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A bacterial bath is a model active system consisting of a population of rodlike motile or self-propelled
bacteria suspended in a fluid environment. This system can be viewed as an active, nonequilibrium version of
a lyotropic liquid crystal or as a generalization of a driven diffusive system. We derive a set of phenomeno-
logical equations, which include the effects of internal force generators in the bacteria, describing the hydro-
dynamic flow, orientational dynamics of the bacteria, and fluctuations induced by both thermal and nonthermal
noises. These equations violate the fluctuation dissipation theorem and the Onsager reciprocity relations. We
use them to provide a quantitative account of results from recent microrheological experiments on bacterial
baths.
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I. INTRODUCTION

Many species of bacteria, such as E. coli, are rodlike,
single-celled organisms that actively navigate their environ-
ment by swimming �1�. A common mechanism for motility is
based on the rotation of bacterial flagella propelled by the
action of rotary motors embedded in the cell wall. When all
the motors rotate counterclockwise, the flagella bundle up
and propel a bacterium forward in the direction of its long
axis. This is called “run.” When some of the flagella rotate
clockwise, the flagella unbundle and the cell body spins or
“tumbles.” On average, a bacterium tumbles for about 0.1 s
before it “runs” in a different �random� direction; the typical
run time is about 1 s. Therefore, at long time, a bacterium
appears to perform a sort of random walk �2,3�. With a typi-
cal size of a bacterium of the order of microns and a typical
speed of the order of 10 �m /s, the Reynolds number R is
much less than 1.

Early experimental studies utilizing light-scattering tech-
nique demonstrated that the velocity distribution of motile
microorganisms, in general, and bacteria, in particular, is not
Maxwellian �4�, indicating that their motion is far more com-
plex than that of Brownian particles �5�. A large concentra-
tion of these microorganisms constitutes a state that is far
from equilibrium, exhibiting self-organized collective motion
with spatial and temporal patterns such as swirls and jets
�6–11�.

More quantitative information about a bacterial bath �e.g.,
of E. coli� can be extracted from microrheological measure-
ments, which track the motion of passive micron-sized beads
dispersed in it �6,7,12�. Interestingly, the mean-squared dis-
placement �MSD� of these passive beads is superdiffusive at
short time and diffusive at long time, with a diffusion con-
stant that is a few orders of magnitude greater than that of the
same beads in water. These studies of the microrheology of
bacterial baths clearly demonstrate that the motility of bac-
teria drastically alters the physical properties, i.e., response
and fluctuations of the fluid environment in which they are
suspended. The phenomena of superdiffusion and self-
organized behaviors have been either observed or predicted
in other active systems as well �13–20�.

The experiments on baths of E. coli �6,7,12� cited above
did not address the violation of the fluctuation-dissipation
theorem �FDT�, the effects of spatial heterogeneities in the
bath, or the effects of different bacterial swimming modes.
These issues are crucial to a consistent interpretation of mi-
crorheological experiments in active systems in general and
in bacterial baths in particular �14� �see also Appendix A�.
They were addressed in a recent experimental study by Chen
et al. �21�. In that study, two strains of E. coli, a rod-shaped
bacterium with dimensions 3�1 �m, were used: one strain
is the wild type, which tumbles and runs, and the other is the
tumbler, which predominantly tumbles. In contrast to previ-
ous experiments, these experiments �21� carried out simulta-
neous measurements of both one- and two-point passive mi-
crorheology. One-point measurements are sensitive to the
local environment of the probe colloidal particle. Two-point
measurements, on the other hand, automatically average over
system inhomogeneities and provide an unambiguous mea-
sure of the parameters characterizing bulk rheological prop-
erties �14,22�. The Chen study �21� also carried out indepen-
dent measurements of the response of beads in the bath to
controlled external forces and from it extracted the effective
viscosity of the bath. The results of this study are that, even
at low bacterial volume fraction ���10−3�, fluctuations in
the bath are considerably enhanced over those of pure water
and that tracer particles exhibit superdifussive behavior, even
though the viscosity of the bath was indistinguishable from
that of water. This indicates that FDT is strongly violated
and, thus, that a bacterial bath is a far-from-equilibrium sys-
tem. The Chen experiments found in addition that, for the
wild-type bacteria, MSDs extracted from one- and two-point
measurements are different, providing strong evidence that
spatial heterogeneities, possibly in the form of vortices and
spirals, are present. For the tumblers, the power spectrum,
����, was found to be Lorentzian, whereas for the wild type,
it was found to scale with frequency � as ������ /��.
These stress fluctuations, whose functional form is different
from that of thermal fluctuations, arise from the active pro-
cess of tumbling or swimming of bacteria. The purpose of
this paper is to derive the long-wavelength low-frequency
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equations governing the dynamics of a bacteria bath and use
them to provide quantitative explanations of the Chen mi-
crorheological experiments.

Early theoretical models of bacterial baths focus on hy-
drodynamical phenomena at a macroscopic level �23� and on
modeling the bulk motion of chemotatic bacteria via an
advection-diffusion-type equation �24�. Recently, there has
been considerable progress in developing theoretical models
�25–28� to describe collective coherent motion and related
phenomena in nonequilibrium systems with many particles
or degrees of freedom. Motivated by the observation of col-
lective behavior and spatial patterns in schools of fish and
flocks of birds, Vicsek et al. introduced and carried out nu-
merical studies of a model in which each particle �modeled
as a point� moves at a constant speed but with a velocity
direction determined by averaging over the directions of a
large collection of particles in its neighborhood plus a small
random perturbation �25�. This model in two dimensions
�2D� exhibits a nonequilibrium phase transition: at suffi-
ciently high concentration, all particles spontaneously move
in a single direction, thus breaking the rotational symmetry
of the low-concentration state in which particles move in
random directions. This phase transition, which is prohibited
in equilibrium systems by the Mermin-Wagner theorem �29�,
is rationalized within a phenomenological dynamical xy
model �26,27�, which predicts that the MSD of a tagged
particle in two dimensions exhibits superdiffusion at the tran-
sition. In addition, computer simulation of the bird-flocking
model �30� shows that a passive bead, interacting with a sea
of “birds,” exhibits superdiffusion.

The simple bird-flocking model treats only the vector or-
der associated with particle velocity and it assumes that the
particles move relative to a rigid rather than a fluid back-
ground. Recent work �31,32� proposes a theory, allowing for
the possibility of nematic rather than vector order, to de-
scribe the dynamics of anisotropic self-propelled particles
suspended in a background fluid with its own dynamics. This
theory generalizes the equilibrium hydrodynamics of nem-
atogens to a nonequilibrium situation and predicts that an
ordered suspension of self-propelled nematics is unstable at
long wavelength, possibly giving rise to vortices and jets.
This instability has been confirmed in a recent simulation
�33�. The theory also predicts that an isotropic suspension of
self-propelled rods exhibits a viscoelastic enhancement when
macroscopically sheared �32�. In a related study, Joanny and
co-workers derived a set of phenomenological hydrodynamic
equations for an active polar gel, constructed to model the
dynamics of the cytoskeleton �34–36�. Starting with a micro-
scopic model for a system of cross-linked active long fila-
ments, Marchetti and Liverpool �37–39� derived a set of
hydrodynamic equations for active gels that provide consid-
erable physical insight into various instabilities and ordered
phases in these active systems. Continuum equations have
also been derived from the Boltzmann equation �40,41� and
from the results of simulations �33,42–45� directed at under-
standing pattern formation, instabilities, and giant density
fluctuations of a concentrated bacterial bath. Despite all these
theoretical studies, there has so far been no theoretical at-
tempt to quantitatively link phenomenological continuum
hydrodynamiclike theories to the results from microrheologi-

cal experiments and, indeed, there is as yet no satisfactory
analytical theory that explains superdiffusion and related
phenomena in a bacterial bath.

One of the major purposes of this paper is to formulate a
continuum theory, following Ref. �32�, for the dynamics of
bacterial baths and, more importantly, to provide a much-
needed link between theories and microrheological experi-
ments. We provide a simple derivation of the hydrodynamic
equations governing a dilute bacterial bath and show that the
active stress tensor is indeed proportional to the alignment
tensor �31,32� and that there is an active contribution to the
mass flow. Reference �46� argued that this contribution to the
mass flow was allowed by symmetry and that it leads to giant
fluctuations as has been confirmed numerically �43,47�.

