
Compositional Analysis of Multi-Mode Systems∗
Linh T.X. Phan Insup Lee Oleg Sokolsky

Department of Computer and Information Sciences, University of Pennsylvania
Email: {linhphan, lee, sokolsky}@cis.upenn.edu

Abstract—The paper presents a model for multi-mode real-
time applications and develops new techniques for the composi-
tional analysis of systems that contain multiple such applications.
An algorithm for constructing an interface for a single multi-
mode application is presented. Then, a method for computing
an interface of a composite application is presented, which uses
only the interfaces of constituent applications. A case study of an
adaptive streaming system demonstrates that multi-mode analysis
offers more precise results compared to a unimodal worst-case
analysis.

I. INTRODUCTION

The increasing scale and complexity of real-time embedded
systems have prompted the need for advanced analysis tech-
niques that facilitate component-based design. In this design
paradigm, a large complex system is first decomposed into
smaller and simpler components – which are developed inde-
pendently – before recomposing them into a complete system
using interfaces that abstract away their internal complexities.
To achieve component-based design, interface abstraction

and interface composition must adhere to the principle of
compositionality, i.e., properties that have been established
at the component level hold at the system level. Besides
functional and behavioral aspects, real-time embedded systems
are concerned with time-constrained resource demands. This
necessitates timing analysis frameworks that are composi-
tional, i.e., system-level schedulability analysis should be done
by combining component interfaces that abstract component-
level timing requirements.
Compositional analysis has therefore been a topic of great

interest within the real-time and embedded systems commu-
nity. Numerous frameworks have been proposed (e.g., [6],
[7], [15], [16]) and continuously extended. These frameworks
typically assume a static system execution semantics, where
a fixed set of tasks/event streams are always active and
demanding a fixed amount of resource. They too abstract
away event communication between components in the sys-
tem, replacing it with resource demand placed on the sys-
tem by event streams. Such an abstraction is adequate for
systems that have stable resource-use patterns. In practice,
however, systems are often required to operate in multiple
modes that exhibit vastly different resource demands. Modal
behaviors are exhibited by a wide spectrum of embedded
systems, ranging from safety-critical aircraft control systems
to adaptive streaming servers and smart devices. A networked
streaming server, for example, often needs to process several
applications concurrently, including audio, video and graphics
processing, as well as system-related tasks. These applications

∗Research is supported in part by NSF grants CNS-0720703 and CNS-
0834524, and AFOSR grant FA9550-07-1-0216.

are becoming network-aware and adaptive. They may adapt
themselves (e.g., select a different encoding algorithm) during
runtime depending on the network connection. They may also
synchronize with one another, intentionally or inadvertently
due to the network conditions.
In such a system, each mode may be characterized by a

different set of tasks, different data arrival rates, and a different
scheduling policy. Mode switches may be both time-triggered
and event-triggered, for instance, due to a time-triggered
interrupt or a buffer in the system exceeding a certain fill-level.
An incoming event from another component may also trigger
a mode switch in the receiving component. Such mode-
dependent behavior and mode-switching communication need
to be taken into consideration. While internal event triggered
may be encapsulated in the resource demand, mode-switching
behavior in response to incoming external events needs to be
exposed on the component interface.

Our contributions: In this paper, we propose a framework
for the compositional analysis of real-time systems which
execute multiple multi-mode applications concurrently under
a hierarchical scheduling policy on a single processing re-
source. We present here a multi-mode automaton model
(MMA) for modeling such multi-mode applications and an
interface-based technique for analyzing them compositionally.
Our MMA model refines the previously proposed timed-
and event-triggered automata (TET) model described in [11].
While TET is designed for complete system architecture with
both processing loads and resource availability, the MMA is
concerned only with the application loads and its execution
semantics. The service function, that is, resource availability
characterization, is calculated during the analysis. This makes
the MMA model more declarative than TET and suitable for
open systems. Further, the TET model assumes all the task
parameters are reset when the system moves to a new mode;
the MMA, however, takes into account that some tasks are
unaffected by a mode change. As a result, MMA analysis
is more precise. Most importantly, we extend the analysis
framework in [11] with new techniques for the compositional
analysis of hierarchical multi-mode systems.
Our key contributions are summarized as follows:
• We describe the MMA model for multi-mode applica-
tions, which refines the previously proposed model in [11]
to better represent the application semantics without a
specification of resource supply. Compared to [11], the
MMA model also employs a more realistic mode change
protocol where tasks that are not affected by the mode
switch need not be reset when switching to a new
mode. We characterize two general ways for handling



pending event streams during a mode change, and present
the composition semantics of MMA in the context of
hierarchical scheduling.

• We propose an interface representation for MMA that
hides the application-level tasks and scheduling details
while exposing timing guards and external events required
for synchronization with other component interfaces.
Each multi-mode interface is a state machine, where each
state is augmented with a service function that represents
the resource requirement of a corresponding mode in the
application.

• We develop a method for computing the interfaces of
MMA that is capable of accurately capturing the effects
of mode changes on the resource requirements during
transitional periods. Our method also considers buffer
conditions and timing guards in deriving the service
requirement of a mode. Unlike most previous techniques
where pending events in the buffer during a mode change
must be finished in the immediate destination mode
(hence, no cascading pending events), our technique is
designed for the general case. We discuss, however, cases
in which such a restriction should be imposed for certain
modes in an MMA.

• We illustrate the utility of our model and compositional
analysis using a case study of an adaptive streaming
system, and compare the obtained results against that of
the unimodal compositional analysis.

Related work: Several compositional analysis techniques have
been proposed for unimodal systems (see e.g., [1], [6], [16],
[17], [19]). These techniques support multiple levels of hierar-
chy and well-known scheduling policies for real-time systems
such as FP (Fixed Priority) and EDF (Earliest Deadline First).
They can be broadly divided into two categories: (a) classical
periodic and sporadic task models and (b) stream-based task
models. In the former, resources are often modeled as periodic,
bounded delay, and explicit deadline periodic [6], [16], [17].
Resource interfaces in the latter are presented using service
functions, which capture the minimum resource requirements
in any interval of a given length [4], [19]. Both approaches
abstract away communication between components, allowing
analysis to be achieved based on the calculation of resource
model interfaces using demand and supply bound functions. A
formalism for describing multi-modal components, however,
will be useful in system development only if accompanied
by a host of analysis techniques that can compute component
interfaces as well as detect incompatibilities in communication
and resource use of components in a composite system.
Hence, these previous techniques become insufficient with the
addition of mode-switching behaviors.
Several techniques have been proposed to extend models

and timing analysis techniques from the real-time systems
literature to accommodate multi-mode behaviors. For exam-
ple, the framework presented in [3] allows certain tasks to
intentionally change their execution periods, which is a type
of mode change. Different mode change protocols have been
studied in [8], [14], [18] and have been classified in [13].
Techniques developed in these papers ensure that no deadlines

are violated in each of the modes or during the transition
intervals in a single multi-mode component. Our mode change
protocol is similar to the one proposed in [18], but is more
general as we do not require that buffered events be executed
before the mode switch take place and can remain in the
buffer through several subsequent mode switches. It is worth
noting that these studies of mode switching protocols do not
consider the compositional analysis of systems with multiple
multi-mode components that are hierarchically scheduled.
Finally, we recently proposed a multi-mode extension to

the RTC framework [12], which is different when compared
to the MMA model that we shall be presenting in this paper.
The arrival and service automata in [12] aim at modeling
(independently) complex arrival patterns of event streams
and resource availability patterns following a relatively
simple processing semantics. Here, the MMA allows for
a richer processing semantics, with different tasks and
scheduling policies explicitly captured and adapted to the
dynamic characteristics of the application. The MMA model
studied in this paper resembles the TET model proposed
in [11] except that MMA has no knowledge of resource
supply. In fact, the method proposed here computes such
a suitable resource supply that was already given to TET.
To the best of our knowledge, our paper is the first attempt
to consider the compositional analysis of multi-mode systems.

