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We have developed 15th-order high-temperature series expansions for the study of the critical be-
havior of the Ising spin glass with nearest-neighbor exchange interactions each of which assumes
the values +J randomly. Series for the Edwards-Anderson spin-glass susceptibility (y54) and two of
its derivatives with respect to the ordering field have been evaluated for hypercubic lattices in gen-
eral dimension, d. These extend previous general-dimension series by five terms. Certain measur-
able universal amplitude ratios have been estimated from the new series. Accurate critical data for
d=35 and the first reliable estimates of the exponent 8 for d=4 and 5, are given. We quote
y=1.7340.03, 2.00+0.25, and 2.7 {;2 and B=0.95+0.04, 0.9+0.1, and 0.7+0.2 in 5, 4, and three di-
mensions, respectively. Our results provide a smooth extrapolation between the mean-field results
above six dimensions and experiments and simulations in physical dimensions. We relate our calcu-
lated derivatives of YE* to measurements of derivatives of the magnetization with respect to a uni-

form magnetic field.

I. INTRODUCTION

In this paper we report our results for Ising spin
glasses! ~? in general d-dimensional hypercubic lattices.
Our results include series expansion estimates of critical
exponents, critical temperatures, and certain universal
amplitude ratios. Our results are compared to those from
other series work, numerical simulations, and the € ex-
pansion. Our results enable reliable smooth extrapola-
tions to be made from mean-field results above six dimen-
sions to the physically relevant case of three dimensions.

Spin-glass (SG) systems have been subjected to inten-
sive study via experiments,z‘4 simulations,’ 7 series ex-
pansions,>™ ' the renormalization-group € expan-
sion,'* 18 and various approximate theories during the
last decade. Magnetic SG’s exhibit interesting phenome-
na that also occur in other materials such as orientational
glasses!® and superconductors.?°” 2> A SG can arise when
different magnetic interactions compete randomly with
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each other and thus cause individual magnetic spins to be
frustrated. Many distinct ground states are possible, as
well as many metastable states, and the system takes a
long time to relax after any perturbation. Irreversibility
is observed in experimental measurements of SG materi-
als.>”* In some other glassy systems there is a multiplici-
ty of choices leading to apathy,?* rather than frustration,
but the end results of multiple ground states, metastabili-
ty, and long relaxation times are ubiquitous.

In a SG, the usual magnetic order parameter, i.e., the
average magnetization, is zero, and the usual magnetic
susceptibility does not diverge as temperature is reduced.
However, new order parameters1 that relate to time aver-
ages attain finite values below the spin-glass transition,
where the related spin-glass susceptibilities diverge. The
spin-glass transition can, in principle, be characterized by
critical exponents just like those used to describe the
transitions in the simple Ising spin model or the percola-
tion process. The exponent y is associated with the
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divergence of the SG order-parameter susceptibility (re-
lated to the usual nonlinear susceptibility) and 8 charac-
terizes the singularity in the order parameter. In prac-
tice, the description of SG transitions is far more compli-
cated than is the case for the usual Ising model or per-
colation process.

Our understanding of critical behavior for Ising models
and percolation is now rather complete. Exact results ex-
ist?>2® for two dimensions (2D) and at the upper critical
dimensions, d,, of four and six, respectively. For inter-
mediate dimensions, exact series expansions have given
high-quality numerical data for critical exponents,?’8
amplitude ratios,” and critical temperatures and thresh-
olds, that are in excellent agreement with the exact re-
sults in low dimensions, with the field theoretic re-
sults?®3 in d=d,—e dimensions, and with simulation
calculations,’"3? of critical exponents and amplitude ra-
tios, critical temperatures, and percolation thresholds.
Different exponents can be measured independently to
confirm the validity of scaling and hyperscaling. Interpo-
lation between results in different dimensions is quite
smooth, and the agreement with the exact results at both
ends of the dimension range lends a great deal of certain-
ty to the numerical values.

For SG’s, the current situation is far less satisfactory.
Extensive simulations®~ 7 and series expansions® ™! have
given some numerical results for Ising SG’s in 3D and
4D, and our new results are in broad agreement with
these existing calculations. However, there appears to be
no long-range SG order in two dimensions, and at present
no exact results are available to guide numerical calcula-
tions from the lower end. Although a renormalization-
group € expansion for critical exponents exists near d. =6
(Refs. 14-18) the asymptotic series for the critical ex-
ponents are ill converged even in the vicinity of five di-
mensions and therefore are of no real use for extrapola-
tion towards 3D. We have tried to use Padé analysis on
the existing!” € expansion to order €, and found a very
large scatter of the results, even in d =53 There have
also been problems within field theory.>* To the best of
our knowledge there exist no published SG critical ampli-
tude ratios in any dimension. Experimental measure-
ments of critical exponents of SG’s have been made but
are not very precise.

In order to provide interpolation between dimensions
and to obtain reliable equilibrium estimates of critical ex-
ponents, amplitude ratios, and critical temperatures in
general dimension we have undertaken a comprehensive
study of the Ising SG defined by the Hamiltonian

H=— 2 ijSiSj-—HzS,- ,
(ij) i

(1.1

where (ij) denotes a sum over pairs of nearest neighbors
(i,j), and S;==1, while the nearest-neighbor exchange
variables, J;;=J;, independently assume the values +J
randomly with equal probability. In Eq. (1.1) we include
the effect of a uniform nonrandom external field, H. We
treat the case of quenched randomness so that the
quenched averaged free energy per spin, F, is given by

~FH/kyT

F=—(kT/N)[InTre Jav » (1.2)
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where [ ],, denotes an average over all configurations of
the J’s and N is the total number of spins. We have stud-
ied the phase transition at the critical temperature T, via
15th-order power-series expansions in the high-
temperature variable w =tanh*(J /kp T).

A convenient way to calculate the configurational aver-
age in Eq. (1.2) is to introduce the replica Hamiltonian,'

HM=—F I ISESF-hY 3 SeSP,

(ij)a=1 i 1Za<B<n

(1.3)

where & is the field conjugate to the Edwards-Anderson
SG order parameter Q =[{S,)?],,, and there are n repli-
cas. Then we define

2kpT —# "W /kp T

——————InTr[e

:1'
Frop=lim 1= N

rep n—0

T | - (1.4)

We obtained expansions for I'y, for kK =2,3,4, where we
define I'y as the kth derivative of F,, with respect to the
SG ordering field:

o*F
Ny=—|—3 , k=2,3,4, (1.5)
oh h=0
where Freszrep/kBT and A=h/kgT. The second

derivative, I',, is the Edwards-Anderson (EA) susceptibil-
ity!

C,=x"*=N"'3 [{5:5)], , (1.6)
ij
where ( ) denotes a thermal average at a fixed
configuration of the J’s. Explicit expressions for I'; and
I’ are given in Egs. (3.1) and (3.2) below. As will be dis-
cussed in Sec. IV, the expansions
15 m
Iy(w)=a, 0,00+ ¥ 3 a(m,n)w™d",

m=1n=1

1.7

are fitted to critical behavior with corrections to scaling
of the form

T (w)= A, (w, —w) *[1+a(w, —w)™

+b (w,—w)+ -1, (1.8)
with y, =y +(k—2)A, where the gap exponent A is
equal to (y+pB). In Eq. (1.8) we have allowed for both
nonanalytic and analytic corrections to scaling as is dis-
cussed in more detail in Sec. IV below. For d>6,
y=pB=1. Our results for Y*4, I';, and T, give three in-
dependent estimates of the two exponents 3 and ¥ in gen-
eral dimension and the possibility of studying universal

amplitude ratios®> >’ such as
r,r A, A
R=-—11~ 2200 (1.9)
(T3) (A3)

Here and below the symbol ~ means ‘“‘asymptotically
equal” for w—w,. We have also obtained the first e-
expansion results for amplitude ratios in the Ising SG.
The earliest steps in the generation of series for the SG
were made by Fisch and Harris,® (hereafter denoted as
FH) who generated 10th-order general dimension series
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for the EA susceptibility alone. The generation of these
series represented a major breakthrough, but an unfor-
tunate choice of analysis method led to problems of inter-
pretation below five dimensions. While writing up our
calculations we received preprints of the Singh-Fisher*®*’
calculations to 10th order for the gap exponents in gen-
eral dimension; our results are in broad agreement with
these values but are substantially more precise above
three dimensions. Longer series for two, three, and four
dimensions were obtained by Singh and Chakravarty®!°
(SC) using the star graph approach, but the present study
gives the first long series for the higher derivatives I'; and
I, in d+3 and five extra terms in the series for y** for
general dimension. In 3D, SC also calculated a different
type of susceptibility series,

r'=i2[<s,.sj>2]§v, (1.10)
N <

which scaling indicates has a dominant critical exponent
v'=4—d—"2nyv=y—28

with ¥ =(2—n)v. The exponent v describes the diver-
gence of the correlation length and 7 the behavior of the
pair correlation function at criticality, §~1/r¢ 72",
Together with our calculation of the I';’s, we therefore
have four independent measurements of combinations of
critical exponents. These determinations enable addition-
al useful tests of self-consistency to be made. The new
enumerations are part of a project to calculate extended
series for many systems in general dimension, which has
recently been reviewed in Ref. 38.

The earlier series expansion calculations and those that
we will describe below, as well as the e-expansion studies,
are all carried out for the equilibrium state. This is in
contrast with many experimental measurements that are
made dynamically and with problems with equilibration
that may arise in simulations. In general, quite good stat-
ic experimental measurements of ¥ can be made for SG’s,
but many recent 3 estimates have been deduced from dy-
namic scaling analyses.’® The long relaxation times ap-
pear to greatly complicate analysis of the experimental
data when dynamic scaling is used, and it would be desir-
able to obtain accurate [3 estimates via experimental mea-
surements of the different susceptibilities as we do in this
study. We note that while writing up this paper we re-
ceived several preprints that relate to improved analyses
of experimental data.** These show both that there were
problems in the past and that the situation is still not en-
tirely clarified, especially with regard to correction to
scaling terms.

The series for the SG are far more difficult to analyze
than those for percolation or Ising models. Large correc-
tions to scaling have been observed in simulations in the
lower dimensions*! and are probably also present in the
series. In addition, the series may have substantial ana-
lytic corrections. We have undertaken test series studies
on series that mimic the SG ones in these aspects, and
our analysis is based, in part, on conclusions drawn from
these. Our results above three¢ dimensions are well con-
verged, and we quote ¥ =1.73+0.03 and $=0.951+0.04
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in five dimensions, ¥ =2.00%+0.25 and 8=0.9%0.1 in
four dimensions, and y=2.7}? and B=0.7£0.2 in
three dimensions. These give a smooth interpolation be-
tween the mean-field results in six dimensions and other
calculations in three dimensions. For various dimensions
we give a comprehensive summary of both extant results
and our new estimates for critical exponents in Table I
and for critical temperatures in Table II (Ref. 42). We
have also determined the amplitude ratio R in all dimen-
sions and find R =2.77%+0.08 in five dimensions, esti-
mates of 1.9 and 3.8 leading to R =2.8%1.5 in four di-
mensions, and R =1.74+0.4 from a direct evaluation in
3D. We also obtain an indirect estimate of R =1.85+0.4
in 3D, and develop a connection between R and an exper-
imentally measurable quantity, related to the dependence
of the magnetization on a uniform external field.

