead maintains a “tag map table” that

maps host memory addresses to tag addresses (and maintains a shadow register file).

2.2. Security and Threat Model

While the PUMP is capable of expressing a wide range of security policies, in this dis-

sertation we narrow our focus down to a standard C-based, system-security threat model

for protection evaluation. Software written in languages such as C and C++ comprises a

substantial portion of the trusted code underlying modern computing systems (operating

9

systems, device drivers, runtime environments), as well as many widely-used applications

(e.g., web browsers, document viewers, etc). These languages produce executable artifacts

that do not enforce the abstractions present at the language level, such as isolating memory

objects from one another. As a result, programming errors allow clever attackers to corrupt

or manipulate the state of a machine to take control of its operations or steal data from it.

These kinds of errors have been responsible for a large fraction of attacks against computing

systems over the last several decades [1] and continue to be extremely problematic to this

day [47].

Consequently, the threat model for this work is that untrusted input, such as from files or

over a network, may be processed by programs written in languages such as C and C++.

Bugs in these programs may allow an attacker to violate computing abstractions, such as

through buffer overflows, use-after-free errors or double-free errors. The policies presented

in this work, given the programmable nature of the hardware and the rich range of policy

designs, aim to either (1) prevent these kinds of violations entirely, (2) turn a fraction of

bugs from exploitable to unexploitable as other successful mitigations have done [33], or (3)

contain the effects of such bugs to reduce the harm that a bug may cause or increase the

attacker effort/cost required to weaponize such a bug.

These kinds of vulnerabilities are not the only ways in which computing systems can be

compromised. For example, side channel attacks [71] or hardware attacks such as Rowham-

mer [69] can also be devastating; however, these kinds of attack vectors are outside of the

threat model under consideration in this work.

10

CHAPTER 3 : Stack Protection Policies

3.1. Introduction

Low-level, memory-unsafe languages such as C/C++ are widely used in systems code and

high-performance applications. Unfortunately, they are also responsible for many of the

classes of problems that expose applications to attacks. Even today, C/C++ remain among

the most popular programming languages [125], and code written in these languages exists

within the Trusted Computing Base (TCB) of essentially all modern software stacks. In

memory-unsafe languages the burden of security assurance is left to the application devel-

oper, inevitably leading to human error and a long history of bugs in critical software.

The program call stack is a common target for attacks that exploit memory safety vulnera-

bilities. Stack memory exhibits high spatial and temporal predictability, it is readable and

writeable by an executing program, and it serves as a storage mechanism for a diverse set of

uses related to the function call abstraction: the stack holds, in contiguous memory, local

function variables, return addresses, passed arguments, and spilled registers, among other

data. The particular concrete layout of stack memory, chosen by the compiler and calling

convention, is exposed. An attacker can wield a simple memory safety vulnerability to over-

write a return address, corrupt stack data, or hijack the exposed function call mechanism

in a host of other malicious ways.

Consequently, protecting the stack abstraction is critical for application security. Currently

deployed defenses such as W⊕X and stack canaries [56] make attacks more difficult to

conduct, but do not protect against more sophisticated attack techniques. Full memory

safety can be retrofitted onto existing C/C++ code through added software checks, but at

a high cost of 100% or more in runtime overhead [90]. These expensive solutions are unused

in practice due to their unacceptably high overheads [123].

Recent work has shown that programmable, hardware-accelerated rich metadata tag-based

11

security monitors are capable of expressing and enforcing a large range of low-level security

policies [43]. In this model, the processor core is enriched with expressive metadata tags

attached to every word of data in the system, including on registers and on memory. The

hardware propagates metadata tags and checks each instruction against a software-defined

security policy. The same hardware mechanism accelerates any policy (or composition of

policies) expressed in a unified programming model by caching a subset of the security

monitor’s behavior in hardware. Policies can be updated in-field or configured on a per-

application basis.

In this work we develop tag-based stack protection policies for the Software-Defined Meta-

data Processing model (SDMP) that are efficiently accelerated by an architecture that

caches metadata tag rules [43]. We propose a simple policy that utilizes only a few tags,

as well as richer policies that generate thousands of tags for fine-grained, object-level stack

protection. Our policies leverage the compiler as a rich source of information for protect-

ing the stack abstraction. The compiler is responsible for the low-level arrangement of the

stack, including how arguments are passed, how registers are spilled, and where program

variables are stored; consequently, the compiler is aware of which parts of a program should

be reading and writing each item on the stack. In conventional runtime implementations

this information is simply discarded after compilation—by instead carrying it alongside

the data and instruction words in a computation with metadata tags, we can enforce the

compiler’s intent and prevent the machine from violating the stack abstraction at runtime.

Stack protection SDMP policies face two major sources of overhead. The first is the slow-

down incurred by software policy evaluation that must run to resolve security monitor

requests when they miss in the hardware security monitor cache. The rate at which these

misses occur is driven by the locality of metadata security rules, which in turn is driven by

the diversity and use of metadata tags by the policy being enforced. We design our policies

specifically to exploit the regular call structure found in typical programs by reusing iden-

tifiers for the same static function (Sec. 3.3.4) or by the stack depth (Sec. 3.3.4) to achieve

12

cacheability of the required metadata rules.

The second significant source of overhead for stack protection policies is the cost of keeping

stack memory tagged, which is a requirement faced by our richer policies. In conven-

tional runtime implementations on standard architectures, stack memory is allocated and

reclaimed with fast single instruction updates to the stack pointer. To tag this memory

naively, we would need to insert code into the prologue and epilogue of every function to

tag and then clear the allocated stack memory, effectively replacing an O(1) allocation

operation with an O(N) one. This change is particularly costly for stack memory; heap

allocations, in contrast, spend hundreds to thousands of cycles in allocator routines, which

makes the relative overhead of tagging the allocated memory less severe.

To alleviate the cost of tagging stack memory, we consider several optimizations. One is an

architectural change, Cache Line Tagging (Sec. 3.5.2), that gives the machine the capability

of tagging an entire cache line at a time. Alternatively, we propose two variations to our

policies that avoid adding additional instructions to tag memory, Lazy Tagging (Sec. 3.5.1)

and Lazy Clearing (Sec. 3.5.3).

Lastly, to characterize our policies, we provide a taxonomy of stack threats (Sec. 3.6.1) and

show how our policies as well as protection mechanisms from previous work protect against

those threats.

The policies we derive in this work provide word-level memory protection of the stack

abstraction, have low overhead (<6%), can compose with other SDMP policies to be accel-

erated with the same hardware (Sec. 3.8.1), interoperate with unmodified library code, do

not require source code changes, and are compatible with existing code and idioms (run on

the SPEC benchmarks).

Our contributions in this work are:

• The formulation of a range of stack protection policies within the SDMP model

13

• Three optimizations for our stack policies: Lazy Tagging, Lazy Clearing and Cache

Line Tagging

• The performance modeling results of our policies on a standard benchmark set, in-

cluding the impact of our proposed optimizations

• The protection characterization of our policies and comparison to prior work with a

stack threat taxonomy

3.2. Threat Model and Assumptions

In developing our stack protection policies we assume the same powerful but realistic at-

tacker capabilities of most related work, e.g., [72][35]. In this threat model an attacker

provides arbitrary input to a program that contains a memory safety vulnerability, leading

to adversarial reads or writes into the program address space. As a consequence, any attacks

against stack data are in scope, including control flow hijacking and data corruption or data

leaking attacks. We consider side channels and hardware attacks such as Rowhammer [69]

to be out of scope. In Sec. 3.6.1 we provide a set of specific threats to demonstrate an

attacker’s capabilities within our threat model.

Our policies leverage compiler-level information such as the locations of objects on the stack

and occasionally require adding instructions into programs. We thus consider the toolchain

(the compiler, linker, and loader) to be in our TCB and assume we can recompile programs.

Our policies do not, however, require code changes or programmer annotations.

We develop our policies specifically for the Alpha architecture, a RISC ISA, and use the gcc

toolchain. These choices do impact the low-level stack details used in our policy descrip-

tions and experiments. However, our policies should be easy to port to any RISC ISA; CISC

ISAs would require some more care to handle the more complex memory operations such

as CALLs that side effect both memory and register state. To illustrate typical stack main-

tenance operations under our ABI and architecture, we show a simple annotated function

14

main:
lda sp,−32(sp) ; allocate frame
stq ra,8(sp) ; store return address
stq fp,16(sp) ; store old frame pointer
mov sp,fp ; set new frame pointer
stq a0,0(fp) ; write arg for foo()
bsr ra,<foo> ; call foo()
mov fp ,sp ; reset sp before epilogue
ldq ra,8(sp) ; restore return address
ldq fp,16(sp) ; restore frame pointer
lda sp,32(sp) ; release frame
ret ; jump to return address

Figure 1: Typical Alpha stack maintenance code

disassembly in Fig. 1.

3.3. Stack Protection Policies

In this section we describe our stack protection policies. We begin with the motivation for

our policy designs (3.3.1), proceed to connect our mechanism of tags and rules to the stack

abstraction (3.3.2), enumerate the stack invariants that we would like to maintain (3.3.3),

and finally give three concrete policies (3.3.4).

3.3.1. Motivation

Memory errors on stack-allocated objects can allow a program to perform invalid stack

accesses, which attackers exploit to compromise the stack abstraction. To prevent these

violations, our policies tag stack objects with both a frame-id (an identifier for a stack

frame) and an object-id (an identifier for an object within a frame), and tag program code

to allow the machine to validate accesses to these words using appropriate metadata rules.

Formulating identifiers in this way allows us to express a range of policies; we are driven

both by a desire for strong protection (precise notions of object-id and frame-id) and the

performance of our policies (the cacheability of our metadata rules), making the choice

of how we identify frames and differentiable objects inside them core to our designs. In

general, cacheability concerns drive us to avoid creating a unique identifier for each dynamic

procedure call to avoid the compulsory misses that would be required.

15

3.3.2. Tags and Rules

The building blocks of SDMP policies are tags and rules. Our policies use tags on (1)

memory words, (2) registers, and (3) instructions. Tags on stack memory words encode a

frame-id and an object-id, which together identify the frame that owns a word and which of

the differentiable objects held by that frame is stored there. The tag on a register may be

either ⊥ (in the case that the register holds a value unrelated to the stack), or it may encode

an allowed frame-id and object-id if it holds a pointer to a stack word. Lastly, instruction

tags are used by the compiler to grant instructions specific capabilities, such as the right to

set the tags on memory words, to set the tags on registers as pointers are crafted, to clear

memory tags, or to perform other policy-specific functionality.

Rules allow us to define the set of permitted operations and describe how result tags are

computed from input tags. For example, to validate a memory access, we can check that the

object-id and frame-id fields on a pointer tag match those of the tag on the accessed memory

word. Furthermore, during such a load, we could use additional fields on the memory word

tag to describe how to tag the resulting value produced by the load. As another example,

we can propagate a pointer tag along with a pointer value as the pointer is moved around

the system (including between registers, to and from memory, and through operations such

as pointer arithmetic) with appropriate rules, allowing us to use the dynamic tainting rules

as in [30] to maintain pointer tags.

3.3.3. Stack Invariants

As a program executes, we would like to verify that objects on the stack are accessed

in ways that the compiler expects with respect to our identifiers; i.e., the object-id and

frame-id accessed by memory instructions match the compiler’s intentions. Several kinds of

accesses capture typical stack behavior (under our ABI and Alpha stack discipline), which

we describe below.

Some stack objects, like return addresses, stored frame pointers and callee-saved values,

16

are accessed strictly by code produced by the compiler specifically to maintain the stack

abstraction. These objects are accessed in a highly restricted way: they are written to

the stack once in the function prologue and are read only in the return sequence before

returning control to the caller. Statically the compiler has emitted specific instructions for

these purposes, and so, by the principle of least privilege, we would like to restrict access

to these objects to just those predetermined instructions. For accesses of this variety, we

place the object-id intention directly on the instruction performing the access.

Local stack variables are accessed in two ways. One way is through a fixed offset access

from the frame pointer register. Accesses of this type, like above, allow us to encode the

object-id intentions directly on the instructions that perform the accesses. In this case the

object-id might be Vi, where Vi is an identifier for ith variable belonging to a particular

frame. The second way that local stack variables can be accessed is through pointers held

in general-purpose registers that are crafted by the program. This type of access occurs

when accessing non-scalar types such as arrays, when the address of a local variable is taken

and dereferenced, or when a piece of code obtains a pointer to stack data (e.g., was passed

a pointer to stack local data as an argument). To validate this kind of access, we require

that the accessing pointer was crafted specifically to access the object it is used to read or

write; i.e., it was intentionally provided the capability to access a particular object-id inside

a frame-id. This definition allows a pointer to a specific stack object to be passed as an

argument to another function, but restricts the use of that pointer by the callee to just the

intended object-id and frame-id.

A final class of memory operations used in the stack abstraction is the case of accessing

function arguments themselves. This is a special case—function arguments are held in the

caller’s frame, but no pointer is passed to the callee to be treated as a capability for accessing

them. Instead, the locations of arguments are implicitly dictated by the calling convention,

and the callee will compute an offset beyond its own frame to access the arguments it has

been passed. While we will still use compiler-level information to validate these accesses,

17

we leave our discussion of how this is done to each of our concrete policies.

3.3.4. Policies

In this subsection we describe three concrete policies. In each case, we (1) give a high

level description of the policy, (2) describe the implementation, and (3) detail the security

properties of the policy. The rules for each policy written in SDMP notation are available

in the appendix.

We focus on the the core policy behavior in this section—additional details pertaining to

how our policies handle common low-level features and optimizations including setjmp,

longjmp and Exceptions, tail calls, and dynamic stack memory allocations are discussed in

Sec. 3.7.

Return Address Protection

Policy Description: The first stack protection policy we present, Return Address Pro-

tection, is a lightweight policy that is concerned only with control flow hijacking attacks

that overwrite return addresses. It treats return addresses as special objects and restricts

access to words containing return addresses to the specific instructions generated by the

compiler for this purpose (i.e., Sec. 3.3.3). It is designed to have comparable protection

characteristics to mechanisms such as stack canaries [33], shadow stacks [35], or the HDFI

stack protection policy [116], namely the protection of return addresses stored on the stack.

We abbreviate “return address” with RA in our tags and rules.

Because the policy is only concerned with differentiating return addresses stored on the

stack from all other stack objects, it only needs two object-ids: RA and OTHER. As another

simplification, we will not differentiate return addresses by any notion of their owner, thus

choosing to use a single frame-id in all cases. Conceptually, this is equivalent to removing

the frame-id field from the tags for this policy; we choose this interpretation for the rest of

the section. The full rules for the policy are available in Fig 2.

18

(1)Store : (⊥,STORE–RA,⊥,⊥,OTHER)→ (⊥,RA)

(2)Load : (⊥,READ–RA,⊥,⊥,RA)→ (⊥,⊥)

(3)Store : (⊥,REMOVE–RA,⊥,⊥,RA)→ (⊥,OTHER)

(4)Store : (⊥, INSTR,⊥,⊥,OTHER)→ (⊥,OTHER)

(5)Load : (⊥, INSTR,⊥,⊥,OTHER)→ (⊥,⊥)

(6)Other : (⊥, INSTR,⊥,⊥,⊥)→ (⊥,⊥)

(6)Store : (⊥,LONGJMP–CLR,⊥,⊥,)→ (⊥,⊥)

Figure 2: Return Address Protection rules

Policy Implementation: This policy requires support from the compiler only to ap-

propriately tag the instructions that store and retrieve return addresses from the stack.

Specifically, the compiler tags the instruction in the function prologue that stores the re-

turn address to the stack with a special tag STORE–RA, which, with an appropriate rule,

causes the written memory word to become tagged RA. Similarly, the compiler tags the

instruction in the function epilogue generated to retrieve the return address from the stack

with a special tag READ–RA. With an appropriate rule, instructions with this tag are

granted the unique permission to read words marked RA from the stack.

In this policy all other memory words are tagged OTHER, and all other instructions are

tagged generically as INSTR. Instructions tagged INSTR are permitted to access memory

words tagged OTHER but not those tagged RA.

One final detail wraps up the policy: in standard stack disciplines, the return address

(which we will have tagged RA) is left on the stack after a function returns. We insert one

additional instruction in the function epilogue that cleans up the RA tag left on the stack

by performing a store to the word containing the return address. This cleanup instruction

is tagged REMOVE–RA by the compiler, granting it the unique permission to overwrite

words tagged RA, which it tags with the generic OTHER.

Security Properties: The Return Address Protection policy uses information from the

19

compiler and appropriate rules to keep return addresses saved on the stack tagged RA and

all other words tagged as OTHER. Only specific instructions generated by the compiler to

manage the stack abstraction have permission to access words tagged RA, which prevents

any other code from overwriting them to hijack control flow. Separately, instructions that

load return addresses from the stack require valid RA targets; this prevents an attacker

from tricking the machine into using an attacker-synthesized return addresses, such as in a

typical ROP attack.1

This policy is complementary to CFI policies that restrict the control-flow edges taken by

a program to match those of a control-flow graph. Return edges are imprecise in that they

can potentially return to any of their call cites [2]; the additional protection for return

addresses in memory could replace a shadow stack proposed by [2] for this purpose.

Static Authorities

Policy Description: The next policy we present, Static Authorities, greatly expands upon

the set of object-ids and frame-ids that will be used to differentiate objects on the stack. The

key design decision of the policy is to statically assign a unique identifier to each function

in a program, and to reuse that same identifier as the frame-id for each dynamic function

instance that is pushed onto the runtime call stack. Conceptually, each function will tag the

stack memory that it allocates with its unique frame-id, and instructions belonging to that

function are the only instructions tagged in the appropriate way to access (or create pointers

to) that allocated memory. In this sense, each function in a program is the authority over

the memory that it allocates.

In this policy we enrich our notion of object-ids for precise object protection internal to

a frame. Within each frame we statically assign a unique object-id to each program-level

variable used by that function, including each primitive, array and structure in the frame;

i.e., for each variable Vi belonging to a function f we assign a new differentiable object-id i.

1We note, however, that this simple policy would not prevent sophisticated code reuse attacks, e.g., [27].
Our later policies provide protection for other code pointers on the stack as well.

20

Like Return Address Protection, we continue to use additional object-ids to manage the

stack control data, but now we expand the set to include the return address, the saved

frame pointer and callee-saved registers; these other objects can also be used to mount

attacks, e.g., [70, 32]. Due to the restricted way in which these compiler-managed objects

are accessed (Sec. 3.3.3), we reuse the same object-id for them all; we only need to isolate

them from the other program-managed objects on the stack to secure them. Leveraging

this piece of static analysis allows us to avoid unnecessary tag and rule diversity.

At a high level, the implementation is then concerned with (1) tagging stack memory

according to the Static Authorities formulation above, and (2) tagging instructions and

defining appropriate rules to validate accesses to these stack objects to enforce the invariants

(Sec. 3.3.3). The full rules for the policy are available in Fig. 4 and are referenced throughout

the next section. In Fig. 3 we show an example of how the stack memory would be tagged

when our tagging scheme is applied to the code shown. For demonstrative purposes, we

assume the first argument is passed on the stack.

Policy Implementation:

Initialization: To initialize this policy, we tag all stack memory words with a special tag,

EMPTY STACK, indicating that the cell is unclaimed.2 Instructions are tagged with both

their corresponding frame-id (authority identifier) and an instruction-type field that is set

generically as INSTR unless otherwise indicated below. We initialize non-stack memory to

⊥.

Tagging Stack Memory : In each function prologue, a function first tags the stack pointer

with its frame-id using the instruction that decrements the stack pointer (rule 1). Next, the

function uses instructions added by the compiler to tag the freshly allocated stack words

with their appropriate frame-id and object-id. These instructions are tagged with both

the instruction-type SET MEM and the object-id that they are initializing; with rule 2,

2For simplicity, we assume a fixed, maximum stack size, although with additional OS and loader support
stack pages could be allocated lazily and tagged on demand as they are faulted in.

21

long square(long i){
 long r = i ∗ i ;
 return r ;
}
int main(){
 long x = 3;
 long r ;
 r = square(x) ;
}

(a) A simple function to illustrate the Static Au-
thorities tagging scheme. The main function has
been assigned one frame-id (green), and square

has been assigned another frame-id (blue).

- EMPTY-STACK

Data Tag

- EMPTY-STACK

- EMPTY-STACK

main's return address obj-1

main's frame pointer obj-1

main's arg for square obj-2,
argfor=square

main.x obj-3

main.r obj-4

(b) The state of stack memory at the time when
square is called by main. In square’s prologue,
it will first tag the stack pointer with its blue
identifier (rule 1), and then tag the stack ele-
ments in the new frame (rule 2). After this tag-
ging is complete, the stack will look like (c).

square's return address obj-1

Data Tag

square's frame pointer obj-1

square.r obj-2

main's return address obj-1

main's frame pointer obj-1

main's arg for square obj-2,
argfor=square

main.x obj-3

main.r obj-4

(c) square’s frame is now tagged. When square

accesses a local variable, the tag on the instruc-
tion will be checked against the tag on the mem-
ory word (rules 3 and 4) to validate the access.
The square function will be permitted to read
its argument out of main’s frame using rule 16.

- EMPTY-STACK

Data Tag

- EMPTY-STACK

- EMPTY-STACK

main's return address obj-1

main's frame pointer obj-1

main's arg for square obj-2,
argfor=square

main.x obj-3

main.r obj-4

(d) Before square returns, it will first release
its stack memory by clearing the tags back to
the EMPTY-STACK state (rule 3). The stack
is now in the same state as it began (b).

Figure 3: An example illustrating the Static Authorities tagging scheme. In this example
we show how square’s memory would be tagged when it is called from main, which has
already tagged its memory. The referenced rules are show in Fig. 4

22

SET MEM instructions become the only type of instructions that can claim empty stack

memory, which they convert from EMPTY STACK to the appropriate frame-id and object-

id of the allocated word. Functions that do not allocate stack memory (e.g., handwritten

assembly code in libc) tag no memory—they require no stack protection.

Tagging and Propagating Pointers: The compiler places the MAKE-PTR instruction-type

along with the frame-id and appropriate object-id on instructions that create pointers to

stack objects (rule 1). We use the same dynamic tainting rules as in [30] to propagate

pointer tags between registers (rules 6-10), as well as to and from memory (rules 13 and

14).

Accessing Objects: The way in which accesses to stack objects are validated depends on

the access type. For direct frame pointer offset accesses, instructions are tagged with the

instruction-type ACCESS LOCAL and the specific object-id that they access; these accesses

use the frame-id from the frame pointer (rules 4 and 5). For the general pointer case, a

an access is allowed when the frame-id and object-id of the accessing pointer matches the

frame-id and object-id of the stack word (rules 13 and 14).

Retagging the Stack Pointer : After each function call, the compiler inserts one instruction

to tag the stack pointer back to the authority identifier of the caller (rule 1). The frame

pointer gets the correct tag by retrieving the stored frame pointer from the stack memory

in the function epilogue (rule 14).

Passing Arguments: To handle the special case of argument passing, the Static Authori-

ties policy sets aside a special object-id for arguments (ARG) and tags stack words that

contain passed arguments with this special object-id using rule 17. These argument words

are extended with another field, argument for, containing the authority (frame-id) of the

intended consumer. Access to words marked ARG are permitted with rules 15 and 16 if the

accessor’s frame-id matches the argument’s indicated argument for field. The way in which

we tag ARGs with the appropriate authority identifier of the expected callee depends on

23

the type of function call. For direct calls, the needed information is trivially available to

the compiler, and these words can be set up by appropriately tagging the instructions that

prepare the arguments before the call instruction. For indirect calls (in which the callee

authority identifier is not known statically), we add additional fields to keep function point-

ers tagged with their appropriate frame-id, so that at runtime we can setup the argument

words with correct frame-id based on the dynamic function pointer being used. We describe

these details in Sec. 3.7.

Clearing Memory : To clear a function’s allocated memory, the compiler adds additional

instructions into the function epilogue tagged CLEAR MEM that, with rule 3, allow the

program to release the stack memory allocated by the function by retagging the words cur-

rently owned by the function’s frame-id with the tag EMPTY STACK. We choose epilogue

clearing over prologue clearing to limit the writing privilege of each function to just the

memory that it has allocated itself.

For readers interested in additional low-level policy details, the uses of the other rules are

discussed in Sec. 3.7. A reader considered with only the high-level policy behavior may

continue on here.

Security Properties: The Static Authorities policy tags each object on the stack with

a frame-id, indicating which function owns the object, as well as an object-id, indicating

which object held by that frame is stored there. Accesses to stack objects are validated

with compiler assistance, using tags on instructions and pointers. Accesses are permitted

only if the correct frame-id and object-id are used, preventing the out-of-bounds accesses

that give rise to stack attacks; both inter-frame and intra-frame violations are prevented

with the Static Authorities tagging scheme. However, in order to achieve cacheability of

the metadata rules, the policy does reuse the same frame-id for each dynamic instance of a

function. This reuse constrains the number of tags and rules that are generated to remain

modest, i.e., remain proportional to the number of active functions in an application. It

also means that the policy does not differentiate between dynamic instances of a stack

24

object; it shares this limitation with systems built on static points-to analysis like WIT [4]

and others [26]. The Static Authorities policy provides both spatial and temporal security

properties—a dangling pointer is still bound to its specific frame-id and object-id.

Non-stack pointers are tagged ⊥, which prevents them from accessing stack memory. Stack

pointers are prevented from accessing other memory regions, which are tagged ⊥. These

rules prevent gross cross-region violations, including “stack clashes” [103]. Additionally, by

combining these rules with strict epilogue rules that require the stack pointer tag to not be

⊥, the policy protects against stack pivots similar to [101].

Depth Isolation

Policy Description: The last policy we present, Depth Isolation, is constructed in almost

the same way as Static Authorities. However, instead of using a unique function identifier

to serve as the frame-id, the Depth Isolation policy uses the current stack depth, d, as the

frame-id for each function instance—this allows the policy to discriminate between dynamic

instances of a particular stack object. The policy uses the same set of differentiable objects

within a frame as in Static Authorities: that is, a unique object-id for each program variable,

an object-id for stack control data, and an object-id for argument passing.

Conceptually, the system will maintain the current stack depth, d, and all functions will use

it to tag the dynamic instances that they allocate. The full rules for the policy are shown

in Fig. 5.

Policy Implementation: Our Depth Isolation implementation differs from Static Author-

ities in only a few aspects, so we present the differences here. The other implementation

details are the same.