To describe the local orientation of the bacteria in the
isotropic phase, we use the Maier-Saupe–de Gennes nematic
alignment tensor rather than the vector order parameter that
one might expect from the fact that individual bacteria swim
in a well-defined local direction and, therefore, have ten-
dency, such as the particles in flocking models, to develop
polar rather than the nematic order. However, a recent simu-
lation �33� provides evidence that a system of mobile rods,
depending on how the active force is applied to them, might
be dominated by nematic fluctuations. Theoretical studies of
active gels �37� also suggest that there is a region in the
phase space where a system of active polar objects has a
preference for nematic rather than polar order. More impor-
tantly, incipient polar order yields a power spectrum which
scales ������−3/2, in clear disagreement with the experi-
ment of Ref. �21�. A detailed theory of how the orientational
order should be described in terms of a microscopic model of
the swimming behavior of bacteria is a subject of another
study.

Having derived nonequilibrium continuum equations, we
linearize them to calculate harmonic-order correlation func-
tions for the velocity field, alignment tensor, and concentra-
tion field of the bacteria. In addition to a renormalization of
the viscosity by active forces propelling the bacteria, as
found previously �32�, we find that a bacterial bath can sup-
port long-wavelength shear waves, which are directly con-
trolled by an activity parameter. Furthermore, we find that
there is an active contribution to the long-time tail in the
velocity autocorrelation function �48� and that the velocity
field is correlated over a finite distance in space. Finally, we
argue that in order to explain microrheological data for the
wild-type bacteria, we must include nonlinear terms, ignored
in Ref. �32�, in the active stress arising from the concentra-
tion fluctuations of the bacteria that we show lead to a noise
spectrum, ������ /��, in excellent agreement with experi-
ments.

This paper is organized as follows. In Sec. II, we give a
simple derivation of the continuum equations for a bacteria
bath. These equations are expected to be valid in the isotro-
pic phase. In Sec. III, we analyze the physics of the bacteria
bath as described by the linearized theory. In Sec. IV, we
show how the theory explains recent experimental observa-
tions. In the Appendix A, we give an exposition of the theory
behind microrheology for active systems. In the Appendix B,
we address briefly noises of nonthermal origins.
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II. DERIVATION OF THE FLUCTUATING
HYDRODYNAMIC EQUATIONS

In this section, we derive a set of equations describing the
continuum dynamics of an active bacterial bath. As discussed
in Sec. I, in order to understand recent microrheological ex-
periments, we need a two-fluid description that treats both
the active bacteria and the solvent in which they are sus-
pended. The standard hydrodynamical variables for such a
two-fluid system are the mass density of the active particles
�A�x , t�, the mass density of the solvent �S�x , t�, and the total
momentum density g�x , t�. For simplicity, we ignore the en-
ergy density field, the temperature field, and the nutrient
fields. To describe the local orientation of the bacteria, we
employ a nonhydrodynamic variable, the symmetric-
traceless alignment tensor Qij�x , t�, which, as expected, de-
cays to zero in finite time in the isotropic phase. We first
develop the phenomenological equations for an equilibrium
two-component nematic liquid crystal in its isotropic phase.
We then add to these equations the forces and torques arising
from the active sources propelling the bacteria. Each bacte-
rium is modeled as an anisotropic rod with force generators
that create a stress field that exerts an average force on and
an average torque about the center-of-mass of a bacterium
�see Fig. 1�. By Newton’s third law, there must also be an
equal and opposite force exerted on the fluid by the bacte-
rium at its surface. The resulting active stress for the effec-
tive medium is obtained simply by adding up these forces for
a collection of bacteria. In agreement previous studies
�32,37�, we find that the active stress is proportional to the
alignment tensor.

We assume that the active particles, as well as the solvent
molecules, are conserved

�t�A = − � · gA, �1�

�t�S = − � · gS. �2�

These two equations imply the conservation of the total mass
density �=�A+�S: �t�=−� ·g, where g�gA+gS is total mo-

mentum density. Following the standard procedure, we set
�49�

gA = �Av + J , �3�

gS = �Sv − J , �4�

where v=g /� is the velocity of the effective fluid and J is the
dissipative mass current �or relative momentum�, which, as
we show below in Sec. II A, contains a crucial active contri-
bution. Note that J can be expressed in terms of the velocity
difference w=vA−vS as

J =
�A�S

�
w . �5�

The conservation of the total momentum implies that

�tgi = − � j�ij + � j	ij
A , �6�

where �ij = p
ij +�viv j −	ij� −	ij
N is the �passive� current for

the total momentum density, which consists of the pressure
p, the standard convective term, the viscous stress 	ij�
=���iv j +� jvi� with a shear viscosity coefficient �, and the
reversible couplings between orientation and flow, 	ij

N, given
by

	ij
N = 	ij

0 + �klij�x�

F


Qkl
, �7�

where 	ij
0 =−��f /�� jQkl��iQkl is the Ericksen-Leslie elastic

stress tensor, �ijkl is a matrix of coefficients describing the
orientation-flow couplings, and F��d3xf�Qij ,�kQij� is the
Landau–de Gennes free-energy functional for the nematics.
Equation �7� can be derived using the Poisson-bracket for-
malism, as was done in Ref. �50�. In Eq. �6�, 	ij

A is the active
contribution to the stress arising from the swimming of the
bacteria. We will discuss this important term in Sec. II A.

We assume that the dynamics of Qij is governed by the
same equation as that for an equilibrium nematics in the
isotropic phase. It can be written as

�tQij = −
Lijkl

2



F

Qkl

− v · �Qij + �ijkl�x��lvk, �8�

where Lijkl�
ik
 jl+
il
 jk− 2
3
ij
kl which ensures the trace-

lessness of Qij. The first term in Eq. �8� is the dissipative
term, the second term is the convective term, and the last
term describes the coupling between orientation and flows.
Note that �ijkl appears in both Eqs. �7� and �8�, as required
for Onsager symmetry. Finally, it will be useful to use the
unitless concentration field of the bacteria defined as c�x , t�
��A /�, whose equation of motion can be written as

�tc = − v · �c −
1

�
� · J . �9�

Note that only in the incompressible limit, i.e., �=const.
does the concentration field obey a conservation law.

A. Derivation of the active stress and the active mass current

Active fluids have extra stresses. The existence and form
of these extra stresses were argued in Refs. �31,32� to follow

Ο

f

x f

f

Wild-type Tumbler

ν

ν

3

1

FIG. 1. A cartoon of a “bacterium” as modeled by an anisotropic
rod. For the wild types, the movements of the flagella �not shown�
of the bacterium create a stress field which exerts an average force
�the drag force� on the center-of-mass of the bacterium along its
long axis and by Newton’s third law, there is a reaction force �the
thrust force� exerted on the fluids through its surface. Thus, the
resulting active stress tensor for the effective medium �bacteria
+fluid� is that of a force dipole, which is proportional the uniaxial
order parameter Qij. For the tumblers, there are opposite forces
exerted on both ends of the rod in the direction perpendicular to its
long axis. The resulting active stress for tumblers is the biaxial
order parameter.
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from simple symmetry arguments and derived from a micro-
scopic model for a similar system in Ref. �37�. Here, we
present a simple and general derivation of these active
stresses and show how they give rise to an additional driven
mass-flow term. We first consider the effect of active forces
alone, then we include other forces that are present when
active forces are not present.

Consider a system of active anisotropic particles, with
internal force generators, imbedded in a fluid background.
We will call these the A particles and we will refer to the
solvent fluid as the S system. Let the center-of-mass �CM� of
A particle � be at position x�. Let r��ũ� be a vector from the
particle’s CM to a position ũ on its surface. The internal
forces generated by the active particle give rise to forces
exerted on the surrounding medium across surface elements
on the particle. These forces in general vary with position the

surface. We define − f̃ i
��ũ�dS� to be the force exerted on the

surrounding medium by the surface element dS� at ũ. The
force exerted at ũ by the medium on the particle is then

f̃ i
��ũ�dS�=−dS�Nj

�	ij
�, where Nj

� is the unit outer normal to
the surface at ũ pointing from the particle to the medium and
	ij

� is the stress tensor of the medium just outside the point ũ
on the surface. Thus, internal force generators give rise to a
force f� and a torque �� about the CM of the particle

f i
� = −	 dSj

�	ij
� �	 dS� f̃ i

�, �10�

�i
� = − �ijk	 dSl

�rj
�	kl

� � �ijk	 dS�rj
� f̃ k

�. �11�

The equations of motion for the momentum, pi
�, of the active

particle and its angular momentum, �i
�, about its CM arising

from the active forces are, respectively, dpi
� /dt= f i

� and
d�i

� /dt=�i
�. The momentum density of the active particles is

thus

gAi�x,t� = 

�

pi
�
�x − x��t�� +

1

2
�ijk� j


�

�k
�
�x − x��t�� .