This paper is arranged as follows. Section II contains a
discussion of experimental results, scaling for SG’s, and
the relation (derived in Appendix A) between experimen-
tal derivatives of the free energy with respect to the uni-
form field H and those with respect to the SG ordering
field h. Here we also discuss the e-expansion results, in-
cluding new results for certain universal amplitude ratios.
The generation of the new series is described in Sec. III,
and the series coefficients are presented in Table III. De-
tails of the series generation are given in Appendixes B
and C. A discussion of analysis methods for the SG
series is given in Sec. IV, and new results of the test series
analysis are placed in Appendix D. We present our re-
sults for the values of the critical exponents in Sec. V and
for the universal amplitude ratios in Sec. VI. A general
discussion of our results and their comparison with other
calculations is given in Sec. VII.

II. EXPERIMENTAL RESULTS, SCALING,
AND THE € EXPANSION

There is an excellent discussion of older SG measure-
ments concerning critical exponents in Ref. 2. Although
there are few natural SG’s with Ising symmetry, it has
been shown, for example,* "+ that Ruderman-Kittel-
Kasuya-Yosida SG’s, which contain some randomly an-
isotropic Dzyaloshinsky-Moriya interactions crossover
from Heisenberg to Ising critical behavior. Typical older
estimates for such glasses, found experimentally in 3D,
are** y=2.240.1, §=3.1+0.2, and B=1.0+0.1 for
AgMn and y=2.3%0.2 and §=5.2+0.5 (Ref. 47) for
Fe (Ni,,Pd,;,. The exponent § describes the dependence
of the order parameter on the ordering field at T, and is
equal to 1+7vy /B by scaling. Recent reanalyses of some
data for compounds including Cdy,¢Mnj,Te by the
AT&T group*® have shown that earlier estimates of
¥ =3.3%£0.3 for this system were far too low. Values be-
tween 4.28 and 4.4 are now proposed from improved stat-
ic scaling analyses based on linear rather than logarith-
mic plots. It is not clear whether Cdy¢Mng Te is a
short-range Ising system that can be directly compared to
our series results. The only estimates that we are aware
of for systems that are explicitly claimed to be short-
range Ising are B=0.7%0.1 and $=0.4%0.1 from two
different types of dynamic scaling analyses of the same
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experiments on the Ising SG Fey sMn, sTiO; by Norblad
et al.¥ The AT&T reanalysis of these data suggests
[=0.56. We shall discuss these analyses further in Sec.
VII, in the light of the suggestions that we make below
for the measurement of 3 and of critical amplitude ratios.

The different order-parameter susceptibilities that we
have calculated are defined above in Eq. (1.5). Since the
experimentalists usually measure magnetization as a
function of applied uniform magnetic field H, we give the
connection between the measured quantities and our re-
sults. The magnetization (per spin) M is obtained by tak-
ing the first derivative of the configurationally averaged
free energy F with respect to H so that
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dF 1
M = — | — _ ) =
ol |, "N [;(s,)] 0. (2.1)
= av

The second derivative yields the usual susceptibility,

Xla
Y= — 3°F
1 3H? |0
= S5 = (S)(S)],, 2.2)
D

4

As is well known,"? y, does not diverge for SG’s but ex-

TABLE 1. A selection of estimates of dominant critical exponents for d <6. When it has proved possible to deduce additional re-
sults (from the estimates of that calculation alone) via scaling and/or hyperscaling we have quoted the central values in parentheses.

Reference Y B A v’ = _2/5_;‘[ n=2— %
Five dimensions
Epsilon expansion®
First order 2
Series
Singh-Fisher® 2.0
Fisch-Harris® 1.95
Fisch-Harris! 2.23
This work 1.73+0.03 0.95+0.04 2.68+0.05 (0.73) (—0.38)
Four dimensions
Epsilon expansion®
First order 3
Series .
Singh-Chakravarty
(All approximants)® 2.0+0.4
(Highest approximants)® 1.855+0.041
Singh-Fisher® 2.4
This work 2.00+0.25 0.9£0.1 2.9+0.3 (0.95) (—0.11)
Simulation' 1.8+0.4 0.8 —0.3+0.15
Three dimensions
Epsilon expansion®
First order 4
Series
Singh-Chakravarty
(All approximants)® 2.94+0.3 0.47) (3.37) 1.96+0.19 1.3+0.2 —0.25+0.17
(Highest approximants)® 2.9440.13
Singh-Fisher® 3.4
This work 2.7+40 0.7£0.2 3.4+0.5 1.5+0.3 (1.37) (0.03)
Simulation
Bhatt-Young?® 1.3%+0.3 —0.3£0.2
Bhatt-Young" 3.2 0.5 3.7 1.4 —0.28
Ogielski-Morgenstern' 1.2+0.1 ~0
Ogielski’ 2.9+0.3 (0.5) (3.4) 1.31+0.1 —0.22+0.05
ExperimentX 2.3+0.2
Experiment' 0.4-0.7

?Reference 17.

bReference 36.

“Reference 8.

dReference 8 using a fit to the Rudnick-Nelson form.
‘Reference 9.

fReference 7.

8Reference 5 (T >1.2).

"Reference 5 (T,=1.2).

iReference 6.

’Reference 7.

“An average of values quoted in Ref. 2.
Reference 39.



hibits a cusp at T,. This cusp has its origin in the last

term in Eq. which behaves as the Edwards-
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TABLE II. Critical values of w, =tanh*(J /kT,).

d=>6
Reference d=9 d=38 d=17 d=6
1/0 expansion®
Five terms 0.06073 0.0696 0.0818 0.1002
Series expansion
Singh-Fisher® 0.070+0.001 0.083+0.001 0.102+£0.002
Fisch-Harris® 0.1023
Fisch-Harris® 0.1019

This work 0.059 66+0.00015 0.06798+0.00015 0.079 14+0.00015 0.10169+0.0003
d=<5
Reference d=5 d=4 d=3

1/0 expansion®

Five terms 0.1322 0.2133 1.2110

Four terms 0.1932 0.5036

Three terms 0.1772 0.3321
Series expansion

Singh-Chaakravarty? 0.21+0.01 0.48+0.04

Singh-Fisher® 0.139+0.002 0.21+0.01 0.48+0.04

Fisch-Harris® 0.1400

Fisch-Harris® 0.1400

Guttmann® 0.2+0.1 0.5+0.1

This work 0.137240.0008 0.207+0.008 0.40%3:%¢

Simulation
Bhatt-Young® 0.4613:42
Ogielski-Morgenstern® 0.478+0.013

?Reference 36.
"Reference 8.

‘Reference 8, using a fit to the Rudnick-Nelson form.

dReference 9.
‘Reference 42.
fReference 5.
EReference 6.

(2.2),

operators.
disordered or in the SG phase, since these phases do not
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Such averages vanish by symmetry in the

Anderson order parameter [{S;)2],,~(T.—T)? for
T <T, and is zero for T > T, of course.

One may likewise define higher derivatives of the free
energy with respect to H. For H =0, only even deriva-
tives are nonzero because odd derivatives are expressed in
terms of products of averages of odd numbers of spin

i

X2 E}F

_ l d*F
H=0

i,j, k1

support any local order in {S;). Thus, for instance,
3°F/3H? contains contributions of the form
[<S1Sjsk >]av’ [<S1Sj >(Sk ) ]av and [<Sl ><S_/ ><Sk >]av’
all of which vanish.

The fourth derivative, or the nonlinear susceptibility, is
the first to diverge as T, is approached from above:

=N"UkpT) 2 3 ([€S,585:8)) 1oy —3[€S;S; Y (S,5)) 1oy

_4‘[<Si><SjSkSl>]av+12[<Si><Sj)<SkS1>]av

—61(S,)(S; (S5, ){5,) 1)

(2.3a)

=Nk T) 7 3 ([€S:8;5¢5,) 1y —[(S,:8, )¢S5, S 1.,

i, j,k, 1

—[€S;8,2€(8;8)) Ly — [€5:8, (5,8, ) I,) -

(2.3b)
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TABLE III.
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Coefficients, a; (m,n), of the expansions of I';, for kK =2,3 and 4 as defined in Eq. (1.7).

3
3

a(m,n) x (15/2™)

a(m,n) x (15/2™)
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TABLE III. (Continued).

3

a(m,n) x (15/2™)

3
3

a(m,n) x (15/2™)
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TABLE IIl. (Continued).

m n a(m,n) x (15/2") m n a(m,n) x (15/2")
8 5 9630450 8 6 4311090
8 7 -2462040 8 8 321750
9 1 747752920 9 2 -883558600
9 3 389990120 9 4 2933440
9 5 -84516480 9 6 20976000
9 7 8149680 9 8 -4096800
9 9 468600 10 1 4898862510

10 2 -3661546900 10 3 -112552340

10 4 695488390 10 5 -5266780

10 6 -179590350 10 7 40586280

10 8 14589360 10 9 -6489450

10 10 660660 1 1 -101839012680

1 2 133308759920 1 3 -64162173160

11 4 12443570320 11 5 133565440

11 6 47843880 1 7 -356552640

11 8 71971200 1 9 24953400

11 10 -9873600 11 11 906360

12 1 -1161392058170 12 2 1120230485700

12 3 -273440216220 12 4 -32583147760

12 5 19885870380 12 6 -334825220

12 7 225270200 12 8 -669170430

12 9 119173050 12 10 41040450

12 11 -14525940 12 12 1214850

13 1 14957584143000 13 2 -23266942206000

13 3 13819538965480 13 4 ~-3859450427120

13 5 462726617760 13 6 -4925598920

13 7 434008880 13 8 623665120

13 9 -1195894440 13 10 186500400

13 11 65230440 13 12 -20769840

13 13 1596000 14 1 252036632455770

14 2 -288401955236350 14 3 105433350441430

14 4 -7267585664430 14 5 -4130954100750

14 6 957354421610 14 7 -55751977060

14 8 3927101870 14 9 1402319190

14 10 -2046955530 14 11 278104200

14 12 100601280 14 13 -28978950

14 14 2060400 15 1 -2614889817754120

15 2 4562983300326792 15 3 -3139324953436640

15 4 1076653601309680 15 5 -186016795230280

15 6 11642649023368 15 7 799152280600

15 8 -130515881360 15 9 12164098440

15 10 2825306760 15 11 -3372378600

15 12 397370880 15 13 151056360

15 14 -39580800 15 15 2619360

To interpret the above expression, we simplify it for the special case of the short-range £J model of Eq. (1.1). In this
model the average interaction J;; is zero, and there are no correlations between different J;;’s. We will later indicate
how our results should be modified for a more general SG model. For the short-range case, the first term,
[(SiSjSkS,>]av, is nonzero only for i =j and k =1, for i =k and j =/, or for i =/ and j=k. Thus, its contribution is
3N(N—1)+N. The other terms are nonzero when i =j and k =/, when i =k and j =/, or when i =/ and j =k. Thus,

their contribution is —3N?>—63,; ;[{S,S;)*],,(1—38, ;), where §, ; is the Kronecker 8. Therefore,

X2=4—6N "YkyT) 32[<SS>2 . (2.4a)
Asymptotically, the second term dominates so

Xa~—6N NkpT)~ 2 [€S:S; )]y~ —6x"A/(kpT) . (2.4b)
Thus the divergence in the nonlmear susceptibility is proportional** ~3° to the Edwards-Anderson susceptibility, which
diverges with the exponent y. Similarly we derived the result

°F
dH®

X3=— =N "UkgT)™> 3 ([{S,5,5:5/5,,5,) ]a

=0 i,j,k,,m,n

—15[(S8;:5;)(SkS,S,,8, ) 1,y +30[{S,8,)(S, 5, )(S,, 8,V lay) - (2.52)
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For the model of Eq. (1.1) this is

X3=N "' kpT)7* [ 240[(S;S; ) {S;S; ) (S5 ) 1oy
i,k
—480 3 [(S,S;)%],,+256N | ,

L

(2.5b)
which asymptotically is
X3~240N "N kpT) 7> 3 [(S8:8,)(S; 8, (S8 ) Ly -
ij,k
(2.5¢)

Referring to the explicit expression for I'; in Eq. (3.1),
below, we see that

X3~ —600;/(kpT) . (2.6)

In Appendix A we show that all the even derivatives of
the free energy with respect to H (which can be measured
experimentally), are asymptotically related to the order-
parameter susceptibilities I'j, of Eq. (1.5). The result of

Appendix A is

Xk 1

kpT —  kpT

3%*F
aHZk
~—(A/kgT)** 2k — 1 [(k—1)1]7'T, .