Maintaining Stack Depth: This policy requires tracking the current stack depth to serve

as the frame-id, which we choose to place in the tag on the stack pointer register. In the

25

(1)Arith : (⊥, (MAKE–PTR, f, o),⊥, ,⊥)→ (⊥, (f, o,⊥))

(2)Store : (⊥, (SET–MEM , f, o),⊥, (f, ,⊥),EMPTY –STACK)→ (⊥, (f, o,⊥,⊥,⊥))

(3)Store : (⊥, (CLEAR–MEM , f,⊥),⊥, (f,⊥,⊥),)→ (⊥,EMPTY –STACK)

(4)Store : (⊥, (ACCESS–LOCAL, f, o), (f2, o2, p), (f,⊥,⊥), (f, o, , ,))→ (⊥, (f, o, f2, o2, p))

(5)Load : (⊥, (ACCESS–LOCAL, f, o), , (f,⊥,⊥), (f, o, f2, o2, p))→ (⊥, (f2, o2, p))

(6)Arith prop : (⊥, (INSTR,),⊥,⊥,⊥)→ (⊥,⊥)

(7)Arith prop : (⊥, (INSTR,),⊥, (f, o, p),⊥)→ (⊥, (f, o, p))

(8)Arith prop : (⊥, (INSTR,), (f, o, p),⊥,⊥)→ (⊥, (f, o, p))

(9)Arith prop : (⊥, (INSTR,), (f1, o1, p1), (f2, o2, p2),⊥)→ (⊥,⊥)

(10)Arith no prop : (⊥, (INSTR,), (f1, o1, p1), (f2, o2, p2),⊥)→ (⊥,⊥)

(11)Store : (⊥, (INSTR,),⊥,⊥,⊥)→ (⊥,⊥)

(12)Load : (⊥, (INSTR,),⊥,⊥,⊥)→ (⊥,⊥)

(13)Store : (⊥, (INSTR,), (f2, o2, p), (f1, o1,⊥), (f1, o1, , ,))→ (⊥, (f1, o1, f2, o2, p))

(14)Load : (⊥, (INSTR,), , (f1, o1,⊥), (f1, o1, f2, o2, p))→ (⊥, (f2, o2, p))

(15)Store : (⊥, (INSTR, f), (f2, o2, p2), , (,ARG , , , ,ARGFOR = f))→
(⊥, (f,ARG , f2, o2, p2,ARGFOR = f)

(16)Load : (⊥, (INSTR, f), , , (,ARG , f2, o2, p,ARGFOR = f))→ (⊥, (f2, o2, p))

(17)Store : (⊥, (SET–ARG , f1, f2), (f3, o3, p), (f1,⊥,⊥), (f1, , , ,))→
(⊥, (f1,ARG , f3, o3,ARGFOR = f2))

(18)Arith : (⊥, (CREATE–FP , f, p),⊥, ,⊥)→ (⊥, p)

(19)Store : (⊥, (LONGJMP–CLEAR,),⊥, , (, , , ,))→ (⊥,EMPTY –STACK)

(20)Other : (⊥, (INSTR,⊥,⊥),⊥,⊥,⊥)→ (⊥,⊥)

(21)Arith prop : (⊥, (BEGIN –INDIRECT–CALL, f),⊥, (⊥,⊥, p),⊥)→ (p,⊥)

(22)Store : (pc, (SET–ARG–FROM –PC , f), (f2, o2, p), (f, ,⊥), (f, , , ,))→
(pc, (f,ARG , f2, o2, p,ARGFOR = pc))

(23)Jump : (, (, INSTR,⊥,⊥),⊥,⊥,⊥)→ (⊥,⊥)

Figure 4: Static Authorities rules

26

function prologue, the compiler tags the instruction that allocates the stack frame with

INCR–DEPTH ; (Fig. 5 rule 1), this causes the value held in the tag, d, to be updated to

d+1. Similarly, in the function epilogue, the compiler tags the instruction that releases the

stack frame with DECR–DEPTH, which, with rule 2, replaces the current depth, d, with

d -1.

Argument Passing : Argument passing in the Depth Isolation policy is simpler than in the

Static Authorities policy. We tag stack words that contain arguments with the object-id

ARG and the current depth of caller d (rule 17), but we do not need to extend them with

argument for as was done in Static Authorities. Instead, in the Depth Isolation policy,

we require that the depth of the accessor to argument words is either d, the depth of the

owner, or d+1, the depth that will be used by the callee (rules 18-21); no other depths are

permitted to access arguments.

Other : The Depth Isolation policy does not need to retag the stack pointer after returning

from a call because there is no authority identifier kept on the stack pointer; the depth

decrement by the caller sufficiently resets the stack pointer. In Depth Isolation instruc-

tions have no authority identifier and so are only tagged with their instruction-type on

initialization.

Security Properties: The Depth Isolation policy, like Static Authorities, prevents out-of-

bounds accesses to objects on the stack by requiring that the frame-id and object-id tags

of the instruction or pointer match those of the accessed memory word—and so it has sim-

ilar security properties to Static Authorities. However, the Depth Isolation policy provides

better spatial memory safety properties than Static Authorities, as each live function in-

stance (even of the same static function) has a unique frame-id. The Depth Isolation policy

has weaker temporal guarantees; a dangling pointer tagged for a particular frame-id and

object-id may be able to be used for unintended instances.

27

(1)Arith : (⊥, INCR–DEPTH ,⊥, (d,⊥),⊥)→ (⊥, (d + 1,⊥))

(2)Arith : (⊥,DECR–DEPTH ,⊥, (d,⊥),⊥)→ (⊥, (d− 1,⊥))

(3)Arith : (⊥, (MAKE–PTR, o),⊥, (d,⊥),⊥)→ (⊥, (d, o))

(4)Store : (⊥, (SET–MEM , o),⊥, (d,⊥),EMPTY –STACK)→ (⊥, (d, o,⊥,⊥))

(5)Store : (⊥,CLEAR–MEM ,⊥, (d,⊥),)→ (⊥,EMPTY –STACK)

(6)Store : (⊥, (ACCESS–LOCAL, o), (d2, o2), (d,⊥), (d, o, ,))→ (⊥, (d, o, d2, o2))

(7)Load : (⊥, (ACCESS–LOCAL, o), , (d,⊥), (d, o, d2, o2))→ (⊥, (d2, o2))

(8)Arith prop : (⊥, INSTR,⊥,⊥,⊥)→ (⊥,⊥)

(9)Arith prop : (⊥, INSTR,⊥, (d, o),⊥)→ (⊥, (d, o))

(10)Arith prop : (⊥, INSTR, (d, o),⊥,⊥)→ (⊥, (d, o))

(11)Arith prop : (⊥, INSTR, (d, o), (d, o),⊥)→ (⊥,⊥)

(12)Arith no prop : (⊥, INSTR, (d1, o1), (d2, o2),⊥)→ (⊥,⊥)

(13)Store : (⊥, INSTR,⊥,⊥,⊥)→ (⊥,⊥)

(14)Load : (⊥, INSTR,⊥,⊥,⊥)→ (⊥,⊥)

(15)Store : (⊥, INSTR, (d2, o2), (d1, o1,⊥), (d1, o1, , ,))→ (⊥, (d1, o1, d2, o2))

(16)Load : (⊥, INSTR, , (d1, o1), (d1, o1, d2, o2))→ (⊥, (d2, o2))

(17)Store : (⊥,SET–ARG , (d2, o2), (d1,), (d1,⊥,⊥,⊥,))→ (⊥, (d1,ARG , d2, o2)

(18)Store : (⊥, INSTR, (d2, o2), (d1,), (d1,ARG , , ,))→ (⊥, (d1,ARG , d2, o2)

(19)Store : (⊥, INSTR, (d2, o2), (d1,), (d1 + 1,ARG , , ,))→ (⊥, (d1 + 1,ARG , d2, o2)

(20)Load : (⊥, INSTR, , (d1,), (d1,ARG , d2, o2))→ (⊥, (d2, o2)

(21)Load : (⊥, INSTR, , (d1,), (d1 + 1,ARG , d2, o2))→ (⊥, (d2, o2)

(22)Store : (⊥,LONGJMP–CLEAR,⊥, ,)→ (⊥,EMPTY –STACK)

(23)Other : (⊥, (INSTR,⊥,⊥),⊥,⊥,⊥)→ (⊥,⊥)

Figure 5: Depth Isolation rules

benchmark

architecture
params

PUMP
Simulator

gem5
Memory

Simulator
Runtime
Model

gem5

program trace

Runtime
Model

policy

PUMP
misses

misshandler
trace

cache, PUMP,
Instruction stats

architecture
resource estimates

architecture
params

Figure 6: Evaluation Framework

28

3.4. Evaluation

3.4.1. Methodology

We model the runtime overheads for our stack protection policies on the SPEC CPU2006

[121] benchmark set running on a simulated metadata-enhanced Alpha microarchitecture.

We compile the benchmarks using gcc with the -O2 optimization level. We allow each

benchmark to complete any benchmark-specific initialization, such as parsing input files or

setting up data structures, and then run it for an additional one billion warm up instructions.

After completing initialization and warm up, we then collect statistics from the system for

a 500M instruction measurement period.

Microarchitecture

For concrete evaluation, we target a single-issue, in-order Alpha microarchitecture with a

unified 512KB L2 cache, a 64KB L1 instruction cache and a 64KB L1 data cache. We use

a wide-word, coupled metadata implementation for tags, so tags are moved atomically with

their associated data words. We simulate a 1024 entry L1 PUMP cache and a 4096 entry

L2 PUMP cache. We use the same basic architecture optimizations as in [43]. Shortened

metadata tags in our L1 cache system are 11 bits, and shortened metadata tags in our L2

system are 14 bits, with full 64-bit tags in DRAM. At these sizes, running with a 1 GHz

clock in a 32 nm process, the L1 and L2 cache access cycles are 1 and 5 cycles for both

the baseline and tagged cases based on CACTI [89] estimates. Cache lines are 8 words and

require 100 cycles to fetch from DRAM in the no-tag case and up to 130 cycles in the tagged

case; since tags live on the same DRAM page with the data, they cost additional cycles for

bandwidth but do not require additional latency for page access or writeback. The main

memory cache compression from [43] means most cache line accesses can fetch compressed

tag descriptions for the cache line and consequently require fewer than 130 cycles to fetch

the data and tags from DRAM.

29

Tagging Instructions

Our stack protection policies require tagging individual instructions in policy-specific ways.

Ideally, all instruction tags would be provided by a modified policy-aware compiler. For

our prototyping purposes, we use a custom instruction tagger. The instruction tagger takes

as input the DWARF [54] debug information generated by gcc, which we extract from

the benchmark binaries and process using libdwarf [7]. This debug information gives the

instruction tagger the layout of the stack memory, which it uses to tag instructions as

described by the policies.

Simulation

Our evaluation framework is shown in Figure 6. We use gem5 [18] for architectural statistics

and generating instruction traces, a custom PUMP simulator for simulating the metadata

tag subsystems of the simulated processor, and CACTI [89] for estimating memory access

latencies for the final runtime calculations. After running an initial gem5 simulation of

the application, we process the instruction trace in the PUMP simulator that models the

metadata tags on the registers, memory and program counter, as well as computes the

SDMP policy rules for creating new tags. We then run a separate, second pass of gem5 on

the SDMP software to generate the instruction trace of the misshandler code itself. Finally,

we run a memory simulator to model the memory and rule cache system performance with

a composite trace assembled from the benchmark instruction trace, the misshandler trace,

and the instructions added by the stack protection policies.

3.4.2. Results

Return Address Protection

The Return Address Protection policy has a mean runtime overhead of 1.2% (Figure 7).

The policy needs only 6 static tags and 8 total rules. The small set of rules fits into the

30

L1 PUMP rule cache; after the misshandler evaluates and installs each of them into the

cache, no more cycles are spent on policy evaluation. The misshandler took an average of

21 instructions to evaluate a miss. The runtime overhead comes from the one instruction

added to every function epilogue to clear the RA (0.4%) and the additional DRAM cycles

to transfer tag-extended memory words (0.8%).

Static Authorities

The Static Authorities policy has a mean runtime overhead of 11.9% (Figure 8). It generates

an average of 5,213 tags and 12,412 unique rules. The average L1 rule cache hit rate is

99.76%. 13 out of 24 benchmarks experienced no rule misses in the measurement period at

all, and most others experienced very few; only two benchmarks experienced enough misses

to incur a > 1% overhead for resolving security monitor requests. The misshandler took an

average of 46 instructions to evaluate a miss. The high degree of locality of rules results

from a high degree of locality of tags, which the policy achieves by using a single frame-id for

all dynamic instances of a function. This causes the number of tags and rules needed by

the policy to be driven by the size of the working set of active functions (authorities) in the

benchmark. The SPEC benchmarks have an average of 2,507 static functions (including

libraries), but we found that only an average of 399 were called at least once, and only

an average of 93 were active during the core benchmark behavior. A further reduction

in the number of tags comes from a reduction in the number of object-ids provided by

the compiler’s optimizations. Many program-level variables either get allocated strictly in

registers or optimized away entirely, meaning that the actual number of stack-allocated

variables is much lower than would appear from the program source code. The benchmarks

that challenged the rule caches (gobmk, perlbench, gcc) were the ones with large working

sets of functions.

Most of the overhead of the policy (60% of the 11.9%, or individually 7.1%) comes from the

instructions that are added in the prologues and epilogues to maintain the tags on stack

31

0
1
2
3
4

a
s
ta

r

b
w

a
ve

s

b
z
ip

2

c
a

c
tu

s
A

D
M

d
e

a
lI
I

g
a

m
e

s
s

G
e

m
s
F

D
T

D

g
c
c

g
o

b
m

k

g
ro

m
a

c
s

h
2

6
4

re
f

h
m

m
e

r

lb
m

le
s
lie

3
d

lib
q

u
a

n
tu

m

m
c
f

m
ilc

n
a

m
d

o
m

n
e

tp
p

p
e

rl
b

e
n

c
h

s
je

n
g

s
p

h
in

x
3

s
o

p
le

x

z
e

u
s
m

p

m
e

a
n

R
u

n
ti
m

e
 O

v
h

d
(%

) DRAM PUMPs Misshandler Added Instrs Other

Figure 7: Return Address Protection overhead

0

20

40

60

a
s
ta

r

b
w

a
ve

s

b
z
ip

2

c
a

c
tu

s
A

D
M

d
e

a
lI
I

g
a

m
e

s
s

G
e

m
s
F

D
T

D

g
c
c

g
o

b
m

k

g
ro

m
a

c
s

h
2

6
4

re
f

h
m

m
e

r

lb
m

le
s
lie

3
d

lib
q

u
a

n
tu

m

m
c
f

m
ilc

n
a

m
d

o
m

n
e

tp
p

p
e

rl
b

e
n

c
h

s
je

n
g

s
p

h
in

x
3

s
o

p
le

x

z
e

u
s
m

p

m
e

a
n

R
u

n
ti
m

e
 O

v
h

d
(%

) DRAM PUMPs Misshandler Added Instrs Other

Figure 8: Static Authorities overhead

memory. As can be seen in Figure 8, this alone accounts for an overhead of more than 60%

for sjeng. sjeng is a chess-playing benchmark that rapidly allocates large 16KB stack frames

that are defensively sized to hold a worst-case number of chess moves, but in the common

case a much smaller number of moves is found and most of the memory goes unused. This

causes our policy to spend many cycles setting up and clearing memory tags unnecessarily.

Most benchmarks that have a high added instruction overhead have a similar root cause.

Some functions in libc exhibit this behavior to a lesser degree, such as IO vfprintf that

contains char work buffer[1000], which is larger than needed in the common case, for ex-

ample. We attribute this pattern to the programmer’s understanding that stack memory is

typically cheap (i.e., O(1)) to allocate.

0
20
40
60

a
s
ta

r

b
w

a
ve

s

b
z
ip

2

c
a

c
tu

s
A

D
M

d
e

a
lI
I

g
a

m
e

s
s

G
e

m
s
F

D
T

D

g
c
c

g
o

b
m

k

g
ro

m
a

c
s

h
2

6
4

re
f

h
m

m
e

r

lb
m

le
s
lie

3
d

lib
q

u
a

n
tu

m

m
c
f

m
ilc

n
a

m
d

o
m

n
e

tp
p

p
e

rl
b

e
n

c
h

s
je

n
g

s
p

h
in

x
3

s
o

p
le

x

z
e

u
s
m

p

m
e

a
n

R
u

n
ti
m

e
 O

v
h

d
(%

) DRAM PUMPs Misshandler Added Instrs Other

Figure 9: Depth Isolation overhead

32

Depth Isolation

The Depth Isolation policy has a mean runtime overhead of 8.5% (Figure 9). It generates

an average of 1,127 tags and 3,603 unique rules. It has an average L1 rule cache hit rate of

99.98%. 14 of the 24 benchmarks experienced no rule misses in the measurement period,

and only one benchmark experienced enough misses to incur a >1% overhead for policy

evaluation. The miss handler took an average of 53 instructions to evaluate a miss. The

high degree of locality of rules comes from a high degree of locality of tags, which this

policy achieves by reusing the frame-ids for each dynamic function instance that occurs

at the same depth. This locality emerges from the call graph of common applications;

rarely do the benchmarks traverse a large range of stack depths, allowing the rules for the

depths encountered to remain cached. The benchmarks had an average max stack depth

of 60 (median 18) in the full trace, and an average of 32 (median 8) unique depths in the

measurement period. The benchmark that most challenged the rule caches for this policy

was gobmk, a Go playing program that performs some recursive game state operations. This

policy, like Static Authorities, also exploits the compiler optimization passes that reduce

the number of actual object-ids allocated on the stack. The main source of overhead for

the policy was also the instructions added to tag and clear stack memory (73% of the 8.5%

overhead, or individually 6.2%).

3.5. Optimizations: Lazy Tagging

In the preceding evaluation section, we show that the dominant source of overhead for the

stack protection policies arises from instructions added to tag the stack. Consequently, to

reduce the overhead we focus on techniques that allow us to reduce or remove the need to

add these instructions. Two of the optimizations we present, Lazy Tagging and Cache Line

Tagging, allow us to speed up the policies without changing their security properties. The

last optimization we present, Lazy Clearing, explores recasting the policies from memory

safety policies to data-flow integrity [26] policies in order to remove the instructions that

33

clean up stack memory in the function epilogue. When using this optimization, we consider

the policies to be fundamentally different and categorize them separately in our taxonomy

(Sec. 3.6.1).

3.5.1. Lazy Tagging

Asymptotically, an unfortunate overhead of the current policy design is the cost of tagging

stack elements that are allocated but never used. The ratio of used stack frame words to

allocated stack frame words can be arbitrarily small (see discussion about sjeng in Sec.

3.4.2). For the stack elements that are used, the need to tag each with their appropriate

frame-id and object-id means the policies are doubling the stack write traffic for stack

elements that are only written once. Ideally, we’d like to combine the stack tagging operation

with the first program write to the same word to avoid this overhead and simultaneously

avoid tagging unused stack elements.

We can address both of these issues for stack writes with the Lazy Tagging optimization, in

which we allow all stack pointers to write over EMPTY STACK memory and update the

tag on the memory cell to that of the stack pointer or instruction when a write occurs. This

eliminates the need to tag stack memory in the function prologue, and so we eliminate those

added instructions. From a security perspective, we are still assured that stack pointers and

instructions are never used to access claimed (non EMPTY STACK) stack memory that

does not match the frame-id and object-id of the current instruction and stack pointer. We

keep the full cleanup loop in function epilogues to maintain the invariant that unused stack

frames are marked with EMPTY STACK to allow future function calls to succeed.

A write to the stack beyond the frame’s intended allocation will not be prevented nor

cleaned up, but it will be caught by a frame-id and object-id mismatch when a later func-

tion attempts to use the memory cell. By removing this initialization, we cut the added

instructions roughly in half. When applying Lazy Tagging, the average overhead for Static

Authorities goes from 11.9% to 8.9% and the average overhead for Depth Isolation goes

34

from 8.5% to 6.3% (see Figs. 10 and 11).

3.5.2. Cache Line Tagging

Next, and independently from Lazy Tagging, we explore the impact of adding a cache line

wide write operation to the Alpha ISA to perform rapid tagging of memory blocks. We

model a new instruction for this purpose—this is lightweight to add both for the base

datapath and for the metadata rule cache. Typical cache lines are wider than a single

word, and the cache memory can read or write the entire line in a memory cycle, so we are

exploiting capabilities that the cache already possesses.

To avoid complicating the SDMP rule checking, we demand all words in the cache line

have identical tags for this instruction to succeed; this assures the same metadata rule is

applicable to every word in the cache line. The SDMP processor applies the single metadata

rule and writes the result tag to all of the words in the cache line. If any of the tags on

words in the cache line differ, then the instruction instead fails and the machine falls back by

jumping to a displacement encoded in the instruction that contains the logic for handling a

failure—we model this exception handling code as a series of store instructions that write a

value with the same tag as the faulting cache line-wide store instruction would have written.

For this optimization, we align all stack frames to cache lines and model the compiler using

the new instruction for the tagging and clearing of stack memory. While this approach does

not asymptotically remove the burden of stack frame tagging, it provides an 8× speedup in

the best case for the 64-byte cache lines and 8-byte words we assume in our experiments.

This significantly reduces the tagging overhead costs for large stack frames such as those

used in sjeng (See Figs. 10 and 11). We show the impact of both using Cache Line Tagging

alone (for both setup and cleanup) and when it is combined with Lazy Tagging (used just for

cleanup). When used alone, the average overhead for Static Authorities goes from 11.9% to

7.9% and the average overhead for Depth Isolation goes from 8.5% to 5.5%. When combined

with Lazy Tagging, the average overhead for Static Authorities goes from 8.9% to 5.7% and

35

the average overhead for Depth Isolation goes from 6.3% to 4.5%.

3.5.3. Lazy Clearing

Lazy Tagging removes the need for adding instructions in the function prologue to claim

memory, but it does not remove the need to clear every allocated word in the epilogue when

a function returns. As a result, the policies are still faced with an asymptotic overhead when

the allocated stack frame size does not match the actual stack frame usage. Removing the

tags from released stack frames is required by the policies so that the subsequent functions,

which use the same stack memory, can claim clean cells tagged EMPTY STACK.

In the Lazy Clearing optimization, we remove the tag cleanup loop in the function epilogue

and allow all stack writes to succeed. This way, future function calls do not experience

violations when they attempt to write over already-claimed memory. When a write occurs,

the memory cell gets the authority and object (frame-id and object-id) for which the write

is intended. When using this optimization, we only validate stack reads, which assure that

the frame-id and object-id of the stack word being read matches the intent of the compiler

as encoded in the instructions and pointers used in the access. Erroneous code can overflow

buffers and write indiscriminantly over the stack memory, but the code tagging rules assure

that any violations to the stack abstraction will be detected by the reading instruction

before the corrupted or unintended data is actually used. Violations that overwrite data

that is never read will not be detected, but that’s precisely because those violations do not

impact the result of the computation since they are not observed. In essence, with this

optimization, our policies provide a data-flow integrity property instead of a memory safety

property.

This change does mean that the tag on a memory cell during a write can now be uncorrelated

to the instruction and stack pointer performing the write. If we needed to supply rules for

all combinations of instruction tags, stack pointer tags, and old memory tags, we could end

up needing a greater number of rules than in the eager stack clearing case. However, if we

36

0

20

40

60

a
s
ta

r

b
w

a
ve

s

b
z
ip

2

c
a

c
tu

s
A

D
M

d
e

a
lI
I

g
a

m
e

s
s

G
e

m
s
F

D
T

D

g
c
c

g
o

b
m

k

g
ro

m
a

c
s

h
2

6
4

re
f

h
m

m
e

r

lb
m

le
s
lie

3
d

lib
q

u
a

n
tu

m

m
c
f

m
ilc

n
a

m
d

o
m

n
e

tp
p

p
e

rl
b

e
n

c
h

s
je

n
g

s
p

h
in

x
3

s
o

p
le

x

z
e

u
s
m

p

m
e

a
n

R
u

n
ti
m

e
 O

v
h

d
 (

%
) Baseline Cache Line Tagging Lazy Tagging Lazy Tagging+Cache Line Tagging Lazy Tagging+Clearing

Figure 10: Optimizations applied to Static Authorities

0

20

40

60

a
s
ta

r

b
w

a
ve

s

b
z
ip

2

c
a

c
tu

s
A

D
M

d
e

a
lI
I

g
a

m
e

s
s

G
e

m
s
F

D
T

D

g
c
c

g
o

b
m

k

g
ro

m
a

c
s

h
2

6
4

re
f

h
m

m
e

r

lb
m

le
s
lie

3
d

lib
q

u
a

n
tu

m

m
c
f

m
ilc

n
a

m
d

o
m

n
e

tp
p

p
e

rl
b

e
n

c
h

s
je

n
g

s
p

h
in

x
3

s
o

p
le

x

z
e

u
s
m

p

m
e

a
n

R
u

n
ti
m

e
 O

v
h

d
 (

%
) Baseline Cache Line Tagging Lazy Tagging Lazy Tagging+Cache Line Tagging Lazy Tagging+Clearing

Figure 11: Optimizations applied to Depth Isolation

exploit the ability to indicate that the memory tag is irrelevant to the rule computation

(is a don’t-care), this will not result in an increase in the number of necessary rules. The

don’t-care feature exists in [43], and it turns out to be quite important to extracting the

benefits of Lazy Clearing for some applications.

While running with the Lazy Clearing optimization, we discovered several cases in the

SPEC2006 benchmarks where the original C code does use uninitialized data from the

stack. These are errors, and our policy rules correctly flag these errors as violations. They

allow data to flow from an unintended frame-id and object-id and to be used to effect the

computation. We believe the correct response is to fix these errors in the original code. To

generate a complete and consistent set of data, we selectively disabled lazy optimizations

on just the functions that were flagged as using uninitialized data.

The impact of Lazy Clearing, which we always combine with Lazy Tagging, is shown in

Figs. 10 and 11. When applied in addition to Lazy Tagging, the average overhead for Static

Authorities goes from 8.9% to 3.6% and the average overhead for Depth Isolation goes from

6.3% to 2.4%.

37

3.6. Security Characterization

3.6.1. Taxonomy

To demonstrate the security properties of our stack protection policies and relate them to

other stack protection work, we provide a taxonomy of stack threats in Figure 12. We select

threats that decompose stack protection mechanisms along the main dimensions in which

they differ and show which protection mechanisms provide protection against each threat.

First, we show whether the protection mechanism prevents the reading of unused stack

memory, where previous functions may have left critical data (security keys, etc). Next, we

show whether the protection mechanism prevents return addresses from being overwritten,

which is the most common vehicle for control flow hijacking attacks. We differentiate

between two kinds of memory safety attacks as in [35], the contiguous case and the arbitrary

case. In the contiguous case, an attacker must access memory contiguously from an existing

pointer (e.g., the attacker controls the source of an unchecked strcpy); in the arbitrary

case, an attacker can access memory arbitrarily (e.g., the attacker controls the source of an

unchecked strcpy and the index into the destination buffer).

Many stack protection mechanisms only protect return addresses. However, many of the

other items stored on the stack are security-critical as well—these include code pointers

such as function pointers, permissions bits, security keys and private information among

many other possibilities, so the last threats in the taxonomy concern accesses to other stack

data. We differentiate read accesses (R) from read/write accesses () to discriminate where

violations are detected and enforced in different policies. Finally, we show the overhead for

each of the protection mechanisms.

3.6.2. Microbenchmarks

Due to the difficulty of porting an existing security benchmarking suite such as RIPE

[132] to Alpha, we instead constructed a set of security microbenchmarks for testing and

38

E
x
is

ti
n

g
W

o
rk

StackGuard [33] [35] X X X X 2.8%
Parallel Shadow Stack [35] X X X X 3.5%
SmashGuard [96] X X X ∼ 0%
Intel’s Control-flow Enforcement Technology [65] X X X
AddressSanitizer [111] X X X 73%
CPI/CPS [72] X X X 8.5%/1.9%
Hardware-Assisted Dataflow-Isolation [116] X X X < 2 %
SoftBound [91] 67%
HardBound [41] 5-9%

O
u

r
P

o
li
c
ie

s

Return Address Protection (Sec. 3.3.4) X X X 1.2%
Static Authorities (Sec. 3.3.4)

Memory Safety 5.7%
Data-flow Integrity R R R R 3.6%

Depth Isolation (Sec. 3.3.4)
Memory Safety 4.5%
Data-flow Integrity R R R R 2.4%

Read freed stack memory
Contiguous access return address
Arbitrary access return address
Contiguous access wrong stack object
Arbitrary access wrong stack object
Overhead

Figure 12: Stack threat taxonomy

39

characterizing our policies. We use a simple vulnerable C program for each of the threats

in taxonomy and craft payloads that allow an attacker to execute the threat shown. Our

system halts the offending program at the expected instruction when we display a in the

taxonomy and does not halt the program when we display X. Note that for the rest of the

security mechanisms in the taxonomy, the or X comes from our understanding of the

work and not an empirical evaluation.

3.7. Policy Compatibility

Supporting setjmp/longjmp and Exceptions: System code written in C, as well as

the SPEC benchmarks, occasionally use setjmp() and longjmp(), in which key program

state (including the PC and frame pointer) is stored to a memory buffer and later restored.

The longjmp() operation causes the machine to pop many stack frames with no unwinding

operations; as a result, all of the discarded memory would remain tagged, which would

later cause our eager policies to encounter violations. To handle this functionality, we add

additional code into the longjmp() routine that includes a store instruction with a special

LONGJMP–CLEAR instruction tag; this tag allows it to overwrite the discarded memory,

which it tags with EMPTY STACK (Fig. 4 rule 19). These stores are violations of the stack

invariants as discussed in Sec. 3.3.3; we are granting additional power to the longjmp()

routine through this special instruction-type. Similarly, C++ exceptions could be handled

by providing additional power to the exception handling code with special instruction tags.

In the Depth Isolation policy, the stack depth d is stored on the frame pointer and retrieved

appropriately by the standard policy rules, so after longjmp() the system again has the

correct depth that was active at the time of the setjmp().