�12�

Note that we have included the angular momentum in Eq.
�12� in order to satisfy the requirement that time derivative
of total angular momentum, L=�d3xx�g, be equal to the
total torque on the system from all sources, including the
internal total internal torque 
��i

�.
Next, we discuss the forces on the fluid in which the

particles are embedded. As discussed above, each surface

element dSj
��ũ� exerts a force dSj

�	ij
� =−dS� f̃ i

� on the fluid at
the point x�+r��ũ�. Thus, the active particles give rise to the
following contributions to the rate of change of the momen-
tum density of the fluid:

�tgSi�x,t� = − 

�
	 dS� f̃ i

�
�x − x� − r�� . �13�

Therefore, the equation for the time rate of change of the
total momentum density gi�x , t�=gAi�x , t�+gSi�x , t� is

�tgi�x,t� = − 

�
	 dS� f̃ i

�
�x − x� − r��

+ 

�
� f i

� +
1

2
�ijk� j�k

��
�x − x��

=
1

2
� j


�
	 dS�� f̃ i

�rj
� + f̃ j

�ri
��
�x − x�� + ¯ ,

�14�

where we have Taylor expanded the delta function with re-
spect to r� in the first line and retained only the first non-
trivial term �51�. Therefore, the stress tensor arising from the
active particles has a force-dipole contribution of the form
	ij

A �
�dij
�
�x−x��, with

dij
� �

1

2
	 dS�� f̃ i

�rj
� + f̃ j

�ri
�� , �15�

a symmetric force dipole generated by the active forces.

The properties of the forces f̃ i
� are best discussed in the

body frame of the active particles. These forces will have a
nonvanishing average component along specific directions
locked to the body. For example, the force might act only
along the three-direction in the body along the unit vector �3

�.

If the body has a center of inversion, the force densities f̃ i
��ũ�

at point ũ and f̃ i
��ũI� at the inversion point ũI can be decom-

posed into odd and even components and only the odd com-
ponent contributes to dij

�. The forces, in general, also have

stochastic components 
 f̃ i
� that will be sources of noise in the

final continuum equations for the active medium. The nature
of noise and its spectrum will depend on the specifics of the
active particle motion. In particular, the tumbling and run-
ning behavior of wild-type bacteria can be expected to have
a different noise spectrum from that of the tumblers. For the
moment, we will ignore the stochastic parts of the active
forces and focus on the part with fixed value in the body

frame, which we will continue to denote simply as f̃ i
�. In

Appendix B, we will derive the contribution to the con-
tinuum equation noise for a particular model for stochastic
active forces.

We model the active particles as rigid biaxial rods with
orthonormal sets of body axes �1,i

� , �2,i
� , and �3,i

� locked to the
particle �, where we take �3,i

� to be along the longest axis of
the particle and �1,i

� to be along the shortest �see Fig. 1�. We
consider two cases.

Case �1�: Wild type. The active force points on average
along the long or “three” axis. In this case, we can set dij

�

=W̃�3,i
� �3,j

� , where W̃ has units of energy �force times dis-
tance� and we obtain the microscopic contribution

	ij
A�x,t� = W̃


�

�3,i
� �3,j

� 
�x − x�� �16�

to the active stress, which on course-graining can be ex-
pressed in the incompressible limit, when ��x�=� is a con-
stant, as
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	ij
A�x,t� = Wc�x,t�Qij�x,t� +

1

3

ijWc�x,t� , �17�

where W�W̃� /mA, mA is the mass of an active particle,
c�x , t�=�A�x� /� is its concentration field, and

Qij�x,t� �
1

nA�x,t�
�
��3,i

� �3,j
� −

1

3

ij�
�x − x��t�� �18�

is the standard nematic order parameter �49�, where nA�x , t�
=�A�x� /mA is the number density of the active particles. The
second term in Eq. �17�, while contributing to the pressure,
does not play a role in an incompressible medium. Thus, the
stress tensor arising from active forces of the bacteria is in-
deed proportional to Qij, reflecting the symmetric force-
dipole density.

Case �2�: Tumblers. The active particles produce a torque,
which is generated by a force in the �1

� direction at one end
of the long axis and a force of equal magnitude in the −�1

�

direction at the opposite end of the long axis. This leads to

dij
� =W̃��1,i

� �3,j
� +�1,j

� �3,i
� � and to a coarse-grained active stress

	ij
A�x,t� = Wc�x,t�Bij�x,t� , �19�

where

Bij �
1

nA�x,t�
�

��1,i
� �3,j

� + �1,j
� �3,i

� �
�x − x��t�� �20�

is the “biaxial” nematic order parameter. Thus, the active
stress tensor of the tumblers is proportional to a different
order parameter than that of wild-type bacteria. This fact is
crucial to the explanation to the different microrheology of
the two systems because the decay time and the spatial cor-
relation length are much larger for Qij, which has a tendency
to order with increasing rod concentration, than for Bij,
which does not.

We now include interactions that are present when active
forces are turned off. To be specific, we add a frictional force
describing the dissipative slowing down of the motion of
particles A relative to solvent particles S if their velocities are
not equal. The equations for gA and gS are, respectively,

�tgAi = − � j�ij
A − �wi + 
� � f i

� +
1

2
�ijk� j�k

��
�x − x�� ,

�tgSi = − � j�ij
S + �wi − 


�
	 dS� f̃ i

�
�x − x� − r�� ,

where �ij
A and �ij

S are the �passive� currents for the momen-
tum densities of the active particles and solvent molecules,
respectively, and � is a friction coefficient. Adding the equa-
tions for gA and gS yields the equation for the total momen-
tum density for wild-type bacteria

�tgi = − � j�ij + W� jc�x,t�Qij�x,t� , �21�

where �ij =�ij
A +�ij

S is the total passive momentum current of
Eq. �6� and the active stress �assuming wild-types active par-
ticles� is 	ij

A =Wc�x , t�Qij�x , t�. For tumblers, Qij�x� is re-

placed by Bij�x� in this expression. The equation for the dif-
ference of the two momentum densities is

�t�gAi − gSi� = − � j��ij
A − �ij

S � − 2�wi + 2Fi�x�

− W� jc�x�Qij�x� , �22�

where Fi�x , t��
�f i
�
�x−x�� is the coarse-grained average

force density. Thus, in the low-frequency limit, we can set
the left-hand side of Eq. �22� to zero and solve for the ve-
locity difference w as

wi = −
1

2�
� j��ij

A − �ij
S � +

1

�
Fi�x� −

W

2�
� jc�x�Qij�x� .

In the isotropic phase, we expect that the average active
force Fi�x� should be zero and this yields

Ji = −
�A�S

2��
� j��ij

A − �ij
S � −

�A�S

2��
W� jcQij , �23�

where we have made used of Eq. �5�. The first term in Eq.
�23� gives the passive contribution, which must be of the
form Jp=−�D�c �52�, where D is the diffusion coefficient
of the active particles when the active force is turned off. The
second term is the active contribution to the mass current. It
is proportional to Qij as expected. Its dependence on the
densities is slightly different from what a simple generaliza-
tion of mass-flow term in Ref. �31� would give: it has the
extra factor of �A�S /� in front of � jcQij. In the limit of low
volume fraction of the active particles, the prefactor is not
simply a constant.

B. Final equations

Now, we collect all the results from the previous section
and add noise to describe fluctuations of microscopic origin.
We assume that the effective medium is incompressible, ex-
pressed by the condition � ·v=0. The final set of equations
reads

�tgi = − � j�gigj

�
� − �ip + ��2vi + � j	ij

0 + � j��klij


F

Qkl

�
+ W� jcQij + � j	ij

T , �24�

�tQij = −
Lijkl

2



F

Qkl

− v · �Qij + �ijkl�lvk + sij , �25�

�tc = − v · �c + D�2c + �2�ic�1 − c�� jcQij + � · 
J ,

�26�

where �2=W / �2�� and 	ij
T , sij, and 
Ji are random noise

sources whose thermal components have the following cor-
relations:


	ij
T�q,��	kl

T �q�,���� = 2�kBTLijkl
�q + q��2�
�� + ��� ,

�27�


sij�q,��skl�q�,���� =
kBT



Lijkl
�q + q��2�
�� + ��� ,

�28�
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Ji�q,��
Jj�q�,���� = 2c0D�mA/��
ij
�q + q��2�
�� + ��� ,

�29�

where kB is the Boltzmann constant and T is the temperature.
Note that we have assumed that these noises are the same as
those in the equilibrium system. In Appendix B, we consider
the renormalization of the above noise sources from the
model for active stochastic forces. We find that their domi-
nant contributions have exactly the same forms as those in
Eqs. �27�–�29�. Thus, their effect is simply to replace T by an
effective temperature depending on magnitude of fluctua-
tions in the random active forces. We will simply use the
symbol T in what follows to signify the effective tempera-
ture. Our estimate based on a simple model of running and
tumbling suggests the effective temperature is of order 1.25
times the thermal temperature. The active stochastic forces
also contribute other multiplicative terms that depend on the
local value of the density and orientational fields to the noise
correlators. We will ignore these terms in our current analy-
sis. Thus, the noise sources in active media violate FDT as
expected. As we shall see in Sec. III, active stresses also
violate FDT by breaking the Onsager reciprocity symmetry
of transport coefficients. This effect appears to have greater
impact in the present problem than the form of the noise
terms.