H=0
(2.7)

For the model of Eq. (1.1) the scale factor A is unity. For
more general models this nonuniversal constant need not
be unity but, as noted in Appendix A, will reflect the
range of the short-range correlations of the J;;’s. Equa-
tion (2.7) indicates the equivalence (up to a scale factor)
between H?, the square of the uniform field, and A, which
may be interpreted as the variance of the random field.
This equivalence implies that our series expansions for
the ', provide information on the experimentally acces-
sible derivatives of the free energy with respect to the
uniform field.

Notice that the magnetization M is related to the x,
simply through the Taylor expansion of M in terms of H,

_ 1 3,1 s, 1 7
M——XOH-F?XZH +§)(3H +7)(4H + e (2.8)

A particular application of Eq. (2.7) is to elucidate the
connection between universal amplitude ratios involving
the I';, such as R of Eq. (1.9), and experimentally observ-
able universal quantities such as x,x,/(x3)’. We obtain

YoXa/(X3)*=TR /5 , (2.9)

and stress that this relation does not depend on the
nonuniversal parameter A as long as there is a spin-glass
phase transition.

We conclude this section with a brief review of the re-
sults obtained using the renormalization group in 6 — € di-
mensions.'* ¥ From the field theoretic formulation with
replicas, values for critical exponents, amplitude ratios,
and universal scaling functions can be found. First we
quote the values of the critical exponents that were
directly obtained!’:

11257
7= —0.3333€+1.2593€2+2.5367¢° (2.10a)
and
v 1=2—1.6666¢+8.0185€2+1.6969¢° . (2.10b)

Other exponents can be calculated by using scaling rela-
tions, in particular,

y=1+€—3.8056€>—9.2971¢> ,
B=1+0.5¢—3.2778€2—4.9503¢€° .

(2.11a)
(2.11b)

In principle, these expansions can be used to calculate
numerical estimates in particular dimensions, but in prac-
tice different approximants give erratic results even for
€=1. These difficulties were mentioned in Ref. 2 and will
be discussed in detail in Ref. 33.

A particularly useful field theoretic calculation was
made by Pytte and Rudnick,'® who performed a
renormalization-group analysis in the ordered phase and
derived the equation of state. Elsewhere’! we use their
formulation to obtain results for a hierarchy of universal
amplitude ratios of the type?®3°

I, I, /T, T,) withk+I=m+n . (2.12)

For instance, to order € we find that the quantity defined
in Eq. (1.9) is given as

R=3[1+1e+0(e))] . (2.13)
This detailed renormalization-group calculation,’! based
on the work of Ref. 18, yields the result

Tp=dpot “[14aglt—2—1)/e]" "+ Tk

20y _Yk,o)/f

= At *(1+gt<?) , (2.14)

where t =T —T,, and v, =2k —3 is the mean-field value
of v,. A similar form was first derived for the suscepti-
bility of an ordinary n-vector model by Rudnick and Nel-
son,” and gives logarithmic corrections at d =6. The
constants appearing in Eq. (2.14) are nonuniversal, but it
is clear that if a; denotes the amplitude of the correction
to scaling term [Eq. (1.8) with A, =¢€/2], then a, is pro-
portional to (7, — ¥ ), and we have

ayay:a,=2:5:8, etc. (2.15)

In addition to the equation of state, we also derived®! the
result that

['Ir3/r3=—5.818/e+0(1) . (2.16)

The field theoretical formulation can also be used*>°
to write a scaling form for all the even derivatives,
[, (T,h). Replacing h by H?, we have

X (T, H)~(T—T,) " fEH /(T —T,)%, g(T—T,)") ,
2.17)

where y, =y +(k —2)A (with A=B+1y) and the £ nota-

tion denotes the different functions for T <7, and

T>T,.. Note that y,=—f as expected for T<T,. In
Eq. (2.17) we incorporated the leading irrelevant parame-
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ter, g, yielding the leading nonanalytic correction to scal-
ing. The fact that all the derivatives (8%*F /0H?**)y _,
arise as derivatives with respect to H? of a single function

)

A
foH /(T—T)% g(T—T,)"
indicates that all of them have corrections with the same
exponent A, >0.

One can use the scaling form [Eq. (2.17)], as well as Eq.
(2.8) to obtain the following relation:

M—xy H=H(T—T,Pf(H?>/(T—T,)") . (2.18)
Therefore, experimental data, when plotted as

(M —xoH)/H(T—T,)® versus H?*/|T—T,|*, will col-

c
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lapse onto a single universal scaling function (having one
adjustable nonuniversal scale factor associated with each
axis), and can be used to determine 3 and A.

III. GENERATION OF THE SERIES

We have obtained high-temperature 15th-order
power-series expansions of I',=YEA, T';, and T, for the
+J Ising model on d-dimensional hypercubic lattices.
These quantities are defined generally in Eq. (1.5). An ex-
plicit expression for I', is given in Eq. (1.6), and for I';
and I'y we have

Nr3:_42 [<S,SJ><S_/Sk><SkS1>]aV’ (31)
ik
NT,= 3 [36(S;S;)(S;S, )(S,8,)(S;S;)— 12(<SiSjSkSI>—<SiSj >(S,.S;) )(S;8; ) (S8
ik, 1
+(5,5,5,5,)7 = (5,8, Y2( 8,52~ (5,5, )%(5,5,)2— (5,5, (S5, )], - 02

The complexity of these expressions suggests that a direct
evaluation of them is inconvenient. The series have been
generated via the Harris®3 scheme that uses only no-free-
end (NFE) diagrams. In this scheme it is necessary to ob-
tain the dependence of various thermodynamic functions
on suitably renormalized potentials but calculated only
for NFE diagrams. This calculation can be algebraically
quite complicated but yields enormous savings in com-
puter time, because the number of NFE diagrams is
much smaller than the total number of diagrams. For ex-
ample, we have 13 NFE diagrams with at most 11 bonds
on a hypercubic lattice, whereas the total number of dia-
grams with at most 11 bonds on this lattice is over 1500.
The enumeration of all NFE diagrams up to 15th order
for general dimension hypercubic lattices is given in Ref.
54.

~ The NFE scheme™ applies when the free energy can be
expressed in the form

EZ-:Terl <I—I>flj )
i ij

e“F/kBT (3.3)

where p; is a function of variables associated with site i,
and f;; involves interactions between sites i and j. We
may rewrite Z as

S
Z=T IHCHANN | erraverayss
rI:Ipz[g( i )] (ll—jI) g(s,’h)g(sl’h)

=Tr[1p; I1 (1+V3),
i i)
where p; =p,g(8;,h ),
Vii=—1+f;[8(S;,h)g(S;,h N,

z=2d, where d is the dimension of the hypercubic lattice,
and g(S;,4) is an arbitrary function, to be chosen below.
As usual Z can be interpreted as traces over all possible
diagrams, and if we calculate Z for a diagram T, then

[

Z(TI') is the trace over all subdiagrams including I". The
cumulant expansion Z.(I') is obtained by subtracting
from Z(I') traces of all subdiagrams not including I.
Therefore

Z(M)=z()~ 3 Z.(="Tr 15 II V-
yED ier (ij)er

(3.5)

As usual, the cumulant vanishes if the coupling constant
J of any single bond is set equal to zero. As a result a di-
agram with b bonds gives contributions of order w”,
which are nonzero only for m = b.

In a free end diagram there is always a site j that is
singly connected to a site i. In this case if

Tr,(5; V) =0, (3.6)

where Tr; indicates a trace over all operators at site j,
then Z, vanishes, and this diagram does not contribute to
the cumulant expansion. Thus if we require the function

g(S;,h) to satisfy Eq. (3.6), we may use only NFE dia-

grams. In order to satisfy Eq. (3.6), g(S,,#) should
obey>?
Tr. ; (S,h) g ii
(s, 1) = L8 TTy) (3.7

Tr;{p;[g(8;,h)]}

where 0 =z —1.

In order to apply this formalism to the free energy of
Eq. (1.2) (for H=0), we use the replica Hamiltonian of
Eq. (1.3), and the definition of Eq. (1.4)

) —2kgT
F_=lim |————
n(n—1)N

rep n—0

(3.8)

InzZ™ ’ ,

where
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~#"W kT

Z(")Z[Tre ]av:Tr

a<f3

is of the form required in Eq. (3.3) with

h/kgT) 'S Si“S,f”]
a<f

pi —€Xp

and

fij=cosh [(J/kBT)ZSiaSJq } ‘

The solution of Eq. (3.7) is carried out as an expansion in
powers of h up to order #* in Appendix B. We thus
determine the I')’s by using only NFE diagrams, and
write

=TT+ S W (D)[8T ()], , (3.10)
r

where T'¢T is the calculated susceptibility on a Cayley
tree that has the same coordination number (2d ), as the
d-dimensional hypercubic lattice, W,(I") is the weight of
the NFE diagram I', and [8T,(I")]. is the cumulant con-
tribution of this diagram to I';. Explicit expressions for
these quantities are given in Appendix C. Since W, (I') is
a polynomial in d whose order is the number of bonds in
I', we obtain results of the form written in Eq. (1.7) by
taking all diagrams having up to 15 bonds.

It is worth noting that the introduction of replicas is
purely a mathematical convenience. We express the final
results for 8", (I") in terms of configurational averages of
thermally averaged quantities with respect to the physical
Hamiltonian of Eq. (1.1), so that no replica indices ap-
pear in these expressions. The series that we have de-
rived are presented in Table III and the constant terms
are a,(0,0)=1, a;(0,0)=—4, and a,(0,0)=34. The
d=2, 3, and 4 dimensional yE* series agree with the pre-
vious calculations of SC.° For the other susceptibilities
checks have been made on elements up to the eighth or-
der by calculations from the complete graph lists as well
as from NFE ones. Furthermore, important checks on
the correctness of the expressions for [8T',(I")]. are that
(a) this quantity vanishes when evaluated for a diagram
with free ends and (b) for a NFE diagram consisting of n,
bonds there are no contributions of order w* with k <n,.

IV. ANALYSIS

We have analyzed the series presented above as well as
some of the series from SC. A general review of analysis
of multidimensional low concentration series has recently
been given by the authors of this paper,®® and since the
present high-temperature series are similar to the low-
concentration ones, we refer the interested reader to our
review for details. In our approach to the analysis of
multidimensional series, each series at d#d, is analyzed
with two different methods,> ~>7 based on the assumption
that for d*d, there are power-law corrections to scaling
that become logarithmic for d =d..