Tail Call Recursion: Tail call and sibling call elimination optimizations allow a program

to reuse a caller’s stack frame for its callee in the special case of tail calls. These optimiza-

tions are activated with gcc’s -foptimize-sibling-calls optimization pass which is included in

the -O2 optimization level. Our policies retag stack frames, as the authority identifer may

have changed. Additionally, arguments prepared for one authority (in the argument for

40

field) may be stale for the new authority identifier after a sibling call. To handle this case,

we insert instructions with a special DELEGATE ARG tag that allows an authority to

permanently forgo its access rights and grant them to the sibling authority before making

a sibling call.

Dynamic Stack Allocations: Programs can perform dynamic memory allocations on the

stack using alloca() or by using dynamically sized arrays. We insert additional instructions

to tag this memory at the time of the allocation, and similarly insert additional instructions

to clear the allocated memory when the stack pointer is again incremented. Note that these

setup and cleanup operations are not in the function prologue or epilogue, in contrast to

the tagging operations discussed in the policy descriptions. A current limitation of our

implementation is that we assign the same object-id to all dynamically allocated stack

objects. Dynamic stack memory allocations are very rare in the SPEC benchmarks.

Variadic Functions: The C language includes support for variadic functions, that is

functions that take a variable number of arguments. Another limitation of our current

framework is that we assign the same argument identifier to all such arguments. In future

work, it would be possible to assign identifiers to those arguments based on their argument

number and replace the macros that access those arguments with tag-aware variations for

finer protection.

Supporting Indirect Calls: In this section we explain how we tag arguments for indirect

function calls (as referenced in Sec. 3.3.4). To handle indirect function calls, we track all

function pointers in the system with their corresponding frame-id by extending the tags

on registers and memory words with another field for this purpose. In effect, these tags

identify code locators [84] that may be used for indirect function calls. When a function

pointer is then used for an indirect call, we use its tag to identify the dynamic function that

is being called in order to set up its arguments. Before such a call takes place, we insert

a special NOP instruction tagged BEGIN–INDIRECT–CALL, which, with Fig. 4 rule 21,

takes the frame-id of the register being used by the indirect call (e.g., jsr) and tags the

41

Program Counter tag with the frame-id of the dynamic authority identifier. Instructions

that prepare arguments for indirect calls are tagged with a special SET–ARG–FROM–PC

tag and use the authority identifier held in the program counter tag to set the appropriate

argument for field (rule 22). Finally, the indirect call instruction clears the tag on the

PC when it executes (rule 23). In other words, we simply use the function pointer tag to

intialize the argument tags for the correct dynamic function being called, and then clear

the tag state afterwards.

This strategy requires having all function pointers tagged with their appropriate frame-

id. To achieve this, we tag entries held in structures such as Global Offset Table (GOT)

at initialization with their appropriate frame-id ; these tags then propagate when they are

read using rule 14. Function pointers can also be crafted dynamically by a program using

arithmetic instructions that compute at offset from the global register. We extend our

instruction tagger to cover these cases, and tag these instructions with the instruction-

type CREATE–FP along with appropriate frame-id for the function pointer that they are

creating (rule 18). All function pointers used by the SPEC benchmarks are covered by

these cases, although there may be other originating sources of function pointers on other

systems; for a complete discussion on identifying code locators, see [84].

In the rules we show in Fig. 4, we display tags on instructions as pairs of the form

(instruction-type, frame-id), tags on registers as triples of the form (frame-id, object-id,

func ptr) and tags on memory as 5-tuples of the form (frame-id, object-id, frame-id-ptr,

object-id-ptr, func ptr). Tags on memory words require these field so that when a stack

pointer is stored into stack memory, a future load can produce an appropriately tagged

pointer or function pointer identifier (e.g., rule (5)). In some cases we extend fields for

particular instruction-types as required by the policy.

42

3.8. Discussion and Conclusion

3.8.1. Related Work

Stack Protection Due to the prevalence of stack memory safety exploits, stacks have been

the subject of many defensive efforts [123]. Traditional protection mechanisms such as Data

Execution Prevention (DEP) and Address Space Layout Randomization (ASLR) increase

the difficulty of conducting attacks, but do not prevent them entirely. For example, DEP

does not protect against code reuse attacks such as ROP [113, 24, 92, 115], and ASLR can

be subverted with information leaks [86].

Low-overhead, software-only stack protection solutions such as StackGuard [33] and shadow

stacks [35] protect return addresses, but do not protect other stack data and can be de-

feated by attack techniques such as direct writes and information leaks. Recent work found

that shadow stacks have a performance overhead of about 10% [35]; we include the opti-

mized Parallel Shadow Stack variant in our taxonomy. Hardware support for shadow stacks

has been proposed (SmashGuard [96]); recently Intel has announced upcoming hardware

support for the feature in their Control-flow Enforcement Technology [65].

AddressSanitizer [111] instruments all memory accesses with checks against “red zones” in

a shadow memory that pads all objects. It protects stack and heap objects, but only against

the contiguous write case. It bears a high runtime overhead of 73% and a high memory

usage overhead of 3.3×.

A recent research direction has proposed providing full memory safety just for code pointers

(Code Pointer Integrity [72]). While this technique provides an effective level of protection

for the incurred overhead on commodity hardware, it does not protect all stack data. Recent

work has shown that even non-control data attacks can be Turing complete [63]. The

SafeStack component of this work explores splitting the stack into a “safe stack” and a

“regular stack”. Objects that are accessed in a statically, provably-safe way, such as return

addresses and spilled registers, are placed onto the safe stack. Other objects, like arrays

43

and structs, are placed on the regular stack. This spatial separation is useful for protecting

items on the safe stack and additionally has almost no performance overhead; however,

it is opportunistic, protecting the items that can be cheaply protected and, without CPI,

provides no protection for items on the unsafe stack. The safe region itself is protected only

with information hiding on 64-bit systems, and implementations have been attacked [49].

Hardware-Assisted Data-flow Isolation (HDFI) [116] uses a single metadata tag bit for

efficient security checks. This enables it to achieve a low overhead, but with only a single

metadata bit it can only provide coarse protection (e.g., just return addresses or just code

pointers, similar to our Return Address Protection). It can distinguish two classes of data

and make sure that data from one class is not mistaken for data in the other, but cannot

provide fine-grained frame and object separation. Recent work shows that single-bit tags,

such as needed for HDFI, can be added without changing the physical memory word width

by using a separate tag table with low overhead [66]. LowRISC provides two bits of tagging

in its memory system that could be used to implement HDFI with its ltag/stag operations

[82, 119].

Some commercial products are beginning to provide features that can approximate HDFI.

ARM’s v8.3 pointer authentication feature could be used on the return address, or other

code pointers, to detect tampering [80] without the need for separate tag bits. Using a

unique encoding per return point, this can be extended to provide some CFI protection as

well. Oracle’s Application Data Integrity (ADI) could be used to assign one of its 16 colors

to spilled stack frames at a cache-line granularity to serve a similar function to the single

tag bit in HDFI [75]. These offerings are available on commercially available chips, but only

provide protection similar to our Return Address Protection policy.

Like other data-flow integrity models [26], the DFI variants of our policies keep track of

writers to memory words. Instead of using static instructions as writers, our policies use

identifiers for stack objects. In this case of Depth Isolation, we differentiate dynamic in-

stances of the same variable. However, in this work we restrict the policies to just stack

44

objects.

Bounds checking approaches such as SoftBound + CETS [91, 90] can provide complete

memory safety using software checks, but are expensive (116% overhead). Hardware support

for bounds checking, such as HardBoud [41], Intel’s MPX [64] and CHERI [134, 29] can

reduce these overheads drastically. Metadata tags are an alternative mechanism that can

provide memory protection, and so this work can be seen as exploring the space of tag-based

policies for memory safety.

SDMP Policies

The stack protection policies we present in this work are complementary to, and can be

composed with, other SDMP policies. Prior work has detailed policies for Control-Flow

Integrity (CFI) [43, 13], Information-Flow Control (IFC) [12, 11], Instruction and Data

Tainting [43], Minimal Typing [43], Compartmentalization [13], Dynamic Sealing [13], Self

Protection [13], and Heap Memory Safety [43, 13]. These previous policies did not address

protecting the program stack. The previous memory safety work [43] [13] only addressed

heap allocated data, where simply instrumenting the allocator was sufficient to build the

policies. As we have seen, object-level stack memory protection is significantly more in-

volved. Interesting future work would be to apply some of the optimizations we describe in

this work, such as the DFI variants of the policies, to previous heap safety policies.

Policy Applicability

Several systems provide programmable, multi-bit metadata tags that could exploit the

policies we derive here [23, 38, 44, 37]. Aries [23] would need to be extended to include tags

on memory. Harmoni [38] lacks instruction tags, but does decode control from instructions;

most of our uses of instruction tags could be replaced with augmented instructions. Here,

Depth Isolation, where ownership comes from depth on pointers, would make more sense

than Static Authorities, which would require authority to be embedded in the instructions.

The original Harmoni design has only two inputs to its tag update table (UTBL), while

45

some of our rules need 3 inputs, beyond the instruction tag, to track tags on both register

arguments and the memory. The SAFE Processor [44] has a hardware isolated control

stack, so does not need to use a metadata policy for protecting procedure call control data.

The policies in this work can be seen as an option to unify stack protection under the

single mechanism of tagged metadata, rather than adding a separate mechanism for just

protecting stack control data. DOVER [37] follows SDMP closely and would be a direct

match for our policies.

Emerging flexible, decoupled monitoring architectures support parallel checking of events

with metadata maintained in a parallel monitor [28, 55, 129]. LBA and FADE [28, 55]

add hardware support to filter and accelerate events with structures similar to the SDMP

rule cache. The accelerators in reported designs do not include accelerated handling for

metadata on the program counter and instructions, but such extensions appear feasible.

As with Harmoni, instruction tags could be handled as augmented instructions. ARMHEx

exploits the ARM CoreSight debug port, added instrumentation code, and programmable

logic to perform tagged information tracking on existing ARM SoCs such as a Xilinx Zynq

[129]. Combining the instrumentation to pass necessary data and programmable logic to

implement tracking and checking, it should be able to implement the stack policies described

here. The Depth Isolation and Static Authorities policies we describe have richer metadata

and are more sophisticated than any of the policies assessed in these monitoring architecture

papers.

3.8.2. Limitations and Future Work

Other variations of policies we present could be constructed. With additional compiler

support, subfield sensitive policies (i.e., object-ids for individual fields of structs) could

be derived for stronger protection. Variants of the policies that combine the notions of

static owner and depth could overcome the limitations of the Static Authorities and Depth

Isolation policies. Our policies do not differentiate between arguments, which would also

be a straightforward addition. Policies designed against a stronger threat model (e.g.,

46

untrusted code) would also be an interesting extension to this work.

3.8.3. Conclusion

In this work we demonstrate how a general-purpose tagged architecture can accelerate stack

protection security policies expressed in the Software-Defined Metadata Processing model.

We propose a simple policy that only protects return addresses, as well as two richer policies

that provide object-level protection of all stack data. Our policies carry forward information

available to the compiler about the arrangement of stack memory and the intent of the

various accesses to the stack and validate them at runtime with metadata tags and rules.

Our policies exploit the locality properties of typical programs to achieve effective hardware

acceleration via a metadata tag rule cache. The main source of overhead incurred by the

policies is the instructions added to tag and clear stack memory. We explore optimizations

for reducing this overhead, bringing the overheads for our policies below 6% for memory

safety and 4% for data-flow integrity. Although we derive our policies in the SDMP model,

our designs and optimizations are likely applicable to other tagged architectures.

47

CHAPTER 4 : Heap Protection Policies

4.1. Introduction

In this chapter, we turn to constructing micropolicies for protecting the heap, a source of

dynamic memory. In contrast to stack memory, which is implicitly allocated and deallocated

via function call and return, heap memory is managed explicitly by invoking a software

component called an allocator. The allocator obtains large blocks of memory from the

underlying OS (e.g., with sbrk), and in turn it services dynamic memory requests and

releases from the application from its pool of memory. Modern allocators (such as the

one provided in the GNU C library [124]) are sophisticated and highly-tuned to balance

performance and memory fragmentation, among other objectives.

Vulnerabilities related to heap memory and the management thereof can arise from several

bug classes. Simple spatial memory errors can also occur on the heap, i.e., heap overflows

are an analog to stack overflows as discussed in the previous chapter. Additionally, manual

memory management is notoriously error-prone and introduces several new bug classes

that are unique to the heap. In manually managed languages, programmers must strictly

obey implicit (and unenforced) allocation rules (do not access freed memory, do not pass

a pointer to free more than once, do not pass a pointer to free that did not originate from

the allocator, and so on [25]). A failure to uphold these rules on any program execution

is undefined behavior and can lead to exploitable vulnerabilities. Heap-based exploits have

become very popular among attacks against real systems [17], even overtaking other kinds

of memory errors in recent years [127]. Our goal in this section is to enumerate invariants

of the heap abstraction, construct micropolicies that can enforce them, and explore the

performance and protection tradeoffs of various policy designs.

48

4.2. Background

4.2.1. The Heap

Dynamic memory in C/C++ provides programmers with a long-lived data store for con-

structing their applications; stack memory, in contrast, is automatically released when a

function returns to its caller. Dynamic memory is managed by a software component called

an allocator, which is typically included in the C Standard Library, such as glibc. In C,

programmers directly interact with the allocator through functions such as malloc and

free, which allocate new memory blocks of at least a specified size and release them back

to the allocator, respectively. In C++ it is more common to invoke new and delete to

manage object lifecycles. In either case, it is up to the programmer to allocate new objects

and release them when they are no longer needed. From the allocator’s perspective, a run-

ning program performs a series of allocation and deallocation requests, and the allocator’s

goal is to quickly return memory blocks of the desired size to the program while minimizing

fragmentation to reduce the overall memory requirements of that application.

To serve these memory requests, the allocator obtains large blocks of memory from the

underlying OS with the brk system call which extends the program’s data segment. From

this large region the allocator divides out smaller, variable-sized chunks of memory for the

program. Most modern allocators choose to use an in-band metadata design [135], where

the allocator’s metadata (such as the size of the block) is stored inside the allocated chunk

at the beginning before the memory that is intended for the program’s use; we will use the

terminology payload to refer to the portion of the chunk that is intended for the program’s

use, and control-data to refer to the allocator’s own metadata words inside each chunk.

We use control-data instead of the more standard metadata terminology to avoid conflation

with tags, which are also a form of metadata. To create room for the control-data, allocated

chunks are several words larger then the requested size of the payload.

When a program calls free on a pointer, its corresponding memory chunk can be reclaimed;

49

allocators will typically maintain lists of freed chunks, and a freshly freed chunk is placed

onto an appropriate free list. Future allocations can be satisfied with chunks from a free

list, effectively recycling memory such that new calls to brk can be avoided and the memory

footprint of the application does not grow. Most modern allocators will maintain a num-

ber of distinct free lists, usually demarcated by their size, allowing the allocator to more

quickly locate available memory blocks of a particular size from the available free lists; this

design strategy is known as binning [135]. When a chunk is freed, it may be merged with

neighboring free memory in a process known as coalescing.

The experiments in this section use the glibc allocator which is closely based on the

ptmalloc2 design. The layout of a chunk as depicted in malloc.c from glibc is shown

below:

chunk-> +-+
| Size of previous chunk, if allocated | |
+-+
| Size of chunk, in bytes |P|

mem-> +-+
| User data starts here... .
. .
. (malloc_usable_space() bytes) .
. |

nextchunk-> +-+
| Size of chunk |
+-+

Figure 13: The layout of the malloc chunk structure from the glibc allocator.

Note that freed chunks are placed into a doubly-linked list, and the next and prev pointers

are placed following the chunk size when interpretted as a freed chunk.

4.2.2. Heap Vulnerabilities and Exploitation

Manual memory management is notoriously error-prone; programmers must follow a strict

set of implicit heap rules (Tab. 15). A violation to any one of these rules is undefined

behavior, and the exploitation of this undefined behavior has become a popular attack

vector of modern exploits [127]. Heap exploitation is the process of wielding a program

50

Rule Bug Classification If Violated

Always check allocation result for NULL Null Dereference
Only free pointers that originated from allocator Invalid free
Do not access bytes outside of allocation’s payload Heap overflow / heap underflow
Do not use a freed pointer Use-after-free
Do not free the same memory more than once Double-free

Table 1: Rules for dynamic memory management in C and the resulting bug classes if
violated; rules shown are abridged, see the SEI CERT C Coding Standard [25].

bug (rule violation) to achieve an attacker’s goal, such as hijacking the control-flow of a

target process, manipulating its program data, or leaking other information. There are a

range of attack techniques that have been developed for targeting the various components

of the allocator’s attack surface. Many of the techniques depend on low-level features

of particular allocators (the memory layouts of chunks, bins and searching algorithms,

coalescing strategies, etc); as a result, writing heap exploits typically involves gaining a deep

understanding of a particular allocator’s internals, and exploits are typically customized to

the allocator the attacker assumes will be used by the victim program.

Heap overflows/underflows: Heap overflow and underflow bugs are bugs in which a

pointer to a heap-allocated object can be driven outside the bounds of the payload of that

allocated chunk, and then dereferenced for illegal reads or writes. It is common for programs

to keep many kinds of data on the heap, such as structs, arrays, and many of the program’s

internal data structures and state. With a heap overflow, an attacker can exploit the bug

to write to nearby data elements on the heap, corrupting any data that may be there [17].

Common targets for attackers include data and code pointers; code pointers are of particular

interest, in that they can be corrupted to hijack control-flow, e.g., [105]. Heap overflows and

underflows are considered violations to spatial memory safety, in that a pointer is driven

outside of the bounds of the object it targets and then dereferenced.

Use-after-frees and Double-frees: After a pointer has been passed to free, that pointer

and all other existing pointers to the same object are said to be dangling. Dereferencing

a dangling pointer is undefined behavior, and doing so is referred to as a use-after-free.

51

Use-after-free bugs can be exploited by attackers to achieve a range of memory corruption

goals: for example, if a new object has been allocated in the same memory that has been

freed (i.e., the block was placed onto a free-list and then subsequently used to satisfy an

allocation), then accesses from the dangling pointer can be used to perform violating reads

or writes to the new object.

Additionally, it is undefined behavior to call free on the same object more than once, and

doing so is called a double-free. Double-free bugs can also be exploited by attackers to

achieve memory corruption: for example, after the first free, the allocator will place the

memory chunk onto a free list and may use it to serve future allocations. If the dangling

pointer is freed a second time after the chunk has been recycled for a different allocation, it

will inadvertently free the new object’s chunk, thus leading to future use-after-frees. Use-

after-free and double-free bugs are both examples of temporal memory safety violations, in

that pointers are used after their targeted objects have logically expired.

Control-Data Corruption: A common set of techniques for achieving reliable exploita-

tion of heap vulnerabilities involve control-data corruption or manipulation. These tech-

niques take advantage of the allocator’s in-band metadata design, where the allocator’s

own control-data is stored adjacent to the user data and is exposed for corruption without

protection or sanitization. The goal of these attacks is to trick the allocator into perform-

ing illegal or invalid heap management operations of the attacker’s control by poisoning the

allocator’s control-data; this corruption can be achieved through any of the above types

of heap memory errors. The first known attack of this category is a famous exploit by

Solar Designer [39] that uses a heap overflow to manipulate the next and previous chunk

pointers in a freed chunk; the unlink macro that operates on the linked list data structure

of freed chunks can be tricked into nearly arbitrary writes, which he uses to corrupt a code

pointer to compromise the Netscape web browser from a JPEG rendering component. In

the following years, new techniques for heap exploitation of this variety were developed and

refined [9, 85, 67] and continued to defeat hardening efforts of allocators [99, 20, 21].

52

More recently, Tavis Ormandy of Google Project Zero showed that a single NULL byte over-

flow into glibc’s control-data was sufficient to compromise the Chrome web browser [95],

and new techniques for heap exploitation continue to be discovered [135]. Lastly, note real

heap exploits on complex software are typically complex, multistage engineering efforts that

combine together multiple bugs or use a single bug to trigger additional vulnerabilities; for

example, a recent in-the-wild exploit against iOS was reverse engineered and was discovered

to first trigger a heap overflow that caused a second, synthetic use-after-free error that was

significantly more reliable and controllable than the initial vulnerability [17], a technique

known as vulnerability conversion.

Heap Grooming: Unlike stack memory, where there is a high degree of spatial and tem-

poral predictability of the memory layout both within a stack frame and in the broader

calling context (effectively fixed at compile time), heap memory is dynamic: the spatial

and temporal relationships of chunks to one another depend on the (likely data-dependent)

sequence of allocation and deallocation events performed by the program, as well as the

specific binning, searching and coelescing choices taken by the allocator. In order to reli-

ably control heap vulnerabilities, exploit developers have engineered a range of techniques

for achieving predictable (or at least probabilistically likely) chunk arrangements by driving

the allocator through a particular sequence of heap operations, i.e., consuming all avail-

able freed chunks to trigger a fresh brk call (and thus predictable spatial arrangements of

subsequent allocations that are carved from a single contiguous fresh data block), or free

ing a placeholder object of a particular size to cause a victim object to be allocated in its

place, and so on. This category of technique includes heap spraying, heap grooming, and

heap manipulation [120]. Additionally, it is even possible to fingerprint an allocator version

to determine the exact build, data offsets, and functional behavior required for this kind of

exploitation [67].

53

4.3. Threat Model and Assumptions

In developing our micropolicies to protect the heap, we take on a powerful and realistic

threat model for systems software. A program written in C or C++ is linked with the

glibc allocator (the current default on most Linux systems) with its in-band metadata de-

sign. The program may contain vulnerabilities related to the heap, including heap overflow

or underflow vulnerabilities, as well as use-after-free or double-free vulnerabilities. Attack-

ers may wield these vulnerabilities by manipulating the program data under their control

to trigger bugs and use them to corrupt either heap-allocated program data or allocator

control-data. For example, if there is a scanf call without a bounds check, an attacker may

supply a large string and use it to corrupt allocator control-data or heap-allocated data ob-

jects (Fig. 14). We assume the allocator implementation may be modified to communicate

information about its operations to the tagging system.

1 // Vulnerable code: auth overwrite
2 struct secret { int auth; };
3 int main(){
4 char ∗ name = malloc(32);
5 secret ∗ my secret =
6 malloc(sizeof(struct secret));
7 init(my secret);
8 scanf("%s", name);
9 printf("User %s has auth %d.\n",

10 name, my secret −> auth);
11 }

Figure 14: An example heap overflow error that exposes auth to memory corruption from
scanf (left) and the heap protection micropolicy halting an invalid access (right).

4.4. Policy Formulation and Implementation

Our core policy design for heap protection micropolicies is based on the dynamic tainting and

checking technique introduced in [30], which we translate to an SDMP policy and extend

in several ways. The scheme works as follows: when an allocation occurs, the allocated

block is painted with a color c. When a pointer is created that targets that allocation, the

pointer itself is marked with the same color. When a pointer is dereferenced, the color of

the pointer and the color of the memory word are compared; if the colors are not the same,

54

then the access is determined to be illegal and it can be halted by the policy. In Fig. 14,

the name allocation is colored blue and the my secret allocation is colored yellow; when the

the scanf overflow occurs, the program can be halted when a blue pointer would write to

a yellow object.

Color tags on pointers propagate as they move between registers as well as to and from

memory. Because a colored pointer can be stored in a colored memory region, colors on

memory words contain two separate colors: the cell color (the color of the memory location

itself) and the pointer color (the color on the value stored in that location). The variety

of policies we consider in this section differ only in their coloring schemes, i.e., how we

choose c for each allocation. Unlike the stack policies, which require code instrumentation

in addition to tagging, the heap policies are much less intrusive; previous work [30] has

shown this taint-tracking scheme to be compatible with x86 and MIPS binaries. In the rest

of this section we show how this coloring scheme can be translated into a tag policy for the

SDMP used to detect and eliminate invalid heap memory accesses.

4.4.1. Tag Structure

Tags on memory locations are pairs (CellColor, PointerColor), where each color is an

integer value indicating the corresponding taint identifier. Intuitively, the CellColor can

be thought of as a tag on the memory location (which allocation the word belongs to),

while the PointerColor is a tag on the data stored there (either the color of the heap

pointer, or ⊥ if the word does not hold a heap pointer). Additionally, tags have two other

bits to indicate the presence of two special values: the Free special value indicates that

the cell holds unallocated heap memory, and the Allocator special value is used to mark

the allocator’s control-data to protect it from the program. If either of these two special

tag bits is set, then the color values are ignored by the policy. If neither bit is set and the

CellColor value is 0, then the memory is interpretted as non-heap memory. To reduce

the number of tags and rules required by the policy, Free and Allocator tags are always

supplied in a canonical form where the CellColor and PointerColor tags are 0.

55

Tags on registers contain a single field representing a numeric value, PointerColor. If

the value is 0, then the tag is interpretted as ⊥, indicating that it is not a heap pointer.

Otherwise, the value of PointerColor is interpretted as the taint identifier for that pointer.

4.4.2. Tagging Allocated and Freed Memory

The heap policies are built on a foundation of labeling both memory cells and pointer values

with taint marks (colors) such that their operations can be checked. Heap memory that

has not yet been allocated is marked with the special Free tag bit, which indicates that

the memory is unallocated heap memory. This tag is placed on all words in new memory

blocks that are acquired by the allocator, either through sbrk or mmap.

The program invokes the allocator by calling one of its interface functions, which in glibc

includes malloc, calloc, realloc, valloc and pvalloc. When such a function is called,

the allocator partitions out a new chunk, then chooses a CellColor value and applies it to

each program-usable word in the allocated chunk’s payload. These setup instructions are

the only instructions in the program permitted to claim Free memory, which they convert

to allocated memory and label with the appropriate CellColor tag. Next, the allocator

tags the control-data values inside that chunk with the Allocator tag. Both kinds of chunk

setup instructions require all words to be previously-marked as Free, otherwise the allocator

produces a policy violation.

After allocation is complete, the allocator tags the resulting pointer with a PointerColor

matching the CellColor chosen by the allocator. The rules used to govern the propagation

of pointer tags are discussed in the following subsection.

When the program has finished using an allocated block, it releases it by calling free

with an appropriate pointer. The allocator inspects the tag on the incoming pointer; if

that pointer is ⊥, then an invalid free error is detected and the policy raises a violation.

Otherwise, the allocator tags each freed word with the canonical Free tag. All such freed

words must contain a CellColor that matches the color on PointerColor that was freed,

56

otherwise a policy violation is raised.

The most complex function to manage for proper tagging of heap memory was realloc.

The realloc function takes as input a pointer p and a size s. If the new size s is larger

than the existing allocated chunk, then the chunk may grow; depending on the state of

the allocator, the chunk may grow in-place or move (including copying bytes from the old

location to the new one). If the new size s is smaller than the allocated chunk, then the

allocated chunk may shrink. If the incoming pointer p is NULL, then the C standard

dictates that the realloc be treated as a fresh malloc. If the new size s is 0, then the

realloc is to be treated as a free. As such, realloc is a complete interface to the allocator

and we treat each such case seperately.

If the allocator exhausts its supply of free memory, then the allocation fails and it returns

a NULL pointer to the program. On this code path and this code path only, the resulting

pointer is tagged with a special INVALID-PTR tag, thus granting the program no access to

heap memory. Returning an INVALID-PTR in is not considered a policy violation, but a

future dereference of that pointer by the program is a violation. This policy design means

that a tag violation is thrown only if a program fails to properly handle its out-of-memory

error cases.

4.4.3. Propagating Pointer Tags

The allocator sets the PointerColor tag on pointers returned to the program, giving it

access rights to the freshly allocated block by dereferencing that pointer. The pointer

may subsequently be moved between registers or stored-to and loaded-from memory as the

program continues to perform its operations. To handle these cases, we apply analogous

rules to [30] that transfer the tag along with the data word to which it is associated, such

that the PointerColor is maintained on pointers to the allocated block.

For example, consider the case where a pointer of color cptr is stored into a heap region

of color ccell. To perform this access, the program must have a pointer of color ccell thus

57

granting it access to the memory word. If the value stored there is colored cptr, then after

the store, the tag on that word will be (cmem, cptr). This tag means that the word is in an

allocation of color cmem but holds a pointer to an allocation of color cptr.

