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ABSTRACT

ESSAYS ON DYNAMIC MACROECONOMICS

Hikaru Saijo

Jesús Fernández-Villaverde

This dissertation consists of two chapters that study substantive and methodological

issues in business cycle research.

In the first chapter, I study a business cycle model where agents learn about the

state of the economy through accumulating capital. During recessions, agents invest

less, and this generates noisier estimates of macroeconomic conditions and an increase

in uncertainty. The endogenous increase in aggregate uncertainty further reduces

economic activity, which in turn leads to more uncertainty, and so on. Thus, through

changes in uncertainty, learning gives rise to a multiplier effect that amplifies business

cycles. I calibrate the model to measure the size of this uncertainty multiplier and find

that it is large. Moreover, the model quantitatively replicates the VAR relationship

between output and uncertainty.

In the second chapter, I evaluate the common practice of estimating dynamic

stochastic general equilibrium (DSGE) models using seasonally adjusted data.1 The

simulation experiment shows that the practice leads to sizeable distortions in esti-

mated parameters. This is because the effects of seasonality, which are magnified by

the model’s capital accumulation and labor market frictions, are not restricted to the

so-called seasonal frequencies but instead are propagated across the entire frequency

1This chapter is published in the Journal of Econometrics.
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Chapter 1

The Uncertainty Multiplier and

Business Cycles

1.1 Introduction

A central criticism of modern business cycle theories is that they require an un-

realistic magnitude of primitive shocks to fit the data. For example, plain vanilla

real business cycle models need to invoke sizable technological regress in order to

explain recessions. Motivated by this challenge, a rapidly growing literature argues

that shocks to uncertainty are a significant driver of business cycle dynamics—see,

for example, Bloom (2009), Fernández-Villaverde et al. (2011), Gourio (2012), and

Christiano et al. (2012). However, this literature also faces an important criticism

similar to that of the standard theories. While various proxies of uncertainty rise

during almost all recessions,1 exogenous events that significantly increase the volatil-

1See, for example, Bloom et al. (2012).
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ity of the economy seem to be rare. This observation suggests that fluctuations

in uncertainty may be, at least partially, endogenous. The distinction is crucial.

For example, if uncertainty is an equilibrium object, policy experiments that treat

uncertainty as exogenous are subject to the Lucas critique.

In this paper, I present a quantitative business cycle model where the level of

economic activity influences the level of aggregate uncertainty. The endogenous

movement in uncertainty, in turn, affects the level of economic activity. I demonstrate

that this two-way feedback between economic activity and uncertainty is important

for understanding business cycles.

The model builds on a standard equilibrium business cycle framework with several

real and nominal rigidities (Christiano et al. 2005). I introduce information frictions

by subjecting the economy to aggregate shocks that agents cannot directly observe,

namely, shocks to the marginal efficiency of investment and shocks to the depreciation

rate of capital. Because the former are persistent while the latter are transitory, what

matters for agents’ optimal decision is the evolution of the efficiency of investment.

Agents use the path of capital stock and investment to form their estimates in a

Bayesian manner.2 However, the capital stock is not perfectly revealing about the

unobservable shocks because it is subject to a non-invertibility problem: Agents

cannot tell whether an unexpectedly high realization of capital stock is due to a high

efficiency of investment or to a low depreciation rate of capital.

In the model, the level of investment endogenously determines the informativeness

2In the model, all information necessary for optimal learning is contained in the path of capital
stock and investment. While agents have access to other endogenous variables, including prices,
they do not reveal additional information about the unobservable shocks.
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of the capital stock about the shocks to the efficiency of investment. When agents

invest less, their estimates are imprecise because the level of capital stock is largely

determined by the realization of the depreciation shock. Conversely, when they invest

more, their estimates are accurate because the current capital mostly reflects shocks

to the efficiency of investment. Thus, aggregate uncertainty becomes endogenously

countercyclical over the business cycle.

The countercyclical uncertainty gives rise to a novel multiplier effect that am-

plifies business cycles. Imagine that the economy is hit by a negative shock that

lowers investment (for example, an exogenous tightening of monetary policy). Since

agents learn less about the current period shock to the efficiency of investment, un-

certainty increases. This, in turn, further reduces investment and other economic

activity because of households’ precautionary motive and countercyclical movements

in markups. The opposite channel works when the economy is hit by a positive

shock. I call this amplification mechanism the uncertainty multiplier.

To measure the size of the uncertainty multiplier, I perform numerical simulations.

Since my purpose is to investigate the direct effect of changes in uncertainty, I go

beyond linear approximations and use a third-order perturbation method to solve

the model. In a standard first-order approximation, changes in uncertainty play no

role, since the decision rules of agents are forced to follow a certainty equivalence

principle. In the second-order approximation, changes in uncertainty only appear

in the decision rules as cross-product terms with other state variables. Only in the

third-order approximation do changes in uncertainty show up as an independent

term.

3



The model is calibrated to match the business cycle properties of the postwar

U.S. quarterly data. An interesting challenge I face is that the choice of the vari-

ance parameters has important effects on the strength of learning dynamics. More

specifically, when the variance of the depreciation shock is too small compared to

that of the shock to the efficiency of investment, the capital stock is almost perfectly

revealing about the shock to the efficiency of investment. Conversely, when the de-

preciation shock is too large, the capital stock is uninformative and little learning

takes place. In both cases, fluctuations in aggregate uncertainty are negligible. To

ensure that agents face a realistic amount of information frictions, I pin down the

variance parameters so that the model replicates the properties of survey data on

macroeconomic forecasts.

The uncertainty multiplier is large. In particular, under the benchmark calibra-

tion the standard deviation of output is amplified by 33%. Other real variables, such

as investment and hours, are also amplified by a similar amount. The results are due

to two main features of the model. First, in my model changes in uncertainty gener-

ate positive comovements among real variables. Second, the uncertainty process is

volatile and persistent because it is tied to the movement of investment.

Finally, I provide an external validation of my theory by showing that it quanti-

tatively replicates the VAR impulse response of the survey measure of uncertainty.

In particular, it can account for the negative relationship between output and un-

certainty and it also reproduces gradual responses of the two variables. This is

because in the model uncertainty is inversely related to investment, which exhibits

hump-shaped dynamics, and this uncertainty in turn induces gradual adjustments

4



by households. I conclude that the uncertainty multiplier could be a key force that

transforms relatively small shocks into larger business cycles.

The rest of the paper is organized as follows. In the next section, I describe

my contributions with respect to the existing literature. In Section 3, I present the

model. In Section 4, I discuss its solution and calibration. In Section 5, I present

the results. In Section 6, I provide evidence of my theory from survey data. Finally,

Section 7 concludes with some directions for future research.

1.2 Connections to the Literature

This paper is related to several strands of the literature. First, it is related to a

growing literature on uncertainty shocks. A leading example is a paper by Bloom

(2009), who shows that an exogenous increase in the volatility of firm-level productiv-

ity reduces output through a “wait-and-see” effect due to investment irreversibility.

Fernández-Villaverde et al. (2011) show that volatility shocks to real interest rates

generate sizable contractions in an otherwise standard small open economy model.

Other examples include Arellano et al. (2012), Basu and Bundick (2011), Chris-

tiano et al. (2012), Fernández-Villaverde et al. (2012), Gilchrist et al. (2010), Gourio

(2012), Ilut and Schneider (2011), and Schaal (2012). I show that time-varying un-

certainty could be an important amplification (rather than an impulse) mechanism

of the business cycle. As stated in the Introduction, this distinction is important

because now uncertainty is an equilibrium object.

Recently, some authors have argued that changes in uncertainty have negligible

5



effects given small and transient fluctuations in observed realized volatility (Bach-

mann and Bayer 2012, Born and Pfeifer 2012, and Chugh 2012). The problem of

this approach is that the realized volatility may not accurately reflect the actual

uncertainty that agents face. In fact, in my model, uncertainty features a large and

persistent fluctuation that is not linked with movements in the realized volatility of

macro variables.3 As a result, unlike in these papers, changes in uncertainty have

sizable effects.

Several papers attempt to explain the countercyclical firm-level volatility through

conventional first-moment shocks. For example, in Bachmann and Moscarini (2011),

recessions induce firms to price-experiment, which in turn raises the cross-sectional

dispersion of price changes. See also D’Erasmo and Boedo (2012), Kehrig (2011),

and Tian (2012). An important distinction between my paper and theirs is that,

while their models endogenously deliver ex-post volatility, mine delivers ex-ante un-

certainty. This is why in my model uncertainty is not merely a by-product of agents’

response to first-moment shocks, but rather an important factor that affects real

allocations.

The main mechanism of this paper builds on a literature on asymmetric learning,

for example, Veldkamp (2005), Nieuwerburgh and Veldkamp (2006), Ordoñez (2012),

and Görtz and Tsoukalas (forthcoming). They argue that the time-varying speed

of learning about the macroeconomic conditions could explain the asymmetries in

growth rates over the business cycle. When the economy passes the peak of a boom,

agents are able to precisely detect the slowdown, leading to an abrupt crash. At

3Ilut and Schneider (2011) also propose a business cycle model where changes in uncertainty are
not followed by changes in realized volatility by assuming ambiguity-averse preferences.
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the end of the recession, agents’ estimates about the extent of recovery are noisy,

slowing reactions and delaying booms. My contribution is to explore the direct effects

of endogenous fluctuations in uncertainty that shift the levels of macro variables.

Recessions are deeper because high uncertainty leads precautionary households to

cut consumption. Booms are stronger for the opposite reason. This channel has

been overlooked in the previous literature.

Finally, this paper joins a long tradition in macroeconomics by considering the

role of imperfect information and expectations in shaping business cycle dynamics.

Recent contributions include Angeletos and La’o (forthcoming), Barsky and Sims

(2012), Beaudry and Portier (2004), Eusepi and Preston (2011), Lorenzoni (2009),

Jaimovich and Rebelo (2009), and Schmitt-Grohe and Uribe (2012). These papers

emphasize changes in the mean of agents’ subjective estimates about fundamentals.

The current paper, instead, demonstrates the importance of changes in the variance

of estimates about fundamentals.

1.3 The Model

I embed a learning problem into the capital accumulation process of a standard

monetary business cycle framework (Christiano et al. 2005, Justiniano et al. 2010, and

Smets andWouters 2007). This framework is a natural laboratory for my quantitative

investigation, since it has now become the foundation of applied research in both

academic and government institutions.

In the first subsection, I describe the information frictions. In the second subsec-

7



tion, I present the standard part of the model.

1.3.1 Learning and Endogenously Countercyclical Uncertainty

I divide the presentation of the information frictions into several parts. First, I

describe the setup. Second, I express the learning process as a Kalman filtering

problem. Third, I present a simple example that illustrates the key properties of

the filtering problem. Finally, I rewrite the capital accumulation process from the

perspective of the agents. This clarifies the impact of changes in uncertainty on the

agents’ decision making.

Setup

The law of motion for capital, Kt, is subject to two types of structural disturbances:

Kt = (1− δt)Kt−1 + µtIt−1.

The depreciation shock, δt, follows

δt = δ − εδ,t,

where εδ,t is i.i.d. distributed from a normal distribution with mean zero and variance

σ2
δ . The investment shock, µt, determines the marginal efficiency of investment. I

8



assume that µt follows the stochastic process

µt = gt−1 + (1− ρµ)µ+ ρµµt−1 + εµ,t,

gt = ρggt−1 + εg,t,

where εµ,t and εg,t are i.i.d. distributed from a normal distribution with mean zero

and variance σ2
µ and σ2

g , respectively. The growth shock, gt, controls the growth rate

of µt.
4 Agents cannot directly observe the current or previous values of δt, µt, and

gt. This informational assumption gives rise to a non-invertibility problem: Agents

cannot tell whether an unexpectedly high realization of capital stock is due to a high

efficiency of investment or to a low depreciation rate of capital. As a result, they face

a signal-extraction problem in forecasting the evolution of the shocks. Agents use all

available information, including the path of capital stock, to form their estimates.

A literal interpretation of the depreciation shock is that it represents an exogenous

change in the physical depreciation rate of capital. However, as in Gourio (2012),

Gertler and Karadi (2011), and Liu et al. (2011), a broader interpretation is possible.

For example, it can represent an economic obsolescence of capital. Alternatively,

reallocation of capital may be subject to temporary frictions and could show up as

a change in the “quality” of aggregate capital.