III. LINEARIZED THEORY FOR AN ISOTROPIC
ACTIVE BACTERIAL BATH

In this section, we present an analysis of the linear theory
for bacterial bath. In particular, we discuss all the correlation
functions and highlight those behaviors that are different
from those of an equilibrium liquid crystal in the isotropic
phase. We assume the order parameter to be given by the
uniaxial Qij, since we expect that its effects to be more im-
portant than those arising from the biaxial order parameter
Bij.

In the isotropic phase, we expect 
F /
Qij =aQij
−L�2Qij in the one-constant approximation and �ijkl=�Lijkl
to the zeroth order in Qij. The parameter � characterizes the
extent to which a velocity gradient exerts a torque on the
order parameter. Therefore, the equations of motion for the
bacterial bath in the isotropic phase may be written, after
further linearizing Eqs. �24�–�26�, as

��tvi = ��2vi − �ip + �� j�a − L�2�Qij + Wc0� jQij + � j	ij
T ,

�30�

�tQij = −
1

�
�1 − �2�2�Qij + �Lijkl�lvk + sij , �31�

�t
c = D�2
c + �2c0
2�1 − c0��i� jQij + � · 
J , �32�

where c0 is the mean concentration �or mass fraction� of the
bacteria, ��
 /a is the relaxation time, and ���L /a is the
coherence length. � and �, respectively, set the time and
length for the interpretation of the microrheology of active
baths to be detailed in Sec. IV. From the above equations, we
can identify differences between the active theory and the

equilibrium theory: the presence of the active stress term
introduced in Refs. �31,32� 	ij

A =Wc0Qij and the active mass
current term �2c0�1−c0�� jQij. As argued by the above refer-
ences, these terms are allowed by symmetry and absent in
the equilibrium theory. Indeed, we see that these terms break
the Onsager reciprocal theorem and this violation underlies
all the nonequilibrium features in the linear theory of the
model.

A. Velocity correlations

Fourier transforming in space and time and imposing the
incompressibility condition, the momentum equation can be
written as

Gv
−1�q,��vi = − 2�2�aR + Lq2�GQ�q,��q2vi

+ ıMikl�2��aR + Lq2�GQ�q,��skl + 	kl
T � ,

�33�

where aR=a+Wc0 / �2��, Mikl��
ik−qiqk /q2�ql, and
Gv�q ,��=1 / �−ı��+�q2�, and GQ�q ,��=� / �−ı��+1
+�2q2� are the bare propagators for the velocity and the
alignment tensor, respectively. Thus, the propagator for the
velocity field is renormalized

GRv
−1�q,�� = Gv

−1�q,�� + 2�2q2�aR + Lq2�GQ�q,�� . �34�

In particular, we identify a renormalized viscosity

�R�q,�� = � +
2�2��aR + Lq2�

− ı�� + �1 + �2q2�
. �35�

Thus, the effective response of the bacteria bath becomes
viscoelastic, as is the case in an equilibrium nematics in the
isotropic phase �53�. However, unlike an equilibrium nemat-
ics in the limit when a→0, i.e., when the nematics starts to
develop order, Eq. �35� implies a finite shear modulus
G����=−ı��R�q=0,��=�Wc0. This effect has been pointed
out in Ref. �32�.

From Eq. �33�, we see that the random stress for the
fluid is also renormalized 	ij

R�q ,���	ij
T�q ,��+2��aR

+Lq2�GQ�q ,��sij, whose correlation can be readily obtained

	ij

R�q ,��	kl
R �q� ,����=2�
�q+q��
��+����R�q ,��Lijkl,

where

�R�q,�� � 2�kBT +
4�2kBT




�aR + Lq2�2

�2 + �1 + �2q2�2/�2 . �36�

Comparing this to the real part of Eq. �35�, we see that FDT
is broken for a bacterial bath, signifying that the system is far
from equilibrium. The origin of the violation of FDT comes
from the breaking of the Onsager symmetry introduced by
the active forces. Indeed, it is easy to show that the FDT is
restored when W=0. We note that the violation of FDT in
bacterial bath has been demonstrated experimentally in Ref.
�21�.

It is straightforward to obtain the velocity-velocity corre-
lation function, which can be written as 
vi�q ,��v j�q� ,����
=2�
�q+q��
��+���Svv�q ,���
ij −qiqj /q2� with
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Svv�q,�� =
2q2kBT Re �R�q,��

�− ı�� + �Rq2�2

+
�2�Wc0kBT/
��aR + Lq2�q2

�− ı�� + �Rq2�2��2 + �−2�1 + �2q2�2�
.

�37�

The first term in Eq. �37� is the “equilibrium” correlation
function but with the activity renormalized viscosity of Eq.
�35�, whereas the second term is the nonequilibrium contri-
bution arising from the activity of the bacteria. We note that
Eq. �37� cannot be written so that a proper effective tempera-
ture can be defined. The time-dependent correlation
function of the velocity field, 
vi�q , t�v j�−q ,0��
��
ij −qiqj /q2�Svv�q , t�, follows from Svv�q , t�
=�d�Svv�q ,��e−ı�t / �2��, which can be explicitly integrated
to give

Svv�q,t� = �kBT/���S̃vv
P �q,t� + S̃vv

A �q,t�� , �38�

where

S̃vv
P �q,t� =

��+ − �q2�e−�−t − ��− − �q2�e−�+t

�+ − �−
, �39�

S̃vv
A �q,t� = ��Wc0�2

�
� q2�1 +

Wc0

2�a
+ �2q2�

��t��2��c����+ − �−�

���+e−�−t − �−e−�+t� , �40�

where ��� /� is the kinematic viscosity, �c�q���q2

+�−1�1+�2q2�,

�t
2�q� � q2��Wc0

�
+

1

�
�1 + �2q2��� +

2�2�a

�
�� , �41�

and ���q�� 1
2 ��c���c

2−4�t
2� are the two modes of the sys-

tem.
Let us first analyze the spatial correlation of the velocity

field at equal time. Setting t=0 in S̃vv
P �q , t� and S̃vv

A �q , t� and
Fourier transforming back to real space, we find


v�r,t� · v�0,t��

=
2kBT

�

�r� +

2kBT

�
� W�

4��2r
�

���W�

a�
+

��

1 + ��
�e−r/�+ −

W�

a�
� ��

�� + a�
�e−r/�a� ,

where �+
2 ��2�1+���, �a

2��2���+a�� / ���+a�+W��, and we
have defined dimensionless quantities W���Wc0�2 / ���2�,
a��2�2�2a / ���2�, and ����� /�2. Thus, in contrast to an
equilibrium system, the velocity field for the bacterial bath is
correlated over a region whose size is of the order of �.

In Fig. 2, we have plotted the velocity fluctuation spec-
trum, which illustrates interesting physics that is specific to
an active system. For equilibrium nematics in the isotropic
phase �54�, W=0, we expect that on the time scales of sec-
onds and length scales of microns, ���q� are real and
Svv�q ,�� has a peak centered at zero frequency and Svv�q , t�
decays exponentially in time �see Fig. 2�. In contrast, for an
active system, there is a peak in Svv�q ,�� at nonzero fre-
quency when W is sufficiently large as illustrated in Fig.
2�a�. Indeed, Svv�q , t� becomes oscillatory in time �see Fig.
2�b��. This signals the onset of shear waves in the system
�55� and it occurs roughly when W��Wc��1−a�
+�1+��−2a�. The existence of shear waves is intimately
related to the renormalization of the viscosity from the active
stress and it might be related to the spatially correlated struc-
tures, such as vortices and jets, often observed in these sys-
tems. Indeed, available data on velocity correlation show os-
cillatory behavior in time, consistent with above �7�. Note
that in order to observe the effects of shear wave, the flow-
alignment coupling parameter, �, should not be too small.
However, even for systems in which �=0, the activity
would enhance the amplitude of the long-time tails

v�r , t� ·v�r ,0���W2t−3/2 as t→�, as can be calculated from
Eq. �40�. This enhancement of the long-time tail in the ve-
locity field has also been pointed out in Ref. �32�.