Subsequently, if the program uses a pointer of color cmem it can perform a legal load to that

word. If it does, the resulting register value would be tagged with cptr, thus providing the

program with an appropriately tagged pointer value for accessing those allocations. In this

way, the color tags on pointers are maintained as the program stores and retrieves them

from memory.

Note that a pointer may undergo mathematical operations (e.g., pointer arithmetic) as well

as mov operations between registers, in which case the pointer color is similarly preserved.

Other types of instructions such as xor remove the pointer color from the result tag. We

discuss practical issues that were encountered related to the propagation of pointer tags in

Sec. 4.7.

4.4.4. Policy Variations

The policy variations we present in this section are constructed by varying the ways in

which new colors are assigned by the allocator to fresh allocations. We include a simple

policy that provides only coarse-grained protection using a small number of tags and rules;

other policies variations use more colors for stronger protection. In Sec. 4.5 we evaluate the

policies on their number of used tags, rules and dynamic rule cache hit rate. In Sec. 4.6

we characterize them in terms of the types of errors and violations they are able to protect

against.

One-Color: The One-Color policy uses a single color c for all allocations. It is designed

as a lightweight policy that uses a modest number of tags to separate memory words into

several classes (allocated heap memory, freed heap memory and non-heap memory) and

pointers into two classes (heap pointers and all other values).

58

N-Color: Rather than assigning a single color to all allocations, the N-Color policy cycles

through a pool of N such total colors. This approach is taken by other existing tagging

architectures such as SPARC CPUs with ADI [94] which can supply a modest number (8 or

16) of differentiable tags. This allows for more reliable detection and prevention of memory

errors at the cost of increased tags and rules, but still limits the total number of identifiers

to reduce the rule cache pressure.

Infinite-Color: At the limit, we assign a unique color to each fresh allocation without

any tag reuse at all. The Infinite-Color policy generates the most tags and rules, but also

provides the strongest security guarantee: complete spatial and temporal memory safety

for heap allocations.

Note that an integer CellColor of any fixed bit width will eventually exhaust its supply

of unique identifiers. This issue is a practical concern for 32-bit integers or smaller, but

not likely a concern for 64-bit integers or larger on the time scale of human lives and

typical program executions. More importantly, recent work has shown that a program can

asynchronously scan its memory and reclaim freed identifiers at a modest cost [76]; in the

limit, such an approach would drive the number of required unique identifiers to only match

the number of live, extant allocations by a program, a much more manageable task. This

approach would allow a policy to achieve the same security properties of the infinite case

without excessive tag sizes. Indeed, any real memory system has a finite number of words

of memory, which means the number of live tags has a finite bound.

Allocation-Site: Lastly, we consider a final policy variation that takes a slightly different

approach from the other variations. Rather than cycling through a pool of colors that

is shared by the entire program like the N-Color policy, the Allocation-Site policy cycles

through a pool of colors per allocation-site in the program. At a color limit of 1, then there

would be a unique color per allocation site, but the objects allocated from each of those

sites would be undifferentiable from each other. At higher color limits, additional colors per

allocation-site are dispensed to separate objects from those sites. This policy variation also

59

reduces the number of tags and rules compared to the Infinite-Color case, but provides the

additional guarantee that there will be no color reuse between data types or allocator calls

from different program points, a useful security improvement we discuss further in Sec. 4.6.

4.5. Evaluation

Evaluation Framework: We evaluate our heap protection micropolicies using the same

basic methodology and architectural parameters as the stack chapter (Chapter 3 Sec. 3.4.1).

A custom PUMP simulator is used to simulate metadata tags and policy evaluation logic.

We run our experiments on the SPEC CPU2006 benchmarks; each benchmark is run until

it finishes its initial setup logic, then it runs for 1 billion warmup instructions followed by

a measurement period of 500 million instructions. In this chapter, we exclude the Fortran

benchmarks which do not use dynamic memory1 and perform evaluation only on the C/C++

benchmarks.

Tags, Rules and Colors: The PUMP accelerates security policies by caching metadata

rules, and so the diversity and locality of those rules is the major driving force of policy

overhead. As a result, one of the first questions to investigate is the relationship between the

number of unique identifiers that are assigned to heap allocations and the resulting number

of tags and rules that are generated by the policy logic. In Fig. 15 we show the average

number of unique rules processed by the PUMP per million instructions as a function of the

number of colors used in the N-color policy. If the number of rules per million instructions

is smaller than the rule cache size (1024), then the cost of enforcement will be low. When

more rules than can fit in the cache are required by the policy, there will be more runtime

costs for policy enforcement. At the limit, if the number of rules is so high that the rule

cache is thrashed, policy costs can become very high.

The One-Color policy (a maximum colors of 1) uses only ten unique tags and an average of

1Dynamic memory was introduced in Fortran 90, but these workloads largely predate those language
changes and/or do not use the ALLOCATE command. The Fortran benchmarks still use the libc runtime
which yields runtime calls to malloc, but they do not result from direct programmer invocations.

60

●●●

●

●●

●

● ●● ●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

● ●

●

●●

●

●

●●●

●

●●
●

● ●● ●●● ●
●●●

●

●●

●

● ●● ●●● ●

10

100

1,000

10,000

100,000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

In
fin

ite

Max Colors

U
ni

qu
e

R
ul

es
 p

er
 1

M
 In

st
ru

ct
io

ns

Benchmark

●

●

●

●

●

astar

bzip2

calculix

dealII

gcc

gobmk

gromacs

h264ref

hmmer

lbm

libquantum

mcf

milc

namd

omnetpp

perlbench

sjeng

soplex

sphinx3

Figure 15: The number of unique rules processed by the PUMP per million instructions
during each benchmark’s measurement period as a function of the number of colors used to
differentiate allocations.

only twenty-two total rules, making it a very lightweight policy that can quite comfortably

fit in the rule cache. As more colors are used to differentiate allocations, the total number

of tags and rules begins to increase. Most benchmarks see only a modest increase in rules

as more colors are used; these are benchmarks that perform only moderate rates of dynamic

memory allocations, which means assigning them fresh allocations does not impose much

rule pressure. The total number of rules required per million instructions is typically less

than one thousand, and many of them require less than a thousand total during their entire

measurement period. This means that at the infinite color limit these policies still have

manageable rule cache behavior.

In contrast, we also see several benchmarks—dealII, gcc, perlbench and omnetpp—that

perform rapid memory allocations and generate frequent color pairs throughout their exe-

cutions. These workloads generate significant numbers of tags and rules, and at high color

limits can require thousands to tens of thousands of rules per million instructions. The

worst offending benchmark, omnetpp, is a network traffic simulator that simulates packets

and routers containing packet buffers, each of which are heap-allocated objects. Pointers to

61

packets are frequently stored into packet buffers, generating many combinations of colors.

In fact, at a maximum colors of 128, omnetpp generates nearly the full 128 × 128 product

of all color combinations over its full measurement period. Additionally, omnetpp simulates

network traffic in small timesteps and updates the entire graph each timestep, producing

very little rule locality, a near worst-case scenario for the PUMP and its heap policy.

Overheads and Colors:

Next, we investigate how the number of colors impacts the dynamic rule cache hit rate and

thus final runtime overhead of the heap policy variations. In Fig. 16 we show the runtime

overhead as a function of the number of unique colors in the N-Color policy, including

both the One-Color and Infinite-Color cases. The One-Color policy imposes only a 1%

overhead due to the small number of rules required to represent the policy. Even at the

Infinite-Color limit, fifteen out of nineteen policies have overheads less than 10%; the four

benchmarks with high dynamic rule counts see higher overheads, with omnetpp imposing

more than 400% overhead. This shows that while most workloads with modest dynamic-

memory usage produce rule patterns that can be cached favorably, some workloads challenge

the rule cache and require frequent dynamic rule resolutions.

Lastly, in Fig. 17 we show the overheads results for the Allocation-Site policy which dis-

penses pools of colors per allocation site. Note that in this plot, the number of colors

indicates the number of colors per allocation site. With only a single color per allocation

site, the policy imposes only a 1.2% overhead. The results for this policy trend similarly to

the N-Color policy but have favorable security properties, which we explore in the Sec. 4.6.

Case study: Omnetpp The omnetpp benchmark was the most challenging workload for

the PUMP to cache due to the rapid rate of heap allocations and the frequent generation

of color pairs. Rather than limiting the total number of colors across all objects in the

system, an alternative approach to reducing overhead costs is to focus specifically on the

object types that are responsible for the largest number of tags and rules. To accomplish

62

0

2

4

 1

 2

 4

 8

16

32

64
 1

28
 2

56
 5

12
 1

02
4

In

f

Colors

O
ve

rh
ea

d
(%

) astar

0.0

0.1

0.2

0.3

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) bzip2

0.00

0.05

0.10

0.15

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) calculix

0

50

100

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) dealII

0

10

20

30

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) gcc

0.000
0.025
0.050
0.075
0.100

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) gobmk

0.00
0.05
0.10
0.15
0.20

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) gromacs

0.00

0.02

0.04

0.06

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) h264ref

0.0

0.1

0.2

0.3

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) hmmer

0.0

0.5

1.0

1.5

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) lbm

0.0

0.5

1.0

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) libquantum

0

2

4

6

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) mcf

0.0

0.5

1.0

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) milc

0.000
0.005
0.010
0.015

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) namd

0
100
200
300
400

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) omnetpp

0

50

100

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) perlbench

0.00
0.01
0.02
0.03
0.04
0.05

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) sjeng

0.00

0.01

0.02

0.03

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) sphinx3

0.0
0.5
1.0
1.5
2.0

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) soplex

0
10
20
30

 1

 2

 4

 8

16

32

64

 1
28

 2
56

 5
12

 1
02

4

In
f

Colors

O
ve

rh
ea

d
(%

) mean

Figure 16: The overhead imposed by the N-color heap micropolicy as a function of the
maximum number of unique color identifiers. In this policy, the colors are drawn from a
single, global pool of size N.

63

0

2

4

 1

 2

 4

 8

16

32

64
 1

28
 2

56

In
f

Colors

O
ve

rh
ea

d
(%

) astar

0.0

0.1

0.2

0.3

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) bzip2

0.00

0.05

0.10

0.15

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) calculix

0

50

100

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) dealII

0

10

20

30

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) gcc

0.000
0.025
0.050
0.075
0.100

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) gobmk

0.00
0.05
0.10
0.15
0.20

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) gromacs

0.00

0.02

0.04

0.06

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) h264ref

0.0

0.1

0.2

0.3

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) hmmer

0.0

0.5

1.0

1.5

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) lbm

0.0

0.5

1.0

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) libquantum

0

2

4

6

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) mcf

0.0

0.5

1.0

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) milc

0.000
0.005
0.010
0.015

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) namd

0
100
200
300
400

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) omnetpp

0

50

100

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) perlbench

0.00
0.01
0.02
0.03
0.04
0.05

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) sjeng

0.00

0.01

0.02

0.03

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) sphinx3

0.0
0.5
1.0
1.5
2.0
2.5

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) soplex

0
10
20
30

 1

 2

 4

 8

16

32

64

 1
28

 2
56

In

f

Colors

O
ve

rh
ea

d
(%

) mean

Figure 17: The overhead imposed by the Allocation-Site heap micropolicy. In this policy,
a pool of N colors is assigned to each allocation site.

64

0

100

200

300

400

Bas
eli

ne
1 2 3 4 5

Number of Relaxed Allocation Sites

O
ve

rh
ea

d
(%

)

(a) The impact of selectively relaxing the allo-
cation sites most responsible for rule generation
in omnetpp. Relaxing only two allocation sites
is sufficient to reduce the overhead from over
400% to under 20%.

0

50

100

150

1 2 4 8 16 32 64

Colors per pool

O
ve

rh
ea

d
(%

)

(b) The impact of increasing the color pool sizes
for the two allocation sites most responsible for
tag and rule diversity. Small pool sizes lead to
only marginal increases in enforcement costs.

Figure 18: A case study on relaxing the heap policy on omnetpp, the worst-performing
benchmark.

this, we add additional tracking into our framework to attribute each tag and rule that is

generated back to the allocation site from which it originated. This allows us to calculate

the allocation-sites that are responsible for most of the tag and rule diversity; from this

data, we can run a hybrid policy in which only a select few allocation sites are treated with

the Allocation-Site policy while maintaining the Infinite Color policy for all the rest of the

object types in the system.

We conduct two experiments. First, we identify which allocation sites must be relaxed to

remove the majority of the rule diversity. For this experiment, we consider relaxing up to

the five allocation sites most responsible for the most rules to a single color per allocation

site. We show these results in Fig. 18a. As can be seen, by relaxing just two of the allocation

sites in this way, the overhead drops from over 400% to less than 20%. The two allocation

sites responsible for the high costs in the policy were those for constructing and duplicating

packet objects. Second, we show the impact of increasing the pool size per allocation site

for these two allocation sites. These results are shown in Fig. 18b. More colors can be used

to differentiate these allocations for increasing cost, with only marginal increases in cost for

small pool sizes.

65

4.6. Security Characterization

Next, we consider the protection offered by the various policy designs. A mitigation is

useful when it is able to disarm bug classes by rendering them non-exploitable, typically

by providing fail-stop behavior i.e., halting the machine before it would perform dangerous

undefined behavior. In this section we consider a range of bug classes inspired by the safe

dynamic memory management rules from Tab. 15 and discuss the protection offered by each

of the various policy variations.

Null Dereference (1):

1 // Bug class 1: Null Dereference
2 int main(){
3 char ∗ p = malloc(LARGE SIZE);
4 sprintf(p, "Test");
5 }

In this bug class, a program fails to check an allocator invocation’s result for NULL, then

proceeds to access memory with the resulting pointer. On some platforms Null Dereference

bugs may only lead to system crashes / denial of service attacks, while on other platforms

including Windows 7 and prior (as well as compatibility modes for older software on modern

Windows systems) they can be exploited for devastating memory corruption [108]. The Null

Dereference bug class is prevented from exploitability by the One-Color policy as well as all

subsequent policies; when the allocator returns a NULL pointer, it has the INVALID-PTR

tag, which produces a tag violation if the program attempts to dereference it.

Invalid Free (2):

1 // Bug class 2: Invalid Free
2 int main(int argc, char ∗∗ argv){
3 char ∗ message = malloc(32);
4 snprintf(message, 32, "%s", argv[1]);
5 ...
6 if (error){
7 message = "error.";
8 }
9 printf("%s\n", message);

10 free(message);
11 }

In the invalid free bug class, a program calls free on a pointer that did not originate from

66

the allocator. If an attacker controls the data the pointer points to (not shown), it can

be used to forge synthetic allocator control-data to hijack the allocator’s behavior, leading

to further memory errors and system compromise. This bug class is also prevented by the

One-Color policy and all subsequent policies: legal heap pointers are differentiated from

all other pointers by their PointerColor tag, and when free is passed a pointer with the

⊥ tag, the PUMP halts program execution. Additionally, valid allocator control-data has

the Allocator tag, and any forged control-data would not, which would also produce a tag

violation when the allocator accesses those words.

Contiguous Heap Overflow (3):

1 // Bug class 3: Contiguous Heap Overflow
2 struct secret { int auth; };
3 int main(){
4 char ∗ name = malloc(32);
5 secret ∗ my secret =
6 malloc(sizeof(struct secret));
7 init(my secret);
8 scanf("%s", name);
9 printf("User %s has auth %d.\n",

10 name, my secret −> auth);
11 }

In this common and high-severity bug class, a program contains a contiguous memory

error in a heap object. A contiguous error is one in which the bug permits only contiguous

accesses from an existing buffer, such as this unsafe call to scanf. Contiguous errors are less

powerful exploit primitives that non-contiguous (arbitrary) errors in which an attacker may

also control the offset of the overflow to perform more sophisticated memory manipulation.

Contiguous errors may be used to exploit either other heap-allocated objects or allocator

control-data: in this case the auth field may be overwritten.

This bug class is prevented by the One-Color policy as well as all subsequent policies; the

allocated payload of each chunk contains an Allocator tag on either side, which prevents

contiguous errors from writing beyond their payloads.

67

Access Free Memory (4):

1 // Bug class 4: Access Free Memory
2 int main(int argc, char ∗∗ argv){
3 char ∗ p = malloc(32);
4 free(p);
5 sprintf(p, "%s", argv[1]);
6 }

In this bug class, a program reads or writes to memory that is currently free, either via a

dangling pointer or double-free. Free memory should never be accessed by a program: for

example, while free, a chunk’s contents are interpretted as additional allocator control-data

which can be written to poison the allocator’s behavior the next time it processes that freed

chunk.

The integrity of free memory is protected by the One-Color policy and all subsequent

policies: free memory is tagged with the special Free tag and program code is always

forbidden to access it.

Noncontiguous Heap Overflow To Different Object (5):

1 // Bug class 5: Noncontiguous Heap Overflow To Different Object
2 struct secret { int auth; };
3 void init (struct secret ∗ s) { s −> auth = 42; }
4 int main(int argc, char ∗∗ argv){
5 char ∗ first name = argv[1];
6 char ∗ last name = argv[2];
7 char ∗ full name = malloc(32 + 1);
8 struct secret ∗ my secret =
9 malloc(sizeof(struct secret));

10 init(my secret);
11 snprintf(full name, 16, "%s", first name);
12 snprintf(full name + strlen(first name), 16, " %s", last name);
13 printf("User %s has auth %d.\n",
14 full name, my secret −> auth);
15 }

In this bug class, the program provides the attacker with a powerful non-contiguous memory

error on a heap object; we add the additional constraint that exploitation requires corrupting

a different object (allocation site). This may occur either because the source object itself

does not provide useful footing for an attacker (such as a simple string), or because only

one object from that allocation site is live at the time that the bug may be triggered. In

this example, a maximum of 16 bytes from each of first name and last name plus a space

character are copied into full name, which is 33 bytes. However, on line 12 the length of

68

first name is not verified, which allows that snprintf call to become out-of-bounds when

a name longer than 16 bytes is provided. As a result, this program allows the corruption of

the auth field of the secret variable from the program’s arguments without writing to the

intermediate Allocator tag like a contiguous error would. This bug class typically results

from indexing errors or buffer sizing errors on heap-allocated arrays.

This bug is prevented when the color of full name is not the same as other objects that an

attacker may want to target, such as my secret. The One-Color policy never satisfies this

requirement, and so it fails to prevent this bug class. The N-Color policy partially prevents

this bug class: whether or not another object that matches the color of full name is on the

heap depends on both the program and the number of colors. The allocation-site policy

always prevents this bug class, as the color of full name is guaranteed to match no other

heap objects, rendering the bug disarmed. This benefit shows us the advantage of binding

colors to allocation sites instead of recycling through a global pool.

Use-After-Free to Corrupt Different Object (6):

1 // Bug class 6: Use−After−Free to Corrupt Different Object
2 struct secret { int auth; char ∗ message};
3 struct linked list { int val; struct linked list ∗ next };
4

5 int main(){
6

7 // Allocate and free an object
8 struct linked list ∗ l = malloc(sizeof(struct linked list);
9 free(l);

10

11 // Receive same chunk from allocator
12 struct secret ∗ my secret = malloc(sizeof(struct secret));
13

14 // Use−after−free from l to corrupt secret −> auth
15 l −> val = 1;
16

17 }

In this bug class, a dangling pointer from one object type (allocation-site) is used to access

the memory of a different type of object. In the example shown above, a dangling pointer

to a linked list object is used to corrupt a secret object. The One-Color policy does not

prevent this bug class, as all objects are marked with the same color. The N-Color policy

partially protects against this bug class, depending on the number of colors and the capa-

69

bility of an attacker to groom heap operations. The Allocation-Site policy always protects

against this bug class by never reusing colors between allocation sites, which guarantees

that a dangling pointer can never access another type of object. Like bug class 5, this

shows the advantage of not reusing colors between allocation sites.

Arbitrary Spatial or Temporal Error (7): Lastly, we consider an arbitrary spatial or

temporal error. This time we make no assumptions about the allocation-sites or error type.

Arbitrary logic may take place between allocator events, and the attacker may influence the

program’s behavior to achieve arbitrary heap grooming operations. The only policy that

can protect against this powerful bug class is the Infinite-Color policy, which never allocates

a color that is currently in use by any pointer or memory chunk.

Summary: The heap policy variations and the bug classes they defend against are sum-

marized in Fig. 19. We find that the One-Color policy is sufficient to defend against four of

these threats (including the common and high severity contiguous heap overflow) with only

a handful of tags and rules. The Allocation-Site policy with a single color per site is similarly

modest at 1% overhead but additionally defeats cross-object type corruptions compared to

just the One-Color policy. The N-Color policy is effective at detecting bugs, but with both

high costs associated with larger number of colors and the possibility of a powerful adversary

(1) using grooming techniques to match colors even on an invalid access or (2) repeatedly

attempting exploitation to brute force a successful intrusion, the policy provides limited

additional security comparatively against a strong threat model. As a result, it is wiser to

allocate pools of colors per allocation site to spend additional tag diversity for hardening

systems, or simply using the Infinite-Color policy. The Infinite-Color policy has a small

overhead (<10%) for fifteen of the nineteen applications with lower dynamic memory usage

and provides the strongest guarantees; for many workloads, this policy is clearly the best

choice. For workloads that perform poorly with the Infinite-Color policy, one can either

relax just a couple allocation site that are most responsible for rule generation, or one can

apply the general Allocation-Site policy.

70

P
o
li
c
y One-Color X X X 1.01%

N-Color — — X 1.01% - 37%
Allocation-Site X 1.2% - 37%
Infinite Color 37%

Prevent Null Dereference (1)
Prevent Invalid Free (2)
Prevent Contiguous Heap Overflow (3)
Prevent Access to Free Memory (4)
Prevent Noncontiguous Heap Overflow To Different Object (5)
Prevent Use-After-Free on Different Object (6)
Prevent All Spatial and Temporal Violations (7)
Overhead

Figure 19: Security characterization of heap policy variations

4.7. Policy Compatibility

The heap protection policies introduced in this section are built on a scheme of tracking

taint colors on both pointers and memory locations. While this scheme is compatible with

most software ([30] argue for binary compatibility on x86 and MIPS), the expressive power

provided in C/C++ to manipulate the bits and bytes of pointers or inline raw assembly code

means that there is no guarantee that all existing functional behavior will pass the heap

protection micropolicies’ taint checks. In this section we explore some of the compatibility

issues and porting efforts that were necessary to run the SPEC benchmarks with the heap

micropolicies. Sixteen out of nineteen benchmarks did not require any manual porting,

whereas three benchmarks did: gcc, perlbench and soplex.

Pointer Color Propagation: The most common issue encountered while constructing,

refining, and porting the heap micropolicy to the SPEC benchmarks was determining the

pointer-propagation rules for the various types of machine instructions. The vast majority

of instruction types can be unambiguously assigned to the always-propagate (e.g., mov) or

the never-propagate (e.g., shr) classes as one might expect. However, for some operation

types, the classification is not so simple.

71

To illustrate this issue, consider this code snippet from gcc in ggc-page.c:

Figure 20: Pointer tag propagation ambiguity for the and opcode in the gcc benchmark.

In this example, G.pagesize is known to be a power of two. On line 1, -G.pagesize

is calculated, which will contain 1 values in the most-significant bits and 0 values in the

least-significant bits, thus making it a bitmask for and that preserves the high bits and only

zeroes-out the low bits of the operand. This and instruction with such a bitmask should

propagate the pointer color of allocation to the page variable, as it will be dereferenced

by the program as a pointer to the same chunk.

However, on line 3, G.pagesize -1 is calculated, which produces a result with 0 values in

the most-significant bits and 1 values in the least-significant bits. This time, the bitmask

for and zeroes-out the high bits and keeps only the low bits, with an integer result that

should not constitute a pointer. In other words, the correct propagation rule for and is

data-dependent on the value of the operand (bitmask).

It should be noted that in all such examples we encountered, the proper propagation policy

could be determined by the expected type of the result: page is a pointer and tail slop an

integer, which means a tag-aware compiler could supply the required differentiation. As a

result, we find that the heap policies are quite compatible with most software, but may oc-

casionally require either (1) additional compiler assistance, or (2) some manual propagation

assignments to support programs that manipulate pointers in this way. Our framework

takes the later approach: gcc has ten such instructions that are manually tagged to be

pointer preserving and soplex has three, whereas all others receive a default classification

of not-preserving.

Sub-word Object Manipulation: Another type of issue that arises while doing memory

protection with tags is sub-word data manipulation. In the PUMP architecture, tags are

72

associated with each word of data, i.e., a 4-byte pointer is associated with a 4-byte tag on

that pointer. Heap allocations are always aligned at the word boundary and their size is

always a multiple of the machine’s word size, which means that heap objects themselves

lend well to being tagged. However, in C it is fairly common for programmers to cast

data objects to the char * type and operate on them as bytes, which causes gcc to emit

machine instructions such as stb that operate on single bytes. To accommodate for cases

in which pointers themselves may be copied in sub-word increments, we loosen the color

propagation rules on pointers to include sub-word size transfers. A consequence of this

distinction is that it may be possible for a word to become tainted with a pointer color

while itself not constituting a full pointer. We believe this is generally acceptable in that

either (1) the full pointer value will be copied eventually, in which case the pointer will

point to the appropriate memory region with the correct pointer tag, or (2) a value with a

pointer tag will not point to the appropriate memory chunk, in which case any dereference

will be correctly determined to be invalid.

The most egregious code pattern of this variety was observed in the gcc benchmark in a

Quicksort implementation. The code casts all data elements to byte arrays, and then swaps

elements byte-by-byte as the algorithm dictates. In this case two pointers are swapped

in-place, as illustrated below:

Each time a pair of bytes is swapped, the colors of each pointer word also swap due to

the loosened propagation rules. After any even number of such swaps, the colors on the

pointers will end where they started. After four such swaps, the actual pointer values

will have traded places, but the pointer tags will end where they started, thus yielding an

incorrect state of the pointer tags. To resolve this issue, we supply a new sorting algorithm

that operates on full words at a time. This was the only change to source code required

to run the SPEC benchmarks, but does highlight the difficulties in supporting the range of

behavior found in C code.

Custom Allocators: Lastly, some applications choose to deploy their own memory allo-

73

(a) A Quicksort implementation that swaps el-
ements byte-by-byte.

Pointer1 Pointer2

t0

t1

t2

t3

t4

(b) A red pointer and a blue pointer are
swapped in-place a single byte a time by a sort-
ing algorithm. At timesteps t1 - t3, each word
contains a portion of each pointer.

Figure 21: Sub-word data manipulation in a Quicksort implementation.

cators, such as the gcc benchmark. To handle these cases for fine-grained protection, it

would be necessary to supply the proper tagging hooks on the memory events of the cus-

tom allocator. We do not hook gcc’s allocator in this way, which means the actual color

tracking is more coarse-grained than the program’s true allocations; it should be noted that

gcc uses the default allocator in many cases as well, so the color tracking is actually at a

mixed granularity. We note that many of gcc’s pointer compatibility issues discussed above

(Fig. 20) are related to the custom allocator implementation which requires the shown bit-

level data manipulation. Several of the benchmarks also use wrappers to allocators (such

as xmalloc), and so we treat those as primary allocation sites as well.

4.8. Limitations and Future Work

The heap micropolicies presented in this section are field insensitive, meaning that subob-

jects inside the same heap allocation are not differentiated. As a result, even the Infinite-

Color policy does not protect against a buffer overflow internal to a single heap allocation

74

that holds a composite structure or object with multiple fields. With additional compiler

support, it would be possible to assign separate colors to subobjects for additional protec-

tion at the cost of more tags and rules. Investigating this cost would be interesting future

work.

Another bug class that was not addressed by the policies presented in this section are unini-

tialized data errors. With the application of the lazy tagging policy variation, allocations

could start at an uninitialized state and the tagging system could be used to track ini-

tializations with the first write by the program, much the same as the lazy tagging stack

strategy (Sec. 3.5.1). With this approach, it would be possible to detect and halt the access

to uninitialized data, which the current policy designs do not detect or protect against. In

the stack work we found that programs including the SPEC benchmarks did use uninitial-

ized stack data relatively commonly (such as initializing a subset of the fields of a struct

and then copying it), which is likely to be observed for heap-allocated objects as well. As

a result, typical C code may not pass this policy; the policy would, however, indicate to

programmers exactly where the uninitialized data accesses are occurring such that the code

could be further hardened from these kinds of bugs. Additionally, there are some bug classes

specific to the heap that are not best addressed with tags, such as memory leaks.