Organization of the paper: In the next section, we revisit
the compositional analysis of unimodal systems. Section III
formulates the MMA model and its composition semantics.
We present our interface representation and generation tech-
nique in Section IV, followed by the interface composition
in Section V. We then describe the case study in Section VI
before concluding the paper.

II. COMPOSITIONAL ANALYSIS OF UNIMODAL SYSTEMS
This section revisits the interface computation of a unimodal

component developed in [4], [9], [19], and extends the results
for the compositional analysis of unimodal systems that consist
of multiple unimodal components that share the same resource
under a hierarchical scheduling policy.

A. System description and basic models
A unimodal system consists of a finite set of tasks running

on a single processing element, each of which processes an
input event stream and produces an output event stream. Each
task has an input buffer (to store the input stream) and an
output buffer (to store the output stream) that are unshared
with other tasks. All tasks process their input events in a FIFO
manner. As soon as a task completes its processing of an event,
it will remove the event from its input buffer and write the
results (as an output event) to its output buffer.
Figure 1 depicts the unimodal model of a system with three

tasks T1,T2 and T3 that share the same resource under EDF,
where Bi (B′i) denotes the input (output) buffer of Ti.
In a unimodal system, all tasks are always active and their

attributes stay constant throughout the system execution. Each
task T is characterized by

T =
(
idT ,BT ,B′T ,ET ,DT ,πT , α̃T ,αT

)



Fig. 1. A unimodal system architecture, modeled by a single mode.

with idT being the task identifier, BT the associated input
buffer, B′T the associated output buffer, ET the execution
demand, DT the relative deadline, πT the priority if FP
is used (and πT = 0 otherwise), and α̃T the event-based
arrival function of the input event stream of T , respectively.
Here, α̃T = (α̃uT , α̃lT ) where α̃uT (Δ) and α̃lT (Δ) give the
maximum and minimum number of events that can arrive
from the associated input stream in any interval of length
Δ for all Δ ≥ 0. Further, αT = ET α̃T is the workload-based
arrival function of the input stream (i.e., in terms of number
of execution units). The backlog (fill-level) of a buffer at
time t refers to the number of execution units required to
process the events in the buffer at time t. We assume that
a granularity of time has been chosen, and events arrive at
discrete point in time. Further, the unit of resource supply
is an execution time unit. As we are mainly concerned with
αuT , we shall refer αT to αuT wherever a single function applies.
Scheduling Policies. Given a set of active workloads and
a number of execution units provided by a resource within
a time interval, a scheduling policy computes the number of
execution units allocated to each workload during the interval.
Scheduling decisions are often made at discrete points in time,
either for the next time unit or until a new event arrives. Each
workload denotes the execution requirement of a task, a finite
set of tasks or a system component. Denote byW the set of all
workloads. We describe below a general notion of scheduling
policy, which is required to define the precise semantics
of hierarchical scheduling. Note that this definition captures
both work-conserving and non-work-conserving scheduling
policies. However, the analysis techniques we present next
assume work-conserving scheduling policies.
Definition 1 (Scheduling Policy). A scheduling policy is a
function SC : (W ×N) → (W → N) which takes as inputs a
finite set of workloads W ⊆W , a non-negative integer k ∈ N

denoting the number of resource units available during a time
duration before a new event arrives, and returns as results the
number of resource units provided to each workload in W in
this duration. In other words, SC(W,k) is a function g :W →N

where g(w) gives the number of execution units allocated to
each w ∈W, such that

∑
w∈W g(w) ≤ k.

Greedy processing. Suppose T is the only task in the system.
Denote b(t) as the backlog (i.e., number of execution units
required) of the input buffer BT at time t. Suppose k is the
number of execution units available in an interval [t,Δ) before
a new event arrives. Then, the number of execution units that
are provided to BT during this interval is min

{
k,b(t)

}
.

Example 1. (Fixed Priority (FP)) Consider a set of tasks
T1,T2, . . . ,Tn that are scheduled under FP, where Ti has higher
priority than Tj if i < j. Denote bi(t) as the backlog of
BTi at time t. Suppose k is the number of resource units
available in an interval [t,t + Δ) during which there are
no new events. Since the resource is first allocated to T1
then to T2 and so on, one can verify that the number of
resource unit hi allocated to Ti is h1

def= min
{
k,b1(t)

}
and

hi
def= min

{
k− (h1+ · · ·+hi−1),bi(t)

}
for all 2 ≤ i≤ n. Thus,

FP(W,k) def= g where g(Ti) = hi.

B. Hierarchical scheduling of unimodal systems
In a hierarchical scheduling framework, the system is par-

titioned into a tree of components that are scheduled in a
hierarchical manner as illustrated in Figure 2. Each internal
node of the tree represents a composite component, whose
children are its sub-components. Each leaf represents an
elementary component, which is a finite set of tasks in the
system. Each component has its own scheduling policy under
which its sub-components are scheduled, which may differ
from its parent’s scheduling policy.

Resource

     Component C1     Component  C2

T1, T2, T3, T4 : Tasks

     Component C

FPEDF

T2T1 T3 T4

FP

Fig. 2. Hierarchical scheduling of a system component.

C. Compositional analysis of unimodal systems
Consider an elementary component C = 〈τ,SC〉 consisting

of a set of tasks τ that is scheduled under a scheduling policy
SC. Denote F as the set of all functions f : N → N. The
interface of C is a minimum service function β in F for which
τ is schedulable and none of the input buffers overflows. Recall
that a service function β(Δ) specifies the number of execution
units available in any interval of length Δ≥ 0.
Suppose SC is EDF. In order for the tasks to be schedulable,

the service function βT allocated to each task T in τ must be at
least equal to the demand bound function of T , which is given
by dbfT (Δ) = αT (Δ−DT ) for all Δ≥ 0. Recall that dbfT (Δ)
specifies the maximum possible execution units required by T
over any interval of length Δ.
Further, the input buffer BT does not overflow iff αT (Δ)−

βT (Δ) ≤ size(BT ) for all Δ ≥ 0. Thus, the minimum service
function required by a task T alone is defined by: for all Δ≥ 0:

βuni
T (Δ) =max

{
αT (Δ−DT ), α(Δ)− size(BT )

}
(1)

where size(B) denotes the capacity of buffer B. Hence, the
interface of C is the service function βuni

edf(C) def=
∑

T∈τ β
uni
T .

