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Abstract

A litany of questions from a wide variety of scientific disciplines can be cast as non-monotone submodu-
lar maximization problems. Since this class of problems includes max-cut, it is NP-hard. Thus, general-
purpose algorithms for the class tend to be approximation algorithms. For unconstrained problem instances,
one recent innovation in this vein includes an algorithm of Buchbinder et al. (2012) that guarantees a
1
2 -approximation to the maximum. Building on this, for problems subject to cardinality constraints, Buch-
binder et al. (2014) offer guarantees in the range [0.356, 1

2 + o(1)]. Earlier work has the best approximation
factors for more complex constraints and settings. For constraints that can be characterized as a solvable
polytope, Chekuri et al. (2011) provide guarantees. For the online secretary setting, Gupta et al. (2010)
provide guarantees. In sum, the current body of work on non-monotone submodular maximization lays
strong foundations. However, there remains ample room for future algorithm development.
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Chapter 1

Introduction

This survey focuses on recent developments in the maximization of non-monotone submodular functions.
Specifically, analysis of the following four publications will constitute the core of the review:

• Buchbinder et al. (2012): provides the best guarantee for the unconstrained setting.

• Buchbinder et al. (2014): provides the best guarantee for the cardinality-constrained setting.

• Chekuri et al. (2011): provides guarantees for the setting where the convex hull of the feasible sets
forms a down-monotone, solvable polytope.

• Gupta et al. (2010): provides guarantees for the online setting.

Before going into the specifics of each paper, we begin with some introductory material. Section 1.1
motivates our topic of study by illustrating the pervasiveness and practical importance of submodular max-
imization. Section 1.2 provides technical background material on submodularity, non-monotonicity, and
common constraints for submodular maximization problems. Section 1.3 discusses in more detail the exam-
ple problems from Section 1.1.

1.1 Motivation

Submodular maximization subsumes a wide variety of problems. It encompasses some of the very general
NP-hard problems taught in introductory algorithms courses, such as max-cut, max-dicut, max-k-coverage,
and facility location. (See Frieze (1974) and Chapter 6 of Bach (2013) for proofs of their submodularity.)
It also contains variations on max-SAT and max-welfare (see Section 4 of Buchbinder et al. (2012)). More
concretely, a multitude of real-world tasks can be formulated as submodular maximization problems. A few
examples are listed here, along with references to papers containing more detailed descriptions of each task’s
nuances. Section 1.3 also provides a more precise description of these tasks.

• Document summarization (Lin and Bilmes, 2012; Kulesza and Taskar, 2012)

• Sensor placement (Krause and Guestrin, 2005; Krause et al., 2008)

• Social network marketing (Hartline et al., 2008; Mossel and Roch, 2007)

• Cooperative game design (Schulz and Uhan, 2013)

• Image segmentation (Kim et al., 2011)

• Auction revenue maximization (Dughmi et al., 2009)
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Note that some of the attempts to tackle these tasks rely on monotone rather than non-monotone
submodular functions. For example, in the realm of document summarization, the work of Lin and Bilmes
(2012) uses monotone functions. However, empirical results (see Table 4 of Kulesza and Taskar (2012))
indicate that a similar but non-monotone function seems to be a better fit for the problem. This is one of
the reasons our survey focuses on the non-monotone realm—non-monotone functions can sometimes offer a
more realistic representation of the underlying mechanics of real-world systems.

1.2 Technical Background

Consider a ground set consisting of N items: Ω = {1, . . . , N}. A set function f : 2Ω → R maps each subset
of this ground set Ω to a real number.

1.2.1 Submodularity

A set function qualifies as submodular if it obeys the law of diminishing returns.

Definition 1. (Submodularity by diminishing returns) The function f : 2Ω → R is submodular if and
only if ∀A,B ⊆ Ω such that A ⊆ B and i ∈ Ω\B, it is the case that f(B∪{i})−f(B) ≤ f(A∪{i})−f(A).

In words: a new element contributes more value when added to set A than when added to any superset
of A. Diminishing returns is equivalent to several other simple conditions.

Definition 2. (Submodularity by set combination) The function f : 2Ω → R is submodular if and only
if ∀A,B ⊆ Ω it is the case that f(A ∩B) + f(A ∪B) ≤ f(A) + f(B).

Definition 3. (Submodularity by second-order differences) The function f : 2Ω → R is submodular
if and only if ∀A ⊆ Ω and i, j ∈ Ω \A, it is the case that f(A ∪ {i, j})− f(A ∪ {j}) ≤ f(A ∪ {i})− f(A).

Note that while Definition 3 seems weaker than Definition 1, as it corresponds to restricting toB = A∪{j},
it is nonetheless equivalent. (See Propositions 2.2 and 2.3 of Bach (2013) for proofs of these definitions’
equivalence.) Given a submodular function, many simple variations on it are also submodular. For example,
we show here that the complement of a submodular function is also submodular.

Theorem 4. For submodular f , its complement f̄(S) = f(Ω \ S) is also submodular.

Proof. Using sets A ⊆ B ⊆ Ω and element i ∈ Ω \B (as in Definition 1), we have the following equivalence.

f̄(B ∪ {i})− f̄(B) = f(Ω \ (B ∪ {i}))− f(Ω \B) (1.1)

= f(Ω \ (B ∪ {i}))− f(Ω \ (B ∪ {i}) ∪ {i}) (1.2)

= f(C)− f(C ∪ {i}) (1.3)

where C is defined as Ω \ (B ∪ {i}). Similarly, define D = Ω \ (A ∪ {i}). Then A ⊆ B implies C ⊆ D.
Since i /∈ D, Definition 1 of submodularity can be written in terms of C, D, and i: f(D ∪ {i}) − f(D) ≤
f(C∪{i})−f(C). Applying Equation (1.3) and the analogous equality for A and D, this inequality becomes:
f̄(B ∪ {i})− f̄(B) ≤ f̄(A ∪ {i})− f̄(A).

1.2.2 NP-Hardness and Monotonicity

The following optimization problem is NP-hard, since it generalizes max-cut.

Problem 5. (Unconstrained submodular maximization) For a submodular function f : 2Ω → R+,
find: maxS⊆Ω f(S).

The max-cut problem is significantly harder than many other submodular problems though. In fact,
max-cut and many of the hardest submodular problems can be characterized as non-monotone.
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Definition 6. (Monotonicity) The submodular function f : 2Ω → R is monotone if and only if ∀A,B ⊆ Ω,
such that A ⊆ B, it is the case that f(A) ≤ f(B).

In words: adding elements can never decrease the value of a monotone submodular function. The
monotonic property can be used to divide the class of submodular functions. Even restricting to monotone
f though, the maximization problem is not always easy. The addition of the simple cardinality constraint
|S| ≤ k makes the problem NP-hard, since it generalizes max-k-cover. Due to the maximization problem’s
hardness, the arena of submodular maximization algorithms is populated by approximation algorithms. For
example, one commonly-used algorithm is that of Nemhauser et al. (1978), shown as Algorithm 1 here.
Essentially, the algorithm starts from the empty set and greedily adds one item every iteration until no
additions can increase the score.

Algorithm 1 nemhauser-wolsey

1: Input: submodular function f , ground set Ω, limit k
2: S ← ∅, U ← Ω
3: while |S| < k do
4: i∗ ← arg maxi∈U f(S ∪ {i})
5: if f(S ∪ {i∗}) < f(S) then
6: break
7: end if
8: S ← S ∪ {i∗}
9: U ← U \ {i∗}

10: end while
11: return S

As with all of the algorithms we will consider, this one only provides an approximation guarantee when
f , in addition to being submodular, is non-negative.

Definition 7. (Non-negative) The set function f : 2Ω → R is non-negative if and only if ∀S ⊆ Ω,
f(S) ≥ 0.

Without this property, an exponential number of calls to an f -oracle is needed to even decide whether the
maximum value is positive or zero (see Footnote 4 in Chekuri et al. (2011)). Notice that we already included
the non-negativity property in the definition of Problem 5 by making f ’s range R+. One additional prop-
erty, normalization, is necessary before stating the approximation guarantee for the nemhauser-wolsey
algorithm.

Definition 8. (Normalization) The set function f : 2Ω → R is normalized if and only if f(∅) = 0.

Nemhauser et al. (1978)’s algorithm provides a (1− 1/e)-approximation guarantee for normalized, non-
negative, monotone submodular functions. There is no guarantee, however, when using this algorithm with
a non-monotone function, which motivates the work we will describe in Chapters 2 and 3.

1.2.3 Independence Systems

In addition to Problem 5, constrained variants of submodular maximization are also of practical interest.
Besides simple cardinality constraints, |S| = k or |S| ≤ k, constraints based on independence systems and
matroids are common. Independence systems are a generalization of the notion of linear independence that
applies to vectors.

Definition 9. (Independence system) A (finite) independence system is a pair (Ω, I) where Ω is a finite
set and I is a family of subsets of Ω. The family I must be such that:
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• ∅ ∈ I, and

• I has the “hereditary” property: I1 ⊆ I2 ∈ I implies I1 ∈ I.

The sets in I are called the system’s “independent sets”. (All other subsets of Ω are called dependent
sets.) It is often useful to constrain a submodular maximization problem to the independent sets of some
independence system. A maximal independent set — a set that becomes dependent with the addition of any
item — is called a “basis” (of Ω). The size of the largest basis is the independence system’s “rank”. The
notion of bases and rank extend to all S ⊆ Ω.

Definition 10. (Independence system basis) For any given set S ⊆ Ω, a set S′ ⊆ S is a maximal
independent set of S if the addition of any element i ∈ S \ S′ to S′ would make S′ ∪ {i} dependent. These
maximal independent sets of S, which we will denote B(S), are called the bases of S.

Definition 11. (Independence system rank) For any given set S ⊆ Ω, its rank is the size of its largest
independent set. The rank function, r : 2Ω → Z+, of an independence system, maps sets to their ranks:
r(S) = maxS′∈B(S) |S′|.

Independence systems are sometimes classified according to the ratio of their maximum and minimum
basis sizes.

Definition 12. (p-independence system) Let the function η : 2Ω → Z+ map sets to the size of their
smallest basis: η(S) = minS′∈B(S) |S′|. Then an independence system (Ω, I) qualifies as a p-system if

maxS⊆Ω
r(S)
η(S) ≤ p.

A related but more restrictive class of constraints are provided by matroids. Matroids are a sub-class of
independence systems. They require that I have one additional property.

Definition 13. (Matroid) A matroid is an independence system, with the additional requirement that I
has the “exchange” property: ∀I1, I2 ∈ I, |I1| < |I2| implies ∃i ∈ I2 \ I1 such that I1 ∪ {i} ∈ I.

Every matroid qualifies as a 1-independence system. The intersection of p matroids, while not necessarily
a matroid, qualifies as a p-independence system. A few examples of commonly-used matroids are given below.

• Uniform matroid: Let I be the family of all S ⊆ Ω that are at most size k: |S| ≤ k. ThenM = (Ω, I)
is a matroid. Its bases are the sets of size exactly k.

• Linear matroid: Given a matrix M with N columns, let Ω = {1, . . . , N} index the columns. Let
I be the family of all sets of column indices whose corresponding columns are linearly independent.
Then M = (Ω, I) is a matroid. The rank of M is equal to the rank of the matrix M .

• Graphic matroid: Given a graph G = (V,E) with vertices V and edges E, let I be the family of all
edge sets that do not contain a cycle. ThenM = (E, I) is a matroid. Assuming G is a single connected
component, the bases ofM are the spanning trees of G. If G has multiple connected components, the
bases of M are the forests of G.

• Matching matroid: Given a graph G = (V,E), let I be the family of all S ⊆ V that can be covered
by a matching. (A set of edges is a matching if no two edges share a vertex.) Then M = (E, I) is a
matroid. The bases of M correspond to subsets of V that are maximum matchings in G.