The analysis for d+d_, =6 assumes that the series being
studied, denoted by H(w), in general, has the form

I1 exp [(h /kgT) S SESP
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] II cosh [(J/kBT)ES;"Sf] } , (3.9)
(ij) a
[
H(w)= At "(1+at ™ +bt+ -+ ), 4.1)

where ¢t =(w, —w), and A is the critical exponent that we
wish to determine. A more complete analysis would also
include higher-order correction terms such as ¢ ™ and
"™ but in the interest of simplicity we will mostly
consider Eq. (4.1). Some of our methods require an input
value of the critical temperature. For those cases where
this is not known, a wide range of trial values is used,
with the actual value chosen as that where best conver-
gence is obtained.
In the first method of analysis, denoted below as M1,
we study the logarithmic derivative of

B(w)=hH(w)—(w, —w) L) 4.22)
dw
which is
A —1
A(A,—m)S T Hb(1—h)
I 0B _ 4005 . (4.2b)

B(w) ow tad™ +b)

Assuming that the amplitudes @ and b are comparable,
we see that for A, <1, the dominant singularity in the
logarithmic derivative is a pole at w=w, with residue
(h—A,). For A, > 1, the dominant singularity is a pole at
w =w, but now with a residue (A —1). We may summa-
rize the conclusion as follows. If the coefficients in Eq.
(4.1b) can all be considered to be comparable in magni-
tude, then the use of method M1 is consistent with the
approximation

H(w)= At "1+bt%) (4.3)
where
5=min{1,A,} . (4.4)

Of course, if one of the coefficients in Eq. (4.1b) is anoma-
lously large, M1 will yield the estimate of Eq. (4.3) for
H (w), with 8 being close to the exponent whose associat-
ed amplitude is large. In intermediate cases, § should be
interpreted as an effective correction to scaling exponent.
We implement method M1 as follows: For a given value
of w, we obtain A, versus input 4 for all Padé approxi-
mants, and we choose the triplet w,,/,A, where all Padé
approximants yield as nearly as possible identical values
of h.

In the second method, denoted below as M2,%® we first
transform the series in w into a series in the variable y,
where

y=1-(1—w/w)", (4.5)
and then take Padé approximants to
G(y)=A,(y "U(%ln[H(w 1, (4.6)

which should converge to —h. Here we plot graphs of &
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versus the input A, for different values of w, and again
choose the triplet w,,s,A,, where all Padé approximants
converge to the same point. Both those methods have
proven very useful for many problems but do require the
simultaneous determination of three critical quantities.
In addition to these sophisticated approaches, we have
also carried out simple unbiased Dlog Padé analyses.
These give results that are equivalent to setting A;=1.0
in the M2 method.

In addition to the analyses of the individual series, we
have studied various combinations of the series for the
different susceptibilities. These include series obtained
via division of the series for successive derivatives and
series obtained from term-by-term divisions. The former
involve dividing the entire series, and have critical points
at the same location as the individual series. The latter
eliminate the need for prior knowledge of the critical-
point location and are based on an old method (see, for
example, Ref. 58) recently revived by Y. Meir.*”® If we be-
gin with two series expansions

Y= Eijj~(wc_w)77y
j=0
and
z=73 ijj~(wc_w)"n )
j=0

we denote the term-by-term divided series,
n .
E (yj /ZJ ow’! N
j=0

by Y+Z. This divided series has critical behavior with a
threshold at w=1, i.e.,

Y=Z~(1—w)> "',

One way to obtain exponents from a single series H (w)
without knowing the exact critical temperature is by util-
izing the above approach with series Y being [H (w)]?,
and series Z being H (w) itself. We call the resultant
series, which has a critical exponent of 4 +1, a “self-
divided” series, and denote it by H5P.

The SG series have corrections to scaling that are ap-
parently larger than those of the Ising model and percola-
tion. Some preliminary studies of these series with term-
by-term divided methods gave some unexpected results,
and therefore we decided to undertake test series studies
to examine the reliability of the term-by-term divided
series for systems with large corrections to scaling. In
Appendix D we describe test series work for the M1
method. We illustrate the importance of using M1 and
M2 in tandem and demonstrate the relative strengths of
temperature biased and divided series. For the divided
series, regardless of whether A; <1 or A, > 1, we find that
convergence occurs at the correct dominant exponent es-
timate, and for 6 given by Eq. (4.4), as previously found
for the method M2.%° A corollary from the test series
work is the result that when A;> 1 simple Dlog Padé ap-
proximants (which assume A;=1 and are therefore un-
reliable in general) can give the correct dominant ex-
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ponent because the introduced analytic term swamps the
original nonanalytic correction. This result has limited
practical application because of the poor convergence
that often occurs in practice in such cases.

At the upper critical dimension, d, =6 the logarithmic
corrections are expected to have the behavior

Hw)=(w,—w) "In(w, —w)|?, 4.7)

which is a special case of the Rudnick-Nelson®? form; see
also Eq. (2.14) for €—0. We fitted this form with the
method of Adler and Privman.’’ The analysis of the log-
arithmic form involves taking Padé approximants to the
series

gw)=—(w,—w)n(w, —w){[H(w)'/H(w)]
—[h/(w,—w)]} . (4.8)

We can show that the limit of g(w) as w —w, is 6. We
take Padé approximants to g at the best available esti-
mate of w, to obtain graphs of 0 as a function of 4.

V. EXPONENTS AND CRITICAL
TEMPERATURES

A summary of our results from the series analysis is
given in Tables I and II, and in this section we present
some details. We have made a very serious attempt to
undertake an analysis independently of the results of oth-
er SG studies, with some interesting conclusions. Com-
parisons with results from other calculations will be made
in Sec. VII.

A. Above six dimensions

Our exponent estimates above the upper critical di-
mension (d =6) are in excellent agreement with the exact
values from mean-field theory, y==1. Both analysis
methods M1 and M2 give optimal convergence at these
estimates for temperatures of w, =0.059 66, 0.067 98, and
0.079 14, for dimensions 9, 8, and 7, respectively. The er-
ror is about +0.00015 in all cases. These values are
based on all series, with emphasis on yE4. Analyses of
self-divided series and term-by-term division of the
different series confirm that these high-dimensional series
do give the mean-field exponents. We have also obtained
estimates for the correction terms for these dimensions
and quote A;=0.5atd =7, A;=1.0 at d =8 and 9, again
in agreement with the theoretical expectations.

B. Six dimensions

The series at d, =6 is expected® to have behavior of the
form of Eq. (3.4), with 6=2. This is a special case of the
behavior of the general Rudnick-Nelson>? form, given for
this problem in Eq. (11) of FH, see also Eq. (2.14). FH
imposed the Rudnick-Nelson form below six dimensions,
where it gave problematic results near d =4, but we ex-
pect that it should be reliable near d. =6. The method
described in Eq. (4.8) has given excellent results for other
problems such as percolation, but for the present prob-
lem we did not find optimal convergence in F2=)(EA for
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the expected 6=2. We find the best convergence for
w,=0.101 69, with a 6 of about 1.4. Near w,=0.102 00,
some of the approximants are consistent with §=2.0, but
the convergence is extremely poor. I'; and ', did not
converge well in this analysis.

C. Five dimensions

For this case we have substantially longer series than
those of previous calculations for all quantities, and hap-
pily our results in five dimensions are extremely well con-
verged. We find optimal convergence in xE4 at
w, =0.1368, with ¥ =1.70%0.01 at this temperature, and
an approximately analytic correction to scaling. The two
other susceptibilities give optimal convergence for a simi-
lar temperature with exponents of 2y +[B8=4.35+0.01
and 3y +2B=7.25%0.1. As can be seen from the quoted
errors (which are obtained by averaging over estimates
from the different analysis estimates at the optimal
threshold), convergence for I'; is much weaker. We illus-
trate the results with graphs of the M2 analysis at
w, =0.1368; the analysis for x4 is given in Fig. 1(a) and
that for I'; in Fig. 1(b). We observe that the correction in
the biased series is approximately analytic (or that
A;~1.0). The same correction behavior is seen in both
susceptibilities as discussed above below Eq. (2.14). The
analytic correction leads us to expect that there will be no
problems with the divided series analyses. Optimal con-
vergence is indeed seen for the self-divided series near
A,;=1.0, and we find ¥ =1.7540.10 from (¥F4)5P, and
2y +B=4.240.2 and 3y+2B=7.0+0.2 from the 'SP
and T5P. A graph of Padé approximants to y+1 as a
function of A (obtained via M2) is given in Fig. 1(c).

The divided series estimate of ¥ =1.75 corresponds to
a temperature value of just above 0.1375. At this temper-
ature 2y +8=4.45 and 3y +2B=7.3. However, the esti-
mate 2y +3=4.2, corresponds to a temperature a little
below 0.1365, where y=1.65. The range of
0.1365<w, <0.1375 encompasses much of the range
where any convergence is seen and we therefore deduce
that the temperature range for the d =35 Ising SG is
0.13724+0.0008. We select as our best ¥ estimate an
average of the best converged temperature biased and the
self-divided values, and quote ¥y =1.73%0.03. From the
different estimates for combinations of $ and ¥y we have
deduced that $=0.95+0.04, giving a gap exponent esti-
mate of B+ =2.68+0.07.

D. Four dimensions

In four dimensions our y®* series is not longer than
that of SC, but we have new long series for the two other
susceptibilities. Our preliminary temperature biased
analyses showed that the correction to scaling exponent
is larger than unity, and therefore the dominant exponent
in (x®*)3P should be the value that corresponds to the in-
troduced analytic correction. The M2 analysis for
(XxEA4)SP is presented in Fig. 2(a), and we observe that
there is no real convergence in the region of the analytic
correction. There is, however, convergence near A;=3.5
at a value of ¥y =1.9, and some of the approximants are
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fairly flat throughout the region in the figure, therefore
we may tentatively cite an unbiased estimate of
y=1.940.2. The I'SP and T'$P series were too poorly
converged to make any estimates. The divided series
I';+xE* and I',=T; both have no convergence in the
neighborhood of the analytic correction. The former
gives an estimate of y +[3=3.0%0.1 near a large correc-
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FIG. 1. Graph of Padé approximants for the dominant criti-

cal exponent in five dimensions as a function of trial A, estimate
from the M2 analysis for the (a) yE* series and (b) I'; series at
w,=0.1368. The M2 analysis for (xE4)SP is given in (c).
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tion to scaling with a few approximants being flat into the
region near the analytic correction and the latter gives a
value of near 2.8 with no flatness. The results from the
test series studies imply that we cannot place too much
confidence on these values, as the correct values should
be seen near the introduced analytic correction. If we do
rely on both these values then they imply an average 3 es-
timate of 1.0+0.2.

Optimal convergence is seen in the temperature biased
M 1 analyses for y and T'; series near w, =0.205, where
y=2.0%20.2 and 2y +B=4.91+0.2, respectively. The
correction exponent A, is close to 3 for both cases. This
gives a central 3 estimate of 0.9. The optimal conver-
gence for M2 is closer to w,=0.210, where ¥y =2.240.1,
and 2y +3=5.310.3, again leading to a central estimate
of £=0.9. At the lower temperature choices the indivi-
dual M1 estimates were about 0.1 higher than the M2
ones, but for w, =0.210 the values were similar. We have
also studied derivatives of the yE* series in order to take
account of the possibility of a large analytic correction.
The central values of the M2 analysis of the first and
second derivatives are not any different from those of the
undifferentiated series. We illustrate the M2 analysis of

y+1

y+1 (b

3.54

3.0 A

Al

FIG. 2. Graph of Padé approximants for the dominant criti-
cal exponent in four dimensions as a function of trial A, esti-
mate from the M2 analysis for the (a) (YF*)SP series and (b) first
derivative of the YEA series at w, =0.205.
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the first derivative of yE4 at w,.=0.205 in Fig. 2(b). The
correction to scaling exponent appears to be about 3.0. A
very interesting effect is seen in the M1 analysis of the
first derivative. In the region 0.203 <w, <0.205, in addi-
tion to the M1 estimate at about 0.1 above the M2 esti-
mate, there are some indications that some M1 approxi-
mants are tending towards about the same value as the
M?2 estimate. This effect may be the precursor of a cross-
over of the M1 estimates from values above the M2 ones
to estimates identical with those of M2. The splitting
effect becomes smaller for shorter series and is absent
completely for 12 terms.