Now suppose SC is FP. We assume without loss of gener-
ality (w.o.l.g.) that τ = {T1, . . . ,Tn} where πTi < πTj if i < j.
In other words, the total resource will be first allocated to T1
and its remaining resource will be given to T2, and so on.
Combined with Eq. 1, we imply that the minimum service



function required by Ti under FP is β̂uni
Tn

def= βuni
Tn , and ∀1≤ i< n,

∀Δ≥ 0 : β̂uni
Ti (Δ) def= max

{
Serv

(
β̂uni
Ti+1 ,αTi

)
(Δ), βuni

Ti (Δ)
}

where Serv(β′,α) denotes the smallest service function β ∈
F required by a task with arrival function αT such that the
remaining service function after processing the task is at least
β′, which is given by [4]: Serv(β′,αT ) = β′(Δ−λ)+αT (Δ−λ)
where λ = sup

{
ε | β′(Δ− ε) = β′(Δ)

}
. Thus, the interface of

C is the service function βuni
fp (C) def= β̂uni

T1 .
Next, consider a component C comprising m components

C1, . . . ,Cm that are scheduled using SC. Let βi be the interface
of Ci for all 1≤ i≤m. Again, we assume w.o.l.g. that when SC
is FP, Ci has higher priority than Cj if i< j. The interface of
C is the minimum service function βuni

sc (C) for which all Ci are
schedulable. It is given by

∑m
i=1βi if SC is EDF and by β̂uni

C1 if
SC is FP, with β̂uni

Cm = βm and β̂uni
Ci = Serv(β̂uni

Ci+1 ,βi)∀1≤ i<m.

III. MULTI-MODE AUTOMATA (MMA)
Multi-mode systems execute at multiple modes of operation,

each of which performs a unique functionality. The set of
tasks that are active, their attributes, as well as the scheduling
policy during the system execution vary with respect to the
mode at which the system is currently in. Changes from one
mode to another can be triggered by a timing guard and/or
an event. Such systems can be modeled by a multi-mode
automaton, or MMA in short. A complex multi-mode system
can be composed of a collection of multi-mode systems that
share the same resource under a hierarchical scheduling policy,
which are modeled as an MMA each.

M2 M3

[10, 30]
[1, 15] b

b

a

B2 ≤ 15  ∧  B3  ≤ 2

B2 ≥ 5 

M1

[3, 20]

[1, 25]

c

time guard
external event

buffer guard

M1  = 〈{T1 , T2 , T3},  FP 〉
M2  = 〈{T1 , T2 , T4},  FP 〉 
M3  = 〈{T2 , T3 , T4},  EDF〉 ′

′

′

d

Fig. 3. An example of a multi-mode automata.

An MMA is a finite automaton whose states represent
operating modes and transitions represent mode changes. Each
mode (state) of an MMA specifies (i) a set of tasks (and their
corresponding attributes) that are active in the mode, and (ii) a
scheduling policy used to schedule the tasks. Each transition of
an MMA can be triggered by an external event (e.g., interrupt),
a condition on the fill-levels of the buffers associated with the
tasks, or a timing constraint. Denote INT as the set of intervals
[a,b] with 0≤ a≤ b and a,b ∈ N.

Definition 2 (MMA). An MMA is a tuple A =
(M,Min, Inv,Φ,Σ,R,T ) where

• T =
{
T1, . . . ,Tm

}
a finite set of tasks of the application.

• M is a finite set of modes. Each mode M ∈M has the
form 〈τ,SC〉 with τ ⊆ T denoting the set of active tasks
and SC the scheduling policy at M. We say BT is active
in M iff T is active in M.

• Min ∈M is the initial mode of A.
• Φ is a set of constraints on the fill-levels of the buffers
in B, where B =

⋃
T∈T BT .

• Inv : M → INT is an invariant function that assigns
to each mode in M an interval [Il, Iu], where Il is the
minimum amount of time that the system must stay in
the mode and Iu is the maximum amount of time that the
system may stay in the mode. We require that Il ≥ 1.

• Σ is a set of signals that trigger the mode changes.
• R⊆M×Σ×Φ× INT×M is a transition relation. Each
transition in R is of the form (M,a,ϕ, I,M′) where M and
M′ are the origin and destination modes, a is an external
signal that triggers the transition, ϕ is a guard on the
fill-levels of the input buffers, and I ∈ INT is the interval
(relative to the instant the system enters M) during which
the transition can be enabled.

All modes are urgent and when multiple transitions are en-
abled concurrently, the MMA non-deterministically selects one.
Fig. 3 depicts an example of MMA. Here, Ti and T ′

i
correspond to the same task of the application, thereby
associated with the same input/output buffer. Their timing
attributes, however, are different. Initially, the system is in
mode M1, where T1,T2,T3 are active and scheduled under FP.
When the system detects – after it has been in M1 for at least
3 and no more than 20 time units – that a new task T4 arrives
and the arrival function of T1 is changed, and if the fill-level
of the input buffer B2 of T2 is more than 5, then it will move
to mode M2. At M2, the system deactivate the least important
task T3 and T4 is executed together with T ′

1 and T2.
Mode change protocols. Whenever a transition is enabled,
the system moves instantaneously to the new mode, and the
new parameters will be in effect for all new incoming events
immediately. Unchanged tasks (appearing in both modes) are
not affected by the mode change, and no new events from an
old task (appearing only in the old mode) arrives in the new
mode. New input events of the new tasks (only appear in the
new mode) and changed tasks (whose parameters are modified)
may arrive immediately.1 Pending events in the input buffer of
an old or a changed task may be handled differently depending
on the application, which can be generalized into two cases:
(i) Both the physical pending events and their timing require-

ments (i.e., execution demand and deadline) associated
with the old mode are preserved in the new mode.

(ii) Only the physical pending events are preserved in the
new mode; their timing requirements follow the modified
parameters of the associated task in the new mode.

Note that the execution demanded by an event depends on
the current mode of the system when the event arrives at the
system in case (i), and on the mode at which it is processed in
case (ii). For the rest of the paper, we assume the former case;
however, results for the latter can be established in a similar
(and simpler) fashion. We assume also that all tasks follow
the priorities specified in the new mode regardless of which
event it is processing. Lastly, when the system is in a mode,
only active tasks in the mode are being executed.2

1Note that most common protocols require a delay before the system moves
to the new mode. This can be done by adding an intermediate mode with a
time invariant equal to the delay and old tasks having zero arrival functions.
2Pending events of an old task can be processed in the new mode by

adding the task into the active task set of the new mode and assigning its
arrival function to be a zero function.



A. Composition of multi-mode automata
Systems that consist of multiple applications running con-

currently can be reasoned by means of composition of MMA.
There are two types of compositions: with and without re-
source sharing. In this paper, we shall focus on the composi-
tion of independent MMA that execute on the same resource
under some scheduling policy.
B. Mode composition
Let M1 = 〈τ1,SC1〉 be a mode of an MMA A1 and M2 =

〈τ2,SC2〉 be a mode of an MMA A2. Suppose A1 and A2 share
the same resource under a scheduling policy SC3. Consider
any time interval [t,t+Δ) during which A1 is in M1, A2 is
in M2, and no new event arrives at both automata. Suppose
during [t, t+Δ), the processor has k resource units available
to execute A1 and A2. By Definition 1, the number of
resource units allocated to τ1 and τ2 are k1 = SC3(τ,k)(τ1) and
k2 = SC3(τ,k)(τ2), respectively, with τ = τ1∪ τ2. As a result,
the number of resource units allocated to each task T ∈ τ is:
g(T ) = SC1(τ1,k1)(T ) if T ∈ τ1, and g(T ) = SC2(τ2,k2)(T )
otherwise. Define SC(τ,k) def= g. The composition of M1 and
M2 under SC3, denoted by M1 ‖SC3M2, is a mode M = 〈τ,SC〉.
Definition 3. Let A1 = (M1,Min1, Inv1,Φ1,Σ1,R1,T1) and
A2 = (M2,Min2, Inv2,Φ2,Σ2,R2,T2) be two MMA. The asyn-
chronous composition of A1 and A2 under SC, denoted by
A1 ‖SCA2, is a tuple A = (M,Min, Inv,Φ,Σ,R,T ) where:

• M is the set of modes, defined by M =
{
M1 ‖SCM2 |

M1 ∈M1 ∧ M2 ∈M2
}
.