• Partition matroid: Let P1, . . . , Pk be a partition of Ω. Let a1, . . . , ak be constants associated with
the partitions. Finally, let I be the family of all sets I that satisfy |I ∩Pi| ≤ ai ∀i ∈ {1, . . . , k}. Then
M = (Ω, I) is a matroid.

To conclude this section and give a preview of the next section, we consider two concrete problems. The
first one shows how a simple, modular function subject to a matroid constraint can describe an interesting
practical problem.
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Problem 14. (Max-vertex-matching): Suppose that every element i in the ground set of a match-
ing matroid M = (Ω, I) has an associated weight, wi. Then maxS∈I

∑
i∈S wi corresponds to finding the

maximum-weight vertex set that constitutes a matching.

A related problem constitutes our second example, and illustrates the practicality of independence sys-
tems. Note that the intersection of two (or more) matroids,M1 ∩M2 = (Ω, I1 ∩I2), is not necessarily itself
a matroid. However, it is an independence system. Thus, when working with problems subject to multiple
matroid constraints, it is practical to apply algorithms designed to handle independence systems.

Problem 15. (Max-bipartite-edge-matching): Let G = (U, V,E) represent a bipartite graph. Define
a partition matroid MU = (E, IU ) with |U | parts to the partition: for node u, define Pu = {(a, b) ∈ E |
a = u ∨ b = u}, the edges for which vertex u is an endpoint. Set each intersection limit at au = 1. Then
each independent set I ∈ IU is a set of edges of which no two have the same endpoint in U . Let MV be
the analogous partition matroid for V . Then any independent set of the independence system MU ∩MV

consists of the edges of a bipartite matching. Associating a weight we with each edge e, the maximum-weight
edge set that constitutes a matching is: maxS∈IU∩IV

∑
e∈S we.

1.3 Example Problems

Having covered the necessary background material, we return now to the example problems listed in Sec-
tion 1.1 to discuss them in more detail.

1.3.1 General NP-Hard Problems

First, recall that very general NP-hard problems such as max-cut, max-dicut, max-k-coverage, facility loca-
tion, and variations on max-SAT and max-welfare are submodular. Descriptions of submodular variants of
max-SAT and max-welfare we defer to Chapter 2, but the other four problems we define here.

Problem 16. (Max-cut): Given a graph G = (V,E), let g : 2V → 2E be a function from subsets of V to
subsets of E such that g(S) = {edges from S to V \ S}. Then, find: maxS⊆V |g(S)|.

Max-dicut is identical to max-cut, but for a graph with directed edges. For max-cut and max-dicut there
exist 0.878- and 0.796-approximation algorithms (Goemans and Williamson, 1995). Unfortunately though,
these algorithms do not easily extend to all submodular functions. Max-k-coverage, on the other hand, is
best approximated, with a factor of (1− 1

e ) (Khuller et al., 1999), by the general submodular optimization
algorithm we saw in the previous section (Algorithm 1).

Problem 17. (Max-k-coverage): Given sets {A1, . . . , AN}, find: maxS:|S|≤k
∣∣⋃

i∈S Ai
∣∣.

Facility location, like the cut problems, has a specialized algorithm. It comes with a 0.828-approximation
guarantee (Ageev and Sviridenko, 1999), but again, isn’t easily generalized to all submodular functions.

Problem 18. (Facility location): Given two sets, Ω = {1, . . . , N} (possible facility locations) and J =
{1, . . . ,M} (clients), and non-negative rational numbers pij , ci ∀i ∈ Ω, j ∈ J , find:

max
S⊆Ω

∑
j∈J

max
i∈S

pij −
∑
i∈S

ci . (1.4)

The pij are usually interpreted as profits from serving client j with facility i, while ci is the cost of opening
a facility at location i.
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1.3.2 Real-World Tasks

We now delve into the more application-based tasks listed in Section 1.1. Note that ultimately some of these
amount to variations on the general NP-hard problems from the previous subsection.

• Document summarization (Lin and Bilmes, 2012; Kulesza and Taskar, 2012): Given a set
of documents consisting of a total of N sentences, the goal is to select a subset S of the sentences
that summarizes the core content of the documents. Usually, this is accompanied by a constraint on
the summary size, such as |S| ≤ k. Common submodular functions used in this case are those that
encourage the sentences to cover as much of the material as possible. This includes the monotone
submodular Problem 17 (max-k-coverage), as well as the non-monotone max-log-det:

Problem 19. (Max-log-det) Given a positive semi-definite matrix L, find:

max
S

log det(LS) (1.5)

where the subscript notation LS indicates the sub-matrix consisting of the rows and columns indexed
by S.

For the document summarization task, one reasonable way to form the matrix L is through dot products
of feature vectors. Specifically, if sentence i is characterized by length-M feature vector bi, let B
represent the N ×M matrix where each feature vector is a row. Then for L = BB>, Problem 19
corresponds to finding a diverse set of sentences.

• Sensor placement for Gaussian Processes (Krause et al., 2008): Suppose there are N possible
locations for sensors (e.g. for measuring pressure, temperature, or pollution), and an N ×N covariance
matrix Σ estimating the correlation of measurements at the various locations. The goal is to select a
subset S of locations at which to actually place sensors, such that the measurements from these sensors
will be as informative as possible about the space as a whole. Common submodular problems that fit
this task well include max-entropy and max-mutual-information:

Problem 20. (Max-entropy) Given a set of random variables {X1, . . . , XN}, find:

max
S:|S|≤k

H({Xi : i ∈ S}) . (1.6)

Note that this is equivalent to minimizing the following conditional entropy:

H({Xi : i /∈ S} | {Xi : i ∈ S}) = H({X1, . . . , XN})−H({Xi : i ∈ S}) . (1.7)

Problem 21. (Max-mutual-information) Given a set of random variables {X1, . . . , XN}, find:

max
S:|S|≤k

I({Xi : i ∈ S}; {Xi : i /∈ S}) = max
S:|S|≤k

H({Xi : i /∈ S})−H({Xi : i /∈ S} | {Xi : i ∈ S}) . (1.8)

• Sensor placement with Graphical Models (Krause and Guestrin, 2005): As for the previous
sensor placement case, the input here consists of N possible locations for sensors. Instead of assuming
a measurement covariance matrix though, in this setting it is assumed that the sensors are nodes in a
graphical model. The same submodular objective functions as before, such as Problem 21, can be used
to select a subset S of the nodes. Computing the objective value is efficient as long as the structure of
the graphical model is such that standard inference in it is efficient.
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• Social network marketing (Hartline et al., 2008): Consider a social network consisting of N
people, with weights wij indicating the influence that person i has on person j. Suppose a seller has
a digital good that costs nothing to copy (unlimited supply), and they would like to maximize the
revenue r from selling this good within the network. In this setting, a common marketing strategy
is “influence-and-exploit”: give the product to a subset S of the network for free, then fix a price at
which to offer it to the rest of the network. The selection of the initial subset S is often formulated
as a submodular maximization problem. More precisely, let the strength of the relationship between
person i and person j be wij . Then it is assumed that the value person i places on the product
is: vi(S) = gi(

∑
j∈S∪{i} wij), where gi is any non-negative, monotone, concave function. Finding

maxS:|S|≤k
∑N
i=1 vi(S) is one way to select the initial set of people who will get the product for free.

• Cooperative game design (Schulz and Uhan, 2013): Consider a game with N players, where
it would be ideal to have all players cooperate (form a single coalition). For example, players might
be corporations that all need to dispose of toxic byproducts from their manufacturing plants. The
government might want to encourage the corporations to pool the waste at a single site. Thus, it
needs to answer the question, “How much should opening a new waste site cost?”. In other words,
“How much of a penalty is necessary to get all players to cooperate?”. Suppose the supermodular
function g(S) represents the total cost to players in S if they cooperate. Let xi represent the cost to
player i when all players cooperate. Then the following submodular maximization problem identifies
the coalition whose dissatisfaction with the single-coalition outcome is largest: maxS

∑
i∈S xi − g(S).

The government must then apply a penalty that is sufficient to induce the most dissatisfied coalition
to join forces with the other players.

• Image segmentation (Kim et al., 2011): The initial step in most image-manipulation software is
to segment a given image into k parts such that it is homogeneous within each part (e.g. separating an
image into “sky” and “earth” is a common task, with k = 2). Typically, image segmentation is thought
of as a submodular minimization problem, a variant of min-cut. However, an alternative specification
as a submodular maximization problem is also possible. Consider formulating the segmentation task as
the problem of identifying k pixels (or superpixels) to serve as “centers” for the segments. The similarity
between a pair of adjacent pixels, sim(i, j), can be thought of as the probability that “heat” applied
to one pixel will diffuse to the other. In other words, the image segmentation problem is analogous to
the problem of selecting k heat sources in order to maximize the temperature of a system under heat
diffusion. If the diffusion is linear and anisotropic, then the overall temperature of the system turns
out to be a submodular function of the k sources. Specifically, let Ω = {1, . . . , N} represent the set of
all pixels (including an auxiliary set of pixels added to act as the border of the image). Let N (i) be
the neighbors of pixel i. Then the “temperature” of pixel i is:

t(i) =


1 if i is selected as one of the k heat sources

0 if i is on the image border∑
j∈N (i) sim(i, j)t(j) otherwise.

(1.9)

The overall temperature of the system is:
∑
i∈Ω t(i). The k centers needed to segment the image can

be found by maximizing this submodular expression.

• Auction revenue maximization (Dughmi et al., 2009): Given a base set of bidders B, a pool
of potential bidders Ω, and a budget k, a common task is to recruit a subset S ⊆ Ω of k additional
bidders for the auction. This is sometimes called the “market expansion problem”. The objective to
maximize in this case is auction revenue. It can be shown that if the standard Vickrey-Clarke-Groves
(VCG) auction mechanism is applied, the resulting revenue function is submodular, as long as a few
additional conditions apply. (These conditions concern the size of the known bidders B and the bidders’
valuations for the auction items; see Theorem 3.2 of Dughmi et al. (2009) for details.)

9



In some of the above applications, especially where the objective function is monotone, cardinality con-
straints are present. Knapsack constraints are clearly often practical as well, whenever the items concerned
have an associated cost and the task has a budget. The practicality of independence system constraints is
perhaps harder to see, so we finish this section by giving an example use.

• Image segmentation subject to an independence system constraint: Recall the image segmen-
tation task. If there are many images to segment into earth/sky parts, it makes sense to perform joint
inference; intuitively, the location of the sky’s center in one image is likely to be close to its location
in the other images. To make use of this intuition, it would be convenient to add a matching term to
the objective, matching sky in image 1 to sky in image 2 and penalizing by how much their locations
differ. This is a straightforward application of Problem 15 (max-bipartite-edge-matching). For a pair
of images, i = {1, 2}, with the segment centers (ci1, c

i
2), define a fully connected bipartite graph with

vertices U = {c11, c12} and V = {c21, c22}. Let the weight of an edge correspond to how similar the loca-
tions of its endpoints are. Add this (modular) Problem 15 objective to the original, submodular image
segmentation objective. The result is a practical, submodular optimization problem, constrained by
an independence system.

The remaining sections of this survey will primarily focus on non-monotone submodular functions. We
should pause here and briefly note that many of the applications from this section clearly rely on monotone
functions. However, the non-monotone advancements may be helpful for them as well, for two reasons:

• First, as mentioned in Section 1.1, the non-monotone max-log-det (Problem 19) formulation has been
shown to work better in practice for document summarization than some monotone submodular func-
tions (Kulesza and Taskar, 2012). This insight may carry over into other problems.

• Secondly, in practice the more complex algorithms developed for non-monotone maximization may
work well for monotone maximization too — not necessarily in general, but perhaps for a particular
problem instance or distribution over instances.
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Chapter 2

Unconstrained Setting

We begin by discussing the simplest setting, that with no constraints on the selected set S. This is exactly
what was defined in the previous chapter as Problem 5. Accordingly, the algorithms in this chapter bear the
suffix “USM” for “unconstrained submodular maximization”. Feige et al. (2007) prove that for this setting
attaining better than a 1

2 -approximation is hard in the value oracle sense. That is, according to Theorem

4.5 of their work, it would require an exponential number of f -value queries, eε
2N/16, for any ε > 0.