Another attack surface of allocators is their global data structures such as arena metadata

that can be corrupted; a final production heap policy would need to take care to protect

these objects as well. Lastly, another interesting direction for future work would be a formal

treatment of the policies’ security properties or the correctness of the policy rules.

4.9. Conclusion

The manual management of dynamic memory in C/C++ is notoriously error-prone and

heap-related memory errors have become the most popular attack vector for modern systems

exploits [17, 127]. Micropolicies on tagged architectures can be used to protect against a

range of common bug classes related to heap memory. We find that a simple One-Color

75

policy is sufficient to defend against a useful range of heap-related errors with a very modest

number of unique tags and rules. The Allocation-Site policy is also quite lightweight and

protects against an additional bug class compared to the One-Color policy. Both of these

policies impose overheads of around 1%. The N-Color can be used to differentiate allocations

with increasing numbers of identifiers at higher costs. At the limit, the Infinite Color policy

provides complete spatial and temporal memory safety. While this policy can become

expensive for some workloads, we show how it can be relaxed in key ways to maintain more

protection. We find that the heap policies are quite compatible with most software and

required only a handful of manual refactorings to run on the SPEC benchmarks.

76

CHAPTER 5 : Compartmentalization Policies

5.1. Introduction

Modern software stacks are notoriously vulnerable. Operating systems, device drivers,

and countless applications, including most embedded applications, are written in unsafe

languages and run in large, monolithic protection domains where any single vulnerability

may be sufficient to compromise an entire machine. Privilege separation is a defensive

approach in which a system is separated into components, and each is limited to (ideally)

just the privileges it requires to operate. In a such a separated system, a vulnerability in

one component (e.g., the networking stack) is isolated from other system components (e.g.,

sensitive process credentials), making the system substantially more robust to attackers, or

at least increasing the effort of exploitation in cases where it is still possible.

While the principle of least privilege [107] is a powerful guiding force in secure system

design, in practice it is often at odds with system performance. Given the limited hard-

ware resources that have been allocated for security, privilege separation has typically

relied on coarse-grained, process-level separation in which the virtual memory system is

used to provide isolation. For example, some security-critical and network-facing software

such as OpenSSH [19] and Dovecot [46] have been manually decomposed into multiple

intercommunicating-but-isolated processes to contain the effects of vulnerabilities, should

they be found.

While these select cases are a win for privilege reduction, the prevailing wisdom has been

that only coarse-grained privilege separation is feasible in practice given the high cost of

virtual memory context switching. Indeed, all modern OSs run on insecure but performant

monolithic kernels, with more functionality frequently moving into the highly-privileged

kernel to reduce such costs; privilege separated microkernels, in contrast, remain plagued

with the perception of high overheads and have seen little adoption. IoT and embedded

systems—which we now find ourselves surrounded by in our every-day lives—have fallen

77

even farther behind in security than their general-purpose counterparts. They are also writ-

ten in memory unsafe languages, typically C, often lack basic modern exploit mitigations [3],

and many run directly on bare metal with no separation between any parts of the system

at all.

However, there has recently been a surge of interest—both academic and in industry—

in architectural and hardware support for new security primitives. For example, ARM

recently announced that it will integrate hardware capability support (CHERI [134]) into

its chip designs, Oracle has released SPARC processors with coarse-grained memory tagging

support (ADI [93]), and NXP has announced it will use Dover’s CoreGuard [110], among

many others [10]. One interesting and practical use case for these primitives is privilege

separation enforcement. In this chapter, we build privilege separation policies for a fine-

grained, hardware-accelerated security monitor design (the PIPE architecture [122, 43],

Chapter 2.1)).

A flexible, tag-based hardware security monitor, like the PIPE, provides an exciting oppor-

tunity to enforce fine-grained, hardware-accelerated privilege separation. At a bird’s-eye

view, one can imagine using metadata tags on code and data to encode logical protection

domains, with rules dictating which memory operations and control-flow transitions are per-

mitted. The PIPE leaves tag semantics to software interpretation, meaning one can express

policies ranging from coarse-grained decompositions, such as a simple separation between

“trusted” and “untrusted” components, to hundreds or thousands of isolated compartments

depending on the privilege reduction and performance characteristics that are desired.

To explore this space, we present SCALPEL (Secure Compartments Automatically Learned

and Protected by Execution using Lightweight metadata), a tool that enables the rapid

self-learning of low-level privileges and the automatic creation and implementation of com-

partmentalization security policies for a tagged architecture. At its back-end, SCALPEL

contains a policy compiler that decouples logical compartmentalization policies from their

underlying concrete enforcement with the PIPE architecture. The back-end takes as input

78

a particular compartmentalization strategy, formulated in terms of C-level constructs and

their allowed privileges, and then automatically tags a program image to instantiate the

desired policy. To ease policy creation and exploration, the SCALPEL front-end provides a

tracing mode, compartment-generation algorithms, and analysis tools, to help an engineer

quickly create, compare and then instantiate strategies using the back-end. These tools

build on a range of similar recent efforts that treat privilege assessment quantitatively and

compartment generation algorithmically [31, 81, 98], allowing SCALPEL’s automation to

greatly assist in the construction of good policies, a task that would otherwise be costly

in engineering time. In cases where human expertise is available for additional fine-tuning,

SCALPEL easily integrates human supplied knowledge in its policy exploration; for exam-

ple, a human can add additional constraints to the algorithms, such as predefining a set

of boundaries, adjusting the weight on an object, or specifying that a particular object is

security-critical and should not be exposed to additional, unnecessary code.

Additionally, SCALPEL presents two novel techniques for optimizing security policies to a

tagged architecture. The first is a policy-construction algorithm that directly targets the

rule cache characteristics of an application: the technique is based on packing rules needed

for different program phases into sets that can be cached favorably. While we apply this

technique on SCALPEL’s compartmentalization policies, the core idea could be used to

improve the performance of other policies on tagged architectures. Additionally, we show

that this same technique can be used to pack an entire policy into a fixed-size set such that

no runtime rule cache misses will be taken—this makes it possible to achieve real-time guar-

antees while using a hardware security monitor like the PIPE, which may be of particular

value to embedded, real-time devices and applications. Secondly, we design and evaluate a

rule prefetching system that exploits the highly-predictable nature of compartmentalization

rules; by intelligently prefetching rules before they are needed, we show that the majority

of stalled cycles spent waiting for policy evaluation can be avoided.

We evaluate SCALPEL and its optimizations on a typical embedded, IoT environment con-

79

sisting of a FreeRTOS stack targeting a PIPE-extended RISC-V core. We implement our

policies on several applications, including an HTTP web server, the bzip (de)compressor, an

H264 video encoder, the GNU Go engine, and the libXML parsing library. Using SCALPEL,

we show how to automatically derive compartmentalization strategies for off-the-shelf soft-

ware that balance privilege reduction with performance, and that hundreds of isolated

compartments can be simultaneously enforced with acceptable overheads on a tagged ar-

chitecture.

To summarize, SCALPEL combines (1) hardware support for fine-grained metadata tagging

and policy enforcement with (2) compartmentalization and privilege analysis tools, which

together allow a thorough exploration of the level of privilege separation that can be achieved

with hardware tagging support. Our primary contributions are:

• A tool that automatically creates and instantiates tag-based compartmentalization

policies on real software without manual refactorings.

• Compartment-generation algorithms and analysis tools that quantify the privilege

exposure and performance of a wide range of automatically-generated compartmen-

talization alternatives, providing the security engineer with a variety of privilege-

performance design points to explore and evaluate.

• New techniques for using a tagged architecture for the rapid self-learning of privileges

on unmodified software.

• A new technique for optimizing a security policy to a tagged architecture by directly

targeting its rule cache characteristics.

• A new rule prefetching technique for tagged architectures in which additional rules

are identified and prefetched on a cache miss.

80

5.2. Background and Related Work

5.2.1. The PIPE Architecture

The PIPE (Processor Interlocks for Policy Enforcement) [122] is a software/hardware co-

designed processor extension for hardware-accelerated security monitor enforcement that is

a close relative of the PUMP (Chapter 2.1). Like the PUMP, the core idea is that word-sized

metadata tags are associated with data words in the system, including on register values,

words stored in memory, and also on the program counter. However, unlike the PUMP,

the PIPE uses a coprocessor design: the core application processor (referred to as the AP

core) is supported by a dedicated coprocessor, the policy execution (PEX) core (depicted

below).

Application
(AP) Core

Write Queue

Memory and I/O

validate

instr,addr,regs
Tag
Rule
Cache

PEX
Core

miss−info

rule−insert

Figure 22: The PIPE Architecture

The AP core can run ahead of rule resolution; a Write Queue holds unvalidated writes until

the write instruction and its predecessors can be validated by the rule cache.

5.2.2. The protection-performance tradeoff

While the PIPE can express memory safety policies [43, 106], fine-grained enforcement of all

memory accesses can become expensive for some workloads. Compartmentalization policies

represent an alternative design point that can very flexibly tune performance-protection

tradeoffs through changing compartment sizes and intelligently drawing boundaries for high-

performance. With a small number of tags, one can separate out trusted from untrusted

components such as ARM TrustZone [10] or OS from the application as in [118, 117],

81

but ultimately we are interested in exploring finer-grained separations. For example, one

question we may pose is how tightly can we compartmentalize a software system with tag

support while maintaining a certain rule cache hit rate, say 99.9%.

Walking the line between protection and overhead costs is a well-known problem space.

Dong et al. [45] observed that different decomposition strategies for web browser compo-

nents produced wildly different overhead costs, which they manually balanced against do-

main code size or prior bug rates. Mutable Protection Domains [98] proposes dynamically

adjusting separation boundaries in response to overhead with a custom operating system

and manually engineered boundaries. Several recent works have proposed more quantitative

approaches to privilege separation. Program-Mandering [81] uses optimization techniques

to find good separation strategies that balance reducing sensitive information flows with

overhead costs, but requires manual identification of sensitive data, and ACES [31] simi-

larly measures the average reduction in write exposure to global variables as a property of

compartmentalizations. While these systems begin to automate portions of the compart-

ment formation problem that SCALPEL builds upon, they all still rely on manual input.

SCALPEL takes a policy derivation approach with a much stronger emphasis on automa-

tion: it uses analysis tools and performance experiments to explore the space of compart-

mentalizations, then automatically optimizes and lowers them to its hardware backend, a

tag-extended RISC-V architecture, for enforcement.

5.2.3. Automatic Privilege Separation

The vast majority of compartmentalization work to date has been manual, demanding a

security expert manually identify and refactor the code into separate compartments. This

includes the aforementioned projects like OpenSSH [19] and Dovecot [46], and even Mi-

croKernel design [77, 48, 104] using standard OS process isolation, and run-time protec-

tion for embedded systems with metadata tags [118, 117]. Academic compartmentaliza-

tion work has also relied on manual or semi-manual techniques for labeling and partition-

ing [19, 58, 62, 133].

82

In contrast, one goal for SCALPEL is automation; that is, to apply tag-based privilege-

separation defenses to applications without expensive refactorings or manual-tagging; auto-

mated efforts relieve the labor-intensive costs of prior manual compartmentalization frame-

works. Additionally, automation is important to ease the task of protecting existing software

with the PIPE—SCALPEL decouples policy creation from enforcement by automatically

lowering an engineer’s C-level compartmentalization strategies to the instruction-level en-

forcement provided by the PIPE.

ACES [31] is an automated compartmentalization tool for embedded systems and shares

similarities with SCALPEL. It begins with a program dependence graph (PDG) represen-

tation of an application and a security policy (such as Filename, or one of several other

choices), which indicates a potential set of security boundaries. It then lowers the enforce-

ment of the policy to a target microcontroller device to meet performance and hardware

constraints. The microcontroller it targets supports configurable permissions for eight re-

gions of physical memory using a lightweight Memory Protection Unit (MPU); protection

domains in the desired policy are merged together until they can be enforced with these eight

regions. Unlike ACES, SCALPEL targets a tagged architecture to explore many possible

policies, some of which involve hundreds of protection domains, for fine-grained separation,

far beyond what can be achieved with the handful of segments supported by conventional

MPUs [79].

Towards Automatic Compartmentalization of C Programs on Capability Machines [126]

is also similar to SCALPEL. In this work, the compiler translates each compilation unit

of an application into a protection domain for enforcement with the CHERI capability

machine [134]. This allows finer-grained separation than can be afforded with a handful of

memory segments, but provides no flexibility in policy exploration to tune performance and

security characteristics like SCALPEL does.

To summarize, SCALPEL is a complete tool for automatically compartmentalizing unmod-

ified software for hardware acceleration, including automatically self-learning the required

83

privileges, systematically exposing the range privilege-performance design-points through al-

gorithmic exploration, and optimizing policies for good rule cache performance. It comple-

ments and extends prior work along four axes: (1) quantitatively scoring the overprivilege

in compartmentalization strategies, (2) providing complete automatic generation of com-

partments without manual input, (3) offering decomposition into much larger numbers

of compartments (hundreds), and (4) automatically identifying the privilege-performance

tradeoff curves for a wide-range of compartmentalization options.

5.3. Threat Model

We assume a standard [31, 100] but powerful threat model for conventional C-based sys-

tems, in which an attacker may exploit bugs in either FreeRTOS or the application to gain

read/write primitives on the system, which they may use to hijack control-flow, corrupt

data, or leak sensitive information. Attackers supply inputs to the system, which, depend-

ing on the application, may include through a network connection or through files to be

parsed or encoded. We assume both FreeRTOS and the application are compiled statically

into a single program image with no separation before our compartmentalization; as such, a

vulnerability in any component of the system may lead to full compromise. We assume that

the test cases for the tracing mode are trusted, i.e., an attacker may not supply malicious

tests.

The protection supplied by SCALPEL isolates memory read and write instructions to the

limited subset of objects dictated by the policy, and also limits program control-flow opera-

tions to valid entry points within domains as dictated by the policy. Additionally, SCALPEL

is composed with a write-xor-execute [8] tag memory permissions policy that guarantees

that instructions (executable code) are not writeable, and any writeable value is not exe-

cutable. This means attackers cannot inject new executable code into the system. These

constraints prevent bugs from reaching the full system state and limit the impacts of attacks

to their contained compartments.

84

5.4. Privilege Reduction and Compartmentalization

The goal of privilege separation is to reduce the severity of bugs. To illustrate these benefits

in practice, consider the Chrome web browser, perhaps the most well-studied and battle-

tested example of modern sandboxing. Since its inception, Chrome has used a broker

process model, in which the core browser process spawns subprocesses for various tasks and

interposes on their communication via IPC channels [14, 57]. Because the renderer contains

a substantial amount of historically error-prone code (including a multitude of parsers and

decoders for various file formats that are continually exposed to malicious inputs), it was

the first subcomponent to be sandboxed. Each site thus runs its own renderer process,

which means vulnerabilities inside the renderer are contained to their site-specific process

in the case of compromise. To see the impact this design has had on practical exploitation

against Chrome, one needs only to analyze modern exploit chains: in a recent writeup by

Google Project Zero [22], CVE-2019-5782, a memory error inside the renderer, is paired with

an entirely separate vulnerability, Issue 1755, inside the core browser process, to achieve

a full exploit chain from the renderer to the rest of the browser. In other words, the

severity of the renderer vulnerability is reduced to such a significant extent due to the

process’ reduced privileges, that even gaining arbitrary code execution inside that process

was insufficent to compromise the target machine. Instead, that attackers needed to find a

separate bug in the browser to escape the renderer’s sandbox and achieve their goal, resulting

in a substantially more complex attack that burned through two unique vulnerablities.

What this shows is that even coarse-grained privilege separation does have pragmatic value:

the attacker work factor is increased as they (1) require additional vulnerabilities to complete

their attacks, and (2) face the increased complexity of reliably chaining together multiple

vulnerabilities per successful attack. The further privileges are separated, the further these

effects are exaggerated as the number of steps between the compromised components (e.g.,

the renderer) and the target component (e.g., the high-privileged browser) increases.

Indeed, although this separated design increases Chrome’s complexity and thus costs of

85

development and maintenance, the practioners involved believe the benefits are worth their

cost. In fact, over the years Chrome engineers have continued to push further privilege

separation measures: as of the time of writing, the GPU-acceleration component, auxillary

services such as printing, and the networking services, have each been moved into their

own isolated processes [57]. In a recent talk, the team has expressed their vision of further

isolating the networking and storage services of each individual site into their own isolated

processes, in which perhaps dozens of processes may be spawned per site to perform as much

separation as possible [97]—explicitly, they list performance costs of separation mechanisms

as limiting factor for deploying further privilege separation. What this shows is that prac-

tioners value privilege separation, even when it is coarse-grained. In this light, SCALPEL

can be viewed as a tool for providing practioners with privilege separation that they desire

by enabling the use of a tagged architecture for fine-grained, hardware-accelerated privilege

separation. Notably, however, it approaches the problem from the opposite direction of

incrementally sandboxing components: it starts with a least-privilege decomposition and

relaxes boundaries as needed to reach a performance target.

5.5. Compartmentalization Tag Policy Formulation

In this section we sketch our general policy model for compartmentalizing software using

a tagged architecture. The goal of the compartmentalization policies is to decompose a

system into separate logical protection domains, with runtime enforcement applied to each

to ensure that memory accesses and control-flow transfers are permitted according to the

valid operations granted to that domain. How do we enforce policies like these with a tagged

architecture?

The PIPE provides hardware support for imposing a security monitor on the execution of

each instruction. Whether or not each instruction is permitted to execute can depend on

the tags on the relevant pieces of architectural state (Sec. 5.2.1). For example, we may

have a stored private key that should only be accessible to select cryptographic modules.

We can mark the private key object with a private key tag and the instructions in the

86

signing function with a crypto sign tag. Then, when the signing function runs and the

PIPE sees a load operation with instruction tag crypto sign and data tag private key,

it can allow the operation. However, if a video processing function whose instructions are

labeled video encode tries to access the private key, the PIPE will see a load operation with

instruction tag video encode and data tag private key and disallow the invalid access.

In general, to enable compartmentalization policies, we place a Domain-ID label (an integer

identifier) on each instruction in executable memory indicating the logical protection domain

to which the instruction belongs; this enables rules to conditionally permit operations upon

their tagged domain grouping, which serves as the foundation for dividing an application’s

code into isolated domains. Similarly, we tag each object with an Object-ID (also an integer

identifier) to demarcate that object as a unique entity onto which privileges can be granted

or revoked. For static objects, such as global variables and memory mapped devices, these

object identifiers are simply placed onto the tags of the appropriate memory words at

load time. Objects that are allocated dynamically (such as from the heap), require us to

decide how we want to partition out and grant privileges to those objects. We choose to

identify all dynamic objects that are allocated from a particular program point (e.g., a

call to malloc) as a single object class, which we will refer to simply as an object. For

example, all strings allocated from a particular char * name = malloc(16) call are the

same object from SCALPEL’s perspective; this formulation is particularly well-suited to

the PIPE because it enables rules in the rule cache to apply to all such dynamic instances.

It also means that all dynamic objects allocated from the same allocation site must be

treated the same way in terms of their privilege—dynamic objects could be differentiated

further (such as by the calling context of the program point) to provide finer separation,

but we leave such exploration to future work. As a result of these subject and object

identification choices, the number of subjects and objects in a system is fixed at compile

time.

Between pairs of subjects and objects (or in the case of a call or return, between two

87

subjects), we would like to grant or deny operations. Accordingly, the tag on each instruction

in executable memory also includes an opgroup field that indicates the operation type of

that instruction. We define four opgroups and each instruction is tagged with exactly one

opgroup: read, write, call, and return. For example, in the RISC-V ISA, the sw, sh, sb, etc.

instructions would compose the write opgroup.

When an instruction is executed, the security monitor determines if the operation is legal

based upon (1) the Domain-ID of the executing instruction, (2) the type of operation

op ∈ {read,write, call, return} being executed, and (3) the Object-ID of the accessed word

of memory (for loads and stores), or the Domain-ID of the target instruction (for calls and

returns). As a result, the set of permitted operations can be expressed as a set of triples

(subject, operation, object) with all other privileges revoked (default deny). In this way, the

security monitor check can be viewed as a simple lookup into a privilege table or access-

control matrix whose dimensions are set by the number of Domain-IDs, Object-IDs and the

four operation types. Such a check can be efficiently implemented in the security monitor

software as single hash table lookup; once validated in software, a privilege of this form is

represented as a single rule that is cached in the PIPE rule cache for hardware-accelerated,

single-cycle privilege validation. Additionally, we define a fifth unprivileged opgroup, which

is placed on instructions that do not represent privileges in our model (e.g., add); these

instructions are always permitted to execute.

We define a compartmentalization as an assignment of each instruction to a Domain-ID , an

assignment of each object to an Object-ID , and a corresponding set of permitted operation

triples (Domain-ID , op, Object-ID). The SCALPEL backend takes a compartmentalization

as an input and then automatically lowers it to a tag policy kernel suitable for enforcement

with the PIPE. In this way, SCALPEL decouples policy construction from the underlying

tag enforcement. The opgroup mapping is the same across all compartmentalizations.

In addition to these privilege checks, the SCALPEL backend also applies three additional

defenses to support the enforcement of the compartmentalization. The first is a write-xor-

88

execute policy that prevents the execution of writeable data and the overwrite of executable

code so that an attacker cannot inject new executable code into the system. The second

is that the words of memory inside individual heap objects that store allocator metadata

(e.g., the size of the block) are tagged with a special ALLOCATOR tag. The allocator itself

is placed in a special ALLOCATOR compartment that is granted the sole permission to

access such words; as a result, sharing heap objects between domains permits only access to

the data fields of those objects and not the inlined allocator metadata. Lastly, SCALPEL

is built with the Clang compiler and uses LLVM’s [53] static analysis to compute the set

of instructions that are valid call and return entry points. These are tagged with special

CALL-TARGET and RETURN-TARGET tags, and we apply additional clauses to the

rules to validate that each taken control-flow transfer is both to a permitted domain and

to a legal target instruction; this means that when a call or return privilege is granted, it is

only granted for valid entry and return points.

An advantage of this policy design is that privilege enforcement is conducted entirely in

the tag plane and software does not require refactoring to be protected with SCALPEL.

Lastly, we note that there are multiple ways to encode compartmentalization policies on a

tagged architecture. For example, the current compartment context could be stored on the

program counter tag and updated during domain transitions, rather than from being inferred

from the currently executing code. Some of these alternate formulations may work better

with different concrete tagging architectures. However, for the PIPE, these formulations

are largely equivalent to the above static formulation combined with localizing code into

compartments (and making some decisions about object ownership), and we choose the

static variant for a slight reduction in policy complexity; the choice is not particularly

significant and SCALPEL could produce policies for many such formulations.

5.6. The Tracing Policy

While a motivated developer or security engineer could manually construct a compart-

mentalization for a particular software artifact and provide it to the SCALPEL back-end,

89

vIPNetworkUpCalls: prvIPTimerReload: prvIPTimerStart:

Call prvIPTimerReload Call prvIPTimerStart Call vTaskSetTimeOutState

Call vDNSInitialise Return vIPNetworkUpCalls Return prvIPTimerReload

Return vDHCPProcess Return prvIPTask Return prvIPTimerCheck

Write global_xNetworkUp Return vIPReloadDHCPTimer Return prvCheckNetworkTimers

Write global_xARPTimer Read global_xARPTimer

Write global_xDHCPTimer Read global_xDHCPTimer

Write global_xTCPTimer Read global_xTCPTimer

Write global_xARPTimer

Write global_xDHCPTimer

Write global_xTCPTimer

Figure 23: The set of privileged operations recorded by the tracing policy for three functions
in the FreeRTOS TCP/IP networking stack. SCALPEL uses a tag-based hardware security
monitor to automatically self-learn and then enforce fine-grained privileges like these at
runtime.

SCALPEL seeks to assist in policy derivation by providing a tracing mode (similar to e.g.,

AppArmor [83]) as well as a set of analysis tools for understanding the tradeoffs in differ-

ent decomposition strategies. To this end, we build a compartmentalization tracing policy,

which collects a lower-bound on the privileges exercised by a program as well as rule cache

statistics we use later for policy optimization. While the PIPE architecture was designed for

enforcing security policies, in this case we repurpose the same mechanism for fine-grained,

programmable dynamic analysis. SCALPEL’s tracing policy provides several significant

practical advantages over other approaches by (1) greatly simplifying tracing by running as

a policy replacement on the same hardware and software, (2) directly using the PIPE for

hardware-accelerated self-learning of low-level privileges (3), and making it possible to run

in real environments and on unmodified software.

For the tracing policy, code and objects should be labeled at the finest granularity at which

a security engineer may later want to decompose them into separate domains. On the

code side, we find that function-level tracing provides a good balance of performance and

precision, and so in this work SCALPEL tags each function with a unique Domain-ID

during tracing. As a result, our SCALPEL implementation considers functions to be the

smallest unit of code that can be assigned to a protection domain. Note that this is a

design choice, and the PIPE could collect finer-grained (instruction-level) privileges at a

higher cost to the tracing overhead.

90

On the object side, the tracing policy also assigns an Object-ID to each primitive object

in the system. For software written in C, this includes a unique Object-ID for each global

variable, a unique Object-ID for each memory-mapped device/peripheral in the memory

map (e.g., Ethernet, UART), and a unique Object-ID associated with each allocation call

site to an allocator as discussed in Sec. 5.5. All data memory words in a running system

receive an Object-ID from one of these static or dynamic cases.

With these identifiers in place, the tracing policy is then used to record the observed dynamic

behavior of the program. The PIPE invokes a software miss handler when it encounters a

rule that is not in the rule cache. When configured as the tracing policy, the miss handler

simply records the new privileges it encounters—expressed as interactions of Domain-IDs,

operation types, and Object-IDs—as valid privileges that the program should be granted

to perform; it then installs a rule so the program can use that privilege repeatedly without

invoking the miss handler again. Unlike other policies, the tracing policy never returns a

policy violation. We show an example output from the tracing policy in Fig. 23 with iden-

tifiers printed as strings from their source program objects. From this tracing information,

we form a fined-grained function and object graph, where each function and each object is

a node and each privilege is an edge between nodes.

In addition to collecting privileges, the tracing policy also periodically records the rules

that were encountered every Nepoch instructions, which we set to one million. As we’ll

see in later sections (Sec. 5.8), this provides the SCALPEL analysis tools with valuable

information about rule co-locality which it uses to construct low-overhead policies.

5.7. Privilege Quantification Model

In practice, one likely wants to deploy compartmentalizations that are coarser than the trac-

ing policy granularity (i.e., individual functions and C-level objects) to reduce the number

of tags, rules and thus runtime costs associated with policy enforcement. Importantly, the

tracing policy leads to a natural privilege quantification model we can use to compare these

91

relaxed decompositions against the finest-grained function/object granularity. We can think

of each rule in the tracing policy (Domain-ID , op, Object-ID) as a privilege, to which we

can assign a weight. The least privilege of an application is the sum of the lower-bound priv-

ileges that it requires to run; without any of these, the program could not perform its task.

For any coarser-grained compartmentalization, we can compute its privilege by counting

up the number of fine-grained privileges it permits, which will include additional privileges

beyond those in the least-privilege set. This enables us to compute the overprivilege ratio

(OR), which we define as the ratio of the privileges allowed by a particular compartmen-

talization compared to the least-privilege minimum; i.e., an OR of 2.0 means that twice as

many privileges are permitted as strictly required. While crude, the OR provides a useful

measure of how much privilege decomposition has been achieved, both to help understand

where various compartmentalization strategies lie in the privilege-performance space and as

an objective function for SCALPEL automatic policy derivation. For our weighting func-

tion, we choose to weight each object and function by its size in bytes; this helps account

for composite data structures such as a struct that may have multiple fields and should

count for additional privilege. Optionally, a developer can manually adjust the weights of

functions or objects relative to other components in the system and interactively rerun the

algorithms to easily tune the produced compartmentalizations.