• Min =Min1 ‖SCMin2 is the initial mode of A.
• Inv is the invariant, where Inv(M1 ‖SCM2) =

[1,min(U,U ′)], with Inv(M1) = [L,U ], Inv(M2) = [L′,U ′].
• Φ is the set of constraints on the fill-levels of the buffers
BT where T ∈ T .

• Σ = Σ1∪Σ2 is the set of external triggering signals.
• R ⊆ M× Σ×Φ× INT×M is the transition relation,
defined as follows. For each (M1,a1,ϕ1, [L,U ],M′

1) in R1
and each (M2,a2,ϕ2, [L′,U ′],M′

2) in R2:
(i) (M1 ‖SCM′

1,a1,ϕ1 ∧ ϕ2, I,M2 ‖SCM′
2) is a transition

in R if a1 = a2, M1 �= M2 and M′
1 �= M′

2 where I =
[min(L,L′),min(U,U ′)].

(ii) (M1 ‖SCM′
1,a1,ϕ1, [1,min(U,U ′)],M2 ‖SCM′

1) is a
transition in R if a1 �= a2, M1 �=M2 and M′

1 =M′
2.

(iii) (M1 ‖SCM′
1,a2,ϕ2, [1,min(U,U ′)],M1 ‖SCM′

2) is a
transition in R if a1 �= a2, M1 =M2 and M′

1 �=M′
2.

• T = T1∪T2 is the set of tasks in the system.
Note that in case (ii), it is possible that A1 entersM1 at time

t and A2 entersM2 at time t+L. Because A1 has already spent
L time units in M1, it can move to M′

1 immediately or after at
least 1 time unit. If A1 moves immediately to M′

1, then both
A1 and A2 move to a new mode at time t+L, which can be
captured by case (i). By similar arguments, we obtain the time
intervals associated with the transitions in cases (i) and (iii).
The synchronous composition of MMA can be defined simi-

larly; however, only synchronized transitions are allowed (i.e.,
case (i)) and each composed mode (transition) is associated
with an interval I = I1∩ I2, where I1 and I2 are the intervals
associated with the two component modes (transitions).

IV. COMPOSITIONAL ANALYSIS OF MMA
Similar to the unimodal case, the compositional analysis

of multi-mode systems begins with the system being parti-
tioned into a finite set of components that are hierarchically
scheduled. The only difference here is that each elementary
component in the hierarchy is now a multi-mode system,
modeled as an MMA. Hence, we first compute an interface
that captures the resource requirements for each MMA, and
subsequently generate the interface of a composite component
from the computed interfaces of its children.

A. MMA’s interface representation
The resource requirement of a multi-mode component C

can be captured by a multi-mode resource interface, which
is a finite state machine where each state is augmented with
a minimum service function that is demanded by C. The
different service functions associated with different states of
the interface represent the different resource requirements of
C when it is at different (set of) modes. Each transition
in the interface signifies a “service change request” by the
component, which is triggered by a signal or a time invariant.
Multi-mode resource interfaces share the same set of external
triggering signals as that of their components. In other words,
they expose communication between components, and hence
allowing detection of incompatibilities in communication and
resource use of components in a composite system during
interface composition. On the other hand, internal events (in
the form of buffer constraints) that exist in a component but
are unobservable to other components are abstracted away
and replaced with the service functions of the interface.
This enables information hiding, at the same time limits the
interface’s complexity.

Definition 4 (Multi-mode Resource Interface). A resource
interface of a multi-mode component C is a finite state machine
A= (S,sin,β,Σ,R) where

• S is a finite set of states, each of which characterizes the
resource requirement of one or more modes in C.

• sin ∈ S is the initial state.
• β : S→F is a service mapping, which specifies for each
state s ∈ S a minimum service function β(s) that must be
guaranteed at s for C to be schedulable.

• Σ is a set of external signals.
• R⊆ S×Σ× INT×S is a set of transitions. Each transition

tr = (s,a, [L,U ],s′) in R represents a change in the
resource requirement of the component (i.e., from β(s) to
β(s′)), which is triggered by a signal a and a time interval
[L,U ] during which the transition can be enabled.

All transitions in R are instantaneous and all states in S are
urgent.

As an example, Fig. 4(b-c) shows an adaptive stream
processing system that consists of an audio application and
a video application (besides others), which change modes
according to the network condition (i.e., upon presence of
one of the external events unloaded, loaded, and congested).
The multi-mode resource interface for the system is given
in Fig. 5. In the figure, the service function βs where
s ∈ {PCM15,ADM7.5,PLC7.5,PCM7.5} gives the minimum



ADM PLC
congested

unloaded
PCM

loaded

bufa  ≤  B/3 

bufa  ≥  B/2 

loaded

Mid
  = 〈{Tam , Ta    }, FP 〉

7.5 fps

unloaded

15 fps

loaded

id

3

Mid
 = 〈{Tvm , Tv    }, FP 〉id

4

[D, ∞)

(b) Audio application (c) Video application

foundNw
lostNw

Discon.

Connect

M1
 = 〈{Ts , Tn },  EDF 〉

1

M2
 = 〈{Ts , Tns },  EDF 〉1

(a) System-related tasks

unloaded

C1 C3 C4

Fig. 4. MMA models of concurrent applications in a streaming system.

unloaded

congested

unloaded

loaded

loaded

[D, ∞)

unloaded

ADM
7.5 fps

PLC
7.5 fps

PCM
15 fps

PCM
7.5 fps

[D, ∞)

loaded

βPCM15

βADM7.5

βPLC7.5

βPCM7.5

Fig. 5. The multi-mode interface for the composite component C2 = C3 ‖ C4.
resource that must be provided to the applications when
they are in the corresponding modes. For instance, βPCM15
is the minimum service function that must be guaranteed
when the audio application encodes data using PCM algorithm
and the video application sends data at 15 fps (frames per
second). As illustrated in the figure, buffer constraints in the
applications have been hidden while information necessary for
synchronizing with other components (i.e., timing and network
condition) are being exposed on the interface.
Before presenting the method for computing such an inter-

face, we introduce concepts and technical results needed for
the computation. In what follows, [LM,UM] denotes Inv(M).
B. Properties of pending events during mode changes
In an MMA, when the system moves from one mode to

another, there may be pending events in the buffers. We
characterize below two intertwined terms that capture these
events: the former specifies their execution demand over time,
and the latter specifies their backlog.