Proof sketch: Feige et al. (2007) construct an f such that for most sets its value is that of the cut
function of a complete graph with edge weights of 1 (max value: 1

4N
2). But for a few sets f has the value

of a cut function on a complete bipartite graph with edge weights of 2 (max value: 1
2N

2). They show that
any algorithm would have to query f an exponential number of times to be assured of finding the bipartite
portion of f .

More recently, Dobzinski and Vondrák (2012) translate this result from the value oracle context to
complexity theory. Theorem 3.1 of their work states that better than a 1

2 -approximation implies NP = RP.
Proof sketch: Using the same f as Feige et al. (2007), Dobzinski and Vondrák (2012) show how

to represent f compactly and explicitly such that distinguishing between the two types of graphs implies
deciding Unique-SAT. Unique-SAT is the problem of deciding whether a Boolean formula has exactly one
satisfying assignment. There is a randomized polynomial-time (RP) reduction from SAT to Unique-SAT (see
Theorem 1.1 of Valiant and Vazirani (1986)), so Unique-SAT cannot be solved in polynomial time unless NP
= RP.

2.1 Selected Algorithms

In light of these hardness results, the best that can be hoped for is a 1
2 -approximation. Buchbinder et al.

(2012), whose work we will focus on for the remainder of this chapter, present a surprisingly simple algorithm,
shown as Algorithm 3 here, that achieves exactly this. A deterministic version, Algorithm 2, yields a 1

3 -
approximation. The two algorithms are very similar, with the main difference being that for Algorithm 3
the decision of whether or not to incude an item is softened. Note that in that algorithm, if a′i = b′i = 0,
then it is assumed that the item i gets included.

2.2 Selected Proofs

The proofs of the approximation guarantees for both of these algorithms are very similar, so here we will
focus on the 1

2 -approximation proof. It relies on two supporting lemmas. The first lemma says that the
change in f upon adding item i to Xi−1 can only be as small as the negative of the change observed when
removing i from Yi−1. Intuitively, this means that one of the two possible actions, adding or removing, has
a relatively positive impact on the value of f .
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Algorithm 2 deterministic-usm

1: Input: submodular function f , ground set Ω
2: X0 ← ∅, Y0 ← Ω
3: for i = 1 to N do
4: ai ← f(Xi−1 ∪ {i})− f(Xi−1)
5: bi ← f(Yi−1 \ {i})− f(Yi−1)
6: if ai ≥ bi then
7: Xi ← Xi−1 ∪ {i}, Yi ← Yi−1

8: else
9: Xi ← Xi−1, Yi ← Yi−1 \ {i}

10: end if
11: end for
12: return Xn

Algorithm 3 randomized-usm

1: Input: submodular function f , ground set Ω
2: X0 ← ∅, Y0 ← Ω
3: for i = 1 to N do
4: ai ← f(Xi−1 ∪ {i})− f(Xi−1)
5: bi ← f(Yi−1 \ {i})− f(Yi−1)
6: a′i ← max{ai, 0}, b′i ← max{bi, 0}
7: with probability

a′i
a′i+b

′
i

do:

8: Xi ← Xi−1 ∪ {i}, Yi ← Yi−1

9: else do:
10: Xi ← Xi−1, Yi ← Yi−1 \ {i}
11: end for
12: return Xn

Lemma 22. For each i ∈ {1, . . . , N}, ai + bi ≥ 0.

Proof. Let A = Xi−1∪{ui} and B = Yi \{ui}. Then A∪B = {ui}∪Yi = Yi−1 and A∩B = Xi−1. Applying
Definition 2 of submodularity, we have:

f(Xi−1 ∪ {ui})− f(Xi−1) + f(Yi \ {ui})− f(Yi−1) ≥ 0 . (2.1)

The lefthand side of this equation is exactly ai + bi, which proves the sum is always non-negative.

The second lemma establishes that a set OPTi, whose composition depends on the true OPT and the
algorithm’s Xi, does not decrease too much in value from one iteration to the next. Formally, OPTi is:
OPTi = (OPT∪Xi)∩ Yi. At the beginning of the algorithm OPT0 = OPT. At iteration i, OPTi equals Xi

for items 1, . . . , i, but still equals OPT for all items not yet considered (items i + 1, . . . , N). At the end of
the algorithm, OPTN = XN , the set returned by Algorithm 3. It will be useful in the proof of the second
lemma to further observe that:

Observation 23. If i /∈ OPT, then OPTi−1 ⊆ Yi−1 \ {i}.
Observation 24. If i ∈ OPT, then Xi−1 ⊆ OPTi−1 \ {i}.

We now prove the final supporting lemma.

Lemma 25. Define Zi ∼ Uniform(0, 1), and let Zi ≤ ai
ai+bi

result in Algorithm 3 adding i to Xi−1. Then,
for each i ∈ {1, . . . , N}:

E[f(OPTi−1)− f(OPTi)] ≤
1

2
E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] (2.2)

where the expectations are with respect to the Zi.

Proof. At step i, the algorithm has already fixed some set Xi−1 ⊆ {1, . . . , i−1}. Any such set also determines
ai and bi. Thus, we can break down the analysis by the possible value combinations of ai and bi.

• ai ≥ 0 and bi ≤ 0: Item i is always included in Xi in this case. Thus, f(Yi)−f(Yi−1) = 0 and we only
have to show that f(OPTi−1)− f(OPTi−1 ∪{i}) ≤ ai

2 . If i ∈ OPT, we are already done, since 0 ≤ ai
2 .

Otherwise, let A = OPTi−1 and let B = Yi−1 \ {i}. Recall that Observation 23 establishes A ⊆ B.
Then, applying Definition 1 of submodularity, we have:

f(OPTi−1)− f(OPTi−1 ∪ {i}) ≤ f(Yi−1 \ {i})− f(Yi−1) = bi . (2.3)

Since bi ≤ 0 ≤ ai
2 , we are again done.
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• ai < 0 and bi ≥ 0: This case is analogous to the previous one. Now, item i is never included in Xi,
which makes f(Xi)−f(Xi−1) = 0. Then we only have to show that f(OPTi−1)−f(OPTi−1\{i}) ≤ bi

2 .

If i /∈ OPT, we are already done, since 0 ≤ bi
2 . Otherwise, let A = Xi−1 and let B = OPTi−1 \ {i}.

Recall that Observation 24 establishes A ⊆ B. Then, applying Definition 1 of submodularity, we have:

f(OPTi−1)− f(OPTi−1 \ {i}) ≤ f(Xi−1 ∪ {i})− f(Xi−1) = ai . (2.4)

Since ai < 0 ≤ bi
2 , we are again done.

• ai ≥ 0 and bi > 0: With probability ai
ai+bi

the code branch with f -value change ai is taken, and with

probability bi
ai+bi

the code branch with f -value change bi is taken. Thus, we have:

E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] =
ai

ai + bi
· ai +

bi
ai + bi

· bi =
a2
i + b2i
ai + bi

. (2.5)

Similarly, breaking down the cases for the other side of the inequality that we are trying to prove yields:

E[f(OPTi−1)− f(OPTi)] =
ai

ai + bi
[f(OPTi−1)− f(OPTi−1 ∪ {i})] +

bi
ai + bi

[f(OPTi−1)− f(OPTi−1 \ {i})] . (2.6)

This can be further simplified by analyzing the two cases of i ∈ OPT and i /∈ OPT:

– i ∈ OPT: The first term in Equation (2.6) is zero. The second term is bounded above by bi, using
Observation 24 and applying Definition 1 of submodularity as before.

– i /∈ OPT: The second term in Equation (2.6) is zero. The first term is bounded above by ai, using
Observation 23 and applying Definition 1 of submodularity as before.

Thus, E[f(OPTi−1)− f(OPTi)] ≤ aibi
ai+bi

. It remains to show that:

aibi
ai + bi

≤ 1

2

(
a2
i + b2i
ai + bi

)
. (2.7)

Since the common denominator ai + bi ≥ 0, the above inequality is true so long as the numerator
difference 1

2 (a2
i + b2i )− aibi is positive. Completing the square completes the proof:

1

2
(a2
i + b2i )− aibi =

(
1√
2
ai −

1√
2
bi

)2

≥ 0 . (2.8)

This lemma brings us almost all the way to the approximation guarantee for Algorithm 3. The proof
below completes it.

Theorem 26. randomized-usm (Algorithm 3) is a 1
2 -approximation for the unconstrained submodular

maximization problem (Problem 5).

Proof. Summing Lemma 25 over i ∈ {1, . . . , N}, every other term cancels, leaving:

E[f(OPT0)− f(OPTN )] ≤ 1

2
E[f(XN )− f(X0) + f(YN )− f(Y0)] . (2.9)

We can drop the X0 and Y0 terms here and maintain the inequality, as Problem 5 assumes f(∅) and f(Ω) are
non-negative. Finally, recalling that OPT0 = OPT, OPTN = XN , and YN = XN , the inequality simplifies
to:

E[f(OPT)− f(XN )] ≤ 1

2
E[2f(XN )] =⇒ 1

2
E[f(OPT)] ≤ E[f(XN )] . (2.10)

Thus, in expectation, f(OPT) is no more than twice f(XN ).

13



2.3 Extensions for Max-SAT and Max-Welfare

Algorithm 3 provides a tight approximation to Problem 5, the unconstrained submodular maximization
problem. For more restricted classes of objective functions though, the approximation factor can be im-
proved. Buchbinder et al. (2012) show that with very minor modifications, their algorithm has even better
performance guarantees for submodular max-SAT and 2-player submodular max-welfare.

Problem 27. (Submodular max-SAT): We are given a CNF formula composed of C clauses over N
variables and a normalized, monotone submodular function f : 2C → R+. The goal is to find an assignment
to the variables, φ : Ω→ {0, 1}, maximizing f(C(φ)), where C(φ) ⊆ C are the satisfied clauses.

Problem 28. (Submodular max-welfare): We are given N items and k players, each with a normalized,
monotone submodular function fj : 2N → R+. The goal is to divide Ω among the players, into partitions

Ω1, . . . ,Ωk, while maximizing total welfare:
∑k
j=1 fj(Ωj).

For submodular max-SAT and 2-player submodular max-welfare, Buchbinder et al. (2012) show a 3
4 -

approximation. They do so for max-SAT by first defining an extended variable assignment φ′ that can
associate with each variable not only {0} or {1}, but also both at once: {0, 1}. The set Y0 then consists of all
possible assignments to all variables. The 3

4 -approximation proof is nearly identical to that of Theorem 26,
but invokes special knowledge about the value of Y0 beyond just its non-negativity. Specifically, whereas
the proof of Theorem 26 simply discards f(Y0), the proof for the special case of submodular max-SAT notes
that f(Y0) ≥ f(OPT) and plugs this value into the final line of the proof.

For 2-player submodular max-welfare, the 3
4 -approximation guarantee is based on a reduction to the

submodular max-SAT problem. Roughly, 2|Ω| singelton clauses are created, one with each positive literal
and one with each negative literal. Then, the utility function for player 1 is based on the positive clauses,
P , and the utility function for player 2 is based on the negative clauses, C \ P . Specifically: f(C) =
f1(C ∩ P ) + f2(C ∩ (C \ P )).

According to hardness results proved in Vondrák (2009), a 3
4 -approximation is tight for both submodular

max-SAT (Problem 27) and 2-player submodular max-welfare (Problem 28).

2.4 Discussion and Experiments

Buchbinder et al. (2012)’s algorithms yield many tight approximations, and this is certainly not their only
attractive quality. They are also advantageous because of their simplicity, which makes them trivial to
code, and their relatively low time complexity. Each algorithm makes O(N) calls to the f -oracle, and the
constant hidden by the big-O notation here is at most 4, even for a näıve implementation. Compared to
other algorithms, such as those in Feldman et al. (2011b), this can be quite a bit faster for some submodular
functions. (See the definition of the multilinear extension in Chapter 3; for functions whose multilinear
extension must be approximated by sampling, algorithms that rely on this extension can become time-
consuming.)