The investment shock was originally proposed by Greenwood et al. (1988). In a

medium-scale DSGE model similar to the one employed in this paper, Justiniano et

al. (2010) have found that the shock is the most important driver of the U.S. business

cycle. In general, there are two ways to think about the investment shocks. The first

4The growth shock is not strictly necessary for the theoretical results of the paper. However, as
I show below the shock helps match some of the survey data moments.
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interpretation is that they represent disturbances that affect the transformation of

consumption goods into investment goods. The second interpretation is that they

are shocks that affect the transformation of investment goods into installed capital.

In this paper, I adopt the second interpretation.5 Then the investment shock can be

thought of as a disturbance to the intermediation ability of the financial system. An

important implication of this interpretation is that, unlike Fisher (2006), the invest-

ment shock does not affect the price of investment goods relative to consumption

goods. Thus, agents cannot back out the shocks by observing the price.

As summarized in Figure 1.1, the timing of events is as follows: At the end of

period t− 1, agents choose their investment level It−1 given the current capital level

Kt−1 and their estimates about the unobservable state. Then, at the beginning of

period t, unobservable shocks are realized. Finally, after observing the level of new

capital Kt, agents update the estimates.

The Kalman Filtering Problem

Agents update their estimates about µt and gt in an optimal (Bayesian) manner.

The learning process can be expressed as a Kalman filtering problem:

µt

gt

 =

(1− ρµ)µ

0

+

ρµ 1

0 ρg


µt−1

gt−1

+

εµ,t
εg,t

 , (1.1)

Kt − (1− δ)Kt−1 = [It−1 0]

µt

gt

+Kt−1εδ,t. (1.2)

5See Justiniano et al. (2011) for supportive evidence based on a DSGE model estimation.
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Equation (1.1) is the state equation that characterizes the evolution of the unobserv-

able state. Equation (1.2) is the measurement equation that describes the observ-

ables as a linear function of the underlying state. I point out two things regarding

the measurement equation. First, εδ,t serves as a measurement error in the filtering

system. Second, unlike standard time-invariant systems, the coefficient matrices are

time-varying.6

The key property of the system is that the signal-to-noise ratio is procyclical,

which follows from the fact that It−1

Kt−1
is procyclical. The flip side implication of this

property is that uncertainty is countercyclical. Denote Σt as the error-covariance

matrix of the unobservable states,

Σt =

Vart(µt − µ̃t) Covt(µt − µ̃t, gt − g̃t)

· · · Vart(gt − g̃t)

 ,
then the elements of Σt are decreasing in It−1

Kt−1
. Intuitively, when agents invest less,

their estimates about the efficiency of investment are imprecise because the level

of capital stock is largely determined by the realization of the depreciation shock.

Conversely, their estimates are accurate when they invest more because the current

capital mostly reflects shocks to the efficiency of investment.

6As in Veldkamp (2005) and Nieuwerburgh and Veldkamp (2006), I rule out active experimen-
tation for computational reasons. Cogley et al. (2007) have shown, in the context of U.S. monetary
policy making, that the two approaches (learning with and without experimentation) produce very
similar decision rules.
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Understanding Why Uncertainty Is Countercyclical

I explain how a procyclical signal-to-noise ratio leads to countercyclical uncertainty

by going through a simpler example. In particular, assume that there is no growth

shock.7 Then the filtering problem reduces to

µt = (1− ρµ)µ+ ρµµt−1 + εµ,t, (1.3)

yt = It−1µt +Kt−1εδ,t, (1.4)

where (1.3) is the state equation and (1.4) is the measurement equation. I define

yt ≡ Kt − (1 − δ)Kt−1. In period t − 1, agents enter with the mean estimate µ̃t−1

and its associated error variance Σt−1 ≡ Vart−1(µt−1 − µ̃t−1). Then, the period t− 1

prediction of µt and its associated error variance is given by

µ̃t|t−1 = (1− ρµ)µ+ ρµµ̃t−1

Σt|t−1 = ρ2µΣt−1 + σ2
µ

After observing the outcome yt, they update their estimates according to

µ̃t = µ̃t|t−1 +Gaint(yt − It−1µ̃t|t−1),

7In the Appendix, I provide a full derivation with the growth shock.
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where Gaint is the Kalman gain and is given by

Gaint =
I2t−1Σt|t−1

I2t−1Σt|t−1 +K2
t−1σ

2
δ︸ ︷︷ ︸

Informativeness of observation

· 1

It−1︸︷︷︸
Adjustment

.

The first term represents the informativeness of observation yt and is given by the

variance of the signal divided by the total variance (the variance of the signal and

noise). The term is increasing in It−1

Kt−1
. The second term is the scale adjustment term

reflecting the fact that µt is multiplied by It−1 in the observation.

The error variance associated with µ̃t is given by

Σt = (1−GaintIt−1)Σt|t−1

=
K2

t−1σ
2
δ

I2t−1Σt|t−1 +K2
t−1σ

2
δ︸ ︷︷ ︸

Un-informativeness of observation

·Σt|t−1.

The first line says that the error shrinks as we learn more from the observation; the

error is decreasing in the size of the Kalman gain. The second line says that the

error variance is increasing in the un-informativeness of observation (the variance of

noise divided by the total variance). Since the un-informativeness term is decreasing

in It−1

Kt−1
, Σt is decreasing in It−1

Kt−1
. Since investment is much more volatile than cap-

ital, It−1

Kt−1
moves almost proportionally to It−1. Thus, less investment leads to more

uncertainty.
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Implications of Time-Varying Uncertainty From the Perspective of the

Agents

How do changes in uncertainty about the current efficiency of investment affect

agents’ decision making? The key insight here is that, because shocks to the ef-

ficiency of investment are persistent, uncertainty about the current state translates

into uncertainty about the future realization of capital.

To see this, it is useful to rewrite the capital accumulation equation from the

perspective of the agent at period t− 1:

Kt = (1− δt)Kt−1 + (µ̃t|t−1 + ut)It−1,

where µ̃t|t−1 is the mean forecast of µt at time t − 1 and ut is normally distributed

with mean zero and variance σ2
u,t. The innovation ut takes into account not only the

exogenous innovation to µt, but also its estimation error:

ut = µt − µ̃t|t−1

= (gt−1 − g̃t−1) + ρµ(µt−1 − µ̃t−1) + εµ,t,

and hence its volatility is given by

σ2
u,t = ρ2µΣ

11
t−1 + 2ρµΣ

12
t−1 + Σ22

t−1 + σ2
µ.

Thus, the fluctuation in uncertainty shows up as a fluctuation in volatility of the

innovation to the marginal efficiency of investment. Moreover, this fluctuation in
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volatility is persistent to the extent that investment is persistent.

1.3.2 Standard Part of the Model

I now describe other components of the model. The economy is composed of the

final-goods sector, intermediate-goods sector, household sector, employment sector,

and a central bank. I start by describing the production side of the economy.

The Final-Goods Sector

In each period t, the final goods, Yt, are produced by a perfectly competitive represen-

tative firm that combines a continuum of intermediate goods, indexed by j ∈ [0, 1],

with technology

Yt =

[∫ 1

0

Y
θp−1

θp

j,t dj

] θp
θp−1

.

Yj,t denotes the time t input of intermediate good j and θp controls the price elasticity

of demand for each intermediate good. The demand function for good j is

Yj,t =

(
Pj,t

Pt

)−θp

Yt,

where Pt and Pj,t denote the price of the final good and intermediate good j, respec-

tively. Finally, Pt is related to Pj,t via the relationship

Pt =

[∫ 1

0

P
1−θp
j,t dj

] 1
1−θp

.
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The Intermediate-Goods Sector

The intermediate-goods sector is monopolistically competitive. In period t, each firm

j rents Kj,t units of capital stock from the household sector and buys Hj,t units of

aggregate labor input from the employment sector to produce intermediate good j

using technology

Yj,t = ztK
α
j,tH

1−α
j,t .

zt is the level of total factor productivity that follows

zt = (1− ρz)z + ρzzt−1 + εz,t,

where εz,t is i.i.d. distributed from a normal distribution with mean zero and variance

σ2
z .

Firms face a Calvo-type price-setting friction: In each period t, a firm can re-

optimize its intermediate-goods price with probability (1 − ξp). Firms that cannot

reoptimize index their price according to the steady-state inflation rate, π.

The Household Sector

There is a continuum of households, indexed by i ∈ [0, 1]. In each period, household

i chooses consumption Ct, investment It, bond purchases Bt, and nominal wage Wi,t

to maximize utility:

Et

∞∑
s=0

βsdt+s

[
(Ct+s − bCt+s−1)

1−σ

1− σ
−
H1+η

i,t+s

1 + η

]
,
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where β is a discount factor, σ is a risk-aversion coefficient, b represents consumption

habit, η controls (the inverse of) the Frisch labor supply elasticity, and Hi,t is the

number of hours worked. dt is a preference shock that follows

dt = (1− ρd)d+ ρddt−1 + εd,t,

where εd,t is i.i.d. distributed from a normal distribution with mean zero and variance

σ2
d.

The household’s budget constraint is

PtCt + PtIt +Bt ≤ Wi,tHi,t +Rk
tKt +Rt−1Bt−1 +Dt + Ai,t,

where Rk
t is the rental rate of capital, Kt is the stock of capital, Rt−1 is the gross

nominal interest rate from period t − 1 to t, and Dt is the combined profit of all

the intermediate-goods firms distributed equally to each household. I assume that

households buy securities, whose payoffs are contingent on whether it can reoptimize

its wage.8 Ai,t denotes the net cash inflow from participating in state-contingent

security markets at time t.

As in Christiano et al. (2005), I add an investment adjustment cost to the capital

8The existence of state-contingent securities ensures that households are homogeneous with
respect to consumption and asset holdings, even though they are heterogeneous with respect to the
wage rate and hours because of the idiosyncratic nature of the timing of wage reoptimization. See
Christiano et al. (2005).
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accumulation equation described above:

Kt = (1− δt)Kt−1 + µt

(
1− S

(
It−1

It−2

))
It−1,

where

S

(
It−1

It−2

)
=
κ

2

(
It−1

It−2

− 1

)2

,

with κ > 0. Other components of the capital accumulation, like the stochastic

process of shocks or the informational structure, are exactly the same as described

in the previous section.

The Employment Sector and Wage Setting

In each period t, a perfectly competitive representative employment agency hires

labor from households to produce an aggregate labor service, Ht, using technology

Ht =

[∫ 1

0

H
θw−1
θw

i,t di

] θw
θw−1

,

where Hi,t denotes the time t input of labor service from household i and θw controls

the price elasticity of demand for each household’s labor service. The agency sells

the aggregated labor input to the intermediate firms for a nominal price of Wt per

unit. The demand function for the labor service of household i is

Hi,t =

(
Wi,t

Wt

)−θw

Ht,
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where Wi,t denotes the nominal wage rate of the labor service of household i. Wt is

related to Wi,t via the relationship

Wt =

[∫ 1

0

W 1−θw
i,t di

] 1
1−θw

.

Households face a Calvo-type wage-setting friction: In each period t, a household

can reoptimize its nominal wage with probability (1− ξw). Households that cannot

reoptimize index their wage according to the steady-state inflation rate, π.

The Central Bank, Resource Constraint, and Equilibrium

The central bank sets the nominal interest rate according to a Taylor rule:

Rt

R
=

(
Rt−1

R

)ρR
{(

πt
π

)φπ
(

Yt
Yt−1

)φY
}1−ρR

exp(εR,t),

where R is the steady-state level of the nominal interest rate, ρR is the persistence

of the rule, and φπ and φY are the size of the policy response to the deviation of

inflation and output growth from their steady states, respectively. εR,t is a monetary

policy shock and is i.i.d. distributed from a normal distribution with mean zero and

variance σ2
R.

Finally, the aggregate resource constraint is Ct + It = Yt. I employ a standard

sequential market equilibrium concept and hence its formal definition is omitted.
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1.4 Model Solution and Calibration

I follow Fernández-Villaverde et al. (2011) and solve the model using a third-order

perturbation method around its deterministic steady state.9 I use perturbation be-

cause the model has many state variables and it is the only method that delivers

an accurate solution in a reasonable amount of time (Aruoba et al. 2006). The

third-order approximation is necessary because my purpose is to analyze the direct

impact of endogenous changes in aggregate uncertainty. In a standard first-order

approximation, changes in uncertainty play no role since the decision rules of agents

are forced to follow a certainty equivalence principle. In the second-order approx-

imation, changes in uncertainty only appear in the decision rules as cross-product

terms with other state variables. Only in the third-order approximation do changes

in uncertainty show up as an independent term.