Definition 5 (Carried-in demand bound function). The
carried-in demand bound function of a buffer B at mode M,
denoted by cidfM,B, specifies for each Δ ≥ 0 the maximum
number of execution units demanded by the pending events in
B (when the system enters M) whose deadlines are within Δ
time units from the instant the system enters M.

Definition 6 (Carried-in backlog). The carried-in backlog of
a buffer B at mode M, denoted by binM,B, gives the maximum
backlog of B when the system enters M.

Fig. 6 gives an example of the carried-in demand bound
function and backlog. In the figure, an up (down) arrow
denotes the point at which an event arrives (must be finished).

 e1 e2 e3

2 5 10 (=D)

Mode M
binM,B

cidfM,B

Δ
0 2 5

mode change
time

Fig. 6. Carried-in demand bound function and backlog.

Observe that the latest instant at which these pending events
must be completed is the smallest D such that cidfM,B(Δ) =

cidfM,B(D) for all Δ≥D. We call D the “deadline” of cidfM,B.
Since the maximum backlog of B when the system enters
M is the total execution demands of the pending events, the
following corollary holds.
Corollary IV.1. The carried-in backlog of B at M is given by
binM,B = cidfM,B(D), where D is the deadline of cidfM,B.
Further, due to these pending (old) events, the execution

demand required by the (old and new) events in the buffer
during the initial period after the system enters the new mode
is often larger than the usual execution demand required at a
later time interval. We call this the initial demand, which is
defined for absolute time intervals that begin at the instant the
system enters the new mode.
Definition 7 (Initial demand bound function (IDBF)). The
initial demand bound function of a buffer B at mode M,
denoted by idbfM,B, specifies for each Δ ≥ 0 the maximum
number of execution units demanded by the events in B in the
interval [0,Δ] relative to the instant the system enters M.
One can easily verify that the overall demand bound func-

tion of a buffer B at a mode M, which gives the maximum
execution demand of the events in B in any interval of length
Δ when the system is at M, is at most max{idbfM,B, dbfM,B}.
Here, for all Δ≥ 0, dbfM,B(Δ) = αT (Δ−DT ) if B is active at
M, and dbfM,B(Δ) = 0 otherwise. This implies Lemma IV.2,
the proof of which is available in [10]. For convenience, we
denote TM,B as the active task associated with B in mode M,
and TM,B = /0 if B is not active in M.

Lemma IV.2. The minimum service function required by the
events in B to ensure (i) B does not overflow and (ii) all the
events in B meet their deadlines while the system is at M is:
βM,B

def= max
{
binM,B +α− size(B), idbfM,B,dbfM,B

}
, where

α = αTM,B if B is active in M and α(Δ) = 0∀Δ≥ 0 otherwise.
Computing initial demand bound function. The IDBF of a
buffer B at a mode M can be computed with respect to (w.r.t.)
an execution path that leads to M. Suppose p is a path from
the initial mode Min to M. If M ≡ Min or B is inactive in
all preceding modes of M in p, then cidfM,B(Δ) = 0 for all
Δ ≥ 0 and idbfM,B = dbfM,B. Otherwise, let ρ = M1

[L1,U1]−−−−→
M2

[L2,U2]−−−−→ ·· ·Mk
[Lk ,Uk]−−−−→Mk+1 ≡M be the longest sub-path of

p along which the task associated with B does not change its
parameters, i.e., (i) k= 1 and TM1,B = /0, or (ii) TMi,B �= /0 and
is unchanged for all 1≤ i≤ k; further, ρ= p or TM0,B �= TM1,B,
where M0 is the immediate ancestor of M1 in p.

 M0

TB

. . .

[L1, U1]

time

 M1  M2  Mk  M

TB′

. . .

[L2, U2] [Lk, Uk]

 x1  x2  xk

Δ

Fig. 7. The service function of a path that leads to M.

As illustrated in Fig. 7, [Li,Ui] is the interval (relative to
the instant the system enters Mi) during which the system can
move from Mi to Mi+1, i.e., [Li,Ui] = Inv(Mi)∩ [L′i,U ′

i ] where
[L′i,U ′

i ] is the interval associated with the transition from Mi to
Mi+1 in the MMA. Let Lp =

∑k
i=1Li and Up =

∑k
i=1Ui. Then,



Lp and Up are the minimum and maximum total amount of
time the system can spend at M1, . . . ,Mk before moving to M.
The path ρ is called the “unchanged-arrival preceding path”
of B at M w.r.t. p, denoted by pαM,B.

Definition 8. The overall service function βpB(Δ) given to B
w.r.t. a path p that ends with M specifies the minimum number
of execution units allocated to B in the interval of length Δ
immediately before the system enters M.

Lemma IV.3. Suppose βi is the service function allocated to
B at mode Mi for all 1≤ i≤ k. Then, for all Δ ∈ [0,Up],

βpB(Δ) =min
{ k∑
i=1

βi(xi) | Δ =
k∑
i=1

xi ∧ (Li ≤ xi ≤Ui

∨
(
x1 = · · · = xi−1 = 0 ∧ xi < Li)

)}
.

Proof: Consider an interval of length Δ immediately
before the system enters M (see Fig. 7). Let xi be the number
of time units the system spends at Mi. The total number of
execution units given to B is then

∑k
i=1βi(xi). Now let Mj be

the mode at which the interval begins. Then, the system spends
zero time units at all modes before Mj, and from Li to Ui time
units at each mode Mi after Mj. Thus, x1 = . . . = x j−1 = 0 and
Li ≤ xi ≤Ui for all i> j. Hence the lemma.

Lemma IV.4. Suppose t is the instant the system enters M by
taking p. The maximum number of execution units demanded
by the pending events in B when the system enters M1 that
need to be fulfilled in interval [t− x,t+Δ], with x≤Up, is

cidf
p
M,B[x,Δ] = cidfM1,B(Up+Δ)− cidfM1,B

(
(Lp− x)+

)
.

Fig. 8 demonstrates the results stated by Lemma IV.4.
Details of its proof can be found in [10].

. . . M1  Mk  M. . .

 t’
 x Δ t

Δ + x

≤ cidfM1,B (Up + Δ)  

≥ cidfM1,B (Lp - Δ)+  

Fig. 8. Carried-in demand bound function w.r.t. a path.

Lemma IV.5. Let ϕ be the buffer guard associated with the
transition from Mk to M, and Bϕ be the largest fill-level of B
that satisfies ϕ. Let T ≡ TM1,B and λ = (DT −Δ)+. Then, for
all Δ≥ 0,
cidf

p
M,B(Δ) =min

n
Bϕ, sup

0≤x≤Up

˘
αT (x−λ) + cidf

p
M,B[x,Δ] − βpB(x)

¯o

The proof of the lemma is available in [10].
Recall that dbfM,B(x) denotes the maximum execution de-

mand of the events that arrive at B in any time interval of
length x when the system is at Mi. It is given by dbfM,B(x) =
αT (x−DT ) if the task T associated with B is active in M, and
dbfM,B(x) = 0 otherwise. Lemma IV.6 states the relationship
between the initial and carried-in demand bound functions.

Lemma IV.6. If TM,B �= TM1,B, then idbf pM,B(Δ) = cidf pM,B(Δ)+
dbfM,B(Δ). Otherwise,
idbf pM,B(Δ) =min

{
cidf pM,B(Δ)+dbfM,B(Δ),

sup
0≤x≤Up

{
dbfM1,B(x+Δ)+ cidf

p
M,B[x,Δ]−βp(x)

}}
.