Unfortunately, Buchbinder et al. (2012) do not provide any empirical results. Therefore, to get a bet-
ter feel for their algorithms’ practical performance, we ran a few of our own small experiments. Although
we tested with both the deterministic and randomized algorithms, we verified that in practice (at least in
the settings we tested) there is no appreciable difference. Thus, only results for the deterministic variant
are shown below. We investigated two non-monotone problems: graph cut (Problem 16) and log determi-
nant (Problem 19). Note that log determinant does not always satisfy the non-negativity assumption, as
log det(L) ≤ 0 is possible. In the most extreme case, when L has two linearly dependent rows or columns,
log det(L) = −∞.

Graph cut setup: To generate inputs for the graph cut problem, we used the Watts-Strogatz random
graph model (Watts and Strogatz, 1998). While relatively simple, this model nevertheless provides graphs
that are typically much closer to real-world networks than those of the classical Erdős-Rényi graph model.
Specifically, the Watts-Strogatz model yields relatively high clustering coefficients and a degree distribution
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that follows a power law. The initial node degree we used with Watts-Strogatz was 5, and the rewiring
probability was 0.1. After graph construction, each edge e was given a weight drawn uniformly from the
interval [0, 1]: we ∼ Uniform(0, 1).

Log determinant setup: To generate inputs for the log determinant problem, we needed a source of
positive semi-definite matrices. The Wishart distribution is a reasonable source in that it places substantial
mass on matrices with diverse eigenvalues. This diversity implies that the subset selection problem is likely
to be non-trivial. The specific Wishart we used had N degrees of freedom and a uniform, diagonal covariance
matrix with scale 2: WN (N, 2I). To keep the selected set size relatively distant from 0 and N , we further
scaled all entries of the resulting Wishart matrix by 1

N .
Figure 2.1 shows the results of small-scale experiments, with N ≤ 12. In this realm, it is possible

to run an exact search for the single best set. Notice that even at these small N there is a noticeable
score loss compared to exact search. However, in terms of speed, exact search is a poor choice even at
N = 6. Most interestingly, the graph at the lower right indicates that Algorithm 2 routinely under-selects
for the log determinant objective. Additional experiments restricting to L with log det(L) ≥ 0 show no such
under-selection bias. This suggests that perhaps when designing algorithms for objectives that violate the
non-negativity assumption, some further mechanism may be necessary to prevent under-selection.
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Figure 2.1: Comparison to exact search for small N . These graphs show statistics for selected sets S from
100 random trials: score f(S) (top), runtime (middle), and selection size |S| (bottom). (a) Graph cut results.
(b) Log determinant results. Dotted lines at 1 indicate equal performance. Red lines are the means. Black
dots represent the individual random trials.

Figure 2.2 shows the results of larger-scale experiments, for N as large as 500. Since it isn’t feasible
to compare to exact search in this realm, we instead compare to the greedy algorithm of Nemhauser et al.
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(1978), introduced earlier in this survey as Algorithm 1. Recall that Algorithm 1 is a (1−1/e)-approximation
for normalized, non-negative, monotone submodular functions, but has no guarantees for non-monotone
problems such as graph cut and log determinant. Nevertheless, in practice we see that it tends to out-score
Algorithm 2. Algorithm 2 is at least faster, but for many practical problems, log determinant included,
switching to a less näıve implementation of Algorithm 1 can reverse this advantage. (“Less näıve” here
simply implies storing a few additional quantities across iterations to speed f -value queries.) Thus, the
speed advantage of Algorithm 2 is somewhat questionable.
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Figure 2.2: Comparison to Algorithm 1 for N up to 500. These graphs show statistics on selected sets S
from 100 random trials: score f(S) (top), runtime (middle), and selection size |S| (bottom). (a) Graph cut
results. (b) Log determinant results. Dotted lines at 1 indicate equal performance. Red lines are the means.
Black dots represent the individual random trials.

In conclusion, Buchbinder et al. (2012)’s algorithms represent a significant step forward theoretically, but
may not often be the best choice in practice. Of course, in practice we also often find ourselves in a more
constrained setting. The following chapters explore algorithms for these constrained settings.

16



Chapter 3

Cardinality-Constrained Setting

There are two basic types of cardinality constraints, the “capped” type, |S| ≤ k, and the “fixed” type,
|S| = k. Both are in fact examples of constraints derived from the simple uniform matroid defined in
Section 1.2.3. The “capped” type results from restricting S to the independent sets of the matroid, while
the “fixed” type comes from restricting S further, to the bases of the matroid.

Problem 29. (Cardinality-capped submodular maximization) For a submodular function f : 2Ω →
R+, find: maxS⊆Ω:|S|≤k f(S).

Problem 30. (Cardinality-fixed submodular maximization) For a submodular function f : 2Ω → R+,
find: maxS⊆Ω:|S|=k f(S).

The work of Buchbinder et al. (2014) provides the current best guarantees for maximizing non-monotone
submodular functions subject to either of these cardinality constraints. For |S| ≤ k, their work provides
approximation factors in the [1

e + 0.004, 1
2 − o(1)] range. For |S| = k, the range achieved is almost as good:

[0.356, 1
2−o(1)]. In both settings, the algorithms are (1

2−o(1))-approximations at k = N
2 . For this particular

k, no better approximation factor is possible — Corollaries 5.5 and 5.9 of Vondrák (2009) establish that a
( 1

2 + ε)-approximation would require an exponential number of queries to an f -oracle.
To give a sense of how the approximation factors change with k, Figure 3.1 plots the exact approximation

guarantees for the full range of possible k, ignoring the o(1) term. The plots show that the approximation
factor for |S| = k is symmetric about k = N

2 , while for |S| ≤ k it increases monotonically with k. In
both settings, the plots exhibit a piecewise nature. This is due to the fact that instead of relying on a
single algorithm, Buchbinder et al. (2014)’s guarantees come from running two algorithms and returning the
max-scoring result. The remainder of this chapter focuses on these algorithms and their associated proofs.
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Figure 3.1: Best approximation guarantees of Buchbinder et al. (2014) for N = 100.
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3.1 Selected Algorithms

The two core algorithms Buchbinder et al. (2014) rely on are shown here as Algorithm 4, random-
greedy, and Algorithm 5, continuous-double-greedy. The first, random-greedy, is very similar
to nemhauser-wolsey (Algorithm 1). The main difference is a little randomization; instead of selecting
the highest-scoring element, random-greedy selects randomly among the top k highest-scoring elements.
Notice also that the Mi selection line of random-greedy doesn’t make sense for k > N

2 . That is, the set

Ui would contain fewer than the necessary k elements for iterations i > N
2 . This issue can be easily handled

for both types of cardinality constraint though, using Reductions 31 and 32.

Reduction 31. For the |S| ≤ k constraint and k > N
2 , add 2k “dummy” elements, D, to the ground set:

Ω′ = Ω ∪D. The value of any set S ⊆ Ω′ does not depend on D: f(S) = f(S \D). If any dummy elements
are selected over the course of the algorithm, they can simply be discarded from the returned set without
changing its f -value.

Reduction 32. For the |S| = k constraint and k > N
2 , set k̄ = N − k and let f̄(S) = f(Ω \ S). Note that,

by Theorem 4, f̄ is submodular. Then maximizing f̄ constrained to |S| = k̄ is equivalent to maximizing f
subject to |S| = k. Since k̄ = N − k < N − N

2 ≤ N
2 , the k > N

2 issue is resolved.

The “dummy” items of Reduction 31 also seem to be necessary whenever there are not enough real items
with non-negative marginal gain to populate Mi. That is, whenever there are fewer than k items remaining
whose addition to Si−1 would increase f -value. The non-negativity of these marginal gains appears to be
relied upon in some of the proofs (see Equation (3.7) in Lemma 38).

The second main algorithm that Figure 3.1’s guarantees rely on is continuous-double-greedy (Algo-
rithm 5). This is also similar to algorithms previously discussed: deterministic-usm and randomized-usm
from Section 2.1. continuous-double-greedy represents an extension of these more basic algorithms to
the continuous setting. In this setting, it becomes possible to incorporate cardinality constraints while
maintaining an approximation guarantee.

More precisely, continuous-double-greedy relies on an intuitive continuous extension of f , called the
mutilinear extension. This extension was first introduced by Calinescu et al. (2007), and we will encounter
it again in Chapter 4. For a vector x ∈ [0, 1]Ω, consider a random subset R(x) that contains element i of
Ω with probability xi. The multilinear extension is the expected value of f on R(x): F (x) = E[f(R(x))].
More formally:

Definition 33. (Multilinear extension) The multilinear extension of f : 2Ω → R is F : [0, 1]Ω → R with
value:

F (x) =
∑
S⊆Ω

f(S)
∏
i∈S

xi
∏
i/∈S

(1− xi) . (3.1)

Notice that explicitly computing F according to this formula would require summing over 2N sets S ⊆ Ω.
For some f though, such as graph cuts, F can be computed efficiently. For all other f , by randomly sampling
sets S according to the probabilities in x, F (x) can be estimated arbitrarily well. Calinescu et al. (2007)
state that for any f , a polynomial number of samples yields a (1− 1/poly(N))-approximation to F (x).

Before considering associated proofs, we pause to make a few observations about how continuous-
double-greedy can be implemented in practice. The line “at any time t ∈ [0, 1]” really means that t serves
as a form of iteration counter. This line can be replaced by initializing t = 0, running “while t < 1”, and
updating t ← t + δ for some small step size δ each iteration. The x and y values can then be similarly
updated, setting xt+δi ← xti + δ dxi

dt (`∗). Additionally, the step of finding `′ simplifies to searching over a
relatively small set of possibilities, since Buchbinder et al. (2014) show x’s derivative is restricted to three
settings:

dxi
dt

=


1 ` < −bi
ai−`
ai+bi

−bi ≤ ` ≤ ai
0 ` > ai .

(3.2)
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Finally, there is the issue of converting the output x1 from a [0, 1] vector to a subset of Ω. This can be
done without loss in expected f -value, by using pipage rounding techniques (see Section 2.4 of Calinescu
et al. (2011)).

Algorithm 4 random-greedy

1: Input: submodular function f , ground set
Ω, limit k

2: S0 ← ∅, U0 ← Ω
3: for i = 1 to k do
4: for j ∈ Ui−1 do
5: aj ← f(Si−1 ∪ {j})− f(Si−1)
6: end for
7: Mi ← arg maxJ⊆Ui−1:|J|=k

∑
j∈J aj

8: ui ∼ Uniform(Mi)
9: Si ← Si−1 ∪ {ui}

10: Ui ← Ui−1 \ {ui}
11: end for
12: return Sk

Algorithm 5 continuous-double-greedy

1: Input: multilinear extension F , ground set Ω, limit k
2: x0 ← ∅,y0 ← Ω
3: at any time t ∈ [0, 1] do
4: define for every i ∈ Ω :

5: ai ← ∂F (xt)
∂xi

, bi ← −∂F (yt)
∂yi

6: a′i(`)← max{ai − `, 0}, b′i(`)← max{bi + `, 0}
7:

dxi

dt (`) =
a′i

a′i+b
′
i
, dyi
dt (`) =

b′i
a′i+b

′
i

8: Set `′ such that
∑
i∈Ω

dxi

dt (`′) = k
9: If enforcing |S| = k: `∗ = `′

10: If enforcing |S| ≤ k: `∗ = max{`′, 0}
11: for i ∈ Ω do
12:

dxi

dt ← dxi

dt (`∗), dyi
dt ←

dyi
dt (`∗)

13: end for
14: return x1

3.2 Selected Proofs

The main approximation guarantees of Buchbinder et al. (2014) are based on combinations of algorithms.
Still, each algorithm by itself has some useful guarantees as well. The next two sections address each
algorithm in isolation, and the third section discusses their combination.