5.8. Policy Exploration

To assist in creating and exploring compartment policies, SCALPEL provides three com-

partment generation algorithms. The first and simplest such approach, presented in Sec. 5.8.1,

generates compartment boundaries based upon the static source code structure, such as

taking each compilation unit or source code file as a compartment. The second algorithm,

presented in Sec. 5.8.2, instead takes an algorithmic optimization approach that uses the

tracing data to group together collections of mutually interacting functions. This algo-

rithm is parameterized by a target domain size, allowing it to expose many design points,

ranging from hundreds of small compartments to several large compartments. This is an

92

architecture-independent approach that broadly has the property that larger compartments

need fewer rules that will compete for space in the rule cache. Lastly, in Sec. 5.8.3 we present

a second algorithmic approach that specifically targets producing efficient policies for the

PIPE architecture; it targets packing policies into working sets of rules for improved cache

characteristics. This algorithm uses both the tracing data and the cache co-locality data

(Sec. 5.6) to produce optimized compartmentalization definitions, and is the capstone algo-

rithm proposed in SCALPEL.

5.8.1. Syntactic Compartments

A simple and commonly-used approach [31, 126] for defining compartment boundaries is

to mirror the static source code structure into corresponding security domains—we call

these the syntactic domains. We define the OS syntactic domain by placing all of the

FreeRTOS code into one compartment (Domain-ID 1) and all of the application code into

a second compartment (Domain-ID 2). This decomposition effectively implements a ker-

nel/userspace separation for an embedded application that does not otherwise have one.

Similarly, the directory syntactic domains are constructed by placing the code that orig-

inates from each directory of source code into a separate domain, i.e., Domain-ID i is

assigned to the code generated from the ith directory of code. Programmers typically

decompose large applications into separate, logically-isolated-but-interacting modules, and

the directory domains implement these boundaries for such systems. Lastly, the file and

function syntactic domains are constructed by assigning a protection domain to each indi-

vidual source code file or function that composes the program. Note that each syntactic

domain is a strict decomposition from the one before it; for example, compilation units are

a sub-decomposition of the OS/application boundary.

For the syntactic compartments, objects are labeled at the fine, individual object granularity

(a fresh Object-ID for each global variable and heap allocation site); afterwards, all objects

with identical permission classes based upon the tracing data are merged together. For

example, if two global variables are accessed only by Domain-ID 1, then they can be joined

93

into a single Object-ID with no loss in privilege; however, if one is shared and one is not,

then they must be assigned separate Object-IDs to encode their differing security policies.

A second use we find for the syntactic code domains is applying syntactic constraints to

other algorithms: for example, we can generate compartments algorithmically but disallow

merging code across compilation units to maintain interfaces and preserve the semantic

module separation introduced by the programmer. These results are presented in Sec. 5.10.4.

5.8.2. Domain-Size Compartments

While the syntactic domains allow us to quickly translate source code structure into security

domains, we are ultimately interested in exploring privilege-performance tradeoffs in a more

systematic and data-driven manner than can be provided by the source code itself. We

observe that the output of the tracing policy (Sec. 5.6) is a rich trove of information—

a complete record of the code and object interactions including their dynamic runtime

counts—on top of which we can run optimization algorithms to produce compartments.

Because optimal clustering is known to be NP-Hard [6], we start with the fine-grained

function and object graph and employ a straightforward greedy clustering algorithm that

groups together sets of mutually-interacting functions into domains while reducing unneces-

sary overprivilege. The algorithm is parameterized by Cmax, the maximum number of bytes

of code that are permitted per cluster. The algorithm works as follows: upon initialization,

each function is placed into a separate compartment Ci with size Cisize taken to be the size

(in bytes) of that function. At each step of the algorithm, two compartments CA and CB

are chosen to merge together; the size of the resulting compartment is simply the sum of

the sizes of the compartments being merged: CABsize = CAsize +CBsize . To determine which

two compartments to merge at each merge step, we compute the ratio of a utility function

to that of a cost function for all pairs and select the pair with the highest ratio. The utility

function we use is the number of cross-compartment calls and returns found by the tracing

policy between those two compartments (i.e., their call affinity). The cost function we use

94

is the increase in privilege (as given by Sec. 5.7) that would result from the merge: that is,

we would like to identify mutually interacting functions with high affinity and group them

together, while reducing unnecessary overprivilege. The algorithm terminates when no legal

merges remain; that is, no candidates A and B maintain CAsize + CBsize ≤ Cmax.

After completion, each cluster Ci is translated into security domain Domain-ID i and

objects are processed in the same manner as described in 5.8.1. We show results of the

Domain-Size algorithm on our HTTP web server application in Fig. 24. First, Fig. 24 (a)

shows how the number of compartments trends with the Cmax parameter on the HTTP

web server application. As can be seen, the Domain-Size algorithm coupled with a target

size parameter exposes a wide range of compartmentalization strategies, from just a few

compartments up to hundreds. Fig. 24 (b) shows the total number of rules that are required

to represent the compartmentalization policy at that granularity. With fewer compartments

there are fewer unique subject domains, object domains and interaction edges, which means

fewer total rules are required for the design. Fig. 24 (c) shows the dynamic runtime rule

cache miss rate of the compartmentalization produced from that Cmax value. Lastly, Fig. 24

(d) shows how the Overprivilege Ratio trends with target domain size.

5.8.3. Working-Set Compartments

The Domain-Size compartment algorithm allows us to explore a wide range of compart-

mentalization strategies independent of the security architecture, but it is not particularly

well-suited to the PIPE. The utility function that drives cluster merge operation is the

number of dynamic calls and returns between those clusters. For enforcement mechanisms

that impose a cost per domain transition (such as changing capabilities [131] or changing

page tables between processes when using virtual memory process isolation), such a utility

function would be a reasonable choice, as it does lead to minimizing the number of cross-

compartment interactions. Grouping together code and data in this way does reduce the

number of tags, rules, and thus cache characteristics of enforcing the compartmentalization

on the PIPE, but there is only a broad correlation (Fig. 24(c)).

95

●

●

●

●

●

●
● ● ●0

100
200
300
400
500

 2

56

 5
12

10

24

20
48

40

96

81
92

 1
63

84
 3

27
68

 6
55

36

Cmax

(a)

C

om
pa

rt
m

en
ts

Domain−Size
●

●

●

●

●

●

●
●

●

0
2500
5000
7500

10000
12500

 2

56

 5
12

10

24

20
48

40

96

81
92

 1
63

84
 3

27
68

 6
55

36

Cmax

(b)

R

ul
es

● ●

●

●

●

●
● ● ●0.0

0.1

0.2

0.3

0.4

 2

56

 5

12

10

24

20

48

40

96

81

92

 1
63

84

 3
27

68

 6
55

36

Cmax

(c)

R
ul

e
C

ac
he

 M
is

s
R

at
e

(%
)

● ● ● ●
●

●

●

●

●

1
3
5
7
9

11

 2

56

 5

12

10

24

20

48

40

96

81

92

 1
63

84

 3
27

68

 6
55

36

Cmax

(d)

O
ve

rp
riv

ile
ge

 R
at

io

●
●

●
●

●
●

●
●

●
●

●
●

●●

0

100

200

300

400

500

36
00

34
00

32
00

30
00

28
00

26
00

24
00

22
00

20
00

18
00

16
00

14
00

12
00

10
24

WSmax

(e)

C

om
pa

rt
m

en
ts

Working−Set

●
●

●
●

●
●●

●●●●

●●
●

0

2500

5000

7500

10000

12500

36
00

34
00

32
00

30
00

28
00

26
00

24
00

22
00

20
00

18
00

16
00

14
00

12
00

10
24

WSmax

(f)

R

ul
es

●
●●

●
●

●

●
●

●●

●
●

●
●

0.0

0.1

0.2

0.3

0.4

36
00

34
00

32
00

30
00

28
00

26
00

24
00

22
00

20
00

18
00

16
00

14
00

12
00

10
24

WSmax

(g)

R
ul

e
C

ac
he

 M
is

s
R

at
e

(%
)

●

●

●

●

●
●

●●●●●●●●1.0

1.5

2.0

2.5

36
00

34
00

32
00

30
00

28
00

26
00

24
00

22
00

20
00

18
00

16
00

14
00

12
00

10
24

WSmax

(h)

O
ve

rp
riv

ile
ge

 R
at

io

Figure 24: Impact of clustering algorithms for the HTTP web server (Sec. 5.10.1) on 1024-
entry rule cache. Top Row: The Domain-Size algorithm. Fig. 24 (a) shows how the number
of compartments in final web server design trends with the Cmax parameter. Fig. 24 (b)
shows how many rules are required to represent the compartmentalization at a given Cmax

value. Fig. 24 (c) shows the runtime rule cache miss rate of the compartmentalization
produced from that Cmax value. Lastly, Fig. 24(d) shows the overprivilege ratio of the
design. Bottom Row: The Working-Set algorithm. Similar to the top row, Fig. 24 (e), (f),
(g), (h) show how the number of compartments, rules, the rule cache miss rate, and the
overprivilege ratio all trend with WSmax parameter in the Working-Set algorithm. Note
how the Working-Set algorithm outperforms the Domain-Size algorithm in terms of the
number of compartments, rules, and overprivilege ratio for the same rule cache miss rate.

96

For the PIPE, there is no cost to change domains, provided the required rules are already

cached; instead, what matters is rule locality. As a result, to produce performant policies

for the PIPE, we instead would like to optimize the runtime rule cache characteristics rather

than minimizing the number of domain transitions. To this end, we construct an algorithm

based on reducing the set of rules required by each of a program’s phases so that each set

will fit comfortably into the rule cache for favorable cache characteristics.

How do we identify program phases such that we can consider their cache characteristics?

Recall that the tracing policy records the rules that it encounters during each epoch of

1M instructions (Sec. 5.6). We consider the set of rules encountered during each epoch to

compose a working set. As an intuitive, first-order analysis, if we can keep the rules in each

working set below the cache size and the product of those rules and the miss handling time

small compared to the epoch length, the overhead for misses in the epoch will be small. As

we will see, since not all rules are used with high frequency in an epoch, it isn’t strictly

necessary to reduce the rules in the epoch below the cache size. While there is prior work on

program phase detection [114, 109], SCALPEL takes a simple epoch-based approach that

we see is adequate to generate useful working sets; integrating more sophisticated phase

detection into SCALPEL would be interesting future work and would only improve the

benefits of the PIPE protection policy.

The Working-Set algorithm targets a maximum number of rules allowed per working set,

WSmax. We construct the Working-Set algorithm in a similar fashion to the Domain-Size

algorithm (Sec. 5.8.2) starting with the fine-grained function and object graph, except that

we consider clustering of both subjects and objects simultaneously under a unified cost

function. The algorithm works as follows: upon initialization, each function is placed into

a subject domain Si and each primitive object is placed into a separate object domain Oi.

We then initialize the rules in each working set to those found by the tracing policy during

that epoch. At each step of the algorithm, either a pair of subjects or a pair of objects are

chosen for merging together. The pair that is chosen is the pair with the highest ratio of a

97

S1 S2 S3 S1,2 S3

O2O1 O2O1
Merge S1 and S2

Working Set 1 (before merge, 5 rules): Working Set 1 (after merge, 3 rules):
S1,2,	store,	O1
S1,2,	store,	O2
S1,2,		call,	S3

S1,	store,	O1
S1,	store,	O2
S2,	store,	O2
S1,		call,	S3
S2,		call,	S3

Key

S

O

Subject
Domain

Object
Domain

Store

Call

Figure 25: An example of how the rule savings is calculated for merging the S1 and S2

domains together. In this example, there are five rules (privilege triples) in Working Set
1 before the merge, and three rules afterwards, for a total of two rules saved. However,
S2 did not have write access to O1 before the merge, so overprivilege is also introduced
by the merge. Assuming all components of the system have a uniform weight of one, then
the utility for this merge would be two (two rules saved) and the cost would be one (one
additional privilege exposed), for a ratio of 2/1 = 2. The Working-Set algorithm is driven
by the ratio of rules saved in working sets to the increase in privilege, allowing it to enforce
as much of the fine-grained access control privileges as possible for a given rule cache miss
rate. Note that following the depicted subject merge, merging objects O1 and O2 would
be chosen next by the algorithm, as it would save an additional rule at no further increase
in privilege; in this way, the Working-Set algorithm simultaneously constructs both subject
and object domains.

utility function to that of a cost function across all pairs. In contrast to the Domain-Size

algorithm, the utility function we use is the sum of the rules that would be saved across

all working sets that are currently over the target rule limit WSmax. We show an example

of how the rule delta calculation is performed in Fig. 25. After performing a merge, the

new, smaller set of rules that would be required for each affected working set is calculated,

and then the process repeats. The Working-Set algorithm uses the same cost function as

the Domain-Size algorithm, i.e., the increase in privilege that would result from combining

the two subjects or objects into a single domain. As a result, the Working-Set algorithm

attempts to reduce the number of rules required by the program during each of its program

phases down to a cache-friendly number while minimizing the overprivilege. The algorithm

is run until the number of rules in all the working sets is driven below the target value of

WSmax.

Like the Domain-Size algorithm, we can vary the value of WSmax to produce a range of

98

Model Cost (cycles)

CycL1 (64KB, 4-way) 1

CycL2 (512KB, 8-way) 3

CycDRAM (2GB) 100

Cycpolicy eval 300

CycPIPE (DMHC [42], 1024) 1

Table 2: Architectural modeling parameters

compartmentalizations at various privilege-performance tradeoffs. If we set our WSmax

target to match the actual rule cache size, we will pack the policy down to fit comfortably

in the cache and produce a highly performant policy; on the other hand, we find that this

tight restriction isn’t strictly necessary—Fig 24 (g) shows how the rule cache miss rate

trends with the target WSmax value, achieving an almost linear reduction in miss rate with

WSmax.

The core advantage of the Working-Set algorithm is that it is able to coarsen a compartmen-

talization in only the key places where it actually improves the runtime cache characteristics

of the application, while maintaining the majority of fine-grained rules that don’t actually

contribute meaningfully to the rule cache pressure. In Fig 24 (e), (f), (g), (h) we show how

the number of compartments, the number of rules, the rule cache miss rate, and the over-

privilege ratio trend with the WSmax parameter. In contrast to the Domain-Size algorithm,

we can see that many more compartments and rules are maintained as the algorithms are

driven to smaller and smaller rule cache miss rates, demonstrating the advantages of the

Working-Set algorithm in intelligently producing compartmentalization policies at much

lower levels of overprivilege. For example, at the WSmax of 1024 the Working-Set algo-

rithm achieves the same rule cache miss rate as the Domain-Size algorithm does at a Cmax

of 16,364, but it has more than twice as many total rules and an Overprivilege Ratio that is

twice as small, a much more privilege-restricted design for the same overhead. We illustrate

the differences between the algorithms more directly in Sec. 5.10 (Evaluation).

99

5.9. Performance Model

Our SCALPEL evaluation targets a single-core, in-order RISC-V CPU that is extended with

the PIPE tag-based hardware security monitor. To match a typical, lightweight embedded

processor [78], we assume 64KB L1 data and instruction caches and a unified 512KB L2

cache.

To this we add a 1,024 entry DMHC [42] PIPE rule cache. The application is a single,

statically-linked program image that includes both the FreeRTOS operating system as well

as the program code. The image is run on a modified QEMU that simulates data and

rule caches inline with the program execution to collect event statistics. SCALPEL is built

ontop of an open-source PIPE framework that includes tooling for creating and running tag

policies [74]. The architectural modeling parameters we use are given in Tab. 2. We use

the following model for baseline execution time:

Tbaseline = Ninst + NL1Imiss × CycL2 + NL1Dmiss × CycL2 + NL2miss × CycDRAM

Beyond the baseline, SCALPEL policies add overhead time to process misses:

TSCALPEL = Tbaseline + NPIPEmiss × Cycpolicy eval

We take Cycpolicy eval to be 300 cycles based on calibration measurements from our hash

lookup implementation.

Lastly, we calculate overhead as:

Overhead =
TSCALPEL − Tbaseline

Tbaseline
× 100% (5.1)

100

5.10. Evaluation

In this section we present the results of our SCALPEL evaluation. Sec. 5.10.1 details the

applications we use to conduct our experiments. Sec. 5.10.2 shows statistics about the ap-

plications and the results of the tracing policy. Sec. 5.10.3 shows the privilege-performance

results of SCALPEL’s Domain-Size and Working-Set algorithms. Sec. 5.10.4 shows the

Syntactic Domains and the results of applying the syntactic constraints to the Working-Set

algorithm. Lastly, Sec. 5.10.5 shows how SCALPEL’s Working-Set rule clustering technique

can be used to pack entire policies for real-time systems.

5.10.1. Applications

Web Server: One application we use to demonstrate SCALPEL is an HTTP web server

built around the FreeRTOS + FAT + TCP demo application [112]. Web servers are com-

mon portals for interacting with embedded/IoT devices, such as viewing baby monitors or

configuring routers. Our final system includes a TCP networking stack, a FAT file system,

an HTTP web server implementation, and a set of CGI programs that compose a simple

hospital management system. The management system allows users to login as patients

or doctors, view their dashboard, update their user information, and perform various op-

erations such as searches, prescribing medications, and checking prescription statuses. All

parts of the system are written in C and are compiled together into a single program image.

To drive the web server in our experiments, we use curl [34] to generate web requests.

The driver program logs in as a privileged or unprivileged user, performs random actions

available from the system as described above, and then logs out. For the tracing policy,

we run the web server for 500 web requests with a 0.25s delay between requests, which we

observe is sufficient to cover the web server’s behavior. For performance evaluation, we run

5 trials of 100 requests each and take the average.

libXML Parsing Library: Additionally, we port the libXML2 [102] parsing library to

our FreeRTOS stack. To drive the library, we construct a simple wrapper around the

101

xmlTextReader SAX interface which parses plain XML files into internal XML data struc-

tures. For our evaluation experiments, we run it on the MONDIAL XML database [52],

which contains aggregated demographic and geographic information. It is 1MB in size and

contains 22k elements and 47k attributes. Parsing structured data is common in many

applications and is also known to be error-prone and a common source of security vul-

nerabilities: libXML2 has had 65 CVEs including 36 memory errors between 2003 and

2018 [40]. Our libXML2 is based on version 2.6.30. Timing-dependent context switches

causes nondeterministic behavior; we run the workload 5 times and take the average.

H264 Video Encoder, bzip2, GNU Go: Additionally, we port three applications from

the SPEC benchmarks that have minimal POSIX dependencies (e.g., processes or filesys-

tems) to our FreeRTOS stack. Porting the benchmarks involved translating the main func-

tion to a FreeRTOS task, removing their reliance on configuration files by hardcoding their

execution settings, and integrating them with the FreeRTOS dynamic memory allocator.

The H264 Video Encoder is based on 464.h264ref, the bzip2 compression workload is based

on 401.bzip2, and the GNU Go implementation is based on 445.gobmk. Video encoders

are typical for any systems with cameras (baby monitors, smart doorbells), compression

and decompression are common for data transmission, and search implementations may be

found in simple games or navigation devices. We run the H264 encoder on the reference

SSS.yuv, a video with 171 frames with a resolution of 512x320 pixels. We run bzip2 on the

reference HTML input and the reference blocking factors. We run GNU Go in benchmark-

ing mode, where it plays both black and white, on an 11x11 board with 4 random initial

stones. Timing-dependent context switches causes nondeterministic behavior; we run each

workload 5 times and take the average.

5.10.2. Application Statistics, The Tracing Policy, and Rule Cache Miss Rates

In Tab. 3 we show the application statistics of our workloads and the results of the tracing

policy. First, to give a broad sense for the application sizes, we show the total lines of code;

this column includes only the application, on top of which there is an additional 12k lines of

102

Application Lines of Code Live Functions Live Objects Total Rules Monolithic OR

bzip2 8k 128 109 2,880 39
Web Server 49k 1,231 218 12,025 96
H264 53k 363 692 19,641 244
GNU Go 198k 3,288 10,532 30,077 187
libXML 290k 260 384 10,221 538

Table 3: Application statistics and results of the tracing policy

0.0

0.2

0.4

0.6

10
24

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

42
00

44
00

46
00

48
00

50
00

52
00

54
00

56
00

58
00

m
ax

WSmax

R
ul

e
C

ac
he

 M
is

s
R

at
e

(%
)

Application

bzip2

WebServer

H264

GnuGo

libXML

Figure 26: The impact of the WSmax parameter on the rule cache miss rate for a 1024-
entry rule cache. The max value corresponds to the tracing-level granularity (Tab. 3) and
the solid lines show how the rule cache miss rate trends with WSmax. As can be seen,
the SCALPEL algorithms allow a designer to generate compartmentalization designs that
target any desired rule cache miss rate. The dashed lines show the even lower rule cache
miss rate that is achieved by prefetching rules, which we describe in Sec. 5.11.

103

core FreeRTOS code. Next, we show the total number of live functions and objects logged

by the tracing policy during the program’s execution. These subjects and objects compose

the fine-grained privileges that SCALPEL enforces. In the Total Rules column we show the

total number of unique rules generated during the entire execution of the program under

the tracing policy granularity (Sec. 5.6). While this number indicates the complexity of the

program’s data and control graph, it is not necessarily predictive of the cache miss rate,

which depends on the dynamic rule locality. We show the rule cache hit in Fig. 26: the

rightmost point (max) corresponds to the miss rate at the tracing policy granularity. As

can be seen, the web server has fewer rules than libXML, but also has a lower cache hit rate

due to the larger amount of logic that runs at its steady-state web serving phases (such as

receiving network requests, parsing them, running CGI programs and sending output). In

contrast, H264 has more total rules, but exhibits more locality as it spends long program

phases on a small subset of code and data (e.g., doing motion estimation), a much more

rule-cache friendly workload. Very simple workloads, such as bzip2, require only a couple

thousand rules rules and have effectively no rule cache misses even at the tracing-level

granularity.

5.10.3. Privilege-performance Tradeoffs

A key question we would like to answer is how we can trade-off privilege for performance on

a per-application basis using the range of SCALPEL compartment generation algorithms

(Sec. 5.8). First, Fig. 26 shows how the rule cache miss rate trends with the WSmax

parameter to the Working-Set algorithm: as can be seen, it allows a designer to target any

desired rule cache miss rate for an application.

To explore these compartmentalization options, in Fig. 27 we show the privilege-performance

curves (where each compartmentalization design is scored by its overhead and Overprivilege

Ratio) generated from the both the Domain-Size algorithm and the Working-Set algorithms.

The top-left point in the Domain-Size algorithm corresponds to the tracing-level granular-

ity; this point enforces the full, fine-grained access control matrix, but also imposes large

104

overheads; for example, on the web server application, the cost of enforcement is >100%.

The other points in this line correspond to larger values of the Cmax parameter, which pro-

duces fewer, larger compartments for more favorable runtime overheads; however, as can

be seen, these coarser compartmentalizations also introduce additional overprivilege. The

Working-Set lines in the plots correspond to the range of compartmentalizations produced

from the Working-Set algorithm and its WSmax parameter. The top-left point corresponds

to the maximum value of WSmax where no clustering is performed, and the bottom-right

point corresponds to packing the rules in each working set to the rule cache size (1,024),

producing designs that have very favorable performance characteristics but more overpriv-

ilege.

Note that in both cases the curves have a very steep downward slope, meaning large im-

provements in runtime performance can be attained with little increases in privilege; the

curves eventually flatten out, at which point additional decreases in overhead come at

the expense of larger amounts of overprivilege. Note that the Working-Set compartments

strictly dominate the Domain-Size compartments, producing more privilege reduction at

lower costs than the Domain-Size counterparts. As can be seen, SCALPEL allows designers

to easily explore the tradeoffs in compartmentalization tag policies. These runs represent

the default, fully-automatic toolflow. A designer can then easily inspect the produced com-

partmentalization files, tune the privilege weights, and rerun the tools interactively as time

and expertise allow.

5.10.4. Syntactic Compartments and Syntactic Constraints

In Fig. 28a we show the syntactic compartments (Sec. 5.8.1) on the HTTP web server ap-

plication. Unlike the Domain-Size and Working-Set algorithms, which are parameterized

to produce a wide range of compartmentalization options, the syntactic compartments only

provide a handful of decomposition choices. And, as can be seen, none of the options are

competitive compared to the Domain-Size of Working-Set decompositions, which suggests

that it is indeed useful to approach the compartmentalization problem with more sophisti-

105

●

●●
●

●

●
●

●●

●

●

●
●
●
●●

●

●

●

●

●0

40

80

120

1.
0

2.
0

3.
0

4.
0

5.
0

O
ve

rh
ea

d(
%

)

Web Server

●

●

●

●

●

●●●●
●●●●●●●●●●●●●●●●

●

●

●

●

●

●0

5

10

15

1.
0

2.
0

3.
0

4.
0

H264

●●●●●
●

●
●

●

●

●●

●●●

●●
●

●●

●●

●

●

●0

50

100

150

200

1.
0

1.
5

2.
0

libXML

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●
●
●

●

●

●

●

●

●0

20

40

60

1.
0

2.
0

3.
0

4.
0

5.
0

Legend
Domain−Size
Working−Set

GNU Go

Overprivilege Ratio (OR)

Figure 27: The range of compartmentalizations produced from SCALPEL’s algorithms on
a 1024-entry rule cache. Each point corresponds to a single specific concrete compartmen-
talization that is run for performance evaluation and characterized by its runtime overhead
(Y axis) and aggregate Overprivilege Ratio (X axis). The Domain-Size line shows compart-
ments that are generated from the various values of Cmax to the Domain-Size algorithm,
and the Working-Set line shows compartments that are generated from the various values
of WSmax to the Working-Set algorithm. As can be seen, SCALPEL allows a security
engineer to rapidly create and evaluate many compartmentalization strategies to explore
design tradeoffs without the excessive labor required for manual separations. Note that the
Working-Set algorithm dominates the Domain-Size algorithm, with a particularly strong
advantage at the low-end of the overhead spectrum.

cated techniques.

However, it is also true that software engineers often decompose their own projects into

modules, and those modules boundaries bear semantic information about code interfaces

and relationships. For example, the web server application has the core FreeRTOS code in

one directory, the TCP/IP networking stack in another directory, the web server application

(CGI app) in another directory, and the FAT filesystem implementation in another separate

directory. When the algorithmic compartment generation algorithms (Secs. 5.8.2, 5.8.3)

optimize for privilege-performance design points, they have the full freedom to reconstruct

boundaries in whatever way they find produces better privilege-performance tradeoffs. How-

ever, if we would like to preserve the original syntactic boundaries during the algorithmic

optimization process, we can add additional constraints, such as a syntactic constraint,

which limits the set of legal merges allowed by the algorithms. For example, under the

file syntactic constraint, two global variables can only be merged if they originate from the

same source file. This allows SCALPEL to optimize privilege separation internal to a mod-

106

●

●

● ●0

30

60

90

120

0 10 20 30 40 50
Overprivilege Ratio (OR)

O
ve

rh
ea

d(
%

)
●

●

●

●

func
file
dir
os

(a) The privilege-performance points generated
by the Syntactic Domains (Sec. 5.8.1). Unlike
the Domain-Size and Working-Set algorithms,
the Syntactic Domains only provide a handful
of choices, none of which are competitive with
the alternate algorithms.

● ●

● ● ●● ● ●

●

●
●

●

●
●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

25

50

75

100

125

1.0 1.5 2.0 2.5 3.0
Overprivilege Ratio (OR)

O
ve

rh
ea

d(
%

)

●

●

●

●

file
dir
OS
none

(b) Impact of syntactic constraints. The
algorithmic compartment algorithms
(Sec. 5.8.2, 5.8.3) can optionally take an
additional constraint, such as a syntactic
boundary, that must be respected while cre-
ating the compartmentalization. In this case,
we show the application of three syntactic
domains to the Working-Set algorithm.

Figure 28: Privilege-Performance impact of Syntactic Domains and Constraints on the
HTTP web server running on a 1024-entry rule cache.

ule while respecting the interfaces to that module. We note that a compartmentalization

that is a strict sub-decomposition of another compartmentalization is never less secure.

In Fig. 28b we show the application of the syntactic domains as constraints to the Working-

Set algorithm. The OS restriction adds little additional overhead to the produced design

points but guarantees a cleaner separation of the OS and application than may be found

by the algorithms naturally. On the other hand, the file constraint is very restrictive,

reducing the number of moves available to the algorithms to such a large extent that many

of the WSmax targets fail to generate.1 These examples illustrate the benefits of the rapid

exploration enabled by SCALPEL, and we note that a manually-constructed constraint can

be a very convenient method for interacting with SCALPEL’s automation.