The proof of Lemma IV.6 can be established using similar
arguments to that of Lemma IV.5. Observe that our compu-
tation above considers the complete unchanged-arrival path,
starting from M1. The results can be tighten by taking the
minimum of the computed values for all paths starting from
Mi where 1≤ i≤ k.
C. Computing service function of a mode w.r.t. a path
LetM= 〈τ,SC〉 be a mode of the MMA, reachable through a

path p. Let ρ=M1
[L1,U1]−−−−→M2

[L2,U2]−−−−→ ·· ·Mk
[Lk,Uk ]−−−−→Mk+1 ≡M

be the unchanged-arrival preceding path of B at M w.r.t. p,
i.e., ρ = pαM,B. Based on Lemma IV.5 and IV.6, we compute
the carried-in demand bound function cidf pM,B and the initial
demand bound function idbf

p
M,B of B at M w.r.t. p. Apply

cidf
p
M,B to Corollary IV.1, we imply the carried-in backlog of

B at M, i.e., binpM,B = cidf pM,B(D) where D is the deadline of
cidf

p
M,B. From idbf

p
M,B and bin

p
M,B, we then derive minimum

service function βpM,B that is required by B at M (without
considering other tasks) using Lemma IV.2.

Requirements of the active tasks at M. In order for the
events in the buffers to meet their deadlines, we require that
TM,B is active for all buffers B such that βpM,B(Δ) > 0 for some
Δ≤UM. Otherwise, in the worst case, the system may stay at
M for up to UM units of time; in which case, some event in
B will miss its deadline.
Overall service function required by M. The minimum
service function βpM that is required by a mode M assuming
the system entering M through p can be computed from all
βpM,Bi in the same fashion as done in the unimodal case. First,
we assume w.o.l.g. that τ = {T1, . . . ,Tn} where Ti has higher
priority than Tj if i < j. Denote Bi as the buffer associated
with Ti and αi as the arrival function of Ti at M.
If SC is EDF. Then, the overall service function for M is the

sum of all service function required by all the buffers Bi, i.e.,
βpM

def=
∑n

i=1β
p
M,Bi . Now suppose SC is FP. Then, the overall

service function for M is βpM
def= β̂pM,B1 , where β̂pM,Bn = βpM,Bn

and β̂pM,Bi = max
{
Serv(β̂pM,Bi+1 ,αi), β

p
M,Bi

}
for all 1 ≤ i < n.

One can verify that βpM ≥ βuni
M and βpM,Bi ≥ βuni

Ti for all 1≤ i≤ n.
The equality occurs if p comprises a single mode M (≡Min).
D. Computing interfaces of multi-mode applications
With the above results, we now proceed to compute the

interface INF(C) of an elementary component C, where C is a
multi-mode application modeled as an MMA. The computation
for the interface of a composite component made of multiple
sub-components will be outlined in the next section.
Basic ideas: Consider C = (M,Min, Inv,Φ,Σ,R,T ). To com-
pute the interface INF(C), the idea is to allocate as little
resource as possible to each mode of C while maintaining
schedulability of the active tasks as well as no buffer overflows
condition when the system is at the mode. This resource needs
to be sufficient to take care of the initial carried-in execution
demand of pending events when the system enters a mode,
as considered in the preceding sections. To achieve this, we
construct a reachable tree of C by exploring C, starting from
the initial mode as the root of the tree. At each reachable
mode M in the tree along a path p, we compute the service



function βpM,B required by each buffer B at M and the overall
service function βpM required by M w.r.t. p. We then add M′

into the set of reachable modes to be explored if there is
a transition tr = (M,a,ϕ, [L′,U ′],M′) in C and the carried-in
backlog bin

p
M′,B satisfies ϕ for all buffer B in the system.

During the above exploration, if we reach a mode M′

that has been visited earlier and the newly computed service
function of M′ is less than or equal to its most recently
computed value, we mark M′ as “leaf”. Otherwise, we update
the service function of M to be the maximum between its
recently computed value and the newly computed one, and
explore M′ further. We repeat this process until there is no
more reachable modes to be explored.
We denote βM and βM,B as the most recently updated

values of the service function required at M by all the
buffers and for B, respectively. When the superscript p is
involved, they refer to the new values computed w.r.t. a path p.

The exploration procedure:
a) Initialization: For each mode M and each buffer B

in C, we initialize βM(Δ) = 0 and βM,B(Δ) = 0 for all Δ≥ 0.
We start with the initial mode Min. Since all the buffers are
initially empty, for each input buffer B in C, binMin,B = 0 and
cidfMin,B(Δ) = 0 for all Δ≥ 0. We include 〈Min, p〉 as the first
element in the set of modes to be explored S, where p=Min.

b) Computation for each node v = 〈M, p〉 in S: We
first remove v from S. Follow the technique outlined in
Section IV-B and IV-C, we compute (i) the service function
βpM,B required by each input buffer B at M and (ii) the overall
service function βpM for M, both with respect to p. If βM ≥ βpM,
then we mark v as a leaf node. Otherwise, we assign βM,B
(resp. βM) to the maximum of its current value and βpM,B (resp.
βpM), and proceed to explore the outgoing transitions from M
as follows.
For each outgoing transition tr = (M,a,ϕ, [L′,U ′],M′), we

compute, for each input buffer B in C, the carried-in backlog
bin

p′
M′,B of B at M

′ w.r.t. p′ = p∪(M
[L,U]−−−→M′), where [L,U ] =

Inv(M)∩ [L′,U ′]. We add 〈M′, p′〉 into S if binp
′

M′ ,B satisfies
ϕ for all input buffer B in C. In this case, we also compute
cidf

p′
M′,B and idbf

p′
M′,B, and then assign binM′ ,B, cidfM′,B and

idbfM′,B to be the maximum between their current values and
the newly computed ones associated with p′. We additionally
mark M′ as a reachable mode.

c) Termination condition: The exploration process will
stop when there is no more reachable modes to be explored,
i.e., S = /0. Since the number of pending events in each
buffer is upper bounded by the size of the buffer, the service
function βM′ of M′ is always upper bounded. Further, as
its newly computed value is always larger or equal to the
previously computed one, βM′ will reach a fixed point after
a finite number of steps. In other words, the computation is
always decidable.

The interface of C: Recall C = (M,Min, Inv,Φ,Σ,R,T ). The
interface of C is the finite automaton INF(C) = (S,Min,β,Σ,R′)
where S is the reachable modes of C and β : S→F . Each state
M in S is associated with the service function β(M) equal to
the fixed point value of βM computed above. Further, there

is a transition (M,a, [L,U ],M′) in R′ iff there is a transition
(M,a, [L′,U ′],M′) in R such that [L,U ] = Inv(M)∩ [L′,U ′].
As the exploration procedure computes the smallest fixed-

point values of service functions that ensure schedulability and
buffer constraints, the correctness of the computed interface
follows directly from the soundness of the results established
in Section IV-B and IV-C.