3.2.1 Random Greedy Proofs

Recall that random-greedy is a randomized version of nemhauser-wolsey. It turns out that this
randomization doesn’t hurt the approximation guarantee associated with nemhauser-wolsey. This means
that random-greedy is in fact a (1 − 1/e)-approximation for monotone submodular functions subject to
the capping constraint |S| ≤ k. (Note that for monotone functions |S| ≤ k and |S| = k are essentially
identical constraints, since it never hurts the f -value to select more items.)

Unlike nemhauser-wolsey though, random-greedy has guarantees for non-monotone functions as
well. Neither of these guarantees is as good, for all k, as the guarantees shown in Figure 3.1, but random-
greedy does have a time complexity advantage over the procedure required to get the Figure 3.1 guarantees.

Theorem 34. Algorithm 4 is a 1
e -approximation for the cardinality-capped submodular maximization problem

(Problem 29).

Theorem 35. Algorithm 4 is a ((1− k
eN )/e− ε)-approximation for the cardinality-fixed submodular maxi-

mization problem (Problem 30), assuming k ≤ N
2 . The same applies for k > N

2 , replacing k with n − k in
the approximation factor. The ε is an arbitrarily small positive constant.

Figure 3.2 plots these approximation guarantees for the full range of possible k, ignoring ε. Notice that
the |S| = k plot here exactly matches the |S| = k plot of Figure 3.1 in the low-k and high-k regions.
Similarly, the |S| ≤ k plot here nearly matches the |S| ≤ k plot of Figure 3.1 in the low-k region. The match
is not quite perfect in this second case though; recall that the approximation factor foreshadowed in the
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Figure 3.2: Approximation guarantees of Theorem 34 and Theorem 35 for N = 100.

beginning of this chapter had minimum value 1
e + 0.004. Obtaining the additional 0.004 is discussed later,

in Section 3.2.3.
The proofs for Theorem 34 and Theorem 35 rely on many similar lemmas and techniques. The cardinality-

capped one is simpler though, so we describe just that one here. It relies on three supporting lemmas. The
proof of the first lemma is a fairly straightforward application of the definition of submodularity, so we simply
state the first lemma without proof.

Lemma 36. Let A(p) represent a random subset of A where each element is included with probability at
most p. Then, for non-negative, submodular f , we have: E[f(A(p))] ≥ (1− p)f(∅).

Lemma 37. For i ∈ {0, . . . , k}, it is the case that: (1− 1/k)if(OPT) ≤ E[f(OPT ∪ Si)].

Proof. Even if an element ends up in Mi, its chance of being left out of Si is 1−1/k. The chance of being left
out for all j ≤ i is thus at least (1− 1/k)i. So, the chance that an element is in Si is at most 1− (1− 1/k)i.
Define an (also submodular) variation on f : g(S) = f(S ∪OPT). Then, applying Lemma 36 to g yields the
desired result:

E[f(OPT ∪ Si)] = E[g(Si \OPT)] ≥ (1− 1/k)
i
g(∅) = (1− 1/k)

i
f(OPT) . (3.3)

Lemma 38. For i ∈ {0, . . . , k}, it is the case that:

1

k

(
1− 1

k

)i−1

f(OPT)− 1

k
E[f(Si−1)] ≤ E[f(Si−1 ∪ {ui})− f(Si−1)] . (3.4)

Proof. First, fix an event Ai−1 that covers all random decisions up to iteration i. Conditioned on this, Si−1

is also fixed. Recall that ui represents the element selected at iteration i:

E[f(Si−1 ∪ {ui})− f(Si−1)] =
1

k

∑
j∈Mi

(f(Si−1 ∪ {j})− f(Si−1)) . (3.5)

Also recall that the elements in Mi are those with the largest marginal gains. Thus, for any other size-k
subset M ′i ⊆ Ui−1, the gains are smaller:

E[f(Si−1 ∪ {ui})− f(Si−1)] ≥ 1

k

∑
j∈M ′i

(f(Si−1 ∪ {j})− f(Si−1)) . (3.6)
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The set OPT \ Si−1 is a subset of Ui−1 and can be made size-k by the addition of dummy elements (see
Reduction 31). Substituting this set for M ′i and applying the definition of submodularity:

E[f(Si−1∪{ui})−f(Si−1)] ≥ 1

k

∑
j∈OPT\Si−1

(f(Si−1∪{j})−f(Si−1)) ≥ 1

k
(f(OPT∪Si−1)−f(Si−1)) . (3.7)

Now taking the expectation over all random decisions before iteration i and applying Lemma 37:

E[f(Si−1∪{ui})−f(Si−1)] ≥ 1

k
E[f(OPT∪Si−1)−f(Si−1)] ≥ 1

k

(
1− 1

k

)i−1

f(OPT)− 1

k
E[f(Si−1)] . (3.8)

Given this final supporting lemma, the proof of Theorem 34 is now possible.

Proof. (Of Theorem 34) We will show by induction on i that E[f(Si)] ≥ i
k (1− 1

k )i−1f(OPT).

• Base case: For i = 0, E[f(S0)] = f(∅). Since we assume in the statement of Problem 29 that f is
non-negative, f(∅) ≥ 0.

• Inductive case: The inductive hypothesis holds for every i′ ≤ i. For i itself:

E[f(Si)] = E[f(Si−1 ∪ {ui})] (3.9)

= E[f(Si−1)] + E[f(Si−1 ∪ {ui})− f(Si−1)] (3.10)

Adding and subtracting f(Si−1).

≥ E[f(Si−1)] + (1/k) (1− 1/k)
i−1

f(OPT)− (1/k)E[f(Si−1)] (3.11)

Applying Lemma 38.

= (1− 1/k)E[f(Si−1)] + (1/k) (1− 1/k)
i−1

f(OPT) (3.12)

Re-arranging terms.

≥ (1− 1/k)
i− 1

k
(1− 1/k)i−2f(OPT) + (1/k) (1− 1/k)

i−1
f(OPT) (3.13)

Applying the inductive hypothesis to Si−1.

= (i/k)(1− 1/k)i−1f(OPT) . (3.14)

Summing the coefficients.

Evaluating at i = k, we have the desired result: E[f(Sk)] ≥ k
k

(
1− 1

k

)k−1
f(OPT) ≥ 1

ef(OPT).

3.2.2 Continuous Double Greedy Proofs

The continuous-double-greedy algorithm also provides approximation guarantees for cardinality-constrained
submodular maximization.

Theorem 39. Algorithm 5 achieves an approximation factor of:(
1 +

N

2
√

(N − k)k

)−1

− o(1) (3.15)

for cardinality-capped and cardinality-fixed submodular maximization (Problems 29 and 30), for k ≤ N
2 . For

k ≥ N
2 , the approximation factor remains unchanged for Problem 30, but saturates at 1

2 for Problem 29.
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Figure 3.3: Approximation guarantees of Theorem 39 for N = 100.

Figure 3.3 plots these approximation guarantees for the full range of possible k, ignoring the o(1) term.
Notice that the |S| ≤ k plot here matches the |S| ≤ k plot of Figure 3.1 everywhere except in the low-k
region. Similarly, the |S| = k plot here matches the |S| = k plot of Figure 3.1 everywhere except in the low-k
and high-k regions. In these excepted regions the random-greedy algorithm has a better guarantee.

The proof of Theorem 39 is somewhat involved so we omit it here, but note that it essentially contains
many of the same steps as the proof of Theorem 26 from the previous chapter. For example, the ai + bi ≥ 0
property from Lemma 22 is proven again. Then, a quantity analogous to the OPTi = (OPT ∪Xi) ∩ Yi set
from Lemma 25 is defined and its change across iterations is again upper-bounded. More concretely, this
quantity is the vector (OPT ∨ xt) ∧ yt, where ∨ is the coordinate-wise maximum and ∧ is the coordinate-
wise minimum. Instead of summing over all iterations, as was done for Theorem 26, the final step in the
continuous proof is to integrate from t = 0 to t = 1.

3.2.3 Combined Algorithm Proofs

For the |S| = k case, we have already covered all the machinery necessary to state the final approximation
guarantees that were foreshadowed at the beginning of this chapter.

Theorem 40. Running Algorithm 4 (random-greedy) and Algorithm 5 (continuous-double-greedy)
and taking the better of the two outputs yields an approximation factor of:

max

 (1− k
eN )

e
− ε,

(
1 +

N

2
√

(N − k)k

)−1

− o(1)

 (3.16)

for the cardinality-fixed submodular maximization problem (Problem 30).

Proof. Taking the max of the approximation factors from Theorem 35 and Theorem 39, the result is imme-
diate.

For the |S| ≤ k case, we nearly have all the machinery for the foreshadowed guarantee, but require an
additional 0.004, to make 1

e + 0.004. To break the 1
e barrier, Buchbinder et al. (2014) create a variation

on random-greedy called wide-random-greedy. This algorithm that is identical to random-greedy
except that it sometimes chooses the next element to add, ui, from a set larger than size k. More precisely,
the set Mi is of size Σ(i):

Σ(i) =

{
2(k − i+ 1) i ≤ d0.21ke
k i > d0.21ke . (3.17)

This wide-random-greedy algorithm gives the extra 0.004 to the approximation guarantee, but only
when a certain assumption on the worst element in Mi is satisfied. To guarantee the extra 0.004 in all
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cases, it is necessary to also run the augmentation-procedure, shown as Algorithm 6 here, for every
i ∈ {1, . . . , d0.21ke}. The details of the proof are beyond the scope of this survey, but we state the main
result as Theorem 41.

Theorem 41. Running wide-random-greedy and augmentation-procedure (Algorithm 6) and taking
the best of their outputs yields an approximation factor of:

max

1

e
+ 0.004,

(
1 +

N

2
√

(N − k)k

)−1

− o(1)

 (3.18)

for the cardinality-capped submodular maximization problem (Problem 29) and k ≤ N
2 . For k > N

2 , the
approximation factor is 1

2 .

Algorithm 6 augmentation-procedure

1: Input: submodular f , ground set Ω, limit k, iteration count i, set Si−1 from wide-random-greedy
2: Mi ← arg max

J⊆Ω\Si−1:|J|=2(k−i+1)

∑
j∈J f(Si−1 ∪ {j})

3: Define the submodular function gi(B) = f(B ∪ Si−1) and multilinear extension Gi
4: Bi ← continuous-double-greedy(Gi,Mi, k − i+ 1)
5: return Si−1 ∪Bi

3.3 Discussion

The Buchbinder et al. (2014) algorithms discussed in this chapter provide the current best guarantees for
maximizing non-monotone submodular functions subject to cardinality constraints. Buchbinder et al. (2014)
also show that a variation on random-greedy (Algorithm 4) can handle any single matroid constraint while
providing an approximation factor of 1

4 . In practical applications though, the random-greedy algorithm
is unlikely to perform better than the nemhauser-wolsey algorithm (Algorithm 1); the two only differ in
that random-greedy is more random. End-users of submodular maximization algorithms will probably
regard the proofs surrounding random-greedy as an indirect justification for using its close neighbor,
nemhauser-wolsey, for non-monotone objectives.

The continuous-double-greedy algorithm (Algorithm 5) may have greater practical importance.
Recall the empirical results for its discrete relatives from the previous chapter, deterministic-usm (Algo-
rithm 2) and randomized-usm (Algorithm 3). The f -values achieved were not impressive compared to those
of nemhauser-wolsey, and it is debatable how much the change from discrete to continuous would improve
these scores. However, in terms of runtime, the continuous algorithm could sometimes have a substantial
edge. The ideal setting for its use would be with functions f whose multilinear extension F can be computed
efficiently and with test cases where running all the way to t = 1 isn’t necessary for convergence of x. Note
that there are many F that can be computed efficiently, including for graph cut application from the previous
chapter: for a graph with adjacency matrix A, summing the entries of the matrix B = diag(x) A diag(1−x)
gives the value of F : F (x) =

∑
i,j Bij .