The parameterization of the model is done in two steps. In the first step, I

fix several parameter values following micro evidence or estimates found in other

papers. In the second step, I choose values of the remaining parameters by matching

the simulated moments of the model to the data. The first step reduces the number

of parameters to be calibrated and thus sharpens the exercise in the second step.

The discount factor, β, is set so that the model steady-state interest rate implied

by the Euler equation matches that of the data. The capital share is set to 0.3.

δ = 0.02 implies an annual depreciation rate of 8%. The elasticity of goods demand

θp = 21 and labor demand θw = 21 are consistent with previous estimates, for

example, Altig et al. (2011).

9The computation is carried out with Dynare (http://www.dynare.org/).
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The coefficient of risk aversion is σ = 2 and the habit persistence parameter is set

to b = 0.65. The latter value is taken from the estimates in Christiano et al. (2005).

As emphasized in Boldrin et al. (2001), a strong habit persistence parameter helps

to account for various asset pricing puzzles. Chetty et al. (2011) suggest a Frisch

elasticity of labor supply of 0.5 for a macro model that does not distinguish between

intensive and extensive margins. This leads to η = 2.

The Calvo price and wage parameters imply an average duration of one year. As

found in Smets and Wouters (2007) and Justiniano et al. (2010), prices and wages

need to be sufficiently sticky in order to account for the inflation and wage dynamics

in the data. Turning to the monetary policy parameter, I match the steady-state

inflation rate to its historical mean. The Taylor rule coefficients feature inertia with

a strong response to inflation and a weak response to output growth (Levin et al.

2006, Smets and Wouters 2007, and Justiniano et al. 2010).

I also shut off shocks other than those to the capital accumulation equation, i.e.,

I set σz = σd = σR = 0. This is motivated by the recent evidence that disturbances

to capital accumulation are a major driving force of business cycles (Justiniano et

al. 2010 and Liu et al. 2011). It also reduces some parameters and makes the pre-

sentation of the main mechanism as transparent as possible.

To determine the values of other parameters, I choose them so that the moments

simulated from the model matches the selected moments in the data.10 There are 6

10To simulate the model, I use the pruning procedure as described in Kim et al. (2008) and
Den Haan and De Wind (2012). I compute a total of 200 replications of 250 period simulations.
I throw away the initial 50 periods. For each sample I compute the business cycle moments and
then take medians across 200 replications. I checked that the results are not driven by explosive
behavior.
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parameters to calibrate: {κ, ρµ, ρg, σµ, σg, σδ}. I target the following 6 data moments:

• Macroeconomic variables:

Standard deviations of output and investment.

Correlations of investment with respect to output.

Autocorrelation of output.

• Forecast errors from the Survey of Professional Forecasters:

1st-order autocorrelation and mean size of forecast errors on nominal GDP

growth.

Table 1.1 summarizes the resulting parameter values.

The calibration of the standard deviation of the depreciation shock σδ needs

further discussion. The parameter is important because it determines the strength

of information frictions. With too small σδ, the learning problem becomes trivial.

With too large σδ, agents learn little about the aggregate state. Thus in both cases,

changes in the level of investment have a negligible effect on the level of uncertainty.

I discipline the choice of σδ by using statistics on forecast errors in the Survey of

Professional Forecasters data.11 The first row in Table 1.2 reports statistical proper-

ties of the one-quarter-ahead median forecast errors on nominal GDP growth rate.12

The second column shows that the forecast errors of GDP growth are positively au-

tocorrelated. The third column shows the mean size of forecast errors (i.e., forecast

11A similar calibration strategy has been used in, for example, Eusepi and Preston (2011) and
Görtz and Tsoukalas (forthcoming).

12I choose the nominal GDP growth rate because this is the longest forecast series available from
the survey. Also, the forecasts do not appear to be biased because the time-series average of the
forecast errors is very close to zero.
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precision). I also report the model predictions of the forecast errors for various val-

ues of σδ.
13 First note that for all values of σδ reported, the autocorrelations are

positive. This is due to the relatively high persistence parameter of the investment

growth shock, ρg. The forecast errors are autocorrelated because agents only grad-

ually realize the change in growth rate in response to an innovation to gt. As σδ

increases, the autocorrelation decreases because of the additional noise in the fil-

tering problem. On the other hand, the size of the error increases with σδ simply

because the information friction becomes more severe. I choose 100σδ = 0.015, which

matches both the autocorrelation and the size well.

As a preliminary diagnosis of the model’s performance, I compare the business

cycle moments from the data and the model in Table 1.3. The model matches the

data reasonably well, even for moments that are not explicitly targeted.

1.5 Results

In this section, I present the results. First, by comparing impulse responses and

business cycle moments, I show that the uncertainty multiplier is large. Second, I

examine the sensitivity of the size of the multiplier to different parameter values for

the shock processes. Third, I highlight the role of real and nominal rigidities by

shutting each component one-by-one. Finally, I decompose the multiplier into the

direct effect and the feedback effect.

13For the computation of the numbers reported in this Table, I only change the value of σδ and
fix other parameters at the benchmark calibration reported in Table 1.1.
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1.5.1 The Uncertainty Multiplier Is Large

I divide the presentation of the main results into two parts. First, I use impulse

responses to explain the basic mechanism of the uncertainty multiplier. Second, I

compute business cycle moments and measure the size of the multiplier.

Impulse Response Analysis

Before examining the impulse responses, I need to consider how to measure the

effects of endogenous changes in uncertainty. One potential way is to compare the

baseline model with a version of the model without any information friction (i.e.,

agents know the true value of the shocks). However, this approach is problematic

since it confounds the effects of changes in the variance of the agents’ estimates

(which is the main focus of the paper) with the effects of changes in the mean of

the estimates. Therefore, I consider a version of the model where the variance of the

estimates is held constant but agents still face information frictions. This way, I can

precisely quantify the contribution of fluctuations in uncertainty to business cycle

dynamics.

I examine the impulse responses to a negative one-standard-deviation investment

shock. Recall that from the perspective of the agent at the end of period t− 1, the

capital accumulation equation can be rewritten as follows:

Kt = (1− δt)Kt−1 + (µ̃t|t−1 + ut)It−1,

where ut is normally distributed with mean zero and variance σ2
u,t. In the baseline

24



model featuring the uncertainty multiplier, σ2
u,t is given by

σ2
u,t = ρ2µΣ

11
t−1 + 2ρµΣ

12
t−1 + Σ22

t−1 + σ2
µ.

I shut down the uncertainty multiplier by fixing expectations over σ2
u,t at its steady-

state level:

σ2
u,t = ρ2µΣ

11
ss + 2ρµΣ

12
ss + Σ22

ss + σ2
µ,

where Σ11
ss , Σ

12
ss , and Σ22

ss are the steady-state levels of Σ11
t , Σ12

t , and Σ22
t . Figure 1.2

shows the actual and perceived levels of unobservable shocks (investment shock µt

and growth shock gt). Note that they are identical between the two simulations.14

This means that differences in the dynamics of the endogenous variables are only

due to a difference in agents’ perception of ex-ante uncertainty.

Figure 1.3 shows that the output decline is substantially deeper when the uncer-

tainty multiplier is present. This is because, as shown in Figure 1.4, in the baseline

model agents perceive an increase in uncertainty (increase in σu,t) due to a decline

in investment. This increase in uncertainty contributes to the additional drop in

output compared to the case where the uncertainty multiplier is turned off (σu,t is

held constant). Figure 1.4 also shows that the declines in other real variables are

amplified by a similar amount. However, for nominal variables like inflation and the

interest rate, the amplification is negligible.

The uncertainty multiplier amplifies the contraction in economic activity for the

14Strictly speaking, agents’ perceived level of unobservable shocks could be moderately different
between the two simulations because the signal-to-noise ratio changes due to the feedback effect.
It turns out, however, that this channel is negligible in the impulse response shown here.
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following reasons. Due to the precautionary motive, an increase in uncertainty in-

duces households to consume less and save more. However, on the saving side, the

physical capital becomes a worse hedge for aggregate shocks because the return on

capital is subject to more uncertainty. On net, this risk-aversion channel dominates

and investment falls as well.

Why, then, the working hours fall? On the one hand, the fall in consumption

induces a desire for households to supply more labor. On the other hand, since

aggregate demand is lower, firms demand less labor for a given wage. Since wages

are sticky, wages cannot adjust to accommodate more labor and thus equilibrium

hours fall. Since prices are sticky, firms increase their price markups and this leads

to a further decline in hours. The overall outcome is that output drops substantially.

It is important to stress that in my model, an increase in uncertainty generates

a simultaneous fall in output, investment, consumption, and hours. In standard

real business cycle models, an increase in uncertainty reduces consumption but also

induces a “precautionary labor supply” (Basu and Bundick 2011). As a result,

contrary to the data, consumption and hours move in opposite directions. With

nominal rigidities, the business cycle comovement is restored through countercyclical

movements in markups.

Business Cycle Moments

I measure the size of the uncertainty multiplier by computing the business cycle

moments with and without the multiplier. Figure 1.5 plots the sample path of

output from numerical simulations. The uncertainty multiplier amplifies both booms
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and recessions because uncertainty decreases during booms and increases during

recessions. To quantify the magnitude of the amplification, Table 1.4 compares

the standard deviations of output and other variables. The uncertainty multiplier

is large. In particular, the standard deviation of output is 1.33 times larger with

the multiplier.15 Other real variables like investment and hours are amplified by a

similar amount. Consistent with the findings from the impulse response analysis, for

inflation and the interest rate the amplification is negligible. Finally, Table 1.5 shows

that, for a reasonable range of parameterization of the standard deviation of the

depreciation shock, σδ, the uncertainty multiplier is sizable. For example, consider

100σδ = 0.050. While this parameterization implies that the autocorrelation is too

low and the forecast errors are too large, the uncertainty multiplier for output is

1.20.

I conclude this subsection by pointing out that the amplification results reported

above are likely to be conservative lower bounds. Including features such as non-

convex adjustment costs (Bloom 2009) or financial frictions (Gilchrist et al. 2010) in

the model would further increase the size of the uncertainty multiplier.

1.5.2 Changing the Parameters of the Shock Processes

I consider the effects of changing the parameters of the shock processes from the

benchmark calibration. The exercise provides additional insights regarding determi-

nants of the size of the uncertainty multiplier.

15The baseline numbers are derived from the HP-filtered (λ = 1600) moments. The results are
not sensitive to the choice of the detrending method. For example, when I use linearly detrended
moments, the uncertainty multiplier for output is 1.40.
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Table 1.6 reports the uncertainty multiplier for output under different parameter-

izations of the standard deviation of the investment shock σµ and the growth shock

σg. I change the ratio of the standard deviations, σµ/σg, from the benchmark cali-

bration (σµ/σg = 0.55) while keeping the standard deviation of output constant. The

multiplier is increasing in the relative size of the growth shock. Intuitively, agents

respond more to changes in uncertainty about the expected trend growth than to

those about the fluctuation around the trend. The uncertainty multiplier is also

increasing in the absolute size of the shocks. This can be seen in Table 1.7, where

I scale the standard deviations of shocks (σµ, σg, and σδ) proportionally from the

benchmark calibration. The reason is that the fluctuation in uncertainty becomes

more important to agents’ decision making as the volatility of shocks becomes larger.

The results in this subsection have an interesting implication for emerging market

economies. As shown in Aguiar and Gopinath (2007), these economies feature more

volatile business cycles that could be well characterized by fluctuations in expected

growth rates.16 This suggests that the uncertainty multiplier may be much larger in

emerging markets than in the U.S.

1.5.3 The Role of Real and Nominal Rigidities

The benchmark model features several real and nominal rigidities that are absent in

a plain vanilla real business cycle model. Table 1.8 reports the uncertainty multiplier

for output under various combinations of frictions.

I highlight three observations. First, nominal rigidities are crucial for generating

16See also Boz et al. (2011), who extend Aguiar and Gopinath (2007)’s analysis by incorporating
a learning problem.
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sizable multipliers. The output uncertainty multiplier is 1.06 without sticky prices

and 1.01 without sticky wages. This point connects to Basu and Bundick (2011) and

Fernández-Villaverde et al. (2012), who argue that countercyclical markups due to

nominal rigidities are important in accounting for the quantitative effects of changes

in uncertainty. Second, although less important than nominal rigidities, frictions on

the real side of the economy also matter. The real rigidities magnify households’

response to changes in uncertainty because they make future adjustments in con-

sumption and investment more costly. Third, there are interactions among each

set of rigidities. For example, while both real rigidities only and nominal rigidities

only economies produce negligible output amplification (1.00 and 1.04, respectively),

when the full set of rigidities is present, the amplification is significant (1.33).