B. Correlation functions for the alignment tensor and the
concentration of the bacteria

Next, we explore the dynamics of the alignment tensor.
Because of the couplings to the velocity field, the five origi-
nally identical modes for the components of the alignment

2 4 6 8 10
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ωτ

qξ = 2
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S
(q
,
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)

v
v W = 0

W = 2

1 2 3

0
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3

t/τ

(b)

S
(q
,
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v
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W = 2

(b)(a)

FIG. 2. Plots of the velocity-velocity correlation functions in frequency space �a� Svv�q ,�� �in units of kBT� /�� and in time �b� Svv�q , t�
�in units of kBT /�� with no active force W=0 �dashed lines� and with active force W�=2 �solid lines� with wave numbers q�=2,
a�=0.237, and ��=0.025.
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tensor split into three identical longitudinal and two identical
transverse components and the correlation function for the
alignment tensor can be written as 
Qij�q ,��Qkl�q� ,����
= �2��4
�q+q��
��+����SQQ

L �q ,���Lijkl−Pijkl�
+SQQ

T �q ,��Pijkl�, where

Pijkl = q̂iq̂l
kj + q̂jq̂l
ki − 2q̂iq̂jq̂kq̂l + �k ↔ l� , �42�

with q̂i�qi /q and

SQQ
L �q,�� �

�kBT/
�
�2 + �−2�1 + q2�2�2 , �43�

SQQ
T �q,�� �

kBT Re 
R
−1

�− ı� + 
R
−1�a + LR�q,��q2��2

, �44�

where 
R
−1�q ,��=
−1+2�2q2 / �−ı��+�q2� is the renormal-

ized dissipation coefficient for the alignment tensor. Equa-
tion �44� has a renormalized elastic constant for the active
nematics given by

LR�q,�� � L +
�Wc0


− ı�� + �� + 2�2
�q2 . �45�

It is interesting to note that only the transverse part of the
nematic fluctuations is renormalized as a result of the cou-
plings to the flow. Note also that unlike velocity field corre-
lations, Eqs. �43� and �44� do respect FDT.

Finally, the concentration fluctuation is coupled to Qij via
the novel activity-driven mass-flow term in Eq. �32�. There-
fore, we expect that the concentration fluctuations are greatly
enhanced. Note that the concentrations only coupled
to the longitudinal part of the Qij. The concentration corre-
lation function can be written as 

c�q ,��
c�q� ,����
=2�
�q+q��
��+���Scc�q ,��, with

Scc�q,�� =
2c0Dq2

�2 + D2q4 +
4�2

2c0
4�1 − c0�2q4SQQ

L �q,��
3��2 + D2q4�

.

�46�

Note that the second term in Eq. �46� is proportional to c0
4,

which signifies that for high concentration of bacteria, the
concentration fluctuations become significant. This is be-
cause this term in the static correlations



c�q�
c�− q�� = c0 +
2�kBT/
��2c0

4�1 − c0�2�2
2q2

3D�1 + q2�2��1 + q2��2 + D���
�47�

goes like 1 /q2 when the correlation length � diverges. These
giant fluctuations in the ordered phase were pointed out in
Ref. �31�.

IV. MICRORHEOLOGY OF AN ACTIVE BACTERIAL
BATH: THE ROLE OF NONLINEARITY

Microrheology �56–59� has recently emerged as an im-
portant experimental tool for probing the mechanical proper-
ties of equilibrium soft materials, requiring access to only
miniscule sample volumes while probing a broader range of

frequencies than conventional rheometry. In a typical mi-
crorheology experiment, the complex shear modulus of a
material is extracted from the microscopic motions of
micron-sized tracer particles dispersed in it. There are two
common techniques. In active microrheology, the shear
moduli of soft materials are inferred from the displacements
of tracer particles produced by external forces of either op-
tical or magnetic origin. In passive microrheology, the dis-
placement correlation function is instead measured by track-
ing the thermal motion of the tracers. In equilibrium systems,
the FDT �49� assures us that both techniques yield the same
information. Recently, the conventional one-point passive
microrheology, i.e., tracking of single isolated particles, was
shown to be inadequate for extracting bulk properties of in-
homogeneous materials �22�. This limitation has been over-
come by a new method, two-point microrheology, in which
the cross-correlated thermal motion of pairs of embedded
tracer particles is used to determine the complex shear modu-
lus of the surrounding medium �22,60�. Its success has been
demonstrated in a variety of model systems, such as DNA
solutions �61� and F-actin solutions �22� in thermal equilib-
rium. The theoretical justification of one-point and two-point
microrheology in a thermal setting is given by Refs.
�60,62,63�.

To extend these new experimental techniques to active
biological systems such as living cells or bacterial bath, we
must first address two fundamental questions. �i� Given that
active systems are nonequilibrium systems in which the FDT
does not apply, what useful information can one extract from
passive microrheological data? �ii� Given the high degree of
heterogeneity of biological systems such as the cell cyto-
plasm, does two-point microrheology apply equally well to
active inhomogeneous media? In Ref. �14�, we have success-
fully generalized the equilibrium framework of microrheol-
ogy to nonequilibrium situations to justify passive microrhe-
ology for active systems �for a brief exposition, see
Appendix A�. Our main result is that active elements give
rise to additional stress fluctuations in the medium, with a
power spectrum ���� that can actually be extracted using
passive two-point microrheology via �14�

Drr�R,�� =
����

6�R�G�����2
, �48�

where Drr�R ,�� is the cross correlation of pairs of tracer
particles a distance R apart and G���� is the shear modulus
of the material. Note that G���� must be measured by an
independent response measurement. It is important to em-
phasize that a hydrodynamic theory is related to ����, which
equals to the stress fluctuation spectrum of the medium in the
long-wavelength limit. Note that the latter limit is valid if R
is greater than the typical length scale of the medium, i.e.,
the coherence length. This framework was successfully ap-
plied to living cells, providing important insight into the in-
tracellular stress fluctuations arising from motor activities
�14,64�.

In Ref. �21�, this framework was used to interpret mi-
crorheological experiments on a bacterial bath. First, from
the response measurements, the viscosity for a bacterial bath
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at low volume fraction was found not to differ from that of
pure water at the low volume fractions under study for both
wild-type and tumbler baths. Using Eq. �48�, the power spec-
trum thus extracted is Lorentzian for the tumblers and scales
such as ������ /�� for the wild type. The former observa-
tion implies that the flow-orientation coupling parameter � is
small ���1� and, therefore, we can set �=0 in Eqs. �30� and
�31�, so that there is no renormalization of the viscosity from
activity even in the presence of the active stress. The role of
the active stress then is to provide an additional source of
stress fluctuations. From Eq. �36�, we see that the power
spectrum is Lorentzian ����=�T+W2c0

2�2�kBT /
� / �1
+ ����2�, where �T�2�kBT is the “thermal” contribution.
While it explains the data for tumblers, a linear theory cannot
explain the 1 /�� behavior for the wild types. What is miss-
ing? One of the key assumptions of the linearized theory is
that we assumed c�x , t�=c0 in the equations for vi and Qij,
i.e., bacteria are homogeneously distributed. While this as-
sumption seems reasonable for tumblers, since they do not
move around much, it can hardly be justified at all for the
wild type. Since the wild types are swimming around, it is
conceivable that their density fluctuates significantly in space
and time. Indeed, recent numerical work confirms the giant
fluctuations in the nematic phase. Here, in the isotropic
phase, we expect that the contribution is not negligible. This
suggests that we have to include density fluctuations of the
bacteria.

The full active stress 	ij
A�x , t�=Wc0Qij�x , t�

+W
c�x , t�Qij�x , t� has an average part 
	ij
A�x , t��

=W

c�x , t�Qij�x , t��, which is zero in the isotropic phase.
The Fourier transform of 

	ij

A�x , t�
	kl
A �x� , t��� has the form



	ij
A�q ,��
	kl

A �q� ,����=2��A�q ,��Lijkl
�q+q��
��+���,
where

�A�q = 0,�� =
W2c0

2�2�kBT/
�
1 + ����2

+ W2	 d3k

�2��3	 d��

2�
Scc�k,���SQQ�k,� − ���

+
W2

15
	 d3k

�2��3	 d��

2�
ScQ�k,���ScQ

� �k,� − ���

�49�

and ScQ�q ,���2�2c0
2�1−c0�q2SQQ

L �q ,�� / �−ı�+Dq2�. Note
that the last two terms arise specifically from density fluc-
tuations of the bacteria. Using Eq. �46�, we see that the sec-
ond term in Eq. �49� has a term proportional c0 and a term
proportional to c0

4. The third term in Eq. �49� is also propor-
tional to c0

4. Thus, we find that ����=�T+�A�q=0,��, as
measured by passive two-point microrheology can be written
as

���� = �T + �0� f1���;b� +
k1

1 + ����2 + k2f2���;b�� ,

�50�

where �0�W̃2�0�2kBT / �4�vB
�3�, k1�4��0�3 /vB, k2

�2W̃2�0
3�kBT / �3
vB

3�2D2�, vB is the volume of a bacterium,
b�D� /�2, and

f1�x;b� �
1

��1 + b
	

1

�

du
u�u − 1�1/2

�u + b��x2 + u2�
, �51�

f2�x;b� �
b

��1 + b
	

1

�

du
�u − 1�3/2

�u + b��x2 + u2�

�
1

��1 − b�u + 2b��1 +
2b�u − 1�
5�1 + b�u�

−
2b2

�
	

1

�

du
�u − 1�5/2

u��1 + b�u − b��x2 + 4u2�

�
1

��1 − b�u + b��1 −
b�u − 1�

5u
� . �52�

Note that each of these integrals can be done analytically, but
their expressions are too complicated to reproduce here.
However, it is straightforward to see that the power spectrum
is dominated by f1 which scales as f1�x��1 /�x for x�1 and
this explains the 1 /�� spectrum observed in experiments
and, hence, superdiffusion exhibited by tracer particles in a
bacterial bath.