Besides the practicality of these algorithms, it is important to consider what they suggest in terms of
future theoretical work. The breaking of the “natural” 1

e barrier in Theorem 41 suggests that we don’t yet

know the best algorithm for all cardinalities. As mentioned earlier, the approximation is tight for k = N
2 ,

but for smaller k it is possible that tighter algorithms or proofs exist.
In the following chapter we explore algorithms for other constraint settings.
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Chapter 4

Polytope-Constrained Setting

In the previous chapter we briefly discussed that simple cardinality constraints, |S| ≤ k and |S| = k, can
be thought of as types of matroid constraints. The |S| ≤ k constraint results from restricting S to the
independent sets of the uniform matroid, while the |S| = k constraint comes from restricting S further, to
the bases of the matroid. These restrictions can also be characterized in terms of polytopes. To illustrate
this, we first introduce a few more technical definitions.

Definition 42. (Incidence vector) Let ei ∈ RN denote the standard unit vector with a 1 in entry i and
zeros elsewhere. For a set S, its associated incidence vector is eS =

∑
i∈S ei.

Definition 43. (Basis matroid polytope) For a matroid with bases B, the polytope PB = conv(eB | B ∈ B)
is called the basis matroid polytope. This is the convex hull of the incidence vectors of the bases.

Definition 44. (Independence matroid polytope) For a matroid with independent sets I, the polytope
PI = conv(eI | I ∈ I) is called the independence matroid polytope. (The basis matroid polytope is one face
of the independence matroid polytope.)

The cardinality constraint |S| = k can be thought of as the restriction of S to the vertices of the uniform
matroid’s basis matroid polytope. The same applies for |S| ≤ k, but for the independence matroid polytope.
Going beyond cardinality, there are many other useful constraints that can be described in terms of polytopes.
To begin with, there are all the other matroids besides the uniform one (see Section 1.2.3 for examples).
Even outside the realm of matroids though, there are notable examples. For instance, knapsack constraints.

Definition 45. (Knapsack constraint) A constraint of the form
∑N
i=1 aixi ≤ b for non-negative values

ai, xi, b is called a knapsack constraint.

Definition 46. (Knapsack polytope) For a given knapsack constraint, the convex hull of all the feasible

solutions is called the knapsack polytope: conv
(
x |∑N

i=1 aixi ≤ b
)

.

On top of all these examples, there is the fact that the intersection of two polytopes is itself a poly-
tope. Significantly, this means that the intersection of any number of these constraints can be described
as a polytope. Having established that polytope constraints are ubiquitous, it is clear that a submodular
maximization algorithm general enough to handle a polytope constraint would be an extremely useful tool.
For efficient algorithms, a simple restriction on the class of polytopes is first necessary: solvability.

Definition 47. (Solvable polytope) A polytope P ⊆ [0, 1]Ω is solvable if for any linear objective function
g(x) = a>x, it is possible to efficiently find the best x in P : x = arg maxy∈P g(y).

For any solvable polytope P , Vondrák (2008)’s “continuous greedy” algorithm is a (1−1/e)-approximation
for the problem maxx∈P F (x), when f is monotone. (Recall that F is the multilinear extension of f ; see
Definition 33.) Unfortunately, these guarantees do not extend to non-monotone f . In fact, an additional
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restriction on the class of polytopes is necessary for the non-monotone case — according to Vondrák (2009),
no constant factor approximation is possible unless the polytope is down-monotone.

Definition 48. (Down-monotone polytope) A polytope P ⊆ [0, 1]Ω is down-monotone if for all x,y ∈
[0, 1]Ω, y ≤ x and x ∈ P implies y ∈ P . (Inequalities apply element-wise: y ≤ x implies yi ≤ xi for all i.)

Fortunately, the class of solvable, down-monotone polytopes still includes all of the example polytopes
given above, including matroid polytopes and knapsack polytopes. The remainder of this chapter focuses on
the work of Chekuri et al. (2011), which provides approximation guarantees for algorithms that operate on
non-monotone submodular f , constrained to solvable, down-monotone polytopes.

4.1 Multilinear Extension

Chekuri et al. (2011)’s algorithms rely heavily on the multilinear extension, F (x), that was briefly introduced
in the last chapter (see Definition 33). In particular, they focus on solving the following problem.

Problem 49. (Down-monotone polytope-constrained multilinear maximization) For the multi-
linear extension F : [0, 1]Ω → R+ of a submodular function f : 2Ω → R+, and a down-monotone polytope
P ⊆ [0, 1]Ω, find: maxx∈P F (x).

Chekuri et al. (2011)’s approximation guarantees for this problem depend on several basic properties of
F . First, that F is “submodular” in a continuous sense.

Definition 50. (Continuous submodularity) A function G : [0, 1]Ω → R is submodular if, for all
x,y ∈ [0, 1]Ω:

G(x ∨ y) +G(x ∧ y) ≤ G(x) +G(y) (4.1)

where (x ∨ y)i = max{xi, yi} and (x ∧ y)i = min{xi, yi}.
It is also important that, while not concave in general, F is concave in any non-negative or non-positive

direction.

Lemma 51. The multilinear extension F is concave along any line with a non-negative direction vector.
That is, any vector v with vi ≥ 0 ∀i.
Proof. First, we show that the second derivatives of F are always negative.

∂F (y)

∂yj
= E[f(ŷ) | ŷj = 1]− E[f(ŷ) | ŷj = 0] (4.2)

∂2F (y)

∂yi∂yj
= E[f(ŷ) | ŷi = 1, ŷj = 1] + E[f(ŷ) | ŷi = 0, ŷj = 0] (4.3)

− E[f(ŷ) | ŷi = 1, ŷj = 0]− E[f(ŷ) | ŷi = 0, ŷj = 1] ≤ 0 (4.4)

where the last inequality follows by submodularity of F (Definition 50); for a vector z = [0, 1] and a vector
w = [1, 0], we have the set z ∨w = [1, 1] and the set z ∧w = [0, 0].

Now, let d ∈ [0, 1]Ω be a positive direction vector, d ≥ 0, and let t > 0 be a scalar variable. We show

that ∂2F (x+td)
∂t2 ≤ 0. In what follows, y serves as shorthand for the quantity x + td.

∂F (x + td)

∂t
=

N∑
i=1

di
∂F (y)

∂yi
(4.5)

∂2F (x + td)

∂t2
=

N∑
i=1

di

N∑
j=1

dj
∂2F (y)

∂yj∂yi
≤ 0 (4.6)

where the last inequality follows by non-negativity of d and negativity of F ’s second derivatives.
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Corollary 52. The multilinear extension F is concave along any line with a non-positive direction vector.
That is, any vector v with vi ≤ 0 ∀i.

Proof. This result follows immediately from the last equation in Lemma 51’s proof. If both di and dj there
are negative, the signs cancel.

Having established these properties of F , we illustrate them on one simple graph cut example before
moving onto describe Chekuri et al. (2011)’s algorithms. Figure 4.1 shows a single-edge, two-node graph.
The multilinear extension for this graph’s cut function is plotted on the right. Notice that in general it is
neither concave nor convex. Yet, along the line from (0, 0) to (1, 1) it is clearly concave. Similarly, it is
concave in every other non-negative (or non-positive) direction.

x1 x2

F (x) = f(;)(1� x1)(1� x2)+

f({1})x1(1� x2)+

f({2})(1� x1)x2+

f({1, 2})x1x2

= x1(1� x2) + (1� x1)x2
x1

x2

(1, 0)

(0, 1)

(1, 1)

Figure 4.1: Multilinear extension for the cut function of 2-node graph.

4.2 Selected Algorithms

The core algorithm Chekuri et al. (2011) rely on is shown as Algorithm 7 here. We will refer to it as local-
opt. Essentially, this is a conditional gradient ascent algorithm (Frank and Wolfe, 1956). Observe that,
by the down-monotone assumption, the starting point x = 0 is within P . Each iteration a new vector y is
selected, such that y is as aligned with the current gradient of F (x) as much as possible while remaining in
the polytope. Then, a step size α is selected, which determines how much y will contribute to the new x.

A second algorithm from Chekuri et al. (2011) is shown as Algorithm 8 here. We will refer to it as
double-local-opt. It consists of first running local-opt and then re-running it on a more restricted
polytope. Chekuri et al. (2011) show that double-local-opt is a 1

4 -approximation. The next section
covers a portion of that proof.

Chekuri et al. (2011) have a third algorithm as well, which is similar to local-opt. The difference is
that this other algorithm restricts its search to P ∩ [0, t]Ω, for a fixed parameter t. Combining this algorithm
with a simulated annealing procedure in which the “temperature” t is increased from 0 to 1, the authors are
able to show an approximation factor of 0.325. That proof is beyond the scope of this survey, but some of
its structure is similar to the proof of double-local-opt’s approximation guarantee, which we derive in
the next section.

26



Algorithm 7 local-opt

Input: multilinear extension F , polytope P
x← 0
while not converged do

y ← arg maxy′∈P ∇F (x)>y′

α← arg maxα′∈[0,1] F (α′x + (1− α′)y)
x← αx + (1− α)y

end while
return x

Algorithm 8 double-local-opt

Input: multilinear extension F , polytope P
x← local-opt(F, P )
y ← local-opt(F, P ∩ {y′ | y′ ≤ 1− x})
return

{
x : F (x) > F (y)
y : otherwise

4.3 Selected Proofs

Chekuri et al. (2011) establish an approximation guarantee for double-local-opt. This section covers
that guarantee and a portion of its proof.

Theorem 53. Algorithm 8 (double-local-opt) is a 1
4 -approximation to Problem 49.

The proof of this theorem relies on several lemmas. The first is as follows:

Lemma 54. Given vectors x,y ∈ [0, 1]Ω, it is the case that: F (x∨y)+F (x∧y)−2F (x) ≤ (y−x) ·∇F (x).

Proof. First, notice that 0 ≤ (x ∨ y) − x and that (x ∧ y) − x ≤ 0. Then Lemma 51 and Corollary 52,
combined with the first-order definition of concavity imply:

F (x ∨ y)− F (x) ≥ ((x ∨ y)− x) · ∇F (x) (4.7)

F (x ∧ y)− F (x) ≥ ((x ∧ y)− x) · ∇F (x) . (4.8)

Summing these two equations we have:

F (x ∨ y) + F (x ∧ y)− 2F (x) ≥ ((x ∨ y) + (x ∧ y)− 2x) · ∇F (x) . (4.9)

Applying the identity (x ∨ y) = (x + y)− (x ∧ y) gives the desired result.

A corollary of this first lemma clarifies its significance with respect to the optimization algorithms.
Specifically, it considers the case where local-opt has converged, which occurs when the y-selection line
of the algorithm sets y = x.

Corollary 55. If x is a local optimum (i.e. (y − x) · ∇F (x) ≤ 0), then 2F (x) ≥ F (x ∨ y) + F (x ∧ y).

The final lemma required concerns combining the results of double-local-opt’s two local-opt runs.

Lemma 56. Let OPT represent the solution to Problem 49, the polytope-constrained multilinear maximiza-
tion problem. If x is a local optimum in P and y is a local optimum in P ∩ {y′ | y′ ≤ 1 − x}, then
OPT ≤ 2F (x) + 2F (y).

We won’t cover the details of this lemma’s proof here, but remark that it effectively shows Theorem 53
— that the average of the two local-opt solutions is at least a 1

4 -approximation to Problem 49.

4.4 Contention Resolution Schemes

Problem 49, the polytope-constrained maximization problem, is defined with respect to the multilinear
extension F (x). But in practice, it is usually the case that a solution to f(S) is needed. In the previous
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chapter, for cardinality constraints, we mentioned that pipage rounding techniques would suffice to round
x. For general polytopes though, more complex mechanisms are necessary.