The findings are related to Bloom (2009), who shows that the firm-level irre-

versibilities are essential in analyzing the effects of changes in uncertainty. The re-

sults in this subsection indicate that abstracting from a realistic amount of rigidities

may result in an underestimation of the size of the uncertainty multiplier.

1.5.4 The Role of the Feedback Effect

An interesting property of my model is that it features a two-way feedback mech-

anism between uncertainty and economic activity. Amplification of investment due

to uncertainty leads to even more amplification, because uncertainty itself is also

amplified by the amplification of investment. I assess the quantitative importance

of this channel by computing the uncertainty multiplier when the feedback effect is
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turned off.17

In particular, I assume that the agents perceive σ2
u,t to evolve as follows:

σ2
u,t = ρ2µΣ̃

11
t−1 + 2ρµΣ̃

12
t−1 + Σ̃22

t−1 + σ2
µ,

where Σ̃t−1 is derived from the decision rules of investment when the uncertainty

multiplier is turned off (i.e., σ2
u,t = σ2

u,ss). Table 1.9 reports the uncertainty multiplier

with and without the feedback effect. Without feedback, the uncertainty multiplier

is slightly smaller than the baseline. The feedback effect can account for about

((33− 30)/33 ≈) 10% of the total output amplification.

1.6 Survey Data Evidence

In this section, I use a unique survey data that directly measures subjective uncer-

tainty and argue that the model is consistent with the data. In particular, I show

that the model quantitatively replicates the VAR relationship between output and

uncertainty.18

Since uncertainty is an ex-ante concept, its measurement using ex-post realized

data is inherently difficult. Probabilistic forecasts reported in the Survey of Profes-

sional Forecasters are unique in yielding numeric values on ex-ante uncertainty for

a sufficiently long period of time. This survey asks each forecaster for a subjective

probability density of the annual percentage change in real GDP. Following the stan-

17I thank Toshi Mukoyama for suggesting this exercise.
18Bloom (2009) and Gourio (2012) conduct similar exercises.
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dard in the literature (Zarnowitz and Lambros 1987 and D’Amico and Orphanides

2008), I take the average across the standard deviations of those probability densi-

ties for each forecaster and use it as a measure of uncertainty.19 While the survey

data starts from 1968:Q4, concerns regarding data consistency and missing data

force me to conduct the analysis using the data during 1986:Q2–2011:Q4.20 Finally,

since the survey asks for the percentage change in GDP between the previous and

current calender year, there is a seasonality in the forecast horizons. For example,

in the first quarter, it is a 4-quarter-ahead-forecast. In the second quarter, it is a

3-quarter-ahead-forecast. I eliminate this seasonality by applying the Tramo-Seats

filter.21

I characterize the relationship between real GDP and uncertainty with a gener-

alized impulse response analysis (Pesaran and Lambros 1998) from a bivariate VAR

with four lags. The generalized impulse response is appealing in this context because,

in contrast to a standard recursive VAR, the results are invariant to the ordering of

variables.22 Both variables are logged and HP-filtered with λ = 1600. I emphasize

that the purpose of this exercise is to look for a statistical relationship between output

and uncertainty. Hence, no causal inference is drawn from the impulse responses.

Figure 1.6 shows that, in the data, an increase in uncertainty is associated with

19The survey asks each forecaster to place probabilities in bins spanning a wide range of outcomes
for the percentage change in real GDP. To compute the individual standard deviations, I fit a normal
distribution to the individual probabilities. For more details, see D’Amico and Orphanides (2008).
I have also tried other methods and obtained similar results.

20Nevertheless I conducted the analysis using the whole sample period and found similar results.
21Since the survey response between the current and the following year is also available, it is

possible to construct uncertainty data with different forecast horizons. I have conducted the analysis
with different forecast horizons and found similar results.

22Nevertheless I also tried a recursive VAR and obtained similar results.
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a decline in output that reaches a trough after five quarters. On the other hand,

an increase in output is associated with a decline in uncertainty. Hence the VAR

responses indicate a clear negative relationship between output and uncertainty. The

figure also shows that running a VAR on the artificial data from the model generates

impulse responses that are quantitatively in line with the actual data.23 In the model,

the negative relationship between output and uncertainty is due to the endogenous

movement in uncertainty and its feedback to real economic activity. Note that the

model replicates well the gradual responses of the two variables. This is because

uncertainty is driven by investment, which exhibits hump-shaped dynamics, and

this uncertainty in turn induces gradual adjustments by households.

1.7 Conclusion

Much learning about macroeconomic conditions seems to occur through actually

undertaking economic activity. This paper formalized the idea in an equilibrium

business cycle framework and explored its quantitative implications. Recessions are

times of high uncertainty because agents invest less and hence learn less about the

state of the economy. The endogenous fluctuations in aggregate uncertainty interact

with rigidities and amplify business cycles.

Because the level of learning is tied to the level of investment, changes in un-

certainty are large and persistent. As a result, the uncertainty multiplier is sizable.

Under the benchmark calibration, it amplifies the standard deviation of output by

23In the model, I define uncertainty as the standard deviation of the density forecast (conditional
on the agents’ information sets) of the annual percentage change in output: Stdt+s|t(∆Yt+s). The
forecast horizon is chosen in a way consistent with the survey data.

32



33%. Other real variables, such as investment and hours, are also amplified by a sim-

ilar amount. Thus, the uncertainty multiplier could be a key force that transforms

relatively small shocks into larger business cycles.

My framework opens the door to a set of exciting questions. First, in this pa-

per changes in uncertainty propagate through households’ precautionary motive and

countercyclical markups. It would be useful to explore alternative channels through

which endogenous uncertainty amplifies business cycles. One such example would

be financial frictions. Second, we need to know how we should conduct monetary

policy under fluctuating uncertainty. Could we set policy in a way that reduces the

economy’s response to changes in uncertainty? Does it matter whether uncertainty

is exogenous or endogenous? I plan to address these issues in future research.
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1.8 Tables and Figures

Table 1.1: Parameters and targets

Description Value Comments/Targets

Technology and preference

β Discount factor 0.9948 Historical mean of interest rate
θp Goods demand elasticity 21 5% price markup (Altig et al. 2011)
θw Labor demand elasticity 21 5% wage markup (Altig et al. 2011)
α Capital share 0.3 Standard choice
δ Depreciation rate 0.02 8% annual depreciation
σ Risk aversion 2 Standard choice
η Inverse Frisch elasticity 2 Frisch elasticity = 0.5 (Chetty et al. 2011)
b Habit persistence 0.65 Christiano et al. (2005)
κ Investment adj. cost 0.3 Calibrated
ξp Calvo price 0.75 Duration of price 4 quarters
ξw Calvo wage 0.75 Duration of wage 4 quarters
Monetary policy

π SS inflation rate 1.0095 Historical mean of inflation rate
ρR Taylor rule smoothing 0.9 Standard choice
φπ Taylor rule inflation 2 Standard choice
φY Taylor rule output growth 0.1 Standard choice
Shock process

ρµ Investment level 0.9 Calibrated
ρg Investment growth 0.86 Calibrated
100σµ Investment level 0.43 Calibrated
100σg Investment growth 0.775 Calibrated
100σδ Depreciation 0.015 Calibrated
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Table 1.2: Identification of σδ from survey data moments

Corr(FE1Q
t , FE1Q

t−1) Mean(|FE1Q
t |)

Data 0.17 0.55
Model
100σδ = 0.002 0.36 0.37
100σδ = 0.005 0.31 0.40
100σδ = 0.010 0.24 0.51
100σδ = 0.015 0.19 0.63
100σδ = 0.025 0.16 0.81
100σδ = 0.050 0.12 1.15
100σδ = 0.075 0.10 1.37

Notes: The forecast errors are multiplied by 100 to express them in percentage terms. The data
statistics are calculated using the final data vintage. As a robustness check, I calculated the
statistics using alternative data vintages and found that they are similar. For example,
(Corr(FE1Q

t , FE1Q
t−1),Mean(|FE1Q

t |)) for the first, the third, and the fifth vintages are (0.23,
0.47), (0.18, 0.52), and (0.20, 0.54), respectively.

35



Table 1.3: Business cycle moments

Std. Corr(Yt, Xt) AR(1)
Data
Output 1.61 1.00 0.87
Investment 6.31 0.94 0.87
Consumption 0.93 0.84 0.87
Hours 1.99 0.88 0.92
Real wage 0.84 0.07 0.76
Inflation 0.29 0.18 0.48
Interest rate 0.41 0.34 0.75
Model
Output 1.60 1.00 0.88
Investment 6.22 0.92 0.90
Consumption 0.71 0.61 0.85
Hours 2.42 0.99 0.85
Real wage 0.82 -0.15 0.89
Inflation 0.51 0.37 0.68
Interest rate 0.30 0.00 0.93

Notes: Both data and model moments are in logs, HP-filtered (λ = 1600), and multiplied by 100
to express them in percentage terms.
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Table 1.4: The uncertainty multiplier is large

Amplification
σWith multiplier/σWithout multiplier

Output 1.33
Investment 1.30
Consumption 1.19
Hours 1.34
Real wage 1.14
Inflation 1.04
Interest rate 1.03

Notes: Both data and model moments are in logs and HP-filtered (λ = 1600).

Table 1.5: The uncertainty multiplier for different values of σδ

Output

Corr(FE1Q
t , FE1Q

t−1) Mean(|FE1Q
t |) amplification

Data 0.17 0.55
Model
100σδ = 0.002 0.36 0.37 1.03
100σδ = 0.005 0.31 0.40 1.14
100σδ = 0.010 0.24 0.51 1.23
100σδ = 0.015 0.19 0.63 1.33
100σδ = 0.025 0.16 0.81 1.38
100σδ = 0.050 0.12 1.15 1.20
100σδ = 0.075 0.10 1.37 1.16

Notes: Both data and model moments are in logs and HP-filtered (λ = 1600). The forecast errors
are multiplied by 100 to express them in percentage terms.
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Table 1.6: The uncertainty multiplier is increasing in the relative size of the growth
shock

Output

Corr(FE1Q
t , FE1Q

t−1) Mean(|FE1Q
t |) amplification

Data 0.17 0.55
Model
σµ/σg = 1.00 0.11 0.76 1.23
σµ/σg = 0.80 0.16 0.69 1.31
σµ/σg = 0.55 0.19 0.63 1.33
σµ/σg = 0.30 0.24 0.57 1.34
σµ/σg = 0.00 0.24 0.55 1.36

Notes: Both data and model moments are in logs and HP-filtered (λ = 1600).

Table 1.7: The uncertainty multiplier is increasing in the size of shocks

Output Output
standard dev. amplification

Data 1.61
Model
(σµ, σg, σδ)× 0.85 1.09 1.21
(σµ, σg, σδ)× 0.95 1.37 1.28
(σµ, σg, σδ)× 1.00 1.60 1.33
(σµ, σg, σδ)× 1.05 1.82 1.38
(σµ, σg, σδ)× 1.15 2.65 1.45

Notes: Both data and model moments are in logs and HP-filtered (λ = 1600).
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Table 1.8: The role of real and nominal rigidities

Consump. Investment Sticky Sticky Output
habit adj. cost price wage amplification
X X X X 1.33
X X X 1.06
X X X 1.01
X X 1.00

X X X 1.23
X X X 1.07

X X 1.04
1.00

Notes: Both data and model moments are in logs and HP-filtered (λ = 1600). For each

specification, I scale (σµ, σg, σδ) proportionally to generate the standard deviation of output as in

the benchmark specification (σY = 1.60).

Table 1.9: The uncertainty multiplier with and without the feedback effect

Amplification Amplification without feedback
σWith multiplier/σWithout multiplier σNo feedback/σWithout multiplier

Output 1.33 1.30
Investment 1.30 1.27
Consumption 1.19 1.17
Hours 1.34 1.30
Real wage 1.14 1.12
Inflation 1.04 1.03
Interest rate 1.03 1.03

Notes: Both data and model moments are in logs and HP-filtered (λ = 1600).
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Figure 1.1: Timing of events

Enter with estimates about

the unobservable state.