With overall emphasis on the temperature biased anal-
yses, we quote the overall estimates w,=0.207+0.008,
Y =2.00£0.25, =0.9%0.1, and A=2.940.3 from the
15-term series and note that it is possible that the ¥ value
may be towards the bottom of the range if the splitting in
the M1 derivative analysis is not a coincidence.

E. Three dimensions

Three dimensions is very close to the lower critical di-
mension for Ising SG’s.3® The quality of convergence is
far poorer than in the case of higher-dimensional SG’s or
other systems in three dimensions. Fortunately, SC were
able to obtain two 17th-order series for this dimension,
one for yE* and one for I’ [Eq. (1.10)], which has a criti-
cal exponent ¢’ that can be related to 3 via hyperscaling

y'=@4—d——2nlv=y—28.

There is no reason to doubt hyperscaling for the SG, and
therefore we have no reason to expect that there is any
objection, in principle, to obtaining the 3 estimate via
hyperscaling from the y’ series if the series are long
enough. However, there is no reason to expect a priori
that the I'" and yE series will have corrections to scaling
of similar relative amplitudes, and, therefore, in finite
series, differences in effective corrections could degrade
the convergence and result in different estimates of 3
from the two series. As argued in some of our recent
analyses,’! and as required by the scaling form Eq. (2.16),
we expect (and observed above for the SG in four and five
dimensions) that series that are successive field deriva-
tives, whose exponents differ by a constant gap, should
have similar corrections to scaling. This means that the
[ estimate from a pair of such series could be reliable
even if there is a slight systematic error in each of the
dominant exponent estimates. Therefore, although we
have only been able to obtain a 15-term series for I'; and
I',, it appeared to be worthwhile to analyze these to ob-
tain direct estimates of the gap exponent, and thence of
B=A—y.

Our preliminary analyses showed that A;>1, and
therefore term-by-term divided series analyses, should
give the correct dominant exponent near an analytic
correction. Since we failed to find convergence in the an-
alytic region we shall not report in detail on these analy-
ses. We have carried out extensive temperature-biased
analyses of all four series using trial temperatures in the
range 0.32<w, <0.55, with emphasis on the range
0.36 <w, <0.48. In the tighter range indications that
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good convergence were observed in at least one analysis
for at least one of the series. For yE4 we found that in
the best converged region in the M2 analysis ¥ decreased
from 4.25 at w,=0.48 to about 2.5 at w,=0.36. There
were some indications that the same splitting of estimates
that occurred in the derivative series in four dimensions,
occurs for M1 in the region of w,=0.40. One estimate
was in agreement with the converged M2 value of y =3.0
at A;=~4.0 and the second was consistent with a correc-
tion exponent estimate of A;=2.0 and a y estimate of
about 2.4. Derivatives of YE4 give central estimates of y
that range from 4.25 at w,=0.48 to 2.3 at w,=0.38.
These estimates appear to confirm the lower of the two y
estimates in the split case. An extensive study has also
been made of the I'; series, where for the same threshold
range we find 2y +5=7.0%£2.0 from the original series
and 2y +5=6.212.0 from the second derivative series.
Convergence is much better for the second derivative,
and we may conclude that using this series we have a 8
estimate of about 0.8 at w,=0.40. The I'; series appear
to have a large correction to scaling exponent estimates,
again near 4.0. With a strong bias from the results of the
derivative analysis we decided to exclude w, >0.46 from
our temperature range. We conclude that the YFA series
give an exponent value that is strongly dependent on the
threshold choice, and for w, =0.40*3-3¢ (the range being
chosen both from analyses of the series and of its deriva-
tive) we find y =2.7129.

For I'" we found that y’ decreased from 3.0 (2.5) at
w,=0.48 to about 1.0 at w,=0.36 for M2 (M1). The
M1 and M2 analyses of this series at w,=0.42 are given
in Figs. 3(a) and 3(b), respectively. We have also studied
second derivatives of the I'’ series. The M2 results failed
to converge but the M1 results agreed quite nicely with
the other estimates. The nature of the correction behav-
ior in the I'' series appears to differ from that of the other
series; there is a correction exponent of about 2.0 at op-
timal convergence. From the scaling relation
B=(y—v')/2 we may deduce 8=0.6 at w.=0.40.

At w,=0.40, the two [ estimates average at 0.710.2,
giving a gap exponent of 3.4. Attempts to obtain 3 esti-
mates towards the extremes of the temperature regions
quoted above lead to estimates of about 0.5 near
w,=0.36 values and 1.5 near w,=0.48. We believe that,
since it is most likely that 3 in three dimensions will be
below the values in higher dimensions, this indicates that
the true w, is likely to be below 0.44. We quote
y=2.77§3,8=0.7+0.2 and w, =0.4013:%.

VI. AMPLITUDE RATIOS

We have studied the amplitude ratio R of Eq. (1.9) in
all dimensions and the ratios R,=I'T'}/I'5 and
R,=T"T';/T% in three dimensions. The measurements of
the amplitudes in the ratios R, R, and R, are all made
on the same side of the transition, and this is of consider-
able importance because in many systems of interest such
as the three-dimensional SG the error in the critical point
is large. These ratios are less sensitive to the exact choice
of transition temperature than ratios taken between am-
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plitudes of, for example, the same susceptibility above
and below the transition. For problems such as the SG
where series have been obtained to date only on one side
of the transition, these are, at present, the only amplitude
ratios that can be calculated from the series approach.
We have evaluated these ratios using a method
developed in Ref. 61, whereby the series are multiplied
and divided in the appropriate combinations to give an
expansion for the ratio in question. Padé approximants
are then obtained for the expansion and evaluated at the
critical point. Another method of determining amplitude
ratios®® was attempted here, but the results were unclear.
A graph of central and nearest diagonal highest Padé
approximants for the ratio R is given in Fig. 4. Above six
dimensions the numerical evaluation of R is in excellent
agreement with the exact mean-field result of 3.0. We
measure 3.001+0.01 and 3.02+0.02 at the critical temper-
atures in eight and seven dimensions, respectively. At six
dimensions an average of central and near-diagonal
highest approximants gives R =3.08+0.08. As we de-
crease towards five dimensions, this ratio increases a lit-
tle, but the increase is very small relative to the scatter.
We quote R =3.14%0.20 at the best threshold estimate
in 5.5 dimensions. By the time five dimensions is reached

7

Al

FIG. 3. Graph of Padé approximants for the dominant criti-
cal exponent in three dimensions as a function of trial A, esti-
mate from the (a) M1 and (b) M2 analysis for the I'’ series at
w,=0.42.
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FIG. 4. Graph of Padé approximants for the amplitude ratio
R as a function of dimension.

the ratio has clearly decreased, and we measure an aver-
age R =2.77+0.08, for central and nearest-diagonal ap-
proximants with two outlying approximants being dis-
carded. The estimates are not uniformly scattered but
rather peak around two values. About half the approxi-
mants give an average estimate of 3.4, and the others
average at 2.1. The two peaks become even more pro-
nounced as the dimension is further reduced, and at four
dimensions there is an averaged estimate of R =2.8+1.5,
with peaks at about 1.9 and 3.8. In this dimension four
outlying approximants were discarded. This two-
branched behavior of R estimates is very interesting,
especially as the upper branch may be following the e-
expansion results of Eq. (2.11). In 4 <d <6 we quote re-
sults averaged over our entire range for the critical tem-
perature.

In three dimensions, the upper branch is represented
only by the [6,6] Padé approximant, for any temperature
choice within or near our range or that of SF. Other
[L,M] approximants with L +M <13 give negative or
close to zero values of R. There are six high-diagonal
and near-diagonal approximants, which give estimates
between 0.9 and 2.3 within our critical temperature
range, and we quote an average value of 1.7£0.4 from
these. This value decreases by about 0.1 at the top of the
w range and increases by 0.1 at the bottom of the range.
If we include the [6,6] approximant we have a central es-
timate of 1.9. At w,.=0.40, we estimate R, =39.4+0.4
from approximants of degree 13 and higher. For
w,=0.48 this value is higher by about 3.0 and for
w,=0.36 lower by about 1.0. This ratio is much better
behaved than either R or R,. We estimate R, as 73120
at w,=0.40 from 9 central and near-diagonal approxi-
mants. For w,=0.48 this value is higher by about 8.0,
and for w,.=0.36 lower by about 5.0. The ratio of
R, /R, is equal to R by elementary considerations. Us-
ing our direct estimates of R, and R, this leads to an in-
direct central estimates of R =1.85(1.91,1.77), at
w,=0.40(0.48,0.36), in excellent agreement with the
direct estimates. In fact, given the wide error ranges, this
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agreement is almost “too good.” We have tried to verify
the estimates by changing the criterion of selection of ap-
proximants in both R, and R,. Such changes do change
the value of both central estimates (discarding more ap-
proximants in both cases lowers the average as in each
case there are several approximants near the top of the
error range), but the ratio remains unchanged. We note
that the trend of the change as threshold changes is
different for the direct and indirect estimates; therefore
best agreement is obtained for the center of our range.
This supports our choice of a central w, estimate.

VII. TRENDS, COMPARISONS, AND CONCLUSIONS

The main trend that can be observed from our calcula-
tions is the smooth monotonic extrapolation that our new
estimates give between the mean-field six-dimensional ex-
ponents and existing exponent estimates in three dimen-
sions, (Table I). In the light of the convergence
difficulties that the e-expansion experiences, we believe
that this is the first time that a smooth interdimensional
extrapolation has been obtained for several exponents of
the Ising SG. We have also obtained amplitude ratios
that extrapolate fairly smoothly between dimensions.

Several comparisons can be made between our new re-
sults and existing calculations. In d = 6, the main interest
is in the comparison of our critical temperatures with the
other estimates of Table II. We see that there is broad
general agreement with the shorter series and 1/0 expan-
sion calculations of SF;*®%7 our results fall below the
latter in d > 6, whereas the series results of SF (Refs. 36
and 37) fall above. In d =6 our critical temperature is
close to the FH value® that is found from fitting to the
full Nelson-Rudnick form. This is a pleasing
confirmation of the reliability of both algorithms at the
upper critical dimension.

We have also been able to confirm the mean-field dom-
inant exponent estimates in d =26. Our correction ex-
ponents for d =7 and 8 are in agreement with the expect-
ed [see Eq. (2.14), which is exact above six dimensions]
A,=(d—6)/2 for a ¢* field theory. The detailed deriva-
tion of this result for percolation is given in Ref. 62, but
it is equally valid in this case. For d =9 we measured the
dominant analytic term rather than the expected
A;=1.5. A similar phenomenon was seen in d =9 per-
colation.?® 1In six dimensions the convergence to the ex-
pected logarithmic correction 6=2 is less clear: This
poor convergence may be caused by defective approxi-
mants or other causes such as the series being too short
to capture all the details of the system behavior or
higher-order corrections.

In d =5, we observe that our critical temperature falls
between the SF and 1/0 estimates, which are all substan-
tially below the FH estimates. Our y value in this case is
below the FH value but above the SF one. Another
difference from the SF calculation is that our gap ex-
ponent of 2.68 is already substantially above the mean-
field result; the value quoted in the table of SF is exactly
the mean-field value of 2.0, but in a footnote they quote
2.4. From our results for ¥ and B, we use scaling to
evaluate the central estimates v=~0.73 and n= —0.38,
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the latter being in qualitative agreement with the first-
order e-expansion values of 0.91 and —0.33, respectively.
Our results for five dimensions are well converged and in-
dicate the potential for smooth extrapolation down to
four dimensions.