To this end, Chekuri et al. (2011) contribute a class of rounding algorithms that they call “contention
resolution schemes” (CR schemes). Ultimately, given a continuous solution x ∈ P , these schemes start from
a random subset R(x) that contains element i of Ω with probability xi. Then, elements are removed from
R(x) until it is feasible according to the original constraints on S. The key is to design the removal algorithm
in such a way that it is guaranteed element i appears in the final set with probability at least cxi, for some
sufficiently large c > 0.

Definition 57. (c-balanced CR scheme) A CR scheme πx is c-balanced if, for all i ∈ support(x), it is
the case that: Pr[i ∈ πx(R(x)) | i ∈ R(x)] ≥ c.

Notice that if f were a linear function, then a c-balanced scheme would convert x to a set S while keeping
at least a c-fraction of F (x)’s value. That is, if the approximation factor for maximizing F were α, the overall
approximation factor would be cα. For more general submodular f , ensuring this requires proving that the
applied CR scheme is montone.

Definition 58. (Montonicity of a CR scheme) A CR scheme πx is monotone if Pr[i ∈ πx(A1)] ≤
Pr[i ∈ πx(A2)] whenever i ∈ A1 ⊆ A2.

In some cases, it is easier to obtain a large c-value for a scaled-down version of the polytope: bP = {bx |
x ∈ P}, with b ∈ [0, 1]. Such schemes are then called (b, c)-balanced. Chekuri et al. (2011) further show
that any (b, c)-balanced scheme can be converted into a bc-balanced scheme.

All of these schemes focus on the setting where the constraints on f are of the form S ∈ I, for some
family of feasible sets I ⊆ 2Ω. The natural polytope relaxation in this case is the convex hull of I: PI =
conv(eI | I ∈ I), as was shown earlier for matroid and knapsack constraints. At a high level, one concrete
method for finding a CR scheme in this setting proceeds by selecting a subset of R(x) as follows:

• Let φ : 2Ω → I represent a mapping from possible R(x) to feasible output sets I. Let λφ be a
distribution over all φ. Construct a linear programming problem where the objective value is c and
the variables are the probabilities defining λφ. The program’s constraints should ensure the c-balanced
property.

• Solve this LP in the dual using the ellipsoid algorithm. Estimate the primal variables (probabilities of
the λφ distribution) from the dual and draw a single φ according to these probabilities.

• Apply the mapping φ to R(x) to obtain the final feasible set S ∈ I.

Under this umbrella, one of the most interesting results Chekuri et al. (2011) obtain is an optimal CR
scheme for a matroid constraint.

Theorem 59. For all b ∈ [0, 1], there exists a monotone (b, 1−e−b

b )-balanced scheme for any matroid polytope.
There is no (b, c)-balanced scheme with greater c for this problem.

Notice that the choice b = 1 corresponds to c = (1− 1
e ). Combining this with the 1

4 -approximation factor
for the problem of maximizing F (Problem 49), the overall approximation guarantee is 1

4 (1− 1
e ).

Chekuri et al. (2011) also provide CR schemes for knapsack constraints and several other common con-
straint types. What makes the CR framework truly compelling though is that a näıve combination of
individual CR schemes produces another CR scheme with a surprisingly large c factor. More concretely,
given h CR schemes, let the output produced by running each individual scheme, π1

x, . . . , π
h
x, be the h sets

I1, . . . , Ih. For a combined output
⋂h
i=1 Ii, Chekuri et al. (2011) provide the following guarantee:

Theorem 60. Given a submodular maximization problem with constraints I =
⋂h
i=1 Ii, suppose each cor-

responding relaxed polytope PIi has a monotone (b, ci)-balanced CR scheme. Then the overall polytope

PI =
⋂h
i=1 PIi has a monotone

(
b,
∏h
i=1 ci

)
-balanced CR scheme.
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4.5 Discussion

Devising submodular maximization algorithms for polytope constraints is an important avenue of research.
As discussed earlier in this chapter, polytopes include significant classes of constraints, such as matroid and
knapsack constraints. Substantial work has been done tackling these constraint classes individually (Lee
et al., 2009; Vondrák, 2009; Gharan and Vondrák, 2011). But Chekuri et al. (2011)’s work represents a
major step towards general-purpose algorithms for all down-monotone, solvable polytopes.

For future development of such general-purpose algorithms, continuous optimization schemes seem like
the way forward. Combinatorial techniques applied in the discrete setting may work for a particular type of
constraint, but aren’t flexible enough to handle many different types of constraints. Chekuri et al. (2011)’s
use of the multilinear extension illustrates the power of that particular continuous submodular variant.
While the approximation factors associated with gradient-ascent-based algorithms such as double-local-
opt (Algorithm 8) seem somewhat small, it’s possible that, with a few additional assumptions on the nature
of the constraints, these factors could be improved.

When working with continuous algorithms, there is the additional need for good rounding techniques.
Again, Chekuri et al. (2011)’s work represents a major advancement in this area. Their contention resolution
schemes are a departure from standard rounding algorithms in two main respects. First, they tend to rely
on greater randomization; recall that the linear programming method for finding a CR scheme outputs a
distribution over possible mappings from R(x) to the final output set. Secondly, they are non-oblivious; the
linear programming method for selecting a CR scheme depends on the particular value of x and so the final
scheme is tailored to it. In short, CR schemes merit further investigation, including an exploration of their
performance on real-world tasks.

We close this chapter by noting some hardness results that imply limits on approximation algorithms for
general polytope constraints. Gharan and Vondrák (2011) show that a 0.478-approximation for a matroid
independence constraint would require an exponential number of queries to an f -oracle. They also show an
even stronger hardness result of 0.394 for a matroid base constraint when the matroid has two disjoint bases.
These results limit the extent to which future work can improve on the guarantees of Chekuri et al. (2011),
but do not imply that the Chekuri et al. (2011) results are tight.
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Chapter 5

Online Setting

Up to this point, all of the algorithms we’ve considered apply only in the offline setting. Before choosing
an item, every one of these algorithms performs some computation that requires knowledge of every item in
Ω = {1, . . . , N}. For online settings, such as the secretary setting, this is not possible.

Definition 61. (Secretary setting) Elements from Ω arrive one at a time, in a random sequence. The
decision to accept or reject an item must be made before the subsequent item in the sequence arrives.

The name “secretary” comes from an instance of this setting where the elements of Ω are applicants for
a secretary job. The applicants are interviewed sequentially and the interviewer must decide directly after
each interview whether to hire the applicant or dismiss them. In this basic application, there is an implicit
cardinality constraint, k = 1. In general, there are practical applications with larger limits k and even
limits based on more complex structures. For instance, recall the matroids from Section 1.2.3. If instead
of a single secretary position there were ten different office jobs to fill, then the selection problem would be
constrained by a partition matroid with ten parts. Further, suppose the office jobs contained an element
of collaboration. Then relationships between the different applicants would be important, and overall office
performance might be well-modeled as a non-monotone submodular function of the selected office workers.
Most of the literature for the secretary setting focuses on a somewhat different application though — online
auctions (Hajiaghayi et al., 2004; Kleinberg, 2005). For these auctions, a seller has c items available and
bidders arrive and leave dynamically. Again, matroid constraints often arise.

To address secretary setting problems, alternative submodular maximization techniques are necessary.
Gupta et al. (2010) provide several useful algorithms in this vein. The remainder of this chapter focuses on
their algorithms and the associated guarantees. Before proceeding, we briefly note that Gupta et al. (2010)
also give offline algorithms with approximation guarantees. Some of these are superseded by more recent
results. For instance, in the case of their offline algorithm for the cardinality constrained setting, Buchbinder
et al. (2014)’s random-greedy (Algorithm 4) achieves a better approximation factor without incurring any
additional runtime cost. Other results, such as one associated with p-independence system constraints, may
remain the best known approximation factors. We discuss the p-independence system result briefly in the
conclusion, as it seems to suggest possible future work.

5.1 Selected Algorithms

The main algorithm highlighted in this section is Algorithm 9, secretaries. Gupta et al. (2010) show that
this algorithm is a constant-factor approximation to the following problem.

Problem 62. (Secretary setting cardinality-capped submodular maximization) We are given a
submodular function f : 2Ω → R+ and a random ordering of Ω. Subject to the requirement that once an
element i ∈ Ω has been examined a decision must be made to include i in S or reject i before examining the
next element in the ordering, find: maxS⊆Ω:|S|≤k f(S).
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Gupta et al. (2010)’s algorithm for this problem is an amalgamation of various submodular maximization
techniques, each executed with a certain probability. Half of the time only the dynkin algorithm (Algo-
rithm 10) is executed. This is a classical algorithm frequently used in the secretary setting. For the k = 1
case, it is in fact the optimal way to select S. It proceeds by calculating the f -value for each of the first bNe c
elements, keeping track of the max with the variable b. After that point, if it encounters an element with
value greater than b, it returns that element as S. If no such element is encountered, it returns the empty
set. In short, Algorithm 10 “ignores” the early elements to get a sense of what a good f -value is. It then
returns a single “good” element if it encounters one in the remaining iterations.

If secretaries doesn’t execute Algorithm 10, then it instead begins by acquiring an estimate of OPT
via a standard submodular maximization algorithm. That is, it feeds the first m elements, Ω1, into an offline
algorithm for the cardinality-capped submodular maximization problem (Problem 29). Gupta et al. (2010)
propose one such offline algorithm, but, as mentioned earlier, Buchbinder et al. (2014)’s random-greedy
(Algorithm 4) achieves a better approximation factor without incurring any additional runtime cost. Thus,
in the specification of secretaries here, we substitue in random-greedy.

Using the output of random-greedy as a proxy for OPT, the final step in secretaries is to run
one of three online “advice-taking” algorithms on the remainder of the data, Ω2. The first algorithm is
threshold, which simply accepts the first k elements of Ω that have value greater than τ . The second
algorithm is threshold-random, which is exactly like threshold except it rejects with probability 1

2 each
element that threshold would have accepted. Essentially, threshold-random emulates the process of
running random selection on the output of threshold. The third and final algorithm is another variation
on threshold, threhsold-opposite. This algorithm emulates the process of running threshold on
Ω2 \S1. Note that these emulation algorithms are necessary because the secretary setting does not allow for
two passes through the data; running threshold twice would not be acceptable.

Algorithm 9 secretaries

Input: submodular function f , ground set Ω, limit k
with probability 1

2 do:
S ← dynkin(f,Ω)

else do:
m ∼ Binomial

(
N, 1

2

)
Ω1 ← {1, . . . ,m},Ω2 ← {m+ 1, . . . , N}
A← random-greedy(f,Ω1, k)
τ ← f(A)/(7k)
c ∼ Uniform(0, 1)
if c ≤ 1

3 then
S1 ← threshold(f,Ω2, k, τ)

end if
if 1

3 < c ≤ 2
3 then

S′1 ← threshold-random(f,Ω2, k, τ)
end if
if 2

3 < c then
S2 ← threhsold-opposite(f,Ω2, k, τ)

end if
return whichever of S, S1, S

′
1, S2 was created
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Algorithm 10 dynkin

Input: submodular function f , ground set Ω
S ← ∅, b← −∞
for i = 1 to N do

if i < N
e then

if f({i}) > b then
b← f({i})

end if
else

if f({i}) > b then
S ← {i}
return S

end if
end if

end for
return ∅

Algorithm 11 threshold

Input: submodular function f , ground set Ω,
limit k, threshold τ
S ← ∅
for i = 1 to N do

if |S| = k then
return S

end if
if f(S ∪ {i})− f(S) > τ then
S ← S ∪ {i}

end if
end for
return S

Algorithm 12 threshold-random

Input: submodular function f , ground set Ω,
limit k, threshold τ
S ← ∅, c← 0
for i = 1 to N do

if c = k then
return S

end if
if f(S ∪ {i})− f(S) > τ then
c← c+ 1
with probability 1

2 do:
S ← S ∪ {i}

end if
end for
return S

Algorithm 13 threhsold-opposite

Input: submodular function f , ground set Ω,
limit k, threshold τ
S1 ← ∅, S2 ← ∅
for i = 1 to N do

if |S2| = k then
return S2

end if
if f(S1 ∪ {i})− f(S1) > τ and |S1| < k then
S1 ← S1 ∪ {i}

else
if f(S2 ∪ {i})− f(S2) > τ then
S2 ← S2 ∪ {i}

end if
end if

end for
return S2

5.2 Selected Proofs

Theorem 63. secretaries (Algorithm 9) is an O(1)-approximation for the secretary setting cardinality-
capped submodular maximization problem (Problem 62).