V. INTERFACE COMPOSITION

Consider a component C consisting of n components
C1, . . . ,Cn that share the same resource using a scheduling
policy SC. When SC is FP, we assume w.o.l.g. that Ci has
higher priority than C j if i < j. Let INF(Ci) be the resource
interface of Ci for all 1≤ i≤ n. The resource interface of C is
a composition of all INF(Ci) with respect to SC, given by

INF(C) = INF(Cn) ‖SC INF(Cn−1) ‖SC · · · ‖SC INF(C1)
where ‖SC is defined as follows.
Let A1 = (S1,sin1,β1,Σ1,R1) and A2 =

(S2,sin2,β2,Φ2,Σ2,R2) be two resource interfaces. The
asynchronous composition of A1 and A2 under SC, denoted
by A1 ‖SCA2, is a state machine A = (S,sin,β,Σ,R) where:

• S ⊆ S1×S2 is the set of states.
• sin =

(
sin1,sin2

)
is the initial state of A.

• β : S → F is the service function associated with the
states, defined by: For all s= (s1,s2) ∈ S,

β(s) =

{
β1(s1)+β2(s2), if SC is EDF
Serv

(
β1(s1),β2(s2)

)
, if SC is FP

• Σ = Σ1∪Σ2 is the set of service change signals.
• R ⊆ S× Σ× INT× S is the transition relation, defined
as follows. For each (s1,a1, [L,U ],s′1) ∈ R1 and each
(s2,a2, [L′,U ′],s′2) ∈ R2:
(i) 〈(s1,s′1),a1, I,(s2,s′2)〉 is a transition in R if

a1 = a2, s1 �= s2 and s′1 �= s′2 where I =
[min(L,L′),min(U,U ′)].

(ii) 〈(s1,s′1),a1, [1,min(U,U ′)],(s2,s′2)〉 is a transition in
R if a1 �= a2, s1 �= s2 and s′1 = s′2.

(iii) 〈(s1,s′1),a2, [1,min(U,U ′)],(s2,s′2)〉 is a transition in
R if a1 �= a2, s1 = s2 and s′1 �= s′2.

In the case of synchronous composition, only transitions in
(i) are allowed and I = [L,U ]∩ [L′,U ′]. One can verify that
β(s) gives the minimum service that guarantees β(s1) and
β(s2). Similarly, the interval associated with a transition indeed
captures the time interval during which the corresponding
transition(s) in A1 and A2 can be enabled.
As an example, consider the components C3 and C4 shown

earlier in Fig. 4(b) and 4(c). The interface INF(C3) (INF(C4))
has the same structure as that of C3 (C4), except that each of
its states is associated with a service function and all buffer
guards in the component are abstracted away. Interface of the
composite component C3 ‖FP C4 is depicted in Fig. 5, which is
obtained by composing INF(C3) and INF(C4) using our com-
position technique. Observe that by exposing communication
between components on the interfaces, we are able to eliminate
illegal composite states during the interface composition. For
instance, the combination of ADM and 15fps is invalid in
the composite component, which has been ruled out by the
interface composition.



VI. CASE STUDY

In this section, we present a case study of a smart networked
embedded system that supports multiple concurrent adaptive
streaming audio/video applications. We shall show through
our case study how our compositional analysis framework can
be used to model, analyze and optimize such adaptive systems.

Video
Encoder

Camera

Network
Audio

Encoder
  Audio 

Sender

Feedback 
 via RTCP

Receiver

Video/Audio
Decoder

Fig. 9. An adaptive embedded networked system.

Fig. 9 depicts the overall architecture, consisting of two
network-aware end systems sending/receiving data via a net-
work. The sender (e.g., a video phone) captures the live
video/audio, encodes it, and sends it over the network. The
receiver, while receiving the data, provides feedback (regard-
ing delay, packet loss, etc.) to the sender using a real-time
transport control protocol (RTCP). Based on this feedback,
the audio/video application managers adapt the audio and
video sending rates accordingly. Here, we assume the audio
application manager adapts its application to switch between
three compression algorithms that have different bandwidths
– PCM (Pulse Code Modulation) at 64 kb/s, ADM (Adaptive
Delta Modulation) at 48 kb/s, and LPC (Linear Predictive Cod-
ing) at 4.8 kp/s – during run time depending on the network
condition. Similarly, the video application manager adapts the
video application to send at a lower frame rate in case the
network is congested, and at a higher frame rate when the
network is unloaded. The sender additionally runs other real-
time critical system- and network-related tasks, as highlighted
in Fig. 10. We shall focus on evaluating the sending system.
Specifically, we shall estimate the minimum resource that must
be guaranteed for the system to be schedulable. This is done
by computing a resource interface for the system, using our
multi-mode analysis and the unimodal techniques.

 C2

Video
App.

Audio
App.

 C1

 C3  C4

Resource

FP

System
tasks

FP

 C

Fig. 10. Hierarchical scheduling of the sender.

As shown in Fig. 10, the sender employs a two-level
hierarchical scheduling. It is partitioned into two components,
C1 (system-related) and C2 (multimedia), which are scheduled
using FP with C1 having higher priority than C2. Component
C2 further comprises C3 (audio) and C4 (video) components,
which are scheduled using FP with C3 having higher priority
than C4. The execution semantics of C1,C3 and C4 are modeled
by the MMA depicted in Fig. 4 (cf. Section IV-A).
Component C1 contains three tasks that are scheduled under

EDF: Tk (kernel task), always executed; Tns (network search
task), initiated when a connection is lost; and Tnp (network
protocol task), executed to maintain a connected network.

Next, C3 (Fig. 4(b)) runs an audio encoding task (Ta) and an
audio manager task Tam, where Tam always has higher priority
than Ta. As mentioned above, Ta switches between three
compression schemes, captured by three states of C3. Since
the encoding time of an PLC task is an order of magnitude
longer than that of PCM and ADM tasks, the audio application
only selects PLC algorithm if the current backlog of the audio
input buffer (buf a) is no more than one third the buffer size
(denoted by B in the figure). Further, as soon as the buffer
is more than half filled and the application has been in PLC
mode for more than D seconds, it switches back to PCM (i.e.,
the fastest encoding scheme).
Similarly, C4 shown in Fig. 4(c) consists of a video encoding

task Tv and a video manager task Tvm, with Tvm having higher
priority than Tv. Task Tv is assumed to change between two
different sending rates, whereas Tvm remains unchanged.
We assume that the camera captures the video at the

sampling rate equal to the playout rate, i.e., 15 fps and 7.5
fps. The deadline of Tv is set equal to its respective period,
i.e., 66 ms (for 15 fps) and 133 ms (for 7.5 fps). Based on the
sampling rate and the execution time of Tv for each of I, P, B
frames [5], we compute the input arrival function (in terms of
cycles) for Tv at each of the modes in C4. The audio task Ta
is set to have a constant period and deadline of 20 ms. The
ratio for its execution time at each of the modes PCM, ADM,
and LPC are set to 1:13:110 [2]. All the remaining tasks are
assumed to be periodic, with deadlines equal to periods.
Using unimodal techniques. Due to the adaptive character-
istics of the system, unimodal modeling techniques are no
longer capable of describing the system behavior precisely. We
therefore resorted to approximating its worst-case workloads.
We evaluated two approaches:
(U1) No consideration of the initial backlogs of the buffers

when a mode change occurs.
(U2) Assuming the initial backlog is at most equal to the size