Before comparing our lower dimensional results with
previous studies it is necessary to pause and consider
briefly the extrapolation of the 1/0 expansion in lower
dimensions. If we follow the procedure suggested by SF
for extrapolating this asymptotic expansion, then we
should truncate the expansion after the smallest term.
This means retaining only three terms in three and four
dimensions. The estimates obtained from these trunca-
tions are quoted in Table I; they are considerably smaller
than the values obtained from truncations after five
terms, as quoted by SF.

Our four-dimensional results are not very different
from those of SC for w, and vy, but our gap exponent esti-
mate is larger than that of SF. The larger gap exponent
is based on longer series for the higher moment than
those of SF. Since this value falls smoothly on the extra-
polation from six dimensions to the SC value in three di-
mensions, we expect that our gap exponent of 2.9+0.3 is
reliable. Using scaling we deduce the estimates v~0.95
and n~~ —0.11, respectively. The former can be com-
pared with a value of about 0.7 from the combined SC
and SF estimates. Our estimate for 7 is very much small-
er in magnitude than the corresponding estimates of
—0.5 to —0.8 deduced from the SC-SF values.

In three dimensions, our central w, estimate falls below
all other central estimates given in Table I, except for
that of the third order 1/0 expansion. Since three terms
are apparently the right number to take in this dimen-
sion, this result is interesting. Our estimate overlaps with
all calculations cited in the table except that of Ogielski
and Morgenstern,® whose lower bound of 0.465 just
misses our upper bound of 0.46. Our gap exponent is in
excellent agreement with both the SF and SC values, but
our ¥ value is lower by 0.2 and our S value higher by 0.2
than those of SC and of the simulations. As described in
detail above, it has been observed that within our calcula-
tions, raising the central critical temperature estimate has
the effect of raising our y estimate. Such an increase is
also seen in our Y’ estimates, and if 3 is estimated from
the difference of ¥ and y’ the change of critical tempera-
ture has relatively little effect on its value. Thus despite
the marginally better convergence seen for the lower tem-
peratures a slight decrease in w, would lead to values in
better agreement with those of other authors, and there-
fore would perhaps be justified. However, our long I';
series enable us to take an alternative determination of 3.
This alternative determination increases very quickly as
the trial critical temperature is increased; for example, at
w,=0.48 we see a B estimate of 1.5. Reasonable con-
sistency of [ estimates is only seen below w,=0.46, and
therefore we propose a central estimate of w, about 10%
below that of earlier calculations. Some support for a
possible deviation of 10% can be gleaned from an exten-
sion of the discussion on p. 3995 of SF who present a
mapping from the threshold of the +J model to that of
the Gaussian model. The Gaussian simulation estimate®
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is T.9=0.9, about 10% above the expected extrapola-
tion of 7.9°=0.81 mapped from w,=0.48. (Note that
above in the w variable corresponds to below in the T
variable.) In d =4, where our w, result is in excellent
agreement with SC the percentage difference is only 2%
between the extrapolated series value and the Gaussian
simulation result.

After completing our analysis, we heard about some re-
cent calculations,® on damage spreading in spin glasses,
which give a three-dimensional critical temperature esti-
mate of w, near 0.34. This is just below the bottom of
our range and very close to the 1/0 value.

Our three-dimensional v estimate derived via scaling is
not very different from that of the other calculations, but
our 7 estimate of =~O0 agrees only with the original
Ogielski-Morgenstern® analyses and not with the later
Ogielski’ analysis. There is no way that our 7 values for
the SG can be reconciled to be a monotonic function of
dimension, as both our five-dimensional 7 estimate and
the slope of the first-order € expansion indicate a fairly
rapid initial decrease as a function of decreasing dimen-
sion. Our results are fairly smooth, and the decrease and
subsequent increase are reminiscent of the case of isotro-
pic percolation, where 7 initially decreases and then in-
creases as a function of dimension. An increase in 7 be-
tween four and three dimensions is also seen in the SC-SF
results.

We finally consider the relationship between our new
results and the experimental work. For the single case of
clear overlap, namely, the 3 for the three-dimensional Is-
ing glass, the new* value is a little below ours. We sug-
gest that it would be of great interest if alternative experi-
mental measurements could be made for 3 via a study of
higher derivatives. It would also be very useful if experi-
mental determination of the ratio R could be made, as
this is likely to be less sensitive to the exact choice of crit-
ical temperature. It would also be of interest to study
both the derivatives and the ratio in future simulations.
We note that, despite the suggestions that corrections to
scaling may be important in both simulations® and in ex-
perimental®® data analyses, to the best of our knowledge
our calculations are the only ones where correction
effects have been systematically incorporated into the
analysis.

The final question for discussion is the nature of the
three-dimensional transition and the location of the lower
critical dimension. The poor quality of the numerical
convergence in 3D immediately leads to the question of
whether it is justifiable to fit the three-dimensional SG
susceptibilities by power-law singularities as in Eq. (1.5).
In support of such doubts we quote two different groups
that have speculated on this. Bhatt and Young® have
suggested that the Monte Carlo data in 3D may indicate
that the transition is of a different type than the power-
law transitions that are clearly observed in simulations of
the four-dimensional +J Ising and Gaussian SG’s. They
found clear evidence of long-range order below 7, in four
dimensions, but they suggest that the three-dimensional
system may have no long-range order but rather have an
infinite yE4 at all temperatures below T,. This criticality
was proposed on the basis of results for samples of up to
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16° sites, and could be a finite-size effect. It is suggested
that, since 3D is close to the lower critical dimension (SF
have claimed a lower critical dimension of about 2.6 for
the SG based on their 10-term general dimension series),
corrections to finite-size effects (which are not taken into
account) mask the ordering in 3D. One reason advanced
by Bhatt and Young to support their data analysis is that
the numerical estimates are close to the series estimates
of SC; in both these cases correction effects were neglect-
ed. In an independent calculation, Guttmann** has noted
that similar numerical problems are observed in series
analysis when fitting susceptibilities of two-dimensional
planar-rotator models (which do not have long-range or-
der in zero field) and three-dimensional SG series to
power-law divergences with first-order differential ap-
proximants. Guttmann*? has shown that the critical be-
havior of the plane rotator model susceptibility, which is
known to have an exponential singularity, actually gives a
better fit to the power-law form. We have attempted to
explore this matter by undertaking analyses of the 3D SG
susceptibilities based on exponential singularities, but the
results were quite inconclusive, as were attempts to fit the
series to assorted other types of singularities.

Our own explanation for the poor convergence in 3D is
rather similar to that of Bhatt and Young.” We suspect
that the proximity to the lower critical dimension is such
that corrections play a significant role. We have included
correction to scaling effects, and it would be of great in-
terest to see a reanalysis of the simulation data that al-
lows for such correction effects.

In summary, we have been able to obtain a comprehen-
sive set of critical exponents and temperatures for the Is-
ing spin glass. New, long series for higher moments and
comprehensive analyses that allow for corrections to scal-
ing for all available data have led to many results that are
in agreement with other estimates and to several new ex-
ponent values. For the first time a clear numerical pic-
ture has been obtained for 6>d >3, and this indicates
that despite the severe convergence problems of the € ex-
pansion, smooth extrapolation from mean-field values
down to those obtained from the extensive numerical and
experimental studies in the lower dimensions is possible.
Although some of our quantitative results in the three-
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dimensional case are a little different from those of some
other calculations (see Tables I and II), and further work
on the fine details of the quantitative behavior in three di-
mensions is desirable, the smoothness of our extrapola-
tions clearly support the existence of a finite-temperature
SG transition in three dimensions.
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APPENDIX A: DERIVATIVES OF THE FREE ENERGY
WITH RESPECT TO A UNIFORM
APPLIED MAGNETIC FIELD

In this appendix we demonstrate the connection be-
tween derivatives of the replica free energy with respect
to a uniform applied magnetic field H and the derivatives
of the free energy with respect to the SG ordering field 4.

We start by considering a special model, namely, an Is-
ing model with nearest-neighbor exchange interactions
each of which is subject to a Gaussian distribution whose
variance is J,. Here we follow the approach of Bray and
Moore®* to convert the partition function in the presence
of a uniform field into a field theoretical model. For a
fixed configuration of the J;;’s the partition function in
the presence of a magnetic ﬁeld His

(kgT) ! [ S J,.js,.sj+H§s,. ] ] i

Z= Tr exp
*1} U)

{S;=

(A1)

The configurationally averaged free energy F is obtained
via the replica procedure:
]av ]

(A2)
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where a is summed over the range 1 to n. After configurational averaging we have
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where v, ; is 1 when i and j are nearest neighbors and 0 otherwise. We use the Hubbard-Stratonovich transformation,
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where K; is
K;=exp [(H/kzT) 3 SF+ 3 QiaBSiaSiB] .
a a<f
Thus,

TrK,; =Tr exp [(H/kB T)S S ]

1
aBgagB ... -
X |1+ 3 QSASsF+ +k'2 >

a<fB Ta<Bia,<pB,

=[2cosh(H /kpzT)]" {H—(h/kBT) S 0%+0(0%),

a<p

with h=kyTtanh®(H /kzT). Thus h~H?/kgT. An
effective Hamiltonian, #.4, can be defined through the
relation

[ dOf exp(—#H q/ky T)=[Z"],, (A8)
and we may observe that
Ha=—h3ZT 3 QP+ T MO, (A9)

i a<pf !

where O; is an operator of order Q’, [=2, and the
coefficients A; may be H dependent. The scaling form of
the free energy is now

F=b"df(hb™ o™ A ™) . (A10)

The exponent A; decreases with increasing /. Therefore
A; <A, and we also notice that near d =6,A, =4+ 0(e¢),
whereas A, =2-+0O(e). Thus A, is the largest exponent.
Therefore when we take derivatives with respect to H,
the leading terms come from derivatives of the first argu-
ment of F, h, and we can neglect derivatives of all other
arguments. The leading terms of the derivatives at
H =h =0 of the free energy with respect to H are then
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In obtaining this result we used the fact that in the n —0
limit, F, ., = —2F.

We now discuss the fact that within the SG universali-
ty class we must replace 3 by A3 in Eq. (A11), where A is

a nonuniversal constant. Consider the sum
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i j k,
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of Eq. (2.3b). We have said that this average is nonzero
only if the indices are equal in pairs. However, consider
a model in which [J};],, is nonzero, but is small enough
that the ordered state is still a SG state. Then, within
mean-field theory the relation between the ferromagnetic
correlation length £, and the SG correlation length £ is

P (kTP —z[J?],,
(kBT_Z[J]aV)2

§r

§

T_TSG
~ , Al2
T, (A12)

where Tgg~(z[J?],,/k3)"/? and Tp~[J],,/kp are the
mean-field spin-glass and ferromagnetic transition tem-
peratures. S is now

S=N""! > [<Sisj><si+élsj+82)]av (A13)
i,j,8,8,
=N“1k22 [(S,Sj)z]av , (A14)

L

where 8, and 8, must be summed over a volume whose
linear dimension is of order &z. Thus A is of order (£5)%.
More generally this reasoning leads to the replacement of
(kgT)~ ! by MkyT)™ ! as written in Eq. (2.7). In the
renormalization-group formulation the appearance of A is
regulated by the irrelevant operators Q' of Eq. (A9). To
reproduce Eq. (A14) using the renormalization group is
not easy.