We have fit Eq. �50� to the experimental data of Ref. �21�
for the wild-type bacteria at volume fraction of �=3�10−3,
with excellent agreement �see Fig. 3�. The best-fit values are
��7.51 s, �0=1.6�10−22 J2 s /m3, k1=0.29, k2=8.9, and
b=0.1. The quality of the fit depends sensitively on the val-
ues of � and �0, but not on k1, k2, and b as long as they are
not too big. Using the fact that k1=4��0�3 /vB�0.29 and
vB�20 �m3, the effective volume of an E. coli bacterium,
we find that ��10 �m, which is consistent with experimen-
tal observation. Next, using b=D� /�2�0.1, we find D
�1 �m2 /s, consistent with that of a diffusion coefficient for
a passive micron-sized passive particle �see Eq. �23� above�.
Additionally, estimating that 
�kBT� /vB, we have �0

�W̃2�0� / �4��3�. Interpreting W̃ as the energy scale for a
typical bacterium to swim with a typical speed of v
�20 �m /s against the frictional force arising from the fluid

for a typical distance of d�v�, we find W̃�10−17 J. There-

fore, we find �0=W̃2�0� / �4��3��10−22 J2 s /m3, which

∆(
ω

) (
J
2
s
/m
3
)

ω (rad/s)

ω - 0.5

φ = 0.003

FIG. 3. The power spectrum of the stress fluctuations, ����, as
measured by two-point passive microrheology of a wild-type bac-
terial bath with a volume fraction of ��10−3. Solid line is the best
fit of our theoretical model, Eq. �50�, to data from Ref. �21�. The
best-fit values are b=0.1, k1=0.29, k2=8.9, �0=10−22 J2 s /m3, and
�=7.54 s.
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agrees with experiments. Finally, estimating that ��� /�2,

we find k2�2W̃2�0
3�2 / �3vB

2b2�2��10, agreeing with the ex-
periments. Given these agreements, we are convinced that
our model captures the essential nonequilibrium fluctuating
hydrodynamics of a bacterial bath.
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APPENDIX A: MICRORHEOLOGY
FOR ACTIVE SYSTEMS

In this appendix, we show, based on a phenomenological
model, how two-point microrheology experiments in con-
junction with response experiments extract information
about the activity of active elements in the form of a power
spectrum of stress fluctuations in active systems despite their
heterogeneity. Microrheology relies on the generalized
Langevin equation �GLE� �49� for the velocity v of a tracer
particle

m�tv�t� = − 	
−�

t

dt�
�t − t��v�t�� + fE�t� + fR�t� , �A1�

where m is the mass of the tracer particle, fE�t� is the external
force, and fR�t� is the random force arising from the medium.
The friction function 
��� is related to the viscoelasticity of
the embedding medium through boundary conditions at the
surface of the tracer particle. If the medium is incompressible
and isotropic, its mechanical response is characterized by a
frequency-dependent complex shear modulus ����
�−i�����=�����− i����� �65�, where ����=�����
+ i����� is the complex shear viscosity. Thermodynamic sta-
bility requires �����=������0. In such a medium, Stokes
law states that 
���=6�a���� / �−i�� �57�, where a is the
radius of the particle. In the active scheme, fR�t� can be set to
zero; Fourier transforming the GLE equation, we obtain the
displacement r���=����fE���, where ����=−1 / �i��−im�
+
����� is the response function.

Passive microrheology measures quantities related to the
correlation function Crirj

�t ,0�= 
ri�t�rj�0��, whose Fourier
transform can be calculated with the aid of Eq. �A1� in terms
of the random noise spectrum IR���,

Crirj
��� = 
ij

IR���
�2�− im� + 
����2

. �A2�

In thermal equilibrium, this correlation function is related
through the FDT to the response function ����,

Crirj
��� = 
ij

2kBT

�
Im ���� =

2kBT
����
ij

�2�− im� + 
����2
�A3�

�
ij
kBT

3�a

�����
�������2

. �A4�

Comparing Eqs. �A2� and �A3�, we conclude that IR���
=2kBT
����. The final form in Eq. �A4� is valid in the win-

dow �a����b, with the lower frequency �a�10−2 Hz set
by the compressional mode of the network and upper fre-
quency �b�105 Hz by inertial effects �63�.

In an active system, active elements not only modify the
viscoelastic response of the medium, they also give rise to
random, nonthermal stress fluctuations that cause tracer par-
ticles to be subjected to random nonthermal forces. In what
follows, we relate one- and two-particle correlation functions
measured in passive microrheology experiments to stress
fluctuations and response to external forces. We start by pos-
tulating that an active system at large length scale effectively
is an incompressible, viscoelastic medium characterized by a
displacement field u�x , t�, whose equation of motion is given
by

�
�2ui

�t2 = � j	ij�x,t� + f i�x,t� , �A5�

where � is the coarse-grained mass density and f i�x , t� is the
nonthermal random force density arising from the active par-
ticles, such as motors or bacteria, and 	ij�x , t� is the stress
tensor. Within linear-response theory, the stress 	ij�x , t� is
related to the strain by 	ij�x ,��=2����uij�x ,��, where uij
= �� jui+�iuj� /2 is the strain tensor and ���� the frequency-
dependent shear modulus describing the elastic response of
the cytoplasm. To construct the random force f i�x , t�, we note
that there should be no net external force in a stationary cell
and, therefore, it must take the form f i�x , t�=� jsij�x , t�, where
sij�x , t� is a random stress tensor whose average is zero. If we
assume that stress fluctuations are local in space, then the
stress correlation function is given by


sij�x,��skl�x�,���� = 2�����
�� + ���
3�x − x��

��
ik
 jl + 
il
 jk −
2

3

ij
kl� ,

�A6�

where ���� is the power spectrum of the stress fluctuations
whose microscopic origin is the activity of the motors. The
form of Eq. �A6� is not surprising. Stress fluctuations in ther-
mal equilibrium systems �66� have an identical form but with
���� replaced by 2kBT����� /�.

1. One-point microrheology

To relate our phenomenological model to microrheology
experiments, we put a tracer particle of radius a in this ran-
dom medium and ask: what forces are exerted on this par-
ticle by random stress fluctuations? Let us assume that the
tracer particle situated at the origin undergoes a displacement
�i�t�. First, we decompose u�x , t� into an average part and a
fluctuating part u�x , t�=u�x , t�+ ũ�x , t�. The equations of mo-
tion in term of these variables are −��2ui�x ,��=� j	̄ij�x ,��
and −��2ũi�x ,��=� j	̃ij�x ,��+ f i�x ,��, with the boundary
conditions that ui��x�=a ,��=�i��� and ui��x� ,��→0, as �x�
→�, and ũi��x�=a ,��=0 and ũi��x� ,��→0, as �x�→�.
The total force exerted by the medium on the particle has

two components: the systematic �average�, F̄i���
=�S0

dSn̂j	̄ij�x ,��, and random parts, F̃i���
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=�S0
dSn̂j	̃ij�x ,��, where 	̄ij =2����ūij and 	̃ij =2����ũij

are, respectively, the average and fluctuating stresses and n̂j
is the unit surface normal pointing toward the center of

the particle. It is straightforward to compute F̄i���
=6�a����� j���
ij �52�. The evaluation of the spectrum

Iij
R����
F̃i���F̃j�−��� of the random force is more compli-

cated. Consider the following integral �67�:

J = 	
V0

d3x�ui�x,��� j	̃ij�x,�� − ũi�x,��� j	̄ij�x,��� ,

where V0 is all space excluding the region occupied by the
particle. After integrating by parts and using Green’s theo-

rem, we can transform this integral into J=�i���F̃i���. Al-
ternatively, we can make use of Eq. �A5� to obtain J
=�V0

d3xui�x ,��f i�x ,��. Through these two forms of J, we
find

�i���F̃i��� = 	
V0

d3xui�x,��f i�x,�� , �A7�

from which Iij
R��� can be directly computed

�i��1�� j��2�
F̃i��1�F̃j��2��

= 	
V0

d3xd3x�ui�x,�1�u j�x�,�2�
f i�x,�1�f j�x�,�2�� .