Choose investment.

Period t− 1 Period t
Unobservable

shocks

are realized.

Observe new capital level.

Update estimates.

40



Figure 1.2: The actual or perceived levels of unobservable shocks are identical be-
tween the two simulations
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Figure 1.3: The uncertainty multiplier amplifies output response
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42



Figure 1.4: Responses of other real variables are also amplified
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Figure 1.5: The uncertainty multiplier amplifies business cycles
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Figure 1.6: Impulse responses in a bivariate VAR
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1.9 Appendix

1.9.1 Data Source

The data set spans the period 1969Q1 to 2011Q4.24 Whenever the data set is pro-

vided in monthly frequencies, I simply take the average to transform it into quarterly

frequencies.

Data from the National Income and Product Accounts are downloaded from the

Bureau of Economic Analysis website. Nominal GDP, nominal consumption (defined

as the sum of personal consumption expenditures on nondurables and services), and

nominal investment (defined as the sum of gross private domestic investment and

personal consumption expenditures on durables) are divided by the civilian non-

institutional population,25 downloaded from the Bureau of Labor Statistics (BLS

hereafter) website, to convert the variables into per capita terms. I then divide them

by the GDP deflator to convert them into real terms.

Working hours are measured by nonfarm business hours (available on the BLS

website) divided by the population. Real wages are measured by hourly compensa-

tion in nonfarm business sectors (available on the BLS website) divided by the GDP

deflator. Inflation rates are measured by changes in the GDP deflator. I use the

effective federal funds rates (downloaded from the Federal Reserve Board website)

to measure the nominal interest rates.

To compute the forecast error statistics, I use the median forecast of nominal

24I pick this starting date because the Survey of Professional Forecasters began around that time.
25Since raw population data display occasional breaks due to changes in population controls, I

use an HP-filtered (λ = 1600) trend instead.

46



GDP growth rate, downloaded from the FRB Philadelphia website. The one-period-

ahead forecast error is defined as the one-period-ahead nominal GDP growth rate

forecast minus the realized nominal GDP growth rate.

1.9.2 Countercyclical Uncertainty: Full Derivation

I restate agents’ Kalman-filtering problem below:

µt

gt

 =

(1− ρµ)µ

0

+

ρµ 1

0 ρg


µt−1

gt−1

+

εµ,t
εg,t

 ,

Kt − (1− δ)Kt−1 = [It−1 0]

µt

gt

+Kt−1εδ,t.

At the end of period t− 1, agents forecast the values of {µt, gt}:

µ̃t|t−1 = (1− ρµ)µ+ ρµµ̃t−1 + g̃t−1,

g̃t|t−1 = ρggt−1.

The elements of the associated forecasting error covariance matrix, Σt|t−1, are

Σ11
t|t−1 = ρ2µΣ

11
t−1 + 2ρµΣ

12
t−1 + Σ22

t−1 + σ2
µ,

Σ12
t|t−1 = ρµρgΣ

12
t−1 + ρgΣ

22
t−1,

Σ21
t|t−1 = Σ12

t|t−1,

Σ22
t|t−1 = ρ2gΣ

22
t−1 + σ2

g .
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After observing period t realization of capital, Kt, agents update their belief accord-

ing to

µ̃t = µ̃t|t−1 +
It−1Σ

11
t|t−1

I2t−1Σ
11
t|t−1 +K2

t−1σ
2
δ

· {Kt − (1− δ)Kt−1 − It−1µ̃t−1},

g̃t = g̃t|t−1 +
It−1Σ

12
t|t−1

I2t−1Σ
11
t|t−1 +K2

t−1σ
2
δ

· {Kt − (1− δ)Kt−1 − It−1µ̃t−1}.

The elements of the forecasting error covariance matrix are given by

Σ11
t =

[
1−

I2t−1Σ
11
t|t−1

I2t−1Σ
11
t|t−1 +K2

t−1σ
2
δ

]
Σ11

t|t−1,

Σ12
t =

[
1−

I2t−1Σ
11
t|t−1

I2t−1Σ
11
t|t−1 +K2

t−1σ
2
δ

]
Σ12

t|t−1,

Σ21
t = Σ12

t ,

Σ22
t = Σ22

t|t−1 −
I2t−1(Σ

12
t|t−1)

2

I2t−1Σ
11
t|t−1 +K2

t−1σ
2
δ

.

Thus, the elements of Σt are decreasing in It−1

Kt−1
.
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Chapter 2

Estimating DSGE Models Using

Seasonally Adjusted and

Unadjusted Data

2.1 Introduction

Most aggregate time series display large seasonal fluctuations. As Barsky and Miron

(1989) show, seasonal fluctuations account for a substantial fraction of total varia-

tions in quantity variables, such as GDP, investment, and hours worked. Neverthe-

less, the common practice among economists when estimating dynamic stochastic

general equilibrium (DSGE) models is to simply ignore seasonality and use season-

ally adjusted data. The practice implicitly assumes that seasonal adjustments can

decompose data into seasonal and nonseasonal components, and values of interesting
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parameters can be recovered correctly. However, modern dynamic economic theory

dictates that seasonality interacts with other endogenous variables in a complex and

possibly nonlinear manner.1 Hence seasonal adjustments based on arbitrary identify-

ing restrictions would necessarily lead to distorted inference. An important question

for macroeconomists is whether those distortions are quantitatively relevant.

In this paper, I develop a general equilibrium business cycle model that can ac-

count for broad features of U.S. seasonal and nonseasonal fluctuations. Building on

recent contributions (e.g., Christiano et al., 2005; Smets and Wouters, 2007; Justini-

ano et al., 2010), the model incorporates a host of real and nominal frictions and

various types of shocks. The model is also subject to seasonal variations in tech-

nology and preference. Endogenous responses by agents to those seasonal variations

allow the model to reproduce the seasonality observed in the U.S. aggregate data. I

then simulate artificial data from the parameterized model in order to analyze the

effects of estimating DSGE models using seasonally adjusted data.

A hypothetical econometrician uses the seasonally adjusted data to estimate an

aseasonal counterpart of the baseline model using Bayesian methods. I find that

the estimated parameters differ substantially from their true values. In contrast,

when estimated with seasonally unadjusted data, most parameters are very precisely

estimated. The result is crucial, because it suggests that the conventional practice

of estimating DSGE models may lead to severely biased inference and that policy

experiments based on the estimated parameters could be misleading.

Given the significance of the finding, I devote considerable effort to studying the

1For an ellegant exposition of this issue, see Ghysels (1988).
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reasons for this distortion. Importantly, the distortions cannot be mitigated by con-

structing alternative seasonal adjustment filters, as they still arise in large sample

environments with “ideal” filters. Using frequency domain tools, I show that the ef-

fects of seasonality are not confined to the so-called seasonal frequencies but instead

are propagated across other nonseasonal frequencies. In particular, the effects are

noticeable at higher frequencies and act in ways that raise spectral power in those

regions. The intuition is relatively straightforward: Since seasonality induces agents

to reallocate their resources across seasons within a year, the effects of seasonality

are noticeable at higher frequencies. Moreover, because of seasonality, agents have

different responses across seasons to the same shocks, and this additional source of

volatility raises spectral power. I show that two key frictions in the model—the

investment adjustment cost and the nominal wage rigidity—magnify the nonlinear

interactions of seasonality and endogenous variables and make the propagation of the

seasonal components quantitatively relevant. As a result, standard seasonal adjust-

ment procedures that try to dampen spectral power only near seasonal frequencies

are not effective, and the estimated parameters have to adjust in order to compensate

for the discrepancy of spectra between seasonal and aseasonal versions of the model.

I also provide some evidence suggesting that frictions that generate large distortions

are not limited to those I assumed in the baseline model but include other general

classes of capital accumulation and labor market frictions as well.

The present paper builds on several important contributions from the previous lit-

erature. Sims (1993) and Hansen and Sargent (1993) forcefully defend the common

practice of estimating DSGE models using seasonally adjusted data. Their argu-
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ment is based on two observations. First, directly modelling seasonality may lead

to large distortions if the mechanism generating seasonality is misspecified. Second,

in most examples they consider, using seasonally adjusted data leads to fairly ac-

curate estimates. My contribution with respect to their papers is to show that, in

a state-of-the-art DSGE model that is parameterized to match certain features of

U.S. business cycle fluctuations, the second observation does not hold. I also deal

with concerns about model misspecifications in more detail later in the paper. This

paper is also related to Christiano and Todd (2002). There are two main departures

from their study. First, they focus on the effects of seasonal adjustment on busi-

ness cycle statistics. I consider the effects on a likelihood-based inference. Since a

likelihood function contains all information from cross-equation restrictions imposed

by dynamic economic theory, implications of seasonality may be quite different from

those based on arbitrary sets of moments. Moreover, since it has now become a

widely accepted approach to estimate DSGE model parameters using formal econo-

metric methods, I believe this is a relevant application for many researchers. Second,

they use a standard real business cycle model to answer their question at hand. My

model introduces additional frictions and propagation structures (e.g., habit persis-

tence, capital utilization, nominal rigidities, etc.) into their model. As I will show,

some of the new added features in my model are the key driving force of my results.

The rest of the paper is organized as follows. The next section constructs a

DSGE model with seasonality. Section 3 sets up the main experiment. Section 4

reports the results and shows that seasonal adjustments lead to sizeable distortions

in parameter estimates. Section 5 identifies reasons for the distortions. Section 6
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proposes a practical procedure that helps researchers decide whether or not to include

seasonality in their models when potential model misspecifications are of concern.

Finally, Section 7 concludes.

2.2 The Seasonal DSGE Model

The baseline seasonal model builds on a medium-scale DSGE model with a number

of real and nominal frictions, along the lines of Christiano et al. (2005), Smets and

Wouters (2007), and Justiniano et al. (2010). Following the previous literature on the

subject (e.g., Chatterjee and Ravikumar, 1992; Braun and Evans, 1995; Liu, 2000),

seasonality originates from deterministic shifts in technology and preference. Vari-

ations in technology could represent, for example, seasonal fluctuations in weather.

Variations in preferences could represent expenditures due to several kinds of social

events, such as Christmas. Presumably modelling seasonality in such a way that it

originates from deeper structures of the economy would strenghten the case for using

seasonally unadjusted data. However, the question I would like to ask in this paper is

whether even a seemingly innocuous, simple mechanism for seasonality would gener-

ate large distortions through the endogenous responses to seasonality by optimizing

agents.

The economy is composed of the final-goods sector, intermediate-goods sector,

household sector, employment sector, and a government. I will begin by describing

the production side of the economy.
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2.2.1 The Final-Goods Sector

In each period t, the final goods, Yt, are produced by a perfectly competitive represen-

tative firm that combines a continuum of intermediate goods, indexed by j ∈ [0, 1],

with technology

Yt =

[∫ 1

0

Y
θp−1

θp

j,t dj

] θp
θp−1

.

Here, Yj,t denotes the time t input of intermediate good j and θp controls the price

elasticity of demand for each intermediate good. The demand function for good j is

Yj,t =

(
Pj,t

Pt

)−θp

Yt,

where Pt and Pj,t denote the price of the final good and intermediate good j, respec-

tively. Finally, Pt is related to Pj,t via the relationship

Pt =

[∫ 1

0

P
1−θp
j,t dj

] 1
1−θp

.

2.2.2 The Intermediate-Goods Sector

The intermediate-goods sector is monopolistically competitive. In period t, each

firm j buys Kj,t units of capital service from the household sector and Hj,t units of

aggregate labor input from the employment sector to produce intermediate good j

using technology

Yj,t = ztK
α
j,t(XtHj,t)

1−α,

54



where zt is the neutral technology shock at time t. zt follows the law of motion

ln

(
zt
zq

)
= ρz ln

(
zt−1

zq−1

)
+ εz,t, εz,t ∼ N(0, σ2

z),

where zq is the steady-state level of zt in season q. α is the capital share in the

production function and Xt is a deterministic technological process that grows at

rate γ.

In period t, the firm can reoptimize its intermediate-goods price with probability

(1− ξp). Firms that cannot reoptimize index their price according to the following:

Pj,t = π
χp

t−1π
1−χpPj,t−1, where πt−1 is the inflation rate in period t−1, π is the steady-

state inflation rate (which is different from the steady-state level of the inflation rate

in season q, πq), and χp ∈ [0, 1] is a parameter that controls the degree of indexation

to past inflation.