APPENDIX B: THE FORM OF g(S,, k)

In this appendix we discuss the solution to Eq. (3.7).
We write

g(8;,h)=c(h)g(S;,h), (B1)

where c(#) is independent of S; and g(S;,4) is normal-
ized so that it is unity for S*=0. Then Eq. (3.7) becomes
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Tr; jexp

(h/kpT) 'S, sasﬁ] [2(S;,h)]7cosh [(J/kBT)ES,-"S;‘} }

a<f

c*(h)g(S;,h)= (B2)
Tr; Jexp [ h/kgT) S“Sﬁ} g(S,-,h)]z]
a<f
The part of this equation, which is independent of S (which can be found by setting S#=0), yields
Tr; |exp [(h /kyT) EBSJFSJB][g(sj,h)]"}
a<
c*(h)= (B3a)
Tr, lexp (h/kyT) 3 7P (218, )]Z}
a<pf

To evaluate thermodynamic properties we need to evaluate c(k) for n —0 to order n. In this connection observe that
for n —0 both the numerator and denominator in Eq. (B3a) approach unity. To see this, note that any term involving
an Sf* involves at least one sum over replica indices and is therefore proportional to n. We therefore rewrite Eq. (B3a)
as

1+ |Tr, [exp ((h /iy T) S SJ-“SJ[”][g(SJ-,h)]"—l H
a<f
cih)= (B3b)
1+ |Tr; Jexp [(h/kpT) 3 qusﬁ][g(s,,h)rﬂ
a<p
Since the quantities in the large square brackets are of order n, we have the result correct to order n:
c(h)=1+y(h)n+0(n?) , (B4)
where
y(h)=Tlim | =T, [exp [(h/k;T) S S8 (g(S;, )1 T1—g(S;,m)] ] | . (BS)
n—0 | 2n 7 a<p J
We only need g(S;,4) to leading order in n. It is determined by setting
g(s,«,h ):1+havl(si)+h2[l)2(si )b2+01(si )b] ]+h3[v3(s,- )C3 +02(Si )Cz +U1(Si )Cl ]
+ 1%, (S;)d, +v,5(S;)dy +v,(S;)dy +v,(S)d ]+ -+ -, (B6)
where for 1 =2k <n we define
v (S;)= > I EREROAC (B7)
1Sayj<a,<* <ay =n
The coefficients in Eq. (B6) are determined by substitution into Eq. (B2), which becomes in the limit n —0
g(s;,h)= [Trjexp [(h/kBT) > S2SP1[2(8S;,h)]°cosh (J/kBT)ES"anq] ]/ [Tfjl} : (B8)
a<p a

To calculate the susceptibilities 'y, up to k =4, we need y () up to order 4 *, but we do not need to evaluate g up to this
order. To see this, consider the evaluation of Eq. (3.5) up to order 4*. Using the terms of order »* in Eq. (B6) will give
contributions to Z_(I") involving the thermal averages of v, (S;). But such single-site averages vanish, since there is no
broken symmetry. In general, one sees that nonzero contributions can come only from terms in which g is expanded
beyond the constant term of unity at two or more sites. Then even terms of order ¢; and ¢, do not enter the calculation
up to order £*. We could imagine having v, (or v,) at one site correlated with v, at another site. But such an average
vanishes in the absence of broken symmetry. Thus, for the calculation to order 2% we only need to evaluate the follow-
ing coefficients in Eq. (B6): a, by, b,, and ¢;. In addition we need to evaluate y (%) up to order #*. We quote the evalu-
ations

a=wD , (B9a)
b,=—2wD3/E , (B9b)
b,=3w?D?, (B9c)

=wD*[Y(1-3ow?+20w*)+o(1—ow?)(1—w)(9w?E +8wD)] , (B9d)
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where D=(1—ow) !, E=(1—ow?) "}, and 0 =2d — 1. We write y(h)=3,7,h" and have

70=Y1=O > (BlOa)
y,=+wD?, (B10b)
vy=—wD*/E , (B10c)

ys=41loac,+1obi+1lobi+20(oc—1)a’b,—30(o—1)a’h,+Lo(o—1)(0 —2)a*+Lc,
+30ab,—4oab,+Yo(oc—1)a’*+3ib,+30a’~b, +40a*+Ya] . (B10d)

APPENDIX C: NO-FREE-END CONTRIBUTIONS TO THE HIGHER-ORDER SUSCEPTIBILITIES SERIES

We use the notation n, for the number of bonds in the diagram I, n, for the number of sites in the diagram T, z; for
the number of neighbors of the site in the diagram T, and o; =z, —1, as well as that of Appendix B. In specifying the
'$T and 8T (T") that appear on the right-hand side of Eq. (3.10), for kK =2, 3, and 4 it is convenient for presentation to
break up their contributions. For k=2,

r§'=bp(1+w) (C1)

and

ST,T)=D?| S z2w’—2nw(l+w)+ 3 (1—o,w)1—0w) (S8l | - (C2)
i=1 k=1

Here and below we use the notation that

[<A1><A2>“'<Ap>]av (C3)

is calculated for the Hamiltonian restricted to the bonds of the cluster I', which we write as

H()= 3 J;S;S; . (C4)

(ijyer
Then
<A)=Tr(e T4 (C5)
Tre—H(I‘)/kB
Thus, in Eq. (C2) (and similarly below) n, n,, z;, o4, and [{(SS, )?1,, all explicitly depend on T.
For k=3,
r$T=—4D*1+3w—3ow?*—ow?) , (C6a)
ST,(T)=D3A;(I)—12(1—w)8T»(T) , (C6b)
where
nS nS nS
AT)= |48n,—12 3 z? |w?+ |4 3z} —12 3 z2+16n,
i=1 i=1 i=1
+ 2 24(0k +0,—1)w +12[0'k +Ul_(0k +0,)2—'20k0'1]w2+ 1201(0-1(0/( +U[)w3 [(SkSI >2]av
k<l
—24 3 (1—ow)1—0o,w)1—0o,w)[{S;S;){(S;S; ) (S;S;) Loy - (CT)
i<j<k
For k =4,

I‘4CT=34+68Dzw+D3zw{48+[48(2-1)(22—3z+1)—68(2—1)(2—2)]w2}
+34D%w[2—6(z— Dw?—(z —1)(z2 =5z +2)w’]
+48Dsz(z—1)w2[2—zw—2(2-—1)w2+z(z—-1)w3]+54D2Ezw2[1—(z—l)wz]
+54D%*Ez(z — Dw3[2—zw —2(z— Dw?+z(z—Dw?], (C8a)

8T,(I')=240D*(1—w )28 ,(T)+DALT)+D*AYT) , (C8b)
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AUD)=(1—w) (56w T z;+wi232 3 27 —656 3 z,)+w(—96 3z +424 3 27 —328 3 z,)
i i i i i i

+576 3 [(8:8;)(S5;5;){(8;S) lo(1—wo N1 —wo;)(1—-woy)

i<j<k

+ 3 [€5;8; )] [ — 1124w (848 — 4640, — 4640 ;) +w>(— 5600, — 5600 ; +28807 +28807 + 104000 ;)

i<j
+w(2720,0,;—2880}0;—2880,07)] (C9a)
and
A}=34w* 3 2} — 136w (1+w) 3 22+ 2wX(1Tw?+ 42w +9) 3 27— 6w (1Tw*+ 92w +27) 3 z;
+24 3 [(8:5;) ]y |21 ~wo P *(1—wo )+ Z(1—wo ;) (1—wo;)—16(1—w)(1—wo,;)(1-wo;)
i<j
+1—Tw(7——17w)[2—w(0,-+0j)]
t4l—w)’—4(1—w)[(1—wo;)*+(1=wo ) ]+4(1—wo )1 —wo; )2
+216 3 [(8:5)XS8:5 ) W (1—wo, P(1—wo;)(1—woy)
j<k,i#Fj,k
—192 3 [{5:5)0(8;5.) (S8 ) (1 —wo ) )(1—wo )[1—w—(1—wo;)’]
Jj<k,i#jk
+108 3 [{(S;S;)*],,(1—wo ) (1—wo ;)
i<j
+ ¥ (-~wo)(l—-wo;)(1-woi)(1-wo)
i<j<k<l
X [288([{5;8;)(S;S; ) (SiS;) (8,8, ) 1oy +[(S; S, ) (S, S; ¥ (5,82 (S18:) Loy
(58, 2€8;5, 28,8, Y {S;8; ) 1)
—96([ (5,558, (S;S; ) (S8 Ly +[€S:S5;8kS; ) (S: Sk (S8 1oy +[(5:8;8,5, 258, ) (S; 8 ) 1)
+72([ (88,2818 ) 10y + (S84 )2( 88,210y + [ (8,8 Y7(S;S) Y2 1ay ) +24[ (5,858, )% 1oy 1 - (C9b)

APPENDIX D: TEST-SERIES STUDY

In this appendix we describe test-series work for the
M1 method and illustrate the importance of using M1
and M2 in tandem. Our main motivation for this work
was to test the usefulness of the term-by-term divided
series for cases of large correction to scaling exponents.
One hopes to avoid the uncertainty associated with the
choice of critical point by using the term-by-term divided
series. In addition, for those cases where the nonanalytic

f

correction is small, one attempts to obtain the dominant
exponent accurately from a strong confluence of Padés
near the analytic correction introduced by term-by-term
division. This requires that the amplitude of the intro-
duced analytic correction be sufficient to swamp the non-
analytic correction of the individual series which, of
course, is still present. If the two corrections have simi-
lar amplitudes then convergence will be poorer than in
the original series, owing to competing effects of the two
corrections.
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It is important to use the two distinct M1 and M2
methods, because in M2 there are®® resonant conver-
gences at A=A} /n, for n=1,2,3,..., where we use A}
to denote the correction term of the series itself. These
resonances were first identified (see the note added in
proof in Ref. 60) in Ref. 65 for real series. The reso-
nances have never been seen with M1, and there is no
analytical reason to suspect their presence in the M1 al-
gorithm. Thus use of both M1 and M2 allows one to dis-
tinguish the effect of this resonance. We do not use M1
alone, as M1 gives® a slight systematic error in the
correction experiment when it is far from analytic. Al-
though we have published®® extensive test-series work for
M2, we publish test-series results for M1 in this appen-
dix. A comparison between M1 and M2, is also given.