Gupta et al. (2010)’s proof of secretaries’s approximation guarantee relies on several interesting,
general lemmas. The first of these provides a bound on the value returned by the threshold algorithm.

Lemma 64. Let C∗ be a set with value f(C∗) = OPT. If threshold returns a set S of size |S| < k, this
set is still guaranteed to have value at least f(S ∪ C∗)− |C∗|τ .

Proof. Suppose not. That is, suppose f(S) < f(S ∪ C∗)− |C∗|τ . Then:

τ <
1

|C∗| (f(S ∪ C∗)− f(S)) ≤ 1

|C∗|

(∑
i∈C∗

(f(S ∪ {i})− f(S))

)
(5.1)
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where the last inequality follows by submodularity of f . Since the average marginal gain (over S) for elements
in C∗ is larger than τ , this implies at least one element i ∈ C∗ has marginal gain larger than τ . This element
clearly isn’t in S, or the marginal gain would be zero. Yet, by submodularity, at the point during threshold
when i was considered, its marginal gain could only have been greater. This implies a contradiction, because
a gain greater than τ would have placed i in S.

The second lemma that the secretaries proof relies on is not algorithm-specific, but rather of general
interest. It is also used by Lee et al. (2009).

Lemma 65. Given S1, C ⊆ Ω, define C ′ = C \ S1 and S2 ⊆ Ω \ S1. Then it is the case that: f(C) ≤
f(S1 ∪ C) + f(S1 ∩ C) + f(S2 ∪ C ′).
Proof. Let A1 = C ′ and B1 = S1 ∪ C. Then A1 ⊆ B1, and applying Definition 1 of submodularity yields:

f(S1 ∪ C ∪ S2)− f(S1 ∪ C) ≤ f(C ′ ∪ S2)− f(C ′) . (5.2)

Let A2 = C ′ and B2 = S1 ∩C. Then A2 ∩B2 = ∅ and A2 ∪B2 = C. Applying Definition 2 of submodularity
yields:

f(C) + f(∅) ≤ f(C ′) + f(S1 ∩ C) . (5.3)

Summing these these two inequalities:

f(C) + f(∅) + f(S1 ∪ C ∪ S2)− f(S1 ∪ C) ≤ f(C ′ ∪ S2) + f(S1 ∩ C) (5.4)

f(C) + f(∅) + f(S1 ∪ C ∪ S2) ≤ f(S1 ∪ C) + f(C ′ ∪ S2) + f(S1 ∩ C) (5.5)

f(C) ≤ f(S1 ∪ C) + f(C ′ ∪ S2) + f(S1 ∩ C) (5.6)

where the last line above follows from non-negativity of f .

The third lemma that the secretaries proof relies on establishes a safe setting for threshold’s τ .

Lemma 66. Given the true value of OPT and letting Ω2 = Ω, executing the second (non-dynkin) branch
of secretaries with the setting τ = OPT

7k results in a set S with expected f -value of at least OPT/21.

Proof. We begin by lower-bounding the sum of the outputs of the three possible code branches, f(S1) +
f(S′1) + f(S2). We show the sum is at least τk.

• Case 1 — assume |S1| = k or |S2| = k: S1 and S2 are selected using variants of the threshold
algorithm. These algorithms only add an item if it has value greater than τ , so the result is immediate.

• Case 2 — assume 4τk ≤ f(S1 ∩ C∗): The algorithm for finding S′1 emulates independently sampling
elements from S1 with probability 1

2 . Theorem 2.1 from Feige et al. (2007) characterizes such a random
selection algorithm as a 1

4 -approximation. Thus, we have f(S′1) ≥ τk.

• Case 3 — assume conditions from cases 1 and 2 are both violated:

f(S1) + f(S2) ≥ (f(S1 ∪ C∗)− |C∗|τ) + (f(S2 ∪ (C∗ \ S1))− |C∗|τ) (5.7)

Applying Lemma 64.

≥ (f(S1 ∪ C∗)− kτ) + (f(S2 ∪ (C∗ \ S1))− kτ) (5.8)

Using the fact that |C∗| ≤ k.

≥ (f(S1 ∪ C∗)− kτ) + (f(S2 ∪ (C∗ \ S1))− kτ) + (f(S1 ∩ C∗)− 4kτ) (5.9)

Using the fact that case 2’s assumption is violated.

≥ f(C∗)− 6kτ (5.10)

Applying Lemma 65.

= OPT− 6kτ = 7kτ − 6kτ = kτ . (5.11)

Applying the definition of τ .
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Having shown f(S1) + f(S′1) + f(S2) ≥ τk, note that the second branch of secretaries returns each one of
S1, S′1, and S2 with probability 1

3 . Thus, dividing by 3 and substituting in the assumed setting for τ gives

a lower bound of τk
3 = OPT

21 .

The remainder of the proof for the secretaries algorithm essentially shows that removing m elements to
estimate OPT (and then using the subsequent estimate instead of the true OPT) still results in a constant-
factor approximation. Combining this with the dynkin algorithm’s guarantees, Gupta et al. (2010) ul-
timately show the expected f -value of the returned set is at least OPT/1417. While this isn’t the most
inspiring constant factor, it is nonetheless a starting point for future work.

5.3 Discussion

The online setting is an important and practical realm for submodular maximization. One unifying charac-
teristic of all work in the secretary setting is that the algorithms use a fraction of the early input to get a
sense of what a “good” f -value is, then select from the remainder of the input stream using the “good” value
to guide the selection. There has been some recent research exploring monotone submodular maximization
in the secretary setting (Feldman et al., 2011a; Ma et al., 2013), but Gupta et al. (2010)’s work remains one
of the only publications to consider non-monotone functions.

In addition to the constant-factor guarantee demonstrated above, Gupta et al. (2010) provide guarantees
for matroid constraints as well. For the partition matroid, they again show an O(1)-approximation, and for
a general rank-k matroid an O( 1

log k )-approximation. The work of Bateni et al. (2010), done concurrently

with and independently of Gupta et al. (2010)’s work, establishes similar guarantees. For the monotone

cardinality-capped case they offer an algorithm with an approximation factor of 1−1/e
11 . This algorithm

essentially segments the input stream into k equal-size chunks and runs dynkin on each chunk. Using that
algorithm as a subroutine in a larger algorithm, Bateni et al. (2010) are also able to prove a constant-
factor approximation for non-monotone functions. Their algorithm is a 1

8e2 -approximation to Problem 62.
Additionally, Bateni et al. (2010) address the case of knapsack constraints. For k knapsacks, they find an
O( 1

k )-approximation algorithm.
In terms of the tightness of the current approximation guarantees, not much is known. For the rank-k

matroid case, Babaioff et al. (2007) consider the simpler setting where f is linear, and prove an O( 1
log k )-

approximation factor. This matches Gupta et al. (2010)’s result for submodular f , but leaves open the
question of whether either approximation is tight.
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Chapter 6

Conclusion

In this survey we have considered the problem of non-monotone submodular maximization across a variety
of settings. Chapter 2 addressed the unconstrained setting, for which Buchbinder et al. (2012) provide
a tight 1

2 -approximation algorithm. Chapter 3 addressed the cardinality-constrained setting. Buchbinder

et al. (2014)’s algorithms in this setting are tight for k = N
2 , but possibly sub-optimal elsewhere. Chapter 4

addressed the setting in which the convex hull of the feasible sets forms a down-monotone, solvable polytope.
Chekuri et al. (2011) tackle this setting by relaxing to the continuous realm and applying novel rounding
schemes. Finally, Chapter 5 addressed the online setting. Gupta et al. (2010) provide a constant-factor
guarantee for the cardinality-constrained problems in this setting, along with other several other guarantees
for matroid constraints.

Not all of the approximations discussed are known to be tight, so there is most likely room for improve-
ment. A few directions here seem promising. First, notice that many of the algorithms we saw include a
complement operation. In Buchbinder et al. (2012) and Buchbinder et al. (2014), this is implicitly done by
starting from f(∅) and f(Ω). Effectively, this is like optimizing both f(S) and f̄(S) = f(Ω \ S). In Chekuri
et al. (2011), a similar pattern appears. double-local-opt (Algorithm 8) first optimizes over the polytope
P to find x, then optimizes again over P ∩ {y | y ≤ 1 − x}. Gupta et al. (2010)’s algorithms include a
implicit complement as well, with threhsold-opposite (Algorithm 13) avoiding all elements that would
have gone into S1. Complementing f is one means of producing an alternative function to optimize, but
there are also other simple operations that preserve submodularity. For instance, restriction: for submodular
f , the restriction to A ⊆ Ω is also a submodular function: g(S) = f(S ∩ A). Perhaps there are interesting
choices of restricting set A that could yield new, useful submodular maximization algorithms.

A more concrete opportunity for improvement presents itself in Gupta et al. (2010)’s (offline) algorithm
for handling p-independence system constraints. We did not cover the algorithm in this survey, but it relies,
in part, on a slightly modified version of nemhauser-wolsey (Algorithm 1). Specifically, instead of blindly
selecting the item {j} that achieves maximum marginal gain, it first checks to make sure that S ∪ {j} is
an independent set. The same check could instead be added to randomized-usm (Algorithm 3), possibly
resulting in an algorithm with better approximation guarantees.

In addition to improving the general-purpose algorithms, it is of practical interest to adapt them for use
with individual submodular functions. For instance, recall the document summarization task described in
Section 1.3.2 and its log determinant objective (Problem 19). The multilinear extension F for log determinant
cannot be efficiently computed; we have to resort to sampling to estimate its value. Only a polynomial
number of samples is necessary, but this process can still be prohibitively slow for real-world tasks. Yet,
by making a slight modification to the multilinear extension and exploiting properties particular to the
individual submodular function under consideration (log determinant), an efficiently computable version
emerges (Gillenwater et al., 2012). There may very well be other submodular functions for which similar
minor changes to the general-purpose algorithms result in more practical, specialized algorithms.

In summary, the current body of work on non-monotone submodular maximization has laid strong
foundations, and there remains ample room for future development.

35



Acknowledgements

Many thanks to my WPE-II committee members—Aaron Roth, Michael Kearns, and Sanjeev Khanna—for
their time and their astute questions. I would also like to thank my advisor, Ben Taskar: first, for the use
of his cooler, without which my office food would doubtless have been eaten by the office mice long before
I could have finished this report; and second, more generally, for his enthusiasm and his dedication, the
memory of which continues to inspire and uplift. Finally, thanks to Alex Kulesza, for sending me the email
that Ben would have sent if he had seen this report.

36



Bibliography

Ageev, A. and Sviridenko, M. (1999). An 0.828-Approximation Algorithm for the Uncapacitated Facility
Location Problem. Discrete Applied Mathematics, 93:149–156.

Babaioff, M., Immorlica, N., and Kleinberg, R. (2007). Matroids, Secretary Problems, and Online Mecha-
nisms. In SODA.

Bach, F. (2013). Learning with Submodular Functions: A Convex Optimization Perspective. Technical
Report HAL 00645271-v2.

Bateni, M., Hajiaghayi, M., and Zadimoghaddam, M. (2010). Submodular Secretary Problem and Exten-
sions. Technical Report MIT-CSAIL-TR-2010-002.

Buchbinder, N., Feldman, M., Naor, J., and Schwartz, R. (2012). A Tight Linear Time (1/2)-Approximation
for Unconstrained Submodular Maximization. In FOCS.

Buchbinder, N., Feldman, M., Naor, J., and Schwartz, R. (2014). Submodular Maximization with Cardinality
Constraints. In SODA.
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