1Note that the Working-Set algorithm can only perform merge operations between code or object domains
that are found to co-reside in the same epoch, which means that they may not reach the same minimum
overhead as the corresponding syntactic domain.

107

5.10.5. Packing Policies for Real-Time Systems

The ideas presented in the Working-Set algorithm (Sec. 5.8.3) can be used to pack an en-

tire security policy (i.e., the complete set of rules that compose the policy) into a single,

fixed-size set of rules. For this construction, we simply take the union of all rules required

to represent the policy and present it to the Working-Set algorithm as a single working

set—the entire policy will then be packed down to a number of rules equal to WSmax.

Importantly, this means that the policy can be loaded in a constant amount of time, and

assuming the WSmax matches the rule cache size, then no additional runtime rule resolu-

tions will occur, giving the system predictable runtime characteristics suitable for real-time

systems. We show the results of this technique in Tab. 4 when applied to a range of rule

targets. The overprivilege points generated from this technique could be used to decide on

a particular rule cache size for a specific embedded application to achieve target protection

and performance characterstics. Note that the working-set cached case achieves lower OR

at a the same 1024-entry rule capacity since it only needs to load one working-set at a time.

It will take a larger rule cache to achieve comparably low OR. However, it is worth noting

that, if the rule memory does not need to act as a cache, it can be constructed more cheaply

than a dynamically managed cache, meaning the actual area cost is lower than the ratio

of rules, and might even favor the fixed-size rule memory. Furthermore, if one is targeting

a particular application, the tag bits can also be reduced to match the final compartment

and object count (e.g., can be 8b instead of a full word width), which will further decrease

the per rule area cost.

5.11. Prefetching

Finally, we consider one last performance optimization to reduce the overhead costs of

SCALPEL’s policies: rule prefetching. During the normal operation of the PIPE, rules are

evaluated and installed into the rule cache only when an application misses on that rule.

When such a miss occurs, the PEX core awakens, evaluates the rule, and finally installs

it into the rule cache. Much like prefetching instructions or data blocks for processor

108

Real-Time Rule Target
Application 512 1024 2048 4096 8192

bzip2 2.82 1.34 1.01 1.00 1.000
Web Server 8.92 5.76 2.71 1.35 1.005
H264 11.9 2.81 1.46 1.05 1.002
libXML 12.3 7.46 2.61 1.18 1.000
Gnu Go 29.4 12.7 3.47 1.43 1.033

Table 4: The Overprivilege Ratio (OR) of the applications when they are packed for real-
time performance to the given total rule count. When packed in this way, they can be (1)
loaded in constant time and (2) experience no additional runtime rule resolutions, making
them suitable for real-time systems.

caches [87], there is an opportunity for the PEX core to preemptively predict and install

rules into the cache. Such a technique can greatly reduce the number of runtime misses that

occur, provided that the required rules can reliably be predicted and prefetched before they

are needed. In this section we explore the design and results of a rule prefetching system.

5.11.1. The Rule-Successor Graph

The core data structure of our prefetching design is the Rule-Successor Graph. The Rule-

Successor Graph is a directed, weighted graph that records the immediate temporal rela-

tionships of rule evaluations. A rule is represented as a node in the graph, and a weighted

edge between two nodes indicates the relative frequency of the miss handler evaluating the

source rule followed immediately by evaluating the destination rule.

Fig. 29(a) shows an example function from the FreeRTOS FAT filesystem, and Fig. 29(b)

shows the Rule-Successor Graph for its function-entry rule. When this function is called, it

issues loads and stores to the task’s stack, and then it issues loads to the crc16 table high

and crc16 table low global variables in exactly that order; this deterministic sequence is

learned and encoded in the Rule-Successor Graph. Many kinds of rule relationships are

highly predictable, such as rules that are required for sequential instructions in the same

basic block.

On the other hand, data or control-flow dependent program behavior can produce less

109

(a) The GetCRC16 function in the FreeRTOS FAT
Filesystem.

(b) The Rule-Successor Graph for the GetCRC16

function. Each rule (privilege triple) is shown as
a rectangle with three fields corresponding to the
subject, operation and object tags.

Figure 29: The Rule-Successor Graph, a data structure used by SCALPEL’s prefetching
system

predictable rule sequences—for example, a return instruction can have many, low-weighted

rule successors if that function is called from many locations within a program. In this

example, GetCRC16 has two callers and may return to either, although one is much more

common than the other; similarly, GetCRC16 also accepts a data pointer pbyData which

could produce data-dependent rule sequences depending on the object it points to, although

in this program it always points to the task’s stack, which does not require another rule.

Lastly, if stLength were 0, then the program would take an alternate control-flow path and

several of the rules would be skipped. Like other architectural optimizations such as caches

and branch predictors [51], optimistic prefetching accelerates common-case behavior, but

may have a negative impact on performance when the prediction is wrong.

A program’s Rule-Successor Graph can be generated from the miss handler software with

no other changes to the system. To do so, the miss handler software simply maintains an

account of the last rule that it handled. When a new miss occurs, the miss handler software

updates the Rule-Successor Graph by updating the weight from the last rule to the current

rule (and adding any missing nodes). Finally, the record of which rule was the last rule is

110

updated to the current rule, and the process continues.

5.11.2. Generating Prefetching Policies

A prefetching policy is a mapping from each individual rule (called the source rule) to a

list of rules (the prefetch rules) that are to be prefetched by the miss handler when a miss

occurs on that source rule. Prefetching policies are generated offline using a program’s

Rule-Successor Graph; the goal is to determine which rules (if any) should be prefetched

from each source rule on future runs of that program.

To find good candidate prefetch rules for each source rule, we deploy a Breadth-First Search

algorithm on the Rule-Successor Graph to discover high likelihood, subsequent rules. Each

such search begins on a source rule with an initial probability p = 1.0. When a new node

(rule) is explored by the search algorithm, its relative probability is calculated by multiplying

the current probability by the weight of the edge taken. When a new, unexplored rule is

discovered, it is added to a table of explored nodes, and its depth and probability are

recorded with it. If a rule is already in the table when it is explored from a different path,

then the running probability is added to the value in the table to reflect the sum of the

probabilities of the various paths on which the rule may be found.

The algorithm terminates searching on any path in which the probability falls below a

minimum threshold value. We set this value to 0.1%, which we observe sufficiently captures

the important rules across our benchmarks. After search is complete, the table of explored

nodes is populated and ready to be used for deriving prefetching policies. To test the impact

of various degrees of prefetching, we add a pruning pass in which any rules below a target

probability pmin are discarded from the table. For example, if pmin is set to the maximum of

1.0, then rules are only included in the prefetching set if they are always observed to occur

in the Rule-Successor Graph following the source rule. On the other hand, Lower pmin run

a higher risk of both not averting future misses, and in the worst-case may pollute the rule

cache by evicting a potentially more-important rule. In Fig. 29(b), the bottom left rule has

111

a probability of 0.78. If no rules remain after pruning, then no prefetch rules are found.

Otherwise, the remaining rules are sorted to compose the final list of prefetch rules. They

are sorted by depth (smallest first), then within the same depth by probability (highest

first) to order the rules in a sequence most likely to be useful. We vary the values of pmin

from 1.0 to 0.25 to explore the impact of various levels of prefetching on final performance.

5.11.3. Prefetching Cost Model

When the PIPE misses on a rule, it traps and alerts the PEX core for rule evaluation. In

SCALPEL, a rule evaluation is a hash table lookup that checks the current operation against

a privilege table (Sec. 5.5). When prefetching is enabled, we choose to store the prefetch

rules in the privilege hash table along with the source rule to which they belong. When a

miss occurs, the miss handler performs the initial privilege lookup on the source rule and

installs it into the PIPE cache, allowing the AP core to resume processing. Afterwards, the

PEX core continues to asynchronously load and install the rest of the prefetch rules in that

hash table entry. Assuming a cache line size of 64B and a rule size of 28B (five 4B input tags

and two 4B output tags), then two rules fit in a single cache line. As such, the first prefetch

rule can be prepared for insertion immediately following the resolution of the source rule.

We assume a 10 cycle install time into the PIPE cache for each rule installation. For each

subsequent cache line (which can hold up to two rules), we add an additional cost of 20

cycles for a DRAM CAS operation, in addition to the 10 cycle insertion time for each rule.

We set the maximum number of prefetch rules to seven so that all eight rules (including the

source rule) may fit onto a single same DRAM page, assuming a 2048b page size. Our data

shows that this number is sufficient to capture a majority of the benefits of prefetching on

our workloads.

We begin by looking at the structure of the Rule-Successor Graph (Fig. 30a) from our

various applications to get a sense for the number and likelihood of prefetch rules per

source rule that might be prefetched; the more high-likelihood rules there are, the more

benefits we expect to see from prefetching. In this graph, the X axis shows the pmin cutoff

112

0

5

10

15

0.25 0.50 0.75 1.00
pmin

A
ve

ra
ge

 #
 P

re
fe

tc
h

R
ul

es Application

bzip2

WebServer

H264

GnuGo

libXML

(a) The structure of the Rule-Successor Graph.

●●●●●●

●
●
●●●●

●
●
●●●●

●
●
●●●●

●

●

●●
●●

●

●

●●
●
●

●

●

●
●
●
●

●

●

●
●
●

●

●

●
●

●
●

●

●

●
●
●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0

30

60

90

120

1.0 1.5 2.0 2.5

O
ve

rh
ea

d
(%

)

Web Server

●
●●●●●

●

●
●●●●

●

●
●
●●●

●

●

●
●
●
●

●

●

●
●
●
●

●

●

●
●
●
●

●

●

●
●
●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

0

20

40

60

1.0 1.1 1.2

●

●

●

●

●

●

No prefetch
pmin=1.00
pmin=0.90
pmin=0.75
pmin=0.50
pmin=0.25

Gnu Go

Overprivilege Ratio (OR)

(b) The impacts of prefetching on the privilege-
performance curves generated from the Working-
Set algorithm. The red line shows the baseline
case (no prefetching), and the other lines corre-
spond to the prefetching policies generated from
the shown pmin values.

Figure 30: The results of the SCALPEL’s rule prefetching system.

probability in the range of [0.25,1], and the Y axis shows the average number of rules per

source rule that have at least the given cutoff probability. The data shows that there around

five rules per source rule that can be prefetched even at the maximum pmin value of 1.0

(i.e., they always follow the source rule during tracing) in our benchmarks; H264 and bzip2

are more predictabile than the other three benchmarks with values closer to ten. At lower

values of pmin, more rules make the cutoff, although the slope is low (less than one rule on

average per 10% decrease in likelihood) meaning there are significantly diminishing returns

on prefetching larger numbers of rules.

Next, to see the the results of prefetching on rule cache miss rate, we show the prefetching

cases as dashed lines in Fig. 26. To see the final impact on program overhead, Fig. 30b

shows the resulting privilege-performance curves generated from the various prefetching

policies. The red line shows the baseline (no prefetching) case, and the other lines show

the prefetching policies generated from the various values of pmin. All of the prefetching

cases strictly dominate the baseline case on privilege and performance; the yellow line

(pmin = 1.0) captures a majority of the benefits, but each additional relaxation to pmin

continues to lower enforcement costs for the same privilege reduction level in diminishing

113

amounts. On the high end of the overhead spectrum (i.e., the tracing-level granularity),

the prefetching system reduces the overhead from an average of 105% to only 27%, a 3.9X

reduction in overhead costs. This shows the predictable nature of the PIPE rules in a

compartmentalization policy and the large benefit of prefetching rules to reduce costs. On

the lower end of the overhead spectrum, the benefits of prefetching are less pronounced

but do enable the system to achieve even finer privilege separation at the same costs: at

overhead of 10%, the prefetching cases allow for 20% more rules and an OR that is 12%

smaller.

5.12. Security, Overprivilege and Work-factor

Vulnerabilities such as memory safety errors permit a program to perform behaviors that

violate its original language-level abstractions, e.g., they allow a program to perform an

access to a memory location that is either outside the object from which the pointer is

derived or has since been freed and is therefore temporally expired. An exploit developer has

the task of using such a vulnerability to corrupt the state of the machine and to redirect the

operations of the new, emergent program such as to reach new states that violate underlying

security boundaries or assumptions, such as changing an authorization level, leaking private

data, or performing system calls with attacker-controlled inputs. In practice, bugs come

in a wide range of expressive power, and even memory corruption vulnerabilities are often

constrained in one or more dimensions, e.g., a typical contiguous overflow error may only

write past the end of an existing buffer [105], or an off-by-one-error allows an attacker to

write a pointer value past the end of an array but gives the attacker no control of the written

data [17]. Modern exploits are typically built from exploit chains in which a series of bugs

are assembled together to achieve arbitrary code execution [17], and complex exploits take

many man-months of effort to engineer [16] even in the monolithic environments in which

they run.

The privilege separation defenses imposed by SCALPEL limit the reachability of memory

accesses and control-flow instructions to a small subset of the full machine’s state. These

114

(a) A buffer overflow vulnerability in the Web
Server’s search functionality. The vulnerable CGI
program can be reached and triggered by any user
who browsers to the search.html page. This
vulnerability allows an attacker to corrupt the
user auth and session table variables.

(b) The symbol table showing the addresses and
sizes of several of the symbols in the Web Server’s
data section.

Figure 31

restrictions affect the attacker’s calculus in two ways: first, they may lower the impact of

bugs sufficiently to disarm them entirely, i.e., rendering them unable to impart meaningful

divergence from the original program. Second, they may vastly increase the number of

exploitation steps and bugs required to reach a particular target from a given vulnerabil-

ity: an attacker must now perform repeated confused deputy attacks [59] at each stage to

incrementally reach a target; when privilege reduction is high, these available operations

become substantially limited, thus driving up attacker costs and defeating attack paths for

which no exploit can be generated due to the imposed privilege separation limitations.

We illustrate these ideas with a vulnerability example from the Web Server application

in Fig. 31. A buffer overflow in the search CGI code is reachable from the server’s web

interface and can cause the program to write beyond the end of the condition buffer

onto objects located at higher addresses, which are the user auth and session table

variables. Corrupting user auth can allow an unprivileged user to escalate their privileges.

However, the fault is entirely contained if user auth is tagged with an Object-ID for which

CgiArgValue does not have write permission, because any out-of-bounds write will incur

a policy violation. In Tab. 5 we show the range of compartmentalizations generated from

the Working-Set algorithm. Row 1 shows the compartmentalization’s Overprivilege Ratio,

115

and row 2 shows whether the user auth overwrite is prevented (which we verify against our

policy implementation by triggering the buffer overflow to classify as or X in the table). If

that write is not prevented, then an attacker can (1) escalate their privileges, and (2) there

is also an possibility to corrupt the subsequent session table as well if that object is also

writable from CgiArgValue. The session table is a structure that contains a hash table

root node, which includes a code pointer session table->compare. Like the user auth

object, this object is protected if the CgiArgValue code does not have permission to write

to it. We show this relationship in row 3. If it can be corrupted, it could provide additional

footing to compromise the contained compartment, such as through hijacking the program’s

control flow by overwriting the session table->compare field.

While we have illustrated that these specific vulnerabilities are eliminated at specific higher

compartmentalization levels and lower ORs, we expect this trend to generally hold for other

vulnerabilities—as OR lowers, at some point each specific vulnerability based on a privilege

violation is eliminated. Each vulnerability may, in general, be eliminated at a different

OR. Consequently, we expect lower OR to generally correlate well with lower vulnerability.

Lastly, in row 4 we show the total number of legal call targets that are permitted by

the domain containing HashTableEqual (the only function in the program that performs

indirect calls using session table->compare) to show the reachability of such a control-

flow hijack. What this shows is that even if the code pointer is corrupted, the attacker

is limited to only a handful of options to continue their attack, which for many of our

domains is around ten or less; furthermore, even those targets are all functions related

to the hash table operations, which would require further steps still to reach other parts

of the system. In other words, both examples show there is a relationship between the

overprivilege permitted to each component of a system and the effort expended by exploit

developers to weaponize their bugs to reach their targets.

116

WSmax max 3200 2800 2400 2000 1800 1600 1400 1200 1024 512

Overprivilege Ratio (OR) 1.00 1.02 1.04 1.08 1.17 1.26 1.36 1.53 1.92 2.43 8.42

Protect user auth X X X

Protect session table X X

HashTableEqual call targets 1 1 1 1 7 7 11 12 17 67 241

Table 5: The relationship between WSmax, the Overprivilege Ratio, and the exploitability
of a vulnerability in the Web Server. We validate the and X vulnerability assignments
by running the Web Server with the policy shown and triggering the buffer overflow vul-
nerability. Lastly, we show the number of call targets reachable from the HashTableEqual

function under the given compartmentalization if its code pointer is corrupted.

5.13. Future Work

5.13.1. Privilege Metric Extensions

The Overprivilege Ratio (OR) is presented here in its simplest form, in which all objects and

functions are weighted by their size in bytes. This weighting scheme is appropriate under the

a priori assumption that all privileges are equal, i.e., larger data structures contain more

fields and thus should account for more privilege than smaller ones, and also that larger

functions tend to have more privileges than smaller ones and should likewise be weighted

higher in their privilege. However, in reality, all objects and operation types are not of equal

security importance to attackers under a concrete threat model. To better represent object

privilege, one should consider the attack paths that they would like to prevent: a defense can

only be analyzed under a particular threat model, and so it is from that threat model that

one should turn to derive privilege weights. For example, in classic memory safety exploits,

code pointers are of high priority to attackers, and thus preserving their integrity is of great

security value [73] compared to other data in the system. Data pointers, in turn, typically

have a security impact that is dependent on the objects and operation types to which

they grant the program access. For example, a data pointer with write permission might be

usable for a memory corruption, while a read-only data pointer may only have value in what

it can leak to an attacker. We can also consider which particular objects are more important

than others: some data objects may be of little significance (such as the bytes composing a

117

large image), whereas other objects (such as control or authorization data) may be of great

practical significance. Furthermore, objects may be more or less significant under different

operation types: security keys, for example, may be highly sensitive to reads (i.e., secrecy

is highly valued), whereas control data may be only impactful to attackers when it can be

overwritten (i.e., integrity is highly valued). The privilege model is well-equipped to handle

these cases by providing per-object and per-operation type weights to capture the relative

importance of these privileges as one adapts their weights to match their threat model.

To better model code privilege, we note that there is a great variance in the number and

significance of privileges that are granted to each function (or finer-grained piece of code),

and that this property could also be captured with a privilege weight. Code with high

privilege, both in terms of what objects it may access and what other code it may call or

return to, should be weighted higher than other, less-privileged code. For example, one

could weight the privilege of a function call in proportion to the callee’s privileges. As such,

the ability to call a function with access to an important, critical object could be treated

(perhaps correctly) as significant as access to the object itself. As one can see, there is a

rich space available to capture domain-specific security knowledge in our privilege model to

tune our automation in such a way as to better match the threat models, object importance,

and security assumptions under which they will operate. In whatever way one deems most

appropriate to tune their weights, the algorithms and approach presented here apply just

the same. Exploring these extensions to SCALPEL’s OR would be interesting future work.

5.13.2. On Correlating OR with Security

In Sec. 5.12 we presented an attack example to illustrate the benefits of privilege reduction

and in Sec. 5.13.1 we illustrated some of the ways that the privilege metric can be tuned

to match a concrete threat model. Nonetheless, a key missing piece in the quantitative

approach to privilege separation is a deeper study on the relationship between the privilege

metric, its resulting security impact in practice under a concrete threat model, and the

most effective weighting schemes under that threat model to make best use of the available

118

privileges separation resources.

5.13.3. Applying Prefetching to Other Policies

The prefetching technique introduced in Sec. 5.11 was shown to be highly effective at ac-

celerating SCALPEL’s compartmentalization policies due to the highly-predictable rule

sequences that they tend to produce. It is likely that rule prefetching could be applied

successfully to other kinds of micropolicies as well. For example, the stack protection poli-

cies (Chapter 3) would could be a good candidate for prefetching: many stack-related

operations (storing stack control data, initializing frame tags, accessing data elements, etc.)

occur each time a function is called which means those rules will likely be highly predictable

as well. As a result, prefetching has promise to reduce enforcement costs for policies beyond

compartmentalization.

5.14. Comparisons with Related Embedded System Security Work

Hex-Five’s MultiZone Security [61] is a state-of-the-art compartmentalization framework

for RISC-V. However, it requires a developer to manually decompose the application into

separated binaries called “zones”, each of which are very coarse grained—the recommended

decomposition is one zone for FreeRTOS, one for the networking stack, and one or several for

the application. MultiZone Security requires hundreds of cycles to switch contexts, which is

negligible when only employed at millisecond intervals, but the overprivilege is very high, as

large software components still have no separation; as a result, MultiZone Security achieves

a privilege reduction that falls in between the OS and dir syntactic points shown in Fig. 28a.

SCALPEL imposes significantly finer grained separation and provides substantially easier

policy development and exploration. MINION [68] is another compartmentalization tool

for embedded systems. However, it also enforces only very coarse-grained separation by

switching between a small number of memory views and provides no method for exploring

policies to tune protection and performance characterstics.

ACES [31] is closer to SCALPEL in terms of providing automatic separation for applications,

119

however it targets enforcement using the handful of segments provided by the MPU. ACES

has negligible overhead for some applications, but 20-30% overhead is more typical, with

some applications requiring over 100% overhead. As a close comparison point, we ran

the Domain-Size algorithm with a few modifications to target four code and four object

domains; the resulting design for the HTTP web server application has an OR of 28.7

compared to SCALPEL’s OR of 1.26 (at a WSmax of 1800 for a comparable overhead),

which is more than 20× more separation at that level; including prefetching, that same

level of protection can be enforced at an overhead that is 3X lower. As a result, SCALPEL

shows that a hardware tag-based security monitor can be used to provide unprecedented

levels of privilege separation for embedded systems.

5.15. Runtime Modes and Dynamic Analysis

5.15.1. Runtime Modes

SCALPEL has two primary runtime modes: alert mode and enforcment mode. In alert

mode, SCALPEL does not terminate a program if a policy violation is encountered; instead,

it produces a detailed log of the privilege violations that have been observed; this mode could

provide near real-time data for intrusion detection and forensics in the spirit of Transparent

Computing [36]. Alternatively, in strict mode, any policy violation produces fail-stop

behavior.

5.15.2. Dynamic Analysis Limitations

SCALPEL uses dynamic analysis to capture the observed low-level operations performed

by a program. Observing dynamic behavior is important for SCALPEL to capture perfor-

mance statistics to build performant policies (Sec. 5.8). However, this also means that our

captured traces represent a lower bound of the true privileges that might be exercised by a

program, which could produce false positives in enforcement mode. There are a number

of ways to handle this issue, and SCALPEL is agnostic to that choice. In cases where

extensive test suites are available or can be constructed, one might use precise SCALPEL;

120

that is, the traced program behavior serves as a ground truth for well-behaved programs

and any violations produce fail-stop behavior; some simpler embedded systems applications

may fit into this category. For higher usability on more complex software, SCALPEL could

be combined with static analysis techniques for a hybrid policy design. In that case, the

policy construction proceeds exactly as described in this paper for capturing important per-

formance effects, but the allowed interactions between Domain-IDs and Object-IDs would

be relaxed to the allowed sets as found by static analysis. The best choice among these

options will depend on security requirements, the quality and availability of test suites, and

the tolerable failure rate of the protected application. We consider these issues orthogonal

to SCALPEL’s primary contributions.

5.16. Conclusion

We presented SCALPEL, a tool for producing highly-performant compartmentalization

policies for the PIPE architecture. The SCALPEL back-end is a policy compiler that

automatically lowers compartmentalization policies to the PIPE for hardware-accelerated

enforcement. The SCALPEL front-end provides a set of compartment generation algorithms

to help a security engineer explore the privilege-performance tradeoff space that can be

achieved with the PIPE. The capstone algorithm presented in SCALPEL constructs policies

by targetting a limit on the number of rules during each of a program’s phases to achieve

highly favorable cache characteristics. We show that the same technique can be used to

produce designs with predictable runtime characteristics suitable for real-time systems.

All together, SCALPEL shows that the PIPE can use fine-grained privilege separation with

hundreds of compartments to achieve a very low overprivilege ratio with very low overheads.

121

CHAPTER 6 : Conclusion

Programmable, tag-based hardware security monitors like the PUMP can express and en-

force instruction-level security policies. The focus of this dissertation is policy engineering,

i.e., the construction of policies that can (1) provide useful security properties, (2) impose

low costs of enforcement, and (3) be applied to real software automatically to minimize the

human involvement in their deployment to protect systems.

Chapter 3 introduced stack protection policies that carry forward information from the

compiler about correct program behavior to enforce at runtime with tags and rules. The

dominant source of overhead for these policies was the cost of tagging and clearing stack

frames, which led us to design the lazy tagging policy engineering technique to reduce those

costs; as a result, we find that object-level stack protection can be enforced at a cost of less

than 5%.

In Chapter 4 we explore policies to protect the heap. We show that many common classes

of heap errors can be defeated with the One-Color policy or the Allocation-Site policy with

a single color at only 1% overhead. Full temporal and spatial heap safety can typically be

provided at less than 10%, but some workloads can challenge the rule cache; we show how

to relax the policies to reduce this overhead while maintaining useful security properties by

cycling through pools of colors by allocation site.

Lastly, in Chapter 5 we show how high-performance compartmentalization policies can be

constructed. For good performance on the PUMP, the number of rules required for each

program phase should cache favorably; we introduce rule packing, a method to reduce the

set of rules required by compartmentalization policies into working sets that achieve the

targeted cache performance. To decide how to relax the compartmentalizations to achieve

these goals, we introduce a quantitative privilege metric and a set of analysis tools that

treat compartment generation as an optimization problem to automate the construction of

compartmentalization policies. These allow a security engineer to quickly instantiate and

122

evaluate tag-based compartmentalization policies. Lastly, we design and evaluate a rule

prefetching system that can reduce the enforcement costs of compartmentalization policies

by up to 4X by preemptively installing rules into the rule cache before they are required by

the program.

123

BIBLIOGRAPHY

[1] CWE/SANS Top 25 Most Dangerous Software Errors. https://cwe.mitre.org/

top25/, 2011.

[2] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity.
In 12th ACM Conference on Computer and Communications Security, pages 340–353.
ACM, 2005.

[3] Ali Abbasi, Jos Wetzels, Thorsten Holz, and Sandro Etalle. Challenges in designing
exploit mitigations for deeply embedded systems. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 31–46. IEEE, 2019.

[4] Periklis Akritidis, Cristian Cadar, Costin Raicui, Manuel Costa, and Miguel Cas-
tro. Preventing memory error exploits with WIT. In Proceedings of the 29th IEEE
Symposium on Security and Privacy. IEEE, 2008.

[5] Aleph One. Smashing The Stack For Fun and Profit, November 1996.

[6] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-hardness of
euclidean sum-of-squares clustering. Machine Learning, 75(2):245–248, May 2009.

[7] David Anderson. David A’s DWARF Page. https://www.prevanders.net/dwarf.

html, 2017. 2017-8-12.

[8] Anmibe. Cpu features: Non-executable memory. https://wiki.ubuntu.com/

Security/CPUFeatures. Accessed: 2021-2-13.

[9] anonymous. Once upon a free(). Phrack Magazine, (Vol. 0x0b Issue 0x39), 2001.
http://phrack.org/issues/57/9.html.

[10] ARM. TrustZone technology for ARM v8-M Architeture. https://developer.arm.
com/documentation/100690/latest/, 2016.

[11] Arthur Azevedo de Amorim. A methodology for micro-policies. PhD thesis, University
of Pennsylvania, 2017.

[12] Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine Demange,
Cătălin Hriţcu, David Pichardie, Benjamin C. Pierce, Randy Pollack, and Andrew
Tolmach. A verified information-flow architecture. In Proceedings of the 41st Sympo-
sium on Principles of Programming Languages, POPL, pages 165–178. ACM, January
2014.

[13] Arthur Azevedo de Amorim, Maxime Dénès, Nick Giannarakis, Cătălin Hriţcu, Ben-
jamin C. Pierce, Antal Spector-Zabusky, and Andrew Tolmach. Micro-policies: For-
mally verified, tag-based security monitors. In 36th IEEE Symposium on Security and
Privacy (Oakland S&P), pages 813–830. IEEE Computer Society, May 2015.