Using Eq. �A6� and again Green’s theorem, we obtain

�i��1�� j��2�
F̃i��1�F̃j��2��

= 2����1�
��1 + �2��i��1�
F̄j��2�
���2�

+ O��2
2� . �A8�

From the result for F̄i��� above, Eq. �A8� implies that the
spectrum of the random noise on the tracer particle is given

by Iij
R����
F̃i���F̃j�−���=6�a����
ij. These results com-

bined with the effective Langevin equation for the tracer par-

ticle, −m�2�i���=−6�a�����i���+ F̃i���, imply that if in-
ertial effects can be ignored, the correlation function of the
tracer displacements is


�i���� j�− ��� =
����

6�a������2

ij , �A9�

a quantity that is directly measured in passive one-point mi-
crorheology experiments. This result shows that �i� the tracer
can exhibit superdiffusive behavior provided ���� diverges
sufficiently at small � and �ii� if an independent measure of
���� exists, then ���� can be sensibly extracted from pas-
sive correlations of tracer particles. However, this argument
based on one-point data may not accurately reflect con-
tinuum fluctuations because of the heterogeneities in the me-
dium, an issue that we now address.

2. Two-point microrheology

It has recently been shown theoretically that two-point
microrheology which measures the correlated fluctuations of

two tracers, separated in space, extracts bulk rheological
properties �60�. However, the derivation of this result is also
based on FDT; thus, we must now show that within our
phenomenological approach, our main conclusion from Eq.
�A9� above, where we have assumed a homogeneous me-
dium, still holds for a heterogeneous medium using two-
point microrheology. For simplicity, we assume that the het-
erogeneities near the vicinity of the tracers are well reflected
by a local effective shear modulus ����� which may be dif-
ferent from ���� in the bulk. Let particle 1 �2� at x�x��
undergo a displacement �i

�1������i
�2�����. Generalizing the ar-

gument above for the single particle, we have the relation

�i
�1����F̃i

�1���� + �i
�2����F̃i

�2���� = 	
V0

d3xui�x,��f i�x,�� ,

where the integration is over all space excluding the regions
occupied by both particles. Multiplying the above equation
by its complex conjugate and making use of Eq. �A6�, the
noise correlators can be formally identified


F̃i
�n����F̃j

�m��− ��� = �����ij
−1�n,m��− ��/��− �� ,

�A10�

where �ij
�n,m���� is the two-particle response matrix �62�

given by �ij
�1,1����=


ij

6�a����� and �ij
�1,2����=

R̂iR̂j

4�R���� +

ij−R̂iR̂j

8�R����
to the lowest order in 1 /R, where R��x−x��, the distance

between the two particles and R̂�R /R. For identical par-
ticles, symmetry implies that �ij

�1,1����=�ij
�2,2���� and

�ij
�1,2����=�ij

�2,1����, which in turn implies Iij
�1,1����

=Iij
�2,2���� and Iij

�1,2����=Iij
�2,1����. It is straightforward to in-

vert the response matrix to obtain the noise correlators using
Eq. �A10�. The results show that if inertial effects are not
important, the equation of motion for �i

�1���� and �i
�2����,

�i
�m����=
n�ij

�m,n����F̃j
�n����, implies that the one-particle

correlation function 
�i
�1����� j

�1��−��� depends in a compli-
cated way on ����� and ����, which may not yield reliable
results. In contrast, the cross-correlation function, which is
measured directly by two-point microrheology �22� and
which to the lowest order in 1 /R satisfies

Drr�R,�� �
1

2

�i

�1�����i
�2��− ��� =

����
6�R������2

,

�A11�

depends only on ���� and ���� in the bulk and, moreover,
does not depend on the tracers’ size, shape, or boundary con-
ditions.

APPENDIX B: NONTHERMAL NOISES
FROM ACTIVE FORCES

In this appendix, we discuss briefly the renormalization of
the noises, Eqs. �27�–�29�, arising from nonthermal sources.
These nonthermal sources may come from fluctuations in the
active forces exerted across the surface of an active particle,
in general, and from the run-and-tumble dynamics of E. coli,
in particular �68�. We find below that there are additive as
well as multiplicative noises that contribute to the random
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noises of the momentum equation, Eq. �24�, and of the con-
centration equation, Eq. �26�. The multiplicative noises,
which depend on the local values of the alignment tensor and
the concentration field of the active particles, require a more
elaborate analysis and we defer its study for a future publi-
cation. Here, we are only interested in those terms that have
the same structures as those in Eqs. �27� and �29�. Note also
that in our �simple� treatment of the bacterial bath, the noise
term for the alignment tensor equation, Eq. �28�, remains
unchanged. In order to estimate the order of magnitude for
nonthermal contributions, we briefly study a simple model of
the force fluctuations arising from the run-and-tumble
switching dynamics of E. coli. We find that all the noises are
proportional to the number density of active particles, which
we take to be small, and thus conclude that for the system we
are studying, they should not be important, justifying ignor-
ing these active force-generated noises to the order that we
are calculating in Secs. III and IV.

1. Stress

Using the definition of the active stress, 	ij
A�t�

�
�dij
��t�
�x−x��t��, we can write its fluctuations at time t

arising from surface force fluctuations as


	ij
A�t� = 


�


dij
��t�
�x − x��t�� , �B1�

with


dij
��t� =

1

2
	 dS��
 f̃ i

��t�rj
��t� + 
 f̃ j

��t�ri
��t�� , �B2�

where 
 f̃ i
��t�= f̃ i

��t�− 
 f̃ i
��t�� f is the deviation of the local

force at point ũ� from its average 
 f̃ i
��t�� f. We assume

that 
 f̃ i
��t� is Gaussian distributed with variance



 f̃ i
��ũ� , t�
 f̃ j

��ũ�� , t��� f =
���ij
f �ũ��
�ũ�− ũ���
�t− t�� and a

noise strength �ij
f �ũ�� given by

�ij
f �ũ�� = �1�ũ��Ni�ũ�,t�Nj�ũ�,t�

+ �2�ũ���
ij − Ni�ũ�,t�Nj�ũ�,t�� , �B3�

where Ni�ũ� , t� is the unit normal to the surface of the active
particle at point ũ�. Of course, more complicated tensorial
forms for �ij

f are possible: in Eq. �B3�, we treat the two
directions on the surface perpendicular to the normal as
equivalent. Using Eqs. �B1�–�B3�, we can calculate the
stress fluctuations as 

	ij

A�x , t�
	kl
A �x� , t��� f =�ijkl

f �x , t�
�x
−x��
�t− t��, with

�ijkl
f �x,t� =

1

4
Tijkl�x,t� +

1

4
�
ikRjl�x,t� + 
ilRjk�x,t�

+ 
 jkRil�x,t� + 
 jlRik�x,t�� , �B4�

where Tijkl�x , t��
�Tijkl
� �t�
�x−x��t��, Rij�x , t�

�
�Rij
��t�
�x−x��t��,

Tijkl
� �t� =	 dS����1�ũ�� − �2�ũ����Ni

��t�Nk
��t�rj

��t�rl
��t�

+ Nj
��t�Nl

��t�ri
��t�rk

��t� + ij ↔ kl�� , �B5�

and

Rij
��t� =	 dS��2�ũ��ri

��t�rj
��t� . �B6�

Therefore, fluctuations in the active forces in the bacteria
contribute a nonthermal noise to Eq. �24� in addition to the
thermal component, Eq. �27�. The correlation of the nonther-
mal noise has the form given in Eq. �B4�. Clearly, Eq. �B4�
has a far more complicated structure than that of the thermal
noise, as it contains terms that are proportional to the align-
ment tensors. Thus, we face the problem of multiplicative
noise and an interpretation of which algebra the noise applies
may be necessary �69�. To simplify our discussion, we will
ignore these terms and extract from Eq. �B4� the isotropic
part, whose correlation has the same structure as that of the
thermal noise in Eq. �27�. To that end, we decompose

Tijkl�x , t� and Rij�x , t� into respective parts T̃ijkl and R̃ij that
are fully symmetric and traceless and parts that are not,