2.2.3 The Household Sector

There is a continuum of households, indexed by i ∈ [0, 1]. In each period, household

i chooses consumption Ct, investment It, bond purchases Bt, and nominal wage Wi,t

to maximize utility given by the following:

Et

∞∑
s=0

βs

[
τt+s ln(Ct+s − bCt+s−1)− ϕ

H1+η
i,t+s

1 + η

]
,

where β is a discount factor, b represents consumption habit, η controls (the inverse

of) the Frisch labor supply elasticity, and Hi,t is the number of hours worked by i.

ϕ is a scale factor that determines hours worked in the steady state. I normalize
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ϕ = 1. τt is the preference shock that follows the process:

ln

(
τt
τq

)
= ρτ ln

(
τt−1

τq−1

)
+ ετ,t, ετ,t ∼ N(0, σ2

τ ),

where τq is the steady-state level of τt in season q.

The household’s budget constraint is

PtCt + PtIt +Bt ≤ Wi,tHi,t +Rk
t utK

p
t−1 +Rt−1Bt−1 +Dt + Ai,t + Tt.

where Rk
t is the rental rate of capital, ut is the utilization rate of capital, Kp

t−1 is the

stock of physical capital, Rt−1 is the gross nominal interest rate from period t− 1 to

t, Dt is the combined profit of all the intermediate-goods firms distributed equally to

each household, and Tt are lump-sum transfers from the government. I assume that

households buy securities, whose payoffs are contingent on whether it can reoptimize

its wage.2 Ai,t denotes the net cash inflow from participating in state-contingent

security markets at time t.

Capital utilization transforms physical capital into capital services according to

Kt = utK
p
t−1.

2The existence of state-contingent securities ensures that households are homogeneous with
respect to consumption and asset holdings, even though they are heterogeneous with respect to the
wage rate and hours because of the idiosyncratic nature of the timing of wage reoptimization. See
Christiano et al. (2005).
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The physical capital stock evolves according to the following law of motion:

Kp
t = (1− δ(ut))K

p
t−1 + µt

(
1− S

(
It
It−1

))
It.

Following Greenwood et al. (1988), I assume that increasing the intensity of capital

utilization speeds up the rate of depreciation δ(ut). As in Schmitt-Grohe and Uribe

(2012), I adopt a quadratic formulation for the function δ:

δ(ut) = δ0 + δ1(ut − 1) +
δ2
2
(ut − 1)2,

with δ0, δ1, δ2 > 0. The function S captures the notion of adjustment costs in invest-

ment, as proposed in Christiano et al. (2005). I adopt the following specification for

S:

S

(
It
It−1

)
=
κ

2

(
It
It−1

− γ

)2

,

with κ > 0. Finally, µt is the investment technology shock that follows the process:

ln

(
µt

µq

)
= ρµ ln

(
µt−1

µq−1

)
+ εµ,t, εµ,t ∼ N(0, σ2

µ),

where µq is the steady-state level of µt in season q.

2.2.4 The Employment Sector and Wage Setting

In each period t, a perfectly competitive representative employment agency hires

labor from a continuum of households, indexed by i ∈ [0, 1], to produce an aggregate
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labor service, Ht, using technology

Ht =

[∫ 1

0

H
θw−1
θw

i,t di

] θw
θw−1

,

where Hi,t denotes the time t input of labor service from household i and θw controls

the price elasticity of demand for each household’s labor service. The agency sells

the aggregated labor input to the intermediate firms for a nominal price of Wt per

unit. The demand function for the labor service of household i is

Hi,t =

(
Wi,t

Wt

)−θw

Ht,

where Wi,t denotes the nominal wage rate of the labor service of household i. Wt is

related to Wi,t via the relationship

Wt =

[∫ 1

0

W 1−θw
i,t di

] 1
1−θw

.

In each period t, a household faces a probability (1−ξw) of being able to reoptimize

its nominal wage. Households that cannot reoptimize index their wage according to

the following: Wi,t = γπχw

t−1π
1−χwWi,t−1, where χw ∈ [0, 1] is a parameter that controls

the degree of indexation to past inflation.
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2.2.5 The Government and Resource Constraint

The central bank follows a Taylor-type reaction function:

Rt

R
=

(
Rt−1

R

)ρR
{(

πt
π?
t

)φπ
(
Yt/Yt−1

Yq/Yq−1

)φY
}1−ρR

eεR,t , εR,t ∼ N(0, σ2
R).

where R is the steady-state level of the nominal interest rate, ρR is the persistence

of the rule, and φπ and φY are the size of the policy response to the deviation of

inflation and output growth from their targets, respectively. Yt/Yt−1 is the growth

rate of output in period t and Yq/Yq−1 is the steady-state growth rate of output in

season q. εR,t is an exogenous shock to the interest rate rule. π?
t is the central bank’s

inflation target, which evolves according to

ln

(
π?
t

πq

)
= ρπ ln

(
π?
t−1

πq−1

)
+ επ,t, επ,t ∼ N(0, σ2

π),

where πq is the steady-state inflation rate in season q.

The aggregate resource constraint is Ct + It + Gt = Yt. Gt is the amount of

government spending, which is determined as a time-varying fraction of output

Gt = gtYt,

and gt follows the process

ln

(
gt
g

)
= ρg ln

(
gt−1

g

)
+ εg,t, εg,t ∼ N(0, σ2

g),
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where g is the steady-state ratio of government spending to output. Finally, the

government balances the budget constraint every period given by

Gt = −Tt.

2.2.6 Solution Method

The choice of the solution method is very important. There are currently two major

methods for solving DSGE models with seasonality. The first method is the one

used in Chatterjee and Ravikumar (1992). We log-linearize the seasonal steady state

around the balanced growth path and log-linearize the equilibrium conditions around

the log-linearized seasonal steady state (CR method). The seasonal steady state is

a periodic perfect foresight path that satisfies equilibrium conditions without uncer-

tainty for each quarter. A more accurate alternative is the one used in Braun and

Evans (1995). We directly solve for the seasonal steady state using a nonlinear so-

lution method and log-linearize the equilbrium conditions around the exact seasonal

steady state (BE method).

As is well known, a solution to a linear rational expectations system can be cast

in a state-space representation. The state-space representation could form a basis

of the Kalman filtering algorithm in building a likelihood for the estimation. The
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transition equation that characterizes the evolution of endogenous variables3 is

ŝt,q = Xq(θ)ŝt−1,q−1 + Yq(θ)εt,

where ŝt,q is a vector that collects ŝt,q = ln(st,q/sq), which is the log-deviation of a

variable st,q in time t at quarter q from its seasonal steady state sq. Xq(θ) and Yq(θ)

are the coefficient matrices that depend on a vector of the structural parameters θ,

and εt is a vector of exogenous shocks. The CR method delivers a solution that

restricts Xq(θ) = X(θ) and Yq(θ) = Y (θ) for all quarters q = 1, . . . , 4. The BE

method delivers a solution that allows Xq(θ) and Yq(θ) to take different values across

different quarters.

Now consider a seasonal adjustment procedure that substracts the seasonal steady

states from the data.4 In this case we have ŝSAt = ŝt,q, where ŝ
SA
t is a vector that col-

lects the log-deviations of the seasonally adjusted variables from their steady states.

Suppose that an econometrician fits an aseasonal DSGE model to the seasonally ad-

justed data ŝSAt . Observe that the CR method delivers consistent estimates. The BE

method, on the other hand, may deliver important distortions, since the econome-

trician is fitting a model with constant X(θ) and Y (θ) to a data generating process

where Xq(θ) and Yq(θ) are periodically varying. Since my purpose is to quantify

those distortions, I choose to work with the BE method.

3For simplicity, I assume that all endogenous variables are observable to an econometrician (i.e.,
the coefficient matrix of the observation equation is an identity matrix with no measurement error).
All of the discussion below extends to the more general case where some variables are latent.

4Note that any reasonable seasonal adjustment filter can accomplish this task.
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2.3 The Experiment

I ask whether using seasonally adjusted data leads to large distortions by estimating

model parameters with simulated data from the seasonal DSGE model. First, I need

to assign some values to the structural parameters and establish that the model is

able to match certain features of U.S. seasonal and nonseasonal fluctuations.

2.3.1 Parameterization

There are three sets of parameters. The first set of parameters are those that char-

acterize technology, preferences, and the central bank policy in the model and do

not vary over quarters. The second set of parameters are those that vary across

quarters. The first and the second sets of parameters jointly determine the seasonal

steady state. The third set of parameters are those that characterize the stochastic

shock processes.

The first set of parameters are reported in Panel A in Table 2.1. The parame-

ters are picked around the values typically calibrated or estimated in the literature.

The only parameter that deserves further attention is the parameter that controls κ

(investment adjustment cost). The value (κ = 1) is slightly smaller than the values

usually found in the literature. I assign this value because for larger adjustment

costs, I had to assume implausibly large seasonal shifts in µ (investment technology)

to match the seasonal pattern of investment observed in the U.S. data.

The second set of parameters are reported in Table 2.2. I allow the steady-state

values of z (neutral technology), τ (preference), and µ (investment technology) to
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vary across quarters. Using a numerical minimization routine and a nonlinear equa-

tion solver, I calibrate the values so that the seasonal patterns of output, investment,

and hours worked in the model match those in the data. Note that the average value

of each parameter over quarters is ensured to be unity. Table 2.3 compares seasonal

patterns in the data and in the model, given the assigned values of the first and sec-

ond set of parameters. The model fit is very good. In particular, the model correctly

predicts that seasonality is small in nominal variables such as the growth rate of real

wages and the inflation rate.5 There are two reasons for this success. First, prices

and wages are assumed to be sufficiently sticky. This makes prices and wages less re-

sponsive to seasonal shifts in z, τ , and µ. In fact, if I lower the Calvo price and wage

parameters (which implies less price and wage stickiness), I find that the seasonal

steady states of the growth rate of wages and inflation become considerably more

volatile over seasons. Second, seasonal shifts in τ (preference) effectively dampen

the seasonal fluctuations in the real interest rate. To understand this, consider the

intertemporal Euler equation as in Liu (2000):

1 = βEt

[
λt+1

λt

(
Rt

πt+1

)]
,

where λt denotes the marginal utility of consumption in period t. Suppose for a

moment b = 0 and τt = 1 for all quarters. Then λt+1/λt = Ct/Ct+1. Given the

strong seasonality in consumption observed in the U.S. data, the real interest rate

also has to exhibit strong seasonality in order to cancel out shifts in λt+1/λt. Seasonal

fluctuations in τ perform a role of seasonal adjustment in λt+1/λt so that the interest

5I fix the steady state of the nominal interest rate to be constant across quarters.
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rate becomes relatively stable across seasons.6

Finally, the third set of parameters are reported in Panel B of Table 2.1. The

parameters are chosen so that second moments of the model resemble those of the

data. In the Appendix, by comparing moments I show that overall the model is suc-

cessful in replicating business cycle features of U.S. aggregate data. I conclude that

the model serves as an empirically credible data generating mechanism for exploring

the effects of estimating DSGE models using seasonally adjusted data.

2.3.2 Estimation Using Simulated Data

Given the parameterization described above, I simulate 200 observations of artifi-

cial data sets (after throwing away the initial 100 periods). I employ a Bayesian

procedure. The likelihood is calculated based on the following vector of observables:

[∆ lnYt,∆ lnCt,∆ lnHt,∆ ln(Wt/Pt), lnπt, lnRt],

where ∆ is the first-difference operator. I conduct two different estimation experi-

ments. In the first experiment, I estimate the baseline seasonal DSGE model using

seasonally unadjusted data. In the second experiment, I estimate the aseasonal ver-

6The first-order condition for each household’s labor supply indicates that the marginal utility of
consumption is also connected to movements in real wages and hours. While strong seasonality in
hours observed in the data may suggest that wages also have to display strong seasonality in order
to compensate for the weak seasonality in the marginal utility, this is not necessarily the case in our
environment. In fact, the optimal wage for households adjusting their individual wages is relatively
constant across seasons, since wages are sticky and hence households care about the influence of
their current wage choice on their labor supply not only in the current quarter but also in future
quarters. In other words, wage-setting policies that respond to seasonal movements of hours only
in the current quarter are sub-optimal.
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sion of the baseline DSGE model using seasonally adjusted data. Specifically, during

estimation I impose zq = 1, τq = 1, and µq = 1 for all quarters q = 1, . . . , 4. All data

except for interest rates are seasonally adjusted using the X-12-Arima filter.7

During estimation, I fix g, δ0, and δ2 to the true value, since they are difficult

to identify. I also fix γ, π, and β, since most information for those parameters is

contained in the levels of data and should not be affected much by the seasonal

adjustment. Finally, I fix the steady-state price and wage markup, since I ran into

some numerical difficulties when exploring the posterior distributions.8 I assume flat

priors for all the parameters, subject to some loose boundary constraints. As pointed

out in, e.g., Fernández-Villaverde and Rubio-Ramı́rez (2008), with flat priors the

posterior is proportional to the likelihood function. Thus the mode of the posterior

can be interpreted as the parameter estimates of a maximum likelihood exercise.