We have carried out a comprehensive series of tests of
our different methods of analysis (both term by term di-
vided, and temperature biased) on test series with large
correction to scaling exponents. The series that we chose
to study are of the form of Eq. (1.8) for k=2 with
different values of the y,, A, and a, parameters. The 7,
3, and A, values were chosen to mimic the measured
values of the low-dimensional series. a,, the amplitude of
the correction term, was varied (1=<a,=<5) in order to

2.7024

(a)

2.700 4

2.698 :

Al

()

T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Al

11 271

see how this affected the convergence. All the test-series
results reported here used w,=1, which is near the
three-dimensional SG value. We begin with a report on
the cases where A; <1.0. Unless otherwise stated, we
present graphs of 20-term series but have also looked at
shorter series. For these the convergence is a little looser,
but there is no real difference in central estimates for
series above 12 or so terms. We have considered A; =1
and 4, with y=2.7 and a,=3.0. The results for both
M1 and M2 are shown in Figs. 5(a) and 5(b), respectively,
for the case of A;=0.5, and for the critical temperature
biased to the correct threshold of ;. We observe that for
M1, we simply have a straight line, that passes through
(0.5, 2.700). On a finer grid we see that there is a conver-
gence of the different Padé’s that is centered at the point
(0.5, 2.700). For M2 we observe that as we scan along de-
creasing trial values of A;, we first observe that there is
convergence to the point (0.5, 2.6999), which then de-
grades as A, is further decreased. Convergence returns at
the resonance A} /2=0.25 with y=2.7000 for A, trial
values below | for some Padé’s, and for all Padé’s in the
region of A} /3=1. These results are completely in ac-
cord with previously published results for both test and

2.702
(b)

2.700 4

2.698

(d)

FIG. 5. Graphs of Padé approximants for the dominant critical exponent as a function of trial A, estimate for the test series with
vy=2.7, A;=0.5, and a,=3.0 at the exact threshold of w, =0.5. We give the (a) M1 and (b) M2 analyses of the series itself and the

(c) M1 and (d) M2 analyses for the self-divided series.
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FIG. 6. Graphs of Padé approximants for the dominant criti-
cal exponent as a function of trial A, estimate for the test series
with y=2.2, A;=5.0, and a,=5.0 at the exact threshold of
w,=0.5. We give the (a) M2 analyses of the series itself and the
(b) M1, and (c) M2 analyses for the self-divided series.
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real series. In Figs. 5(c) and 5(d), we present the results
of the analysis for the term-by-term self-divided series.
For the series studied above the expected values in the di-
vided series should be y +1=3.7 and w,=1.0. In Fig.
5(c), we see that for M1 there is convergence only in the
region of the original nonanalytic correction, with tight-
est convergence at (0.55, 3.69). Note the slight deviation
from the exact values at optimal convergence. For M2,
we observe resonances for M2 in Fig. 5(d); the main con-
vergence occurs near the correct (0.5, 3.7) value close to
that observed in the M1 graph in Fig. 5(c), and in addi-
tion there is a clear resonance in the region of (0.28, 3.7),
where the 0.28 is an approximation to Af/2. The ap-
proximants pass near the value A;=A}/3 but do not
converge. By comparing the results of both methods M1
and M2 we deduce that the four graphs concur that this
series has y=2.7 and A;=0.5 as expected. It is also
clear that for this A; < 1.0 case, the convergence in the
divided series is at the A value rather than at unity.

Similar studies have been made for the case of A;>1,
with y=2.2, 4.9, and 7.6, A=3.0 and 5.0, and a,=1.0
and 5.0. We select y=2.2, a,=5.0, and A;=35.0 as typi-
cal results for presentation in Fig. 6. Here w, was again
set at 0.5. The M1 graph is not presented as it is an even
straighter line than that shown in Fig. 5(a). The M2
graph is given in Fig. 6(a), and we see convergence at
(5.00, 2.20) with resonance at (2.5, 5.0) and below. The
divided series graph of M1 and M2 are given in Figs. 6(b)
and 6(c), respectively. Here we see convergence at (1.00,
3.20) in both cases. In the M1 case there is a clear single
intersection at this point, but the M2 case is a little more
complex. In Fig. 6(c) we observe additional intersections
at other values of A, notably =1.5 and =2. There is a
weak resonance at the dominant exponent value of 3.20,
near A;=A}/2=0.5, but the approximants do not actu-
ally intersect. The existence of this resonance is a signal
that 3.2 is indeed the correct dominant exponent, but
true confirmation that 3.2 is the dominant exponent
comes from comparison with the single intersection seen
in the M1 results. We can deduce from these and similar
graphs that for A;>1 the correct dominant exponent is
seen at the introduced analytic correction, rather than at
the original nonanalytic correction to scaling of the undi-
vided series. At the original correction there is no con-
vergence for M1. For M2 there is a rather interesting
effect at A, values above unity. We see a series of spuri-
ous convergences at (1.5, 3.18) and at (2.0, 3.12). An in
depth examination of this phenomenon is planned for a
later paper. By the time we reach A;=5.0 (off the graph)
the dominant exponent is far below its correct value.

We conclude from this test series analysis that use of
both M1 and M2 is necessary, for both temperature
biased and divided series. The results of the test on the
divided series can be summarized as follows. For A, <1
the divided series converge at the correction of the origi-
nal series. For A|>1 the divided series converge at the
introduced analytic correction. In both cases conver-
gence corresponds to the correct dominant exponent esti-
mate. We note that this is in accord with the early test
series work on M2 (Ref. 55) that we will always measure
the correction to scaling with the lowest A, value.



43 SERIES EXPANSIONS FOR THE ISING SPIN GLASSIN . ..

IS, F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975).

2K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).

3D. Chowdhury, Spin Glasses and Other Frustrated Systems
(World Scientific, Singapore, 1986).

4K. H. Fischer, Phys. Status Solidi B 116, 357 (1983); 130, 13
(1985).

SR. N. Bhatt and A. P. Young, Phys. Rev. Lett. 54, 924 (1985).

6A. T. Ogielski and 1. Morgenstern, Phys. Rev. Lett. 54, 928
(1985).

7A. T. Ogielski, Phys. Rev. B 32, 7384 (1985).

8R. Fisch and A. B. Harris, Phys. Rev. B 18, 416 (1978).

9R. R. P. Singh and S. Chakravarty, Phys. Rev. Lett. 57, 245
(1986).

I0R. R. P. Singh and S. Chakravarty, Phys. Rev. B 36, 559
(1987).

111, Klein, J. Adler, A. Aharony, A. B. Harris, and Y. Meir,
Phys. Rev. B 40, 4824 (1989); (to be published). We inadver-
tently quoted only the second term of Eq. (2.2) of this refer-
ence [multiplied by (1—op)?] in Table II and will publish the
complete series in the erratum.

12R . Ditzian and L. P. Kadanoff, Phys. Rev. B 19, 4631 (1979).

BR. G. Palmer and F. T. Bantilan, J. Phys. C 18, 171 (1980).

14A. B. Harris, T. C. Lubensky, and J.-H. Chen, Phys. Rev.
Lett. 31, 160 (1976).

15J-H. Chen and T. C. Lubensky, Phys. Rev. B 16, 2106 (1977).

16p_ IeDoussal and A. B. Harris, Phys. Rev. B 40, 9249 (1989).

175, E. Green, J. Phys. A 18, L43 (1985).

I8E. Pytte and J. Rudnick, Phys. Rev. B 19, 3603 (1979).

19A. B. Harris and H. Meyer, Can. J. Phys. 63, 3 (1985); 64, 890
(1986).

20K . H. Michel, Phys. Rev. Lett. 57, 2188 (1986).

211, Morgenstern, K. A. Miiller, and J. G. Bednorz, in Proceed-
ings of the Second Yukawa International Seminar, 1988
(Springer-Verlag, Berlin, 1991).

22A. Aharony, R. J. Birgeneau, A. Coniglio, M. A. Kastner, and
H. E. Stanley, Phys. Rev. Lett. 60, 1330 (1988).

238, John and T. C. Lubensky, Phys. Rev. B 34, 4815 (1986).

243, Adler, R. G. Palmer, and H. Meyer, Phys. Rev. Lett. 58,
882 (1987).

25For a summary of Ising model results, see C. Domb, in Phase
Transitions and Critical Phenomena, edited by C. Domb and
M. S. Green (Academic, New York, 1974), Vol. 3; and R. J.
Baxter, Exactly Solved Models in Statistical Mechanics
(Academic, London, 1982).

26B. Nienhuis, J. Phys. A 15, 199 (1982); M. P. M. den Nijs, ibid.
12, 1857 (1979); B. Nienhuis, E. K. Riedel, and M. Schick,
ibid. 13, 189 (1980); R. B. Pearson, Phys. Rev. B 22, 2579
(1980).

27§, Adler, J. Phys. A 16, 3585 (1983); A. J. Liu and M. E. Fish-
er, Physica A 156, 35 (1989).

283, Adler, Y. Meir, A. Aharony, and A. B. Harris, Phys. Rev. B
41, 9183 (1990).

29A. Aharony, Phys. Rev. B 22, 400 (1980).

30phase Transitions and Critical Phenomena, edited by C. Domb
and M. S. Green (Academic, New York, 1976), Vol. 6.

31G. S. Pawley, R. H. Swendsen, D. J. Wallace, and K. G. Wil-
son, Phys. Rev. B 29, 4030 (1983).

11273

32D, Stauffer, Introduction to Percolation Theory (Taylor and
Francis, London, 1985).

33L. Klein, Ph.D. thesis, Tel Aviv University, 1991.

34C. Dominicis and 1. Kondor, Physica A 163, 265 (1990).

35V. Privman, P. C. Hohenberg, A. Aharony, in Phase Transi-
tions and Critical Phenomena, edited by C. Domb and J. Le-
bowitz (Academic, New York, in press).

36R. R. P. Singh and M. E. Fisher, J. Appl. Phys. 63, 3994
(1988).

37M. E. Fisher and R. R. P. Singh, in Disorder in Physical Sys-
tems, edited by G. Grimmett and D. J. A Welsh (Oxford Uni-
versity Press, Oxford, 1990).

38y, Adler, Y. Meir, A. Aharony, A. B. Harris, and L. Klein, J.
Stat. Phys. 58, 511 (1990).

39p. Norblad, L. Lundgren, P. Svedlindh, K. Gunnarson, H.
Aruga, and A. Ito, J. Phys. (Paris) 49, C8-1069 (1988).

405, Geschwind, D. A. Huse, and G. E. Devlin, J. Appl. Phys.
67, 5249 (1990); S. Geschwind, A. T. Ogielski, and G. E. Dev-
lin (unpublished).

411. Morgenstern (private communication).

42A.J. Guttmann (private communication).

43G. Kotliar and H. Sompolinsky, Phys. Rev. Lett. 53, 1751
(1984).

44J. Kotliar, Phys. Rev. B 35, 8646 (1987).

451, Klein, M.Sc. thesis, Tel Aviv University (1987).

46N. de Courtenay, H. Bouchiat, H. Hurdequint, and A. Fert, J.
Phys. (Paris) 47, 1507 (1986).

47T. Taniguchi, Y. Miyako, and J. L. Tholence, J. Phys. Soc.
Jpn. 54, 220 (1985).

48C. Domb, J. Phys. A 9, L17 (1976).

49M. Suzuki, Prog. Theor. Phys. 58, 1151 (1977).

S0B. Barbara, A. T. Malozemoff, and Y. Imry, Phys. Rev. Lett.
47, 1852 (1981); Y. Yeshurun and H. Sompolinsky, ibid. 56,
984 (1986).

51A. Aharony and A. B. Harris (unpublished).

523, Rudnick and D. R. Nelson, Phys. Rev. B 13, 2208 (1976).

53A. B. Harris, Phys. Rev. B 26, 337 (1982).

54A. B. Harris and Y. Meir, Phys. Rev. B 36, 1840 (1987).

55J. Adler, M. Moshe, and V. Privman, Phys. Rev. B 26, 1411
(1982); J. Phys. A 14, L363 (1981).

563. Adler, M. Moshe, and V. Privman, in Annals of the Israel
Physical Society, edited by G. Deutscher, R. Zallen, and J.
Adler (Hilger, London, 1983), Vol. 3.

573. Adler and V. Privman, J. Phys. A 14, L463 (1981).

58D. L. Hunter and G. A. Baker, Jr., Phys. Rev. B 7, 3346
(1973).

59Y. Meir, J. Phys. A 20, L349 (1987).

60V. Privman, J. Phys. A 16, 3097 (1983).

613, Adler, A. Aharony, Y. Meir, and A. B. Harris, J. Phys. A
19, 3631 (1986).

623, Adler, A. Aharony, and A. B. Harris, Phys. Rev. B 30, 2832
(1984).

631.. de Arcangelis, A. Coniglio, and H. J. Herrmann, Europhys.
Lett. 9, 749 (1989); and (private communication).

64A. J. Bray and M. A. Moore, J. Phys. C 12, 79 (1979).

65J. Adler and 1. G. Enting, J. Phys. A 17, 2233 (1984).

66Unpublished test-series work by J. Adler.