T̃ijkk= T̃iikl= T̃ijil=0 and R̃ii=0, and introduce the notation

Tiikl = Tkl
�1� = Tklii, Tii

�1� = Tiikk = T�1�,

Tikil = Tkl
�2� = Tkiil, Tii

�2� = Tikik = T�2�,

Rii = R, T̃ij
�a� = Tij

�a� −
1

3

ijT

�a�, �B7�

where a=1,2, so that

Tijkl = T̃ijkl −
2

7
�
ikT̃jl

�1� + 
 jlT̃ik
�1� + 
ilT̃jk

�1�

+ 
 jlT̃ik
�1� −

5

2
�
ijT̃kl

�1� + 
klT̃ij
�1���

+
3

7
�
ikT̃jl

�2� + 
 jlT̃ik
�2� + 
ilT̃jk

�2�

+ 
 jlT̃ik
�2� −

4

3
�
ijT̃kl

�2� + 
klT̃ij
�2���

+
1

10
�
ik
 jl + 
il
 jk −

2

3

ij
kl��T�2� −

1

3
T�1��

+
1

9

ij
klT

�1�, �B8�

Rij = R̃ij +
1

3

ijR , �B9�

where T̃ijkl is traceless with respect to contraction of any pair
of indices. Note that the only terms that survive averaging in
the isotropic phase are those composed from the Kronecker

’s �the last two in Tijkl and the last one in Rij�. The other
anisotropic terms would, however, contribute fluctuation cor-
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rections to correlation functions. In terms of these tensors,
Eq. �B4� can be rewritten as

�ijkl
A �x,t� =

1

6
�
ik
 jl + 
il
 jk −

2

3

ij
kl�

��R�x,t� +
3

20
T�2��x,t� −

1

20
T�1��x,t��

+
1

36

ij
kl�4R�x,t� + T�1��x,t�� + ¯ , �B10�

where we only display those parts of �ijkl
A that are propor-

tional Lijkl�
ik
 jl+
il
 jk− 2
3
ij
kl and 
ij
kl. They have ex-

actly the same forms as those arising from thermal fluctua-
tions. Note that R�x , t��
�Rii

��t�
�x−x��t�� and

Rii
��t� =	 dS��2�ũ��r��t� · r��t� = A�2r2 �B11�

does not depend on t. Here, A is the surface area of the

active particles and R̄��2r2 is the average over the surface
of �2�ũ�� times the squared distance from the center of mass

to a point on the surface. Thus, R�x , t�=AR̄nA�x , t�, where
nA�x , t� is the number density of active particles. Similarly,
we find T�a��x , t�=AT�a�nA�x , t�, where

T�1� �
4

A	 dS��1�ũ� − �2�ũ���Ni�t�ri�t��2,

T�2� �
2

A	 dS��1�ũ� − �2�ũ���r2 + �Ni�t�ri�t��2� ,

which are independent of t. Thus, there is a well-defined

transverse noise with strength AnA�x , t��20R̄+3T�2�

−T�1�� /120 and a well-defined longitudinal noise with

strength AnA�x , t��4R̄+T�1�� /36 that directly renormalize the
temperature.

2. Concentration current

Fluctuations in the active forces generated by the active
particles also lead a nonthermal noise to the concentration
equation, Eq. �26�, in addition to the thermal component, Eq.
�29�. It follows from the definition of the concentration cur-
rent,

J =
�A�S

�
w , �B12�

and the velocity difference calculated in Sec. II A,

wi = −
1

2�
�i��ij

A − �ij
S � +

W

2�
� j�cQij� +

1

�
Fi�x,t� ,

�B13�

where

Fi�x,t� = 

�

f i
��t�
�x − x�� . �B14�

In Sec. II A, we ignore the average of Fi because it would be
proportional to a polar order parameter. We cannot, however,

ignore its fluctuations. Using Eq. �B3�, we find


Fi�x,t�F j�x�,t��� f = A
�x − x��
�t − t��nA�x,t�

��� 1
3 �̄1 + 2

3 �̄2�
ij + P̄Qij�x,t�� ,

where

P̄ =
1

2A	 dS��1�ũ� − �2�ũ���3�Ni�3,i�2 − 1� . �B15�

The fluctuation in J, which contributes an additional noise
source for the concentration equation, follows directly from

Fi�x , t�F j�x� , t��� f. The first term in this expression has the
same form as the thermal noise, except that it is proportional
to particle density, i.e., multiplicative noise. Note also that
since we do not concern ourselves with polar order param-
eters, the cross correlation between Ji and 	ij

A vanishes.

3. Simple model for wild-type bacteria

A simple model for the fluctuating active forces generated
by a wild-type bacterium is to take account of its run-and-
tumble dynamics. We write the surface force per unit area
generated by the active particle as

f̃ i
��t� = fr�1 − s��t���3,i

� 
2�r� − �r�3
��

+ f ts
��t���1,i

� 
2�r� − �t�3
�� − �1,i

� 
2�r� + �t�3
��� ,

�B16�

where �i are the length scales associated with the force and
torque generated by an active particle, fr and f t are the aver-
age forces generated by the bacterium when it is running and
tumbling, respectively, and s��t� is a stochastic variable
which models the run-and-tumble dynamics of the bacteria.
From Eq. �B16�, it is clear that when a bacterium is in a
running state, s=0, there is a force pointing along the long
axis of the bacterium and when the bacterium is in a “tum-
bling” state, s=1, there is a torque about the CM of the
bacterium. We assume that there is no correlation among the
bacteria switching dynamics and that a bacterium switches
its states at random times with a probability per unit time, pt,
to switch from running to tumbling and a probability per unit
time, pr, to switch from tumbling to running. For such a
process, the correlation functions for s��t� are well known
�70�,


s��t�� =
pt

pr + pt
, �B17�



s��t�
s��t��� =
prpt

�pr + pt�2e−�pr+pt��t−t��
��

�
prpt

�pr + pt�3
�t − t��
��, �B18�

where in the last line, we have approximated the exponen-
tially decay function in time by a delta function. Using these
results, the fluctuations in the active stress arising from run-
and-tumble dynamics can be calculated and it takes the form
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	ij
A�x,t�
	kl

A �x�,t���s =
prpt�ijkl

s �x,t�
�pr + pt�3 
�t − t��
�x − x�� ,

�B19�

with

�ijkl
s �x,t� = Wr

2Tijkl
�1� �x,t� − WrWtTijkl

�2� �x,t� + Wt
2Tijkl

�3� �x,t� ,

�B20�

where Wr� fr�r, Wt� f t�t,

Tijkl
�1� �x,t� � 


�

�3,i
� �3,j

� �3,k
� �3,l

� 
�x − x��t�� , �B21�

Tijkl
�2� �x,t� � 


�

��3,i
� �3,j

� ��1,k
� �3,l

� + �1,l
� �3,k

� �

+ ��1,i
� �3,j

� + �1,j
� �3,i

� ��3,k
� �3,l

� �
�x − x��t�� ,

�B22�

and

Tijkl
�3� �x,t� � 


�

��1,i
� �3,j

� + �1,j
� �3,i

� ���1,k
� �3,l

� + �1,l
� �3,k

� �

�
�x − x��t�� . �B23�

These fourth-rank tensors can be decomposed, similar to
what is done in Sec. B1, into totally symmetric traceless

tensors, some of which are proportional to the alignment
tensor Qij�x , t�, some to the biaxial tensor Bij�x , t�, and some
to the Qij

�1��x , t�=�1,i
� �1,j

� − �1 /3�
ij. We will address these
noise terms in a future publication. Here, we will concentrate
on the isotropic part, i.e., term proportional to Lijkl�
ik
 jl

+
il
 jk− 2
3
ij
kl and to 
ij
kl, which has the same structure as

that of the thermal contributions. It is straightforward to see
that only Tijkl

�1� �x , t� and Tijkl
�3� �x , t� contribute to the isotropic

parts and we find



	ij
A�x,t�
	kl

A �x�,t���s =
prptnA�x,t�
�pr + pt�3 
�t − t��
�x − x��

��Wr
2 + 3Wt

2

15
Lijkl +

Wr
2

9

ij
kl� .

Thus, there is a well-defined transverse noise with strength
��=nA�x , t�prpt�Wr

2+3Wt
2� / �15�pr+ pt�3� and a well-defined

longitudinal noise with strength �� =nA�x , t�prptWr
2 / �9�pr

+ pt�3�. For an estimate, we assume that Wr�10−17 J�Wt,
pr�10 s−1, pt�0.1 s−1, and ��10−3, as in the experiments
in Ref. �21�. We find ���10−24 J s /m3, which is 25% of
the thermal contribution, which has a magnitude of 4
�10−24 J s /m3. Thus, we conclude that in the dilute limit,
the run-and-tumble dynamics of bacteria contributes but not
so significantly to the noise temperature of the system.
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