2.4 Results

The estimates of the posterior distributions based on 200,000 draws from a random-

walk Metropolis-Hastings algorithm are presented in Table 2.4. There are three

things to observe. First, using seasonally unadjusted data delivers estimates that

are quite close to the true values. This is not surprising, as I am estimating a cor-

rectly specified model using unfiltered data. Second, using X-12-Arima-filtered data

7X-12-Arima is a software package developed by the U.S. Census Bureau and is the official
seasonal adjustment procedure of the U.S. government. The seasonal adjustment is conducted
using software called “Demetra,” which is provided by Eurostat.

8More specifically, the problem arises when I estimate the model using seasonally adjusted data.
I also re-estimated the model by fixing the price and wage markup at several other values and found
that the qualitative features of the results are unaffected.
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delivers distorted estimates compared to using unadjusted data. The distortions are

pronounced in some of the key structural parameters, such as α (capital share), η (in-

verse of the Frisch labor supply elasticity), κ (investment adjustment cost), ξw (Calvo

wage parameter), and φπ (Taylor rule coefficient on inflation). Third, the standard

deviations of posterior distributions are smaller when seasonally unadjusted data are

used. As discussed in Barsky and Miron (1989), seasonal fluctuations provide addi-

tional identifying restrictions that are not present in nonseasonal fluctuations, and

hence I am able to obtain sharper estimates.

In Figure 2.1, I report the log-likelihood profiles for a selected set of parameters

given seasonally unadjusted data (solid lines) and X-12-Arima-filtered data (dashed

lines).9 I move each structural parameter around its calibrated value in each panel

while fixing other parameters at their calibrated values. To facilitate comparison,

I show the true value for each parameter in a vertical line. Information drawn

from Figure 2.1 is similar to that drawn from Table 2.4. The seasonally unadjusted

likelihood peaks around the true parameter values, while the seasonally adjusted

likelihood delivers considerable biases for many structural parameters. Directions of

the biases are similar to those reported in Table 2.4.

Some readers may think that my results are sensitive to the way I seasonally

adjust the simulated data. To ensure the robustness of the results against different

choices of seasonal adjustment filters, I seasonally adjust the data using two alter-

native methods. First, I seasonally adjust using the Tramo-Seats filter.10 Second,

9The log-likelihood profiles for other parameters are given in the Appendix.
10Tramo-Seats is a time series analysis package constructed from signal extraction principles

and used extensively at the European Central Bank and Eurostat. The Bank of Spain’s website
(http://www.bde.es/servicio/software/econome.htm) provides a detailed explanation of the
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I seasonally adjust by directly using the DSGE model.11 To understand the second

procedure, recall that the law of motion for endogenous variables is given by

ŝt,q = Xq(θ)ŝt−1,q−1 + Yq(θ)εt,

where ŝt,q is a vector that collects ŝt,q = ln(st,q/sq). This can be rewritten as

st,q = sq exp(ŝt,q). To seasonally adjust st,q, replace a seasonal steady state from the

seasonal model, sq, with a steady state from the aseasonal model, s: st,q = s exp(ŝt,q).

Thus, the procedure can be thought of as regressing the data on seasonal dummies,

but in a way consistent with the DSGE model. I simply call this the “DSGE-based”

seasonal adjustment. As I show in the Appendix, for both methods, the posterior

estimates are very similar compared to when X-12-Arima-filtered data are used.

I argue that these distortions in parameter estimates are important for economic

inference because they (1) alter the transmission mechanism of shocks, (2) affect the

business cycle statistics generated by the model, and (3) bias the results of policy

analysis.

To illustrate the first point, I compare the impulse responses based on seasonally

adjusted and unadjusted estimates. Comparing impulse responses is tricky here,

since when seasonality is present the transmission of shocks differs considerably when

the quarter in which the shock hits are different. Thus I consider the following

comparison.

1. From the seasonal DSGE model, I draw parameters from the posterior distri-

procedure.
11I thank the Associate Editor for the suggestion.
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bution of seasonally unadjusted estimates and compute impulse responses. To

compute impulse responses, I first compute four versions of impulse responses,

each differing with respect to the quarter in which the shock hits. I then take

the average of the four responses. The resulting response could be thought

of as a “seasonally adjusted” impulse response (i.e., impulse response without

conditioning on a season) of the seasonal model.

2. From the aseasonal DSGE model, I draw parameters from the posterior distri-

bution of X-12-Arima-filtered estimates and compute impulse responses.

I note that the “seasonally adjusted” responses generated from the seasonal model

are almost identical to the responses generated from the aseasonal model when the

same parameter values are used. Comparing the two versions of impulse responses,

I can ask whether the impulse responses using the seasonally adjusted estimates

can successfully predict the average response across quarters. I plot mean posterior

impulse responses and their 90% point-wise intervals of a neutral technology shock

and a monetary policy shock in Figures 2.2 and 2.3, respectively. Observe that the

true responses generated from the seasonal DSGE model are very close to the mean

responses of the seasonally unadjusted estimates. The responses are qualitatively

similar between the seasonally adjusted and unadjusted estimates. For example, an

exogenous improvement in technology robustly delivers hump-shaped increases in

output and investment, persistent increases in consumption and real wages, and im-

mediate declines in hours worked and inflation. An exogenous decrease in the interest

rate leads to moderate but persistent increases in output, consumption, investment,

hours, and inflation. Note, however, that there are also some important quantitative
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differences. For example, the seasonally adjusted estimates considerably understate

output, consumption, and investment responses to an improvement in technology.

Interestingly, the responses of hours worked are precisely matched. They also under-

state output, consumption, and investment responses to an expansionary monetary

policy shock, but again the responses to hours worked are precisely matched. On the

other hand, inflation responses to a monetary policy shock are overstated.

To substantiate the second point, I compare the second moments generated from

two sources. To generate a first set of moments, I simulate data from the seasonal

model with parameters fixed at the posterior means of seasonally unadjusted esti-

mates and then seasonally adjust the data using the X-12-Arima filter. To generate

a second set of moments, I simulate data from the aseasonal model with parameters

fixed at the means of the X-12-Arima-filtered estimates. In Table 2.5, I compare those

two sets of moments, together with the moments generated from the seasonal model

under the true parameters.12 Columns under the label “Percent standard deviation”

in Table 2.5 show that the seasonally adjusted estimates considerably understate the

standard deviation of output growth and overstate the standard deviation of hours

growth, both by about 0.10. Moreover, they predict only about half the volatility of

investment growth. Columns under the label “Corr. with output growth” in Table

2.5 show that correlations with output growth are in general understated. For ex-

ample, using seasonally adjusted estimates, consumption growth correlation is less

than half of what is predicted using the true parameters or seasonally unadjusted

estimates. In evaluating those differences in moments, it is important to note that

12Fernández-Villaverde and Rubio-Ramı́rez (2005) document that moments generated from linear
and nonlinear likelihood estimates are considerably different.
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when the second set of moments are generated from the aseasonal model using sea-

sonally unadjusted estimates (instead of seasonally adjusted estimates), the two sets

of moments are almost identical and close to the true moments.

Finally I show that bias in point estimates translates into bias in policy anal-

ysis. I consider the following counterfactual policy experiment.13 I compute the

percent standard deviations of output growth and inflation when I increase the in-

flation response coefficient in the Taylor rule from the benchmark value (φπ = 1.7),

both for the seasonal model using seasonally adjusted estimates and the aseasonal

model using X-12-Arima-filtered estimates. Again, simulated data from the seasonal

model are adjusted using the X-12-Arima filter. The results are shown in Table 2.6.

The seasonally unadjusted estimates correctly predict the size of changes in output

growth and inflation volatilities in response to the increase in φπ. The seasonally ad-

justed estimates correctly predict the changes in inflation volatility. However, they

understate the magnitude of the increase in output growth volatility. While both

true parameters and seasonally unadjusted estimates predict that the standard de-

viation of output growth increases by about 30% compared to the benchmark case

when φπ = 10, the seasonally adjusted estimates predict that it increases by only

about 10%.

The results presented so far are important for applied macroeconomics research.

They suggest that the conventional practice of estimating DSGE models using sea-

sonally adjusted data may lead to biased inference, and hence policy experiments

13For other work on policy experiments in misspecified DSGE models, see Chang et al. (2011)
and Cogley and Yagihashi (2010).
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based on the estimated parameters could be misleading.14

2.5 Inspecting the Sources of Distortions

Why does estimating the DSGE model using seasonally adjusted data create sizeable

distortions, as reported in the previous section? In the first subsection, I show that

the main reason for the distortions is that the effects of seasonality are not restricted

to the seasonal frequencies, but instead are propagated across the entire frequency

domain. In the second subsection, I argue that the capital accumulation and labor

market frictions in the model amplify nonlinear interactions between seasonality and

endogenous variables and make the distortions quantitatively relevant.

2.5.1 Evidence From the Frequency Domain

Before turning to a detailed investigation, first it would be useful to take a look

at what the standard seasonal adjustment methods do to the data. In Figure 2.4,

I plot the sample periodogram of the simulated data (seasonally unadjusted, X-

12-Arima-filtered, Tramo-Seats-filtered, and DSGE-based-filtered data) used in the

previous section.15 First, the spectra of seasonally unadjusted data have spikes at

seasonal frequencies (ω = π and, in particular, π
2
). Second, the seasonal adjustment

14I also conducted experiments replacing ∆ ln It with ∆ lnCt as observables. In this case, using
seasonally adjusted data still leads to substantially distorted estimates. However, using seasonally
unadjusted data, the parameters controlling the government shock process (ρg and 100σg) are
imprecisely estimated due to a weak identification problem. For this reason, I focus on results that
use ∆ lnCt as observables for the rest of the paper.

15The periodogram is smoothed by taking the equally weighted average of periodograms on 7
frequencies at and in the neighborhood of each frequency ωj = 2πj/T, j = 0, 1, . . . , T − 1.
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procedures eliminate those seasonal spikes but leave the spectral densities at other

frequencies unaffected. These observations suggest that the distortions found in the

previous section are due to the fact that the seasonal adjustment procedures fail

to completely eliminate the effects of seasonality because seasonality also influences

the spectral densities at other nonseasonal frequencies as well. For the rest of this

section, I will formalize this argument by using a set of tools developed by previous

authors.

In Figure 2.5, for the seasonal and aseasonal DSGE models, I plot the log spec-

trum of the variables used in the estimation.16 For both models the parameters

are fixed at the values (reported in Tables 2.1 and 2.2) used to generate data for

the experiment in the previous sections. The log spectrum of the seasonal model

is shown in thick solid lines, and the log spectrum of the aseasonal model is shown

in thick dashed lines. Observe that for output growth and hours growth, there are

considerable discrepancies between the spectra of the seasonal and aseasonal model

at the entire frequency domain. In particular, the discrepancies are noticeable at

high frequencies (frequencies above ω = π
2
). In those regions, the seasonal model has

more spectral power. On the other hand, for nominal variables such as wage growth,

inflation rates, and interest rates, the discrepancies are small and confined to the

seasonal freqencies (ω = π
2
, π).17

The intuition behind these discrepancies is relatively straightforward. Since sea-

sonality induces agents to reallocate their resources across seasons within a year, the

16As in Hansen and Sargent (1993), I use the formula of Tiao and Grupe (1980) to compute the
spectral densities of the seasonal model. The formula provides an expression for the mean-adjusted
periodic process, without conditioning on a season of the year.

17The coherence shows a similar pattern of discrepancies. I omit the figures to conserve space.
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discrepancies of spectra are noticeable at higher frequencies. Moreover, because of

seasonality, agents have different responses across seasons to the same shocks, and

this additional source of volatility raises the spectral power of the seasonal model.