124

https://cwe.mitre.org/top25/
https://cwe.mitre.org/top25/
https://www.prevanders.net/dwarf.html
https://www.prevanders.net/dwarf.html
https://wiki.ubuntu.com/Security/CPUFeatures
https://wiki.ubuntu.com/Security/CPUFeatures
http://phrack.org/issues/57/9.html
https://developer.arm.com/documentation/100690/latest/
https://developer.arm.com/documentation/100690/latest/

[14] Adam Barth, Collin Jackson, Charles Reis, TGC Team, et al. The security architec-
ture of the chromium browser. In Technical report. Stanford University, 2008.

[15] V.R. Basili and B.T. Perricone. Software errors and complexity: An empirical inves-
tigation. Communications of the ACM, pages 42–52, 1984.

[16] Ian Beer. An ios zero-click radio proximity exploit odyssey.

[17] Ian Beer. In-the-wild ios exploit chain 1. https://googleprojectzero.blogspot.

com/2019/08/in-wild-ios-exploit-chain-1.html, Aug 2019.

[18] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sar-
dashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill,
and David A. Wood. The gem5 simulator. In ACM SIGARCH Computer Architecture
News, 2014.

[19] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge: Splitting Ap-
plications into Reduced-privilege Compartments. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation, NSDI’08, pages 309–
322, Berkeley, CA, USA, 2008. USENIX Association.

[20] blackngel. Malloc Des-Maleficarum. Phrack Magazine, (Vol. 0x0d Issue 0x42), 2009.
http://phrack.org/issues/66/10.html.

[21] blackngel. The House of Lore: Reloaded ptmalloc v2 and v3: Analysis and Corruption.
Phrack Magazine, (Vol. 0x0e Issue 0x43), 2010. http://phrack.org/issues/67/8.

html.

[22] Mark Brand. Virtually unlimited memory: Escaping the chrome
sandbox. https://googleprojectzero.blogspot.com/2019/04/

virtually-unlimited-memory-escaping.html, April 2019.

[23] J. Brown and Thomas F. Knight, Jr. A minimally trusted computing base for dynam-
ically ensuring secure information flow. Technical Report 5, MIT CSAIL, November
2001. Aries Memo No. 15.

[24] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When Good
Instructions Go Bad: Generalizing Return-Oriented Programming to RISC. In Proc.
ACM CCS, pages 27–38, Oct. 2008.

[25] Carnegie Mellon University Software Engineering Institute. SEI CERT C Coding
Standard, 2016.

[26] Miguel Castro, Manual Costa, and Tim Harris. Securing software by enforcing data-
flow integrity. In USENIX Symposium on Operating System Design and Implementa-
tion, 2006.

125

https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-1.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-1.html
http://phrack.org/issues/66/10.html
http://phrack.org/issues/67/8.html
http://phrack.org/issues/67/8.html
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-escaping.html
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-escaping.html

[27] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Hovav
Shacham, and Marcel Winandy. Return-Oriented Programming without Returns. In
International Conference on Information Systems Security (CCS). ACM, 2010.

[28] Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsafi, Phillip B. Gibbons,
Todd C. Mowry, Vijaya Ramachandran, Olatunji Ruwase, Michael P. Ryan, and Evan-
gelos Vlachos. Flexible Hardware Acceleration for Instruction-Grain Program Mon-
itoring. In 35th International Symposium on Computer Architecture (ISCA), pages
377–388. IEEE, 2008.

[29] David Chisnall, Colin Rothwell, Robert N.M. Watson, Jonathan Woodruff, Munraj
Vadera, Simon W. Moore, Michael Roe, Brooks Davis, and Peter G. Neumann. Be-
yond the PDP-11: Architectural support for a memory-safe C abstract machine. In
Proceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, pages 117–130. ACM, 2015.

[30] James A. Clause, Ioannis Doudalis, Alessandro Orso, and Milos Prvulovic. Effec-
tive memory protection using dynamic tainting. In 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 284–292. ACM, 2007.

[31] Abraham A. Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and Mathias Payer.
ACES: Automatic compartments for embedded systems. In 27th USENIX Security
Symposium (USENIX Security 2018), pages 65–82. USENIX Association, 2018.

[32] Mauro Conti, Stephen Crane, Lucas David, Michael Franz, Per Larsen, Christopher
Liebchen, Marco Negro, Mohaned Qunaibit, and Ahmad-Reza Sadeghi. Losing Con-
trol: On the Effectiveness of Control-Flow Integrity under Stack Attacks. In ACM
Conference on Computer and Communications Security, pages 952–963. ACM, 2015.

[33] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beat-
tie, Aaraon Grier, Perry Wagle, and Qian Zhang. StackGuard: Automatic Adap-
tive Detection and Prevention of Buffer-Overflow Attacks. In Proceedings of the 7th
USENIX Security Symposium, January 1998.

[34] The curl project. curl: command line tool and library. https://curl.se/. Accessed:
2021-2-13.

[35] Thurston Dang, Petros Maniatis, and David Wagner. The Performance Cost of
Shadow Stacks and Stack Canaries. In Proceedings of the ACM Asia Conference
on Computer and Communications Security (ASIACCS), April 2015.

[36] DARPA. Transparent computing. https://www.darpa.mil/program/

transparent-computing. Accessed: 2020-9-30.

[37] André DeHon, Eli Boling, Rishiyur Nikhil, Darius Rad, Julie Schwarz, Niraj Sharma,
Joseph Stoy, Greg Sullivan, and Andrew Sutherland. DOVER: A Metadata-Extended

126

https://curl.se/
https://www.darpa.mil/program/transparent-computing
https://www.darpa.mil/program/transparent-computing

RISC-V. In RISC-V Workshop, January 2016. Accompanying talk at http://youtu.
be/r5dIS1kDars.

[38] Daniel Y. Deng and G. Edward Suh. High-performance parallel accelerator for flex-
ible and efficient run-time monitoring. In IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 1–12. IEEE Computer Society, 2012.

[39] Solar Designer. Jpeg com marker processing vulnerability, Jul 2000.

[40] CVE Details. Cve details: Libxml2 vulnerability statistics. https://www.

cvedetails.com/product/3311/Xmlsoft-Libxml2.html?vendor_id=1962. Ac-
cessed: 2020-10-25.

[41] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. HardBound:
Architectural support for spatial safety of the C programming language. pages 103–
114, 2008.

[42] Udit Dhawan and André DeHon. Area-efficient near-associative memories on FPGAs.
In Proceedings of the International Symposium on Field-Programmable Gate Arrays,
pages 191–200, 2013.

[43] Udit Dhawan, Cătălin Hriţcu, Rafi Rubin, Nikos Vasilakis, Silviu Chiricescu,
Jonathan M. Smith, Thomas F. Knight, Jr., Benjamin C. Pierce, and André DeHon.
Architectural support for software-defined metadata processing. In International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
pages 487–502, 2015.

[44] Udit Dhawan, Albert Kwon, Edin Kadric, Cătălin Hriţcu, Benjamin C. Pierce,
Jonathan M. Smith, André DeHon, Gregory Malecha, Greg Morrisett, Thomas F.
Knight, Jr., Andrew Sutherland, Tom Hawkins, Amanda Zyxnfryx, David Witten-
berg, Peter Trei, Sumit Ray, and Greg Sullivan. Hardware support for safety inter-
locks and introspection. In SASO Workshop on Adaptive Host and Network Security,
September 2012.

[45] Xinshu Dong, Hong Hu, Prateek Saxena, and Zhenkai Liang. A quantitative eval-
uation of privilege separation in web browser designs. In European Symposium on
Research in Computer Security, pages 75–93. Springer, 2013.

[46] Dovecot. Dovecot mail server. https://github.com/dovecot/core. Accessed: 2020-
10-12.

[47] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman, Math-
ias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, and J. Alex
Halderman. The Matter of Heartbleed. In Proceedings of the Conference on Internet
Measurement Conference, 2014.

127

http://youtu.be/r5dIS1kDars
http://youtu.be/r5dIS1kDars
https://www.cvedetails.com/product/3311/Xmlsoft-Libxml2.html?vendor_id=1962
https://www.cvedetails.com/product/3311/Xmlsoft-Libxml2.html?vendor_id=1962
https://github.com/dovecot/core

[48] Kevin Elphinstone and Gernot Heiser. From L3 to seL4 what have we learnt in
20 years of L4 microkernels? In Proceedings of the ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 133–150, New York, NY, USA, 2013. ACM.

[49] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany Tang,
Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed Okhravi.
Missing the Point(er): On the Effectiveness of Code Pointer Integrity. In IEEE
Symposium on Security and Privacy (Oakland S&P). IEEE Computer Society, May
2015.

[50] Edward A. Feustel. On the advantages of tagged architectures. IEEE Transactions
on Computers, 22:644–652, July 1973.

[51] Joseph A Fisher and Stefan M Freudenberger. Predicting conditional branch direc-
tions from previous runs of a program. ACM SIGPLAN Notices, 27(9):85–95, 1992.

[52] Institute for Informatics Georg-August-Universitat Gottingen. The mondial database.
https://www.dbis.informatik.uni-goettingen.de/Mondial. 2020.

[53] LLVM Foundation. The llvm compiler infrastructure. https://llvm.org/. Accessed:
2021-2-13.

[54] Free Standards Group. DWARF Debugging Information Format.

[55] Sotiria Fytraki, Evangelos Vlachos, Yusuf Onur Koçberber, Babak Falsafi, and Boris
Grot. FADE: A programmable filtering accelerator for instruction-grain monitoring.
In 20th IEEE International Symposium on High Performance Computer Architecture,
HPCA 2014, Orlando, FL, USA, February 15-19, 2014, pages 108–119, 2014.

[56] GNU Project. GCC 4.1 Release Series Changes, New Features, and Fixes. https:

//gcc.gnu.org/gcc-4.1/changes.html, 2006. 2017-05-05.

[57] Google. Chrome security architecture. https://docs.google.com/drawings/d/

1TuECFL9K7J5q5UePJLC-YH3satvb1RrjLRH-tW_VKeE/edit. [Online; accessed April
14, 2021].

[58] Khilan Gudka, Robert N.M. Watson, Jonathan Anderson, David Chisnall, Brooks
Davis, Ben Laurie, Ilias Marinos, Peter G. Neumann, and Alex Richardson. Clean
Application Compartmentalization with SOAAP. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15, pages
1016–1031, New York, NY, USA, 2015. ACM.

[59] Norm Hardy. The Confused Deputy (or why capabilities might have been invented).
SIGOPS Operating Systems Review, 22(4):36–38, October 1988.

[60] L. Hatton. Reexamining the fault density component size connection. IEEE Software,
14(2):89–97, Mar 1997.

128

https://www.dbis.informatik.uni-goettingen.de/Mondial
https://llvm.org/
https://gcc.gnu.org/gcc-4.1/changes.html
https://gcc.gnu.org/gcc-4.1/changes.html
https://docs.google.com/drawings/d/1TuECFL9K7J5q5UePJLC-YH3satvb1RrjLRH-tW_VKeE/edit
https://docs.google.com/drawings/d/1TuECFL9K7J5q5UePJLC-YH3satvb1RrjLRH-tW_VKeE/edit

[61] HEX-Five. MultiZone Security Reference Manual. 2020.

[62] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Mathias Payer. En-
forcing Least Privilege Memory Views for Multithreaded Applications. In ACM Conf
on Computer and Communication Security, 2016.

[63] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena, and
Zhenkai Liang. Data-Oriented Programming: On the Expressiveness of Non-Control
Data Attacks. In IEEE Symposium on Security and Privacy (Oakland S&P). IEEE
Computer Society, May 2016.

[64] Intel Corporation. Introduction to Intel Memory Protec-
tion Extensions. https://software.intel.com/en-us/articles/

introduction-to-intel-memory-protection-extensions, 2013. 2017-05-12.

[65] Intel Corporation. Control-flow Enforcement Technology Preview.
https://software.intel.com/sites/default/files/managed/4d/2a/

control-flow-enforcement-technology-preview.pdf, 2016. 2017-05-17.

[66] A. Joannou, J. Woodruff, R. Kovacsics, S. W. Moore, A. Bradbury, H. Xia, R. N.
Watson, D. Chisnall, M. Roe, B. Davis, E. Napierala, J. Baldwin, K. Gudka, P. G.
Neumann, A. Mazzinghi, A. Richardson, S. Son, and A. T. Markettos. Efficient tagged
memory. In Proceedings of the International Conference on Computer Design (ICCD),
pages 641–648, 2017.

[67] jp. Advanced Doug Lea’s malloc exploits. Phrack Magazine, (Vol. 0x0b Issue 0x3d),
2001. http://phrack.org/issues/61/6.html.

[68] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, Byoungyoung Lee,
Xiangyu Zhang, and Dongyan Xu. Securing real-time microcontroller systems through
customized memory view switching. In NDSS, 2018.

[69] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutlu. Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance Errors. In 41st International
Symposium on Computer Architecture (ISCA). IEEE, 2014.

[70] klog. The Frame Pointer Overwrite. Phrack Magazine, (Vol. 9 Issue 55), 1999. http:
//phrack.org/issues/55/8.html.

[71] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS
and Other Systems. In Proceedings of Crypto, 1996.

[72] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar, and
Dawn Song. Code-Pointer Integrity. In Proceedings of the 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2014.

129

https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
http://phrack.org/issues/61/6.html
http://phrack.org/issues/55/8.html
http://phrack.org/issues/55/8.html

[73] Volodymyr Kuznetzov, László Szekeres, Mathias Payer, George Candea, R Sekar, and
Dawn Song. Code-pointer integrity. In The Continuing Arms Race: Code-Reuse
Attacks and Defenses, pages 81–116. 2018.

[74] Draper Laboratory. Hope-tools github repository. https://github.com/

draperlaboratory/hope-src. Accessed: 2020-10-05.

[75] lazytyped. ADI vs. ROP. https://lazytyped.blogspot.com/2017/09/

adi-vs-rop.html, September 2017.

[76] Jiahao Li. Color reclamation for heap memory coloring scheme in pipe tagged-memory
architecture. Master’s thesis, Massachusetts Institute of Technology, 2019.

[77] Jochen Liedtke. On micro-Kernel Construction. In 15th ACM Symposium on Oper-
ating Systems Principles, pages 237–250, 1995.

[78] Arm Limited. Arm cortex-a53 specification. https://developer.arm.com/

ip-products/processors/cortex-a/cortex-a53. Accessed: 2020-10-05.

[79] Arm Limited. Armv8-m architecture reference manual. https://developer.arm.

com/documentation/ddi0553/ab/. 2016.

[80] ARM Limited. ARM architecture reference manual: ARMv8, for ARMv8-A architec-
ture profile, December 2017.

[81] Shen Liu, Dongrui Zeng, Yongzhe Huang, Frank Capobianco, Stephen McCamant,
Trent Jaeger, and Gang Tan. Program-mandering: Quantitative privilege separation.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’19, New York, NY, USA, 2019. ACM.

[82] lowRISC project team. Tagged memory and minion cores in the
lowRISC SoC. lowRISC-MEMO 2014-001, Computer Laboratory, Uni-
versity of Cambridge, December 2014. http://www.lowrisc.org/docs/

memo-2014-001-tagged-memory-and-minion-cores/.

[83] Canonical Ltd. Apparmor. https://wiki.ubuntu.com/AppArmor. Accessed: 2020-
9-11.

[84] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P Chung, Taesoo Kim, and
Wenke Lee. Aslr-guard: Stopping address space leakage for code reuse attacks. In
Proceedings of the 22nd ACM SIGSAC conference on computer and communications
security, pages 280–291, 2015.

[85] MaXX. Vudo malloc tricks. Phrack Magazine, (Vol. 0x0b Issue 0x39), 2001. http:

//phrack.org/issues/57/8.html.

[86] MITRE. CVE-2012-0769. Available from MITRE, CVE-2012-0769 CVE-2012-0769.,
2012.

130

https://github.com/draperlaboratory/hope-src
https://github.com/draperlaboratory/hope-src
https://lazytyped.blogspot.com/2017/09/adi-vs-rop.html
https://lazytyped.blogspot.com/2017/09/adi-vs-rop.html
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/documentation/ddi0553/ab/
https://developer.arm.com/documentation/ddi0553/ab/
http://www.lowrisc.org/docs/memo-2014-001-tagged-memory-and-minion-cores/
http://www.lowrisc.org/docs/memo-2014-001-tagged-memory-and-minion-cores/
https://wiki.ubuntu.com/AppArmor
http://phrack.org/issues/57/8.html
http://phrack.org/issues/57/8.html

[87] Sparsh Mittal. A survey of recent prefetching techniques for processor caches. ACM
Computing Surveys (CSUR), 49(2):1–35, 2016.

[88] P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz. An empirical study of
software reuse vs. defect-density and stability. In Proceedings. 26th International
Conference on Software Engineering, pages 282–291, May 2004.

[89] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi. CACTI
6.0: A tool to model large caches. HPL 2009-85, HP Labs, Palo Alto, CA, April 2009.
Latest code release for CACTI 6 is 6.5.

[90] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic.
CETS: Compiler enforced temporal safety for C. In International Symposium on
Memory Management, June 2010.

[91] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdencewic. Soft-
Bound: Highly compatible and complete spatial memory safety for c. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), 2009.

[92] Tim Newsham. Bugtraq: Re: Smashing the Stack: prevention?, Apr. 1997.

[93] Oracle. Introduction to SPARC M7 and Application Data Integrity (ADI). https:

//swisdev.oracle.com/_files/What-Is-ADI.html. Accessed: 2019-12-09.

[94] Oracle. Adi manual pages. https://docs.oracle.com/cd/E86824_01/html/

E54765/adi-2.html, 2017.

[95] Tavis Ormandy and Chris Evans. The Poisoned Nul Byte 2014
Edition. https://googleprojectzero.blogspot.com/2014/08/

the-poisoned-nul-byte-2014-edition.html, Aug 2014.

[96] Hilmi Ozdoganoglu, T.N. Vijaykumar, Carla E. Brodley, Benjamin A. Kuperman,
and Ankit Jalote. SmashGuard: A Hardware Solution to Prevent Security Attacks
on the Function Return Address. IEEE Transactions on Computers, 55:1271–1284,
October 2006.

[97] Chris Palmer. The limits of sandboxing and next steps. USENIX Association, Febru-
ary 2021.

[98] Gabriel Parmer and Richard West. Mutable protection domains: Adapting system
fault isolation for reliability and efficiency. IEEE Transactions on Software Engineer-
ing, 38(4):875–888, 2011.

[99] Phantasmal Phantasmagoria. The Malloc Maleficarum: Glibc Malloc Ex-
ploitation Techniques. https://dl.packetstormsecurity.net/papers/attack/

MallocMaleficarum.txt, 2005.

131

https://swisdev.oracle.com/_files/What-Is-ADI.html
https://swisdev.oracle.com/_files/What-Is-ADI.html
https://docs.oracle.com/cd/E86824_01/html/E54765/adi-2.html
https://docs.oracle.com/cd/E86824_01/html/E54765/adi-2.html
https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
https://dl.packetstormsecurity.net/papers/attack/MallocMaleficarum.txt
https://dl.packetstormsecurity.net/papers/attack/MallocMaleficarum.txt

[100] Marios Pomonis, Theofilos Petsios, Angelos D. Keromytis, Michalis Polychronakis,
and Vasileios P. Kemerlis. kRˆX: Comprehensive Kernel Protection against Just-In-
Time Code Reuse. In Proc. of EuroSys, pages 420–436, 2017.

[101] Aravind Prakash and Heng Yin. Defeating ROP Through Denial of Stack Pivot. In
Annual Computer Security Applications Conference. ACM, 2015.

[102] The GNOME Project. The xml c parser and toolkit of gnome. http://www.xmlsoft.
org/. Accessed: 2020-10-4.

[103] Qualsys, Inc. Qualys Security Advisory—The Stack Clash. https://www.qualys.

com/2017/06/19/stack-clash/stack-clash.txt, 2017. 2018-03-29.

[104] Richard F. Rashid and George G. Robertson. Accent: A communication oriented
network operating system kernel. In Proceedings of the Eighth ACM Symposium on
Operating Systems Principles, SOSP ’81, pages 64–75, New York, NY, USA, 1981.
ACM.

[105] Nick Roessler. Exploiting LaTeX with CVE-2018-17407. https://nickroessler.

com/latex-cve-2018-17407/, 2018.

[106] Nick Roessler and Andre DeHon. Protecting the Stack with Metadata Policies and
Tagged Hardware. In IEEE Symposium on Security and Privacy (S&P), 2018.

[107] Jerry H. Saltzer and Mike D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278–1308, September 1975.

[108] Fuzzy Security. Part 12: Kernel Exploitation: Null Pointer Dereference. https:

//www.fuzzysecurity.com/tutorials/expDev/16.html.

[109] Andreas Sembrant. Efficient techniques for detecting and exploiting runtime phases.
PhD thesis, Uppsala University, 2012.

[110] NXP Semiconductors. NXP selects dover microsystems’ state-of-
the-art coreguard cybersecurity technology for future embedded plat-
forms. https://media.nxp.com/news-releases/news-release-details/

nxp-selects-dover-microsystems-state-art-coreguard-cybersecurity,
October 2018.

[111] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov.
AddressSanitizer: A Fast Address Sanity Checker. In USENIX Annual Technical
Conference, 2012.

[112] Amazon Web Services. Http web server example. https://freertos.org/

FreeRTOS-Plus/FreeRTOS_Plus_TCP/HTTP_web_Server.html. Accessed: 2020-9-30.

132

http://www.xmlsoft.org/
http://www.xmlsoft.org/
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
https://nickroessler.com/latex-cve-2018-17407/
https://nickroessler.com/latex-cve-2018-17407/
https://www.fuzzysecurity.com/tutorials/expDev/16.html
https://www.fuzzysecurity.com/tutorials/expDev/16.html
https://media.nxp.com/news-releases/news-release-details/nxp-selects-dover-microsystems-state-art-coreguard-cybersecurity
https://media.nxp.com/news-releases/news-release-details/nxp-selects-dover-microsystems-state-art-coreguard-cybersecurity
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/HTTP_web_Server.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/HTTP_web_Server.html

[113] Hovav Shacham. The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In ACM Conference on Computer and Communications
Security, pages 552–561. ACM, 2007.

[114] Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and Brad Calder.
Discovering and exploiting program phases. IEEE micro, 23(6):84–93, 2003.

[115] Solar Designer. Bugtraq: Getting around non-executable stack (and fix), Aug. 1997.

[116] Chengyu Song, Hyungon Moon, Monjur Alam, Insu Yun, Byoungyoung Lee, Taesoo
Kim, Wenke Lee, and Yunheung Paek. HDFI: Hardware-assisted data-flow isolation.
In IEEE Symposium on Security and Privacy (Oakland S&P). IEEE Computer Soci-
ety, May 2016.

[117] Jia Song. Security Tagging for a Real-time Zero-kernel Operating System: Implemen-
tation and Verification. PhD thesis, University of Idaho, 2014.

[118] Jia Song and Jim Alves-Foss. Security tagging for a zero-kernel operating system.
In System Sciences (HICSS), 2013 46th Hawaii International Conference on, pages
5049–5058. IEEE, 2013.

[119] Wei Song, Alex Bradbury, and Robert Mullins. Towards general purpose tagged
memory. In Proceedings of the RISC-V Workshop, June 2015. https://riscv.org/

wp-content/uploads/2015/06/riscv-tagged-mem-workshop-june2015.pdf.

[120] Alexander Sotirov. Heap feng shui in javascript. Black Hat Europe, 2007:11–20, 2007.

[121] Standard Performance Evaluation Corporation. SPEC CPU 2006. https://www.

spec.org/cpu2006/, 2006.

[122] Gregory T Sullivan, André DeHon, Steven Milburn, Eli Boling, Marco Ciaffi, Jothy
Rosenberg, and Andrew Sutherland. The dover inherently secure processor. In 2017
IEEE International Symposium on Technologies for Homeland Security (HST), pages
1–5. IEEE, 2017.

[123] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal war in
memory. In IEEE Symposium on Security and Privacy, pages 48–62. IEEE Computer
Society, 2013.

[124] The GNU Project. The GNU C Library (glibc). https://www.gnu.org/software/

libc/.

[125] TIOBE. TIOBE Index for October 2017. https://www.tiobe.com/tiobe-index/,
2017. 2017-10-14.

[126] Stylianos Tsampas, Akram El-Korashy, Marco Patrignani, Dominique Devriese,
Deepak Garg, and Frank Piessens. Towards automatic compartmentalization of c

133

https://riscv.org/wp-content/uploads/2015/06/riscv-tagged-mem-workshop-june2015.pdf
https://riscv.org/wp-content/uploads/2015/06/riscv-tagged-mem-workshop-june2015.pdf
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.tiobe.com/tiobe-index/

programs on capability machines. In Workshop on Foundations of Computer Security
2017, pages 1–14, 2017.

[127] Victor Van der Veen, Lorenzo Cavallaro, Herbert Bos, et al. Memory errors: The
past, the present, and the future. In International Workshop on Recent Advances in
Intrusion Detection, pages 86–106. Springer, 2012.

[128] Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos Prvulovic. FlexiTaint:
A programmable accelerator for dynamic taint propagation. pages 173–184, February
2008.

[129] M. A. Wahab, P. Cotret, M. N. Allah, G. Hiet, V. Laptre, and G. Gogniat. ARMHEx:
A hardware extension for DIFT on ARM-based SoCs. In Proceedings of the Inter-
national Conference on Field-Programmable Logic and Applications, pages 1–7, Sept
2017.

[130] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zeldovich, and M Frans
Kaashoek. Undefined Behavior: What Happened to My Code? In Proceedings of the
Asia-Pacific Workshop on Systems, July 2012.

[131] R. N. M. Watson, R. M. Norton, J. Woodruff, S. W. Moore, P. G. Neumann, J. An-
derson, D. Chisnall, B. Davis, B. Laurie, M. Roe, N. H. Dave, K. Gudka, A. Joannou,
A. T. Markettos, E. Maste, S. J. Murdoch, C. Rothwell, S. D. Son, and M. Vadera.
Fast protection-domain crossing in the CHERI capability-system architecture. IEEE
Micro, 36(5):38–49, Sept 2016.

[132] John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and Wouer Joosen.
RIPE: Runtime Intrusion Prevention Evaluator. In 27th Annual Computer Security
Applications Conference (ACSAC). ACM, 2011.

[133] Emmett Witchel, Junghwan Rhee, and Krste Asanović. Mondrix: Memory Isolation
for Linux Using Mondriaan Memory Protection. In Proceedings of the Twentieth ACM
Symposium on Operating Systems Principles, SOSP ’05, pages 31–44, New York, NY,
USA, 2005. ACM.

[134] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton,
and Michael Roe. The CHERI capability model: Revisiting RISC in an age of risk.
In Proc. of the International Symposium on Computer Architecture (ISCA), pages
457–468, June 2014.

[135] Insu Yun, Dhaval Kapil, and Taesoo Kim. Automatic techniques to systematically
discover new heap exploitation primitives. In 29th USENIX Security Symposium
(USENIX Security 20), 2020.

134

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	Introduction
	Motivation
	Outline
	Contributions From Others

	Background
	The PUMP Architecture
	Security and Threat Model

	Stack Protection Policies
	Introduction
	Threat Model and Assumptions
	Stack Protection Policies
	Evaluation
	Optimizations: Lazy Tagging
	Security Characterization
	Policy Compatibility
	Discussion and Conclusion

	Heap Protection Policies
	Introduction
	Background
	Threat Model and Assumptions
	Policy Formulation and Implementation
	Evaluation
	Security Characterization
	Policy Compatibility
	Limitations and Future Work
	Conclusion

	Compartmentalization Policies
	Introduction
	Background and Related Work
	Threat Model
	Privilege Reduction and Compartmentalization
	Compartmentalization Tag Policy Formulation
	The Tracing Policy
	Privilege Quantification Model
	Policy Exploration
	Performance Model
	Evaluation
	Prefetching
	Security, Overprivilege and Work-factor
	Future Work
	Comparisons with Related Embedded System Security Work
	Runtime Modes and Dynamic Analysis
	Conclusion

	Conclusion
	BIBLIOGRAPHY