of the buffers (as buffers must not overflow).
The hierarchical scheduling tree remains the same as in the
multi-mode case; nevertheless, each of C1, C3 and C4 is a set
of tasks instead of an MMA. The timing parameters for Ta
(Tv) are chosen to be the worst values in all its modes. For
C1, since either Tk and Tn, or Tk and Tns can run at any instant
in time, we substitute Tn and Tns with a single task whose
workload equal to the maximum between that of Tn and Tns.
The rest of the tasks take their original (unchanged) values.
It is worth noting that other approximating approaches might
exist; however, we think that a more sophisticated and proven
technique would require much effort which countervails the
modeling convenience of unimodal models.
Analysis Results. The interface INF(C2) of the multimedia
component C2 is shown earlier in Fig. 5 (cf. Section IV-A).
Each state of INF(C2) corresponds to a valid combination of
the audio and video components, and it is associated with
a service function presenting the service requirements of C2
in a particular mode. Observe that the effects of internal
triggered mode change events (i.e., buffer guards) in the
original automata (cf. Fig. 4(b)) have been encapsulated in
the computed service functions of the interface. On the other



hand, timing guards are exposed at the interface, which can
be used when synchronizing with other interfaces at a higher
level. The multi-mode interface INF(C) for the entire system
can be achieved by further composing INF(C2) with INF(C1).
It has 8 states, corresponding to eight service levels required
by the system depending on the traffic condition. We shall
focus on the three highest service functions.

PCM-15fps

ADM-7.5fps
PLC-7.5fps

Unimodal  (U1)

Δ (ms)  

M
in

im
u

m
 s

er
vi

ce
 r

eq
u

ir
em

en
t 

( 1
0

3
 c

yc
le

s)
 

0 10 20 30 40 50 60
0

0.5

1.0

1.5

2.0

2.5

Multi-mode

invalid

Fig. 11. Unimodal (U1) vs. multi-mode service requirements.

Fig. 11 shows the service function βuni
U1 computed using the

unimodal approach (U1) in contrast to the three highest service
functions of INF(C). Note that βuni

U1 exhibits an unpredictable
behavior where it crosses the service functions of INF(C) at
multiple points. Clearly, by ignoring mode change effects in
the modeling, the unimodal technique fails to safely bound the
service requirement at any mode of the system.

0 100 200 300 400 500

1

2

3

4

5

6

7

8

9

10

0

PCM-15fps

ADM-7.5fps

PLC-7.5fpsUnimodal (U2)

Δ (ms)  

M
in

im
u

m
 s

er
vi

ce
 r

eq
u

ir
em

en
t 

(1
0

3
 c

yc
le

s)
 

Fig. 12. Unimodal (U2) vs. multi-mode service requirements.

Now by taking into consideration the initial backlog due to
a mode change, the second approach (U2) improves upon (U1)
in terms of accuracy. As illustrated in Fig. 12, the computed
service function βuni

U2 using (U2) falls above all the other
service functions of the multi-mode interface. However, it is
observed that βuni

U2 is very pessimistic. Its average long-term
rate is 17%, 80%, and 134% higher than that of the three
highest service levels of INF(C).
The computed multi-mode interface also provides valuable

insights to the system behavior, which can be used for opti-
mizing the system. For instance, the service requirement when
the system uses PCM-15 fps scheme is much higher (twice)
than when it uses PLC-7.5 fps, even though PLC processing
load is more than 100 times that of PCM (Fig. 12). This shows
that when processing load is concerned, it is more effective
to optimize video application instead of audio. Further, for a
fixed video frame rate 7.5 fps, while switching from PCM
to ADM increases only 3% processing load, switching from
ADM to LPC increases 30% processing load. Thus, it is better
to adapt from PCM to ADM than from ADM to LPC.

Finally, the multi-mode interface can easily be adapted
to use in online algorithms such as dynamic frequency and
voltage scaling. One may, for instance, derive a frequency
corresponding to the long-term rate of each service function,
and adapt between different frequencies based on the same
condition as the guard between different states.

VII. CONCLUDING REMARKS
We have proposed a multi-mode automata model and an

interface-theoretic technique to enable compositional analysis
and correct-by-construction design of multi-mode systems.
Our results extend existing work in two dimensions: from
performance analysis to compositional analysis of multi-mode
systems, and from compositional analysis of unimodal to
multi-mode models. The applicability and benefits of our pro-
posed technique have been demonstrated in a smart networked
streaming system.
It would be interesting to investigate abstraction techniques

for refining the multi-mode interface computed from an MMA
or a composition of interfaces. One potential direction would
be to abstract states that share similar service functions, and
transitions that are triggered by a common set of events to
limit the size of an interface without sacrificing accuracy.

REFERENCES
[1] K. Albers, F. Bodmann, and F. Slomka. Advanced hierarchical event-

stream model. In ECRTS, 2008.
[2] J.-C. Bolot and A. Vega-Garcia. Control mechanisms for packet audio

in the internet. In INFOCOM, 1996.
[3] G. C. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive

rate control. In RTSS, 1999.
[4] S. Chakraborty, Y. Liu, N. Stoimenov, L. Thiele, and E. Wandeler.

Interface-based rate analysis of embedded systems. In RTSS, 2006.
[5] S. Chakraborty, T. Mitra, A. Roychoudhury, and L. Thiele. Cache-aware

timing analysis of streaming applications. Real-Time Systems, 41(1):52–
85, 2009.

[6] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework
using edp resource models. In RTSS, 2007.

[7] A. Easwaran, I. Shin, O. Sokolsky, and I. Lee. Incremental schedulability
analysis of hierarchical real-time components. In EMSOFT, 2006.

[8] G. Fohler. Changing operational modes in the context of pre run-
time scheduling. IEICE Transactions on Information and Systems, E76-
D(11):1333–1340, 1993.

[9] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. C. Buttazzo.
Adaptive power management for real-time event streams. In ASP-DAC,
2010.

[10] L. T.X. Phan, I. Lee, and O. Sokolsky. Compositional analysis of multi-
mode systems. http://www.cis.upenn.edu/∼linhphan/papers/ecrtsTR.pdf.

[11] L.T.X. Phan, S. Chakraborty, and I. Lee. Timing analysis of mixed
time/event-triggered multi-mode systems. In RTSS, 2009.

[12] L.T.X. Phan, S. Chakraborty, and P.S. Thiagarajan. A multi-mode real-
time calculus. In RTSS, 2008.

[13] J. Real and A. Crespo. Mode change protocols for real-time systems:
A survey and a new proposal. Real-Time Systems, 26:161–197, 2004.

[14] L. Sha, R. Rajkumar, J. Lehoczsky, and K. Ramamritham. Mode change
protocols for priority-driven preemptive scheduling. Real-Time Systems,
1(3):244–264, 1989.

[15] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling framework
for virtual clustering of multiprocessors. In ECRTS, 2008.

[16] I. Shin and I. Lee. Compositional real-time scheduling framework. In
RTSS, 2004.

[17] I. Shin and I. Lee. Compositional real-time scheduling framework with
periodic model. ACM Transactions on Embedded Computing Systems,
7(3):1–39, 2008.

[18] N. Stoimenov, S. Perathoner, and L. Thiele. Reliable mode changes in
real-time systems with fixed priority or edf scheduling. In DATE, 2009.

[19] E. Wandeler and L. Thiele. Real-time interfaces for interface-based
design of real-time systems with xed priority scheduling. In EMSOFT,
2005.