Sims (1993) and Hansen and Sargent (1993) recommend using seasonally adjusted

data in estimating rational expectations models. Their recommendation is based on

two arguments. First, directly modelling seasonality may lead to large distortions,

if the mechanism generating seasonality is misspecified. Second, since the effects of

seasonality are likely to be confined to seasonal frequencies, dampening those sea-

sonal frequencies by seasonally adjusting the data and trying to fit aseasonal models

to the nonseasonal frequencies leads to fairly accurate estimates. In my model, the

second argument does not hold. The effects of seasonality propagate across the entire

frequency domain, and hence trying to fit the nonseasonal frequencies using the asea-

sonal version of the model leads to substantial distortions in parameter estimates.18

I consider the implications of the discrepancies of spectral densities by using a

frequency domain approximation for the probability limits of misspecified maximum

likelihood estimators developed by Hansen and Sargent (1993). The frequency do-

main approximation is useful for two reasons. First, it allows me to isolate the

effects of discrepancies of spectral densities from other factors that potentially bias

estimates (e.g., seasonal adjustment filters or weak identification due to small sam-

ples). Second, it allows me to take a closer look at which particular frequencies are

responsible for the bias.

18Ghysels (1988) presents a simple production market model demonstrating this phenomenon.
Also see Cogley (2001), Canova (2009), and Canova and Ferrroni (2011) for a related point con-
cerning the interactions of trend and cyclical components in DSGE models.
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Hansen and Sargent (1993) show that the maximum likelihood estimator of a

parameter vector θ converges almost surely to the minimizer of the following formula:

A(θ) = A1(θ) + A2(θ) + A3(θ), (2.1)

where

A1(θ) =
1

2π

∫ π

−π

ln detG(ω; θ)dω,

A2(θ) =
1

2π

∫ π

−π

trace[G(ω; θ)−1F (ω)]dω,

A3(θ) = [µ− µ(θ)]′G(0; θ)−1[µ− µ(θ)].

µ is the population mean of a stationary process and F (ω) is the spectral density

function at frequency ω. µ(θ) and G(ω; θ) are the model-based mean and spectral

density function. A1(θ) captures the variance of the model-based one-step forecast

errors. A2(θ) and A3(θ) measure the distance between data and model-based spectral

densities and means, respectively. In implementing expression (2.1), it is useful to

approximate the integrals in A1(θ) and A2(θ) by Riemann sums:

Â1(θ) =
1

T

T−1∑
j=0

ln detG(ωj; θ),

Â2(θ) =
1

T

T−1∑
j=0

trace[G(ωj; θ)
−1F (ωj)],

where ωj = 2πj/T, j = 0, 1, . . . , T − 1.

The column labeled “Baseline” in Table 2.7 reports the probability limits of
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maximum likelihood estimates when seasonally adjusted data are used. To compute

the probability limits, I apply the Riemann sum approximation of formula (2.1), with

T = 200 and G(ω; θ) generated from the aseasonal DSGE model and F (ω) generated

from the seasonal DSGE model. Zero weight is assigned to frequencies at and near

the seasonal frequencies19 and deterministic seasonal means are removed by dropping

A3(θ) from formula (2.1). This allows me to mimic an “ideal” seasonal adjustment

procedure in the frequency domain.

The biases in parameter estimates are similar to those reported in Table 2.4,

although their magnitudes are slightly smaller. In Figure 2.5, the spectral density of

the asymptotic maximum likelihood estimates is plotted in solid lines. In order to

achieve better fit in output and hours growth, the likelihood estimator tries to shift

spectral power from low to high frequencies by distorting the parameter estimates.20

Another useful measure to examine is a version of the likelihood-ratio statistic

developed in Christiano and Vigfusson (2003):

λ = 2[A(θtrue)− A(θ∗)],

where θtrue is a vector of parameters fixed at their true values and θ∗ is a vector

of parameters fixed at their estimated values (in this case asymptotic maximum

19I impose zero weight to the 9 frequencies at and in the neighborhood of ω = π/2, and also
ω = π and the 4 next lower frequencies. The results are robust to the choice of the number of
frequencies assigned zero weight.

20As pointed out in Cogley (2001), it is difficult to develop intuition of a direction of the bias in
a particular parameter when all parameters are allowed to adjust simultaneously. This is because
sometimes the partial effects of parameter adjustments interact in ways that counteract one another.
For example, while the upward bias in α (capital share) and the downward bias in η (inverse of
the Frisch labor supply elasticity) act in ways that raise the spectral power of output and hours
growth, the upward bias in κ (investment adjustment cost) dampens it.
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likelihood estimates). Define

λ(ω) = ln detG(ω; θtrue)− ln detG(ω; θ∗) + trace[(G(ω; θtrue)
−1 −G(ω; θ∗)−1)F (ω)],

so that

λ = λ(0) + 2

T/2−1∑
j=1

λ(ωj) + λ(π).

The cumulative likelihood ratio is defined as

Λ(ω) = λ(0) + 2
∑
ωj≤ω

λ(ωj), 0 < ω < π,

Λ(0) = λ(0),

Λ(π) = λ.

If bias of the estimated parameters is due to discrepancies of seasonal and aseasonal

spectra in some specific frequency region, we should see a sharp increase in Λ(ω).

Figure 2.6 shows that there is a sharp increase at medium and high frequencies.21 On

the other hand, there is a mild decrease in the ratio at low frequencies. This obser-

vation confirms that the likelihood estimator is distorting the estimated parameters

in order to acheive a better fit at higher frequencies.

2.5.2 The Role of Frictions

My model features a number of real and nominal frictions. The frictions magnify the

nonlinear interactions between seasonality and endogenous variables, which in turn

21Note that since I omit the seasonal frequencies and their neighborhood during computation of
the probability limits, the cumulative likelihood ratio is flat in that region.
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leads to larger discrepancies of spectra between the seasonal and aseasonal DSGE

models. Thus, to understand the source of bias, it is crucial to know the quantitative

role of each friction in the model. To this end, I turn off each friction of the model,

recompute the probability limits, and compare the resulting biases of the estimates

with the baseline model. I identify two key frictions—the investment adjustment

cost and the nominal wage rigidity—which play important roles.

In the column in Table 2.7 labeled “No inv. adj.,” I report the probability limits of

the maxmimum likelihood estimator when the investment adjustment cost is turned

off (κ = 0). Since the magnitude of the adjustment cost does affect the seasonal

steady states, I recalibrate seasonal shifts in neutral and investment technology and

preference in order to match the data. I also adjust the parameters characterizing

stochastic shock processes so that the model without the adjustment cost generates

realistic second moments.22 The estimated parameters come closer to the true values

compared to those reported in the column labeled “Baseline.” In particular, for

some key parameters, including α (capital share), η (inverse of the Frisch labor

supply elasticity), ξw (Calvo wage parameter), and φπ (Taylor rule coefficient on

inflation), distortions disappear almost completely. In the column labeled “No wage

rig.,” I report the probability limits when the wage rigidity is (almost) turned off

(ξw = 0.01, χw = 0). Again, I recalibrate the seasonal shifts in technology and

preference and readjust the parameters characterizing the stochastic shock processes.

22Without adjustment, the volatilities of output and hours growth become extremely large. More-
over the spectra of those variables reach their peak at the highest frequency, which is the opposite
of what we see in the data (Granger, 1966). As pointed out by Christiano and Todd (2002), since
the weight assigned in the approximation criterion to the spectra is proportional to the level of the
corresponding empirical estimates (expression 2.1), even a very small discrepancy in the spectrum
at higher frequencies creates implausibly large parameter biases.
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Similar to the case when the investment adjustment cost is turned off, the distortions

are quite small (except for the persistence parameter of government spending, ρg,

which is considerably understated). I have also examined model specifications where

habit persistence is turned off (b = 0), capital utilization is turned off (δ2 = 1000),

price rigidity is turned off (ξp = 0.01, χp = 0), price and wage indexation is turned

off (χp = 0, χw = 0), and the Taylor rule responding to a deviation of output (rather

than output growth) from the steady state. None of these alternative specifications

delivered precise estimates.23 I view these as evidence showing that the investment

adjustment cost and the nominal wage rigidity are the key frictions responsible for

creating distortions.

Given the finding, readers might guess that other forms of capital accumulation or

labor market frictions may contribute to creating distortions as well. This is indeed

the case. To formalize the argument, I consider two alternative model specifications

where (a) the investment adjustment cost is replaced with a capital adjustment cost

and (b) the sticky wage assumption is replaced with a labor adjustment cost, and

see whether the seasonal adjustment creates distortions.

For the capital adjustment cost, consider

Kp
t = (1− δ(ut))K

p
t−1 + µt

(
It − S

(
Kp

t

Kp
t−1

)
Kp

t−1

)
,

where for the functional form for S, I assume

S

(
Kp

t

Kp
t−1

)
=
κK
2

(
Kp

t

Kp
t−1

− γ

)2

.

23Details of the results are available from the author upon request.
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Similar specifications for the capital adjustment cost were used, for example, in

Bernanke et al. (1999) and Chari et al. (2000). I set κK = 24 so that the moments

generated from the capital adjustment cost model are similar to those generated

from the baseline model. The column in Table 2.7 labeled “Capital adj.” reports the

probability limits of the maximum likelihood estimator. As in the baseline model, the

capital adjustment cost model delivers sizeable distortions, although their directions

and magnitudes are somewhat different. For example, α (capital share), κ (capital

adjustment cost), and 100σµ (volatility parameter of the investment technology shock

process) are overstated. Also ρz and 100σz (persistence and volatility parameters of

the neutral technology shock process) are understated.

To investigate the role of the labor adjustment cost, I simply add a quadratic

disutility term into the household’s utility function:

Et

∞∑
s=0

βs

[
τt+s ln(Ct+s − bCt+s−1)− ϕ

H1+η
i,t+s

1 + η
− κH

2

(
Hi,t+s

Hi,t+s−1

− 1

)2]
.

I impose κH = 0.8 and recalibrate the seasonal shifts in technology and preference and

readjust the parameters characterizing the stochastic shock processes. The column

in Table 2.7 labeled “Labor adj.” reports the probability limits of the maximum

likelihood estimator. The labor adjustment cost model delivers considerable biases.

For example, κ (investment adjustment cost), χp (price indexation), and φπ and

φY (Taylor rule coefficients on inflation and output growth) are understated. ρg

and 100σg (parameters characterizing the stochastic process of government spending

shocks) are also imprecise. The results of the capital adjustment cost model and the

labor adjustment cost model suggest that frictions that create distortions may not
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be limited to those I assumed in the baseline model.

2.6 Practical Considerations

So far I have argued that in current DSGE models, distortions due to misspecification

arising from ignoring seasonality could be potentially large. However, this claim is

based on an experiment in a considerably restricted setting. In particular, I have

assumed that an econometrician has complete knowledge about the structure of the

economy and the mechanism generating seasonality. In practice, such knowledge is

not fully available. A researcher who ignores seasonality could be even worse off if she

introduces a grossly misspecified mechanism of seasonality (Sims 1993 and Hansen

and Sargent 1993). Thus, researchers face an important trade-off on whether to

explicitely model seasonality or not. In this section I propose a simple procedure

that helps researchers in making this decision, and I demonstrate how to use it.

A key component of the proposed procedure is to allow a coherent comparison

between seasonal and aseasonal DSGE models. Let yt,q be a vector of time-series

data in time t at quarter q. Then the mapping of data from the model is,

lnyt,q = ŝt,q + ln sq, (2.2)

for the seasonal model and

lnyt,q = ŝt + ln s+ lnkq, (2.3)
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for the aseasonal model. Here kq is a vector of seasonal dummies that is meant to

capture seasonal variations in the data that cannot be explained by the aseasonal

model. The orthogonal decomposition between ŝt and kq is consistent with a standard

practice of seasonal adjustment. kq is jointly estimated with structural parameters

of the aseasonal model. Then a researcher can evaluate the fit across specifications

by comparing the marginal likelihoods.24

I apply the mappings (2.2) and (2.3) to the simulated data used in the main

experiment. The goal of the exercise is to demonstrate the usefulness of the ap-

proach for determining whether or not to explicitely model seasonality when there is

potential danger of misspecification. I consider three examples of misspecification.

The first example is the misspecification arising from ignoring seasonality (i.e., mis-

specification arising from using the aseasonal model), which has been the main focus

of this paper. The second is the misspecification arising from the structure of the

economy that is not directly related to the mechanism generating seasonality. In

particular, I assume that a researcher thinks that the central bank responds to the

output gap but not to output growth:

Rt

R
=

(
Rt−1

R

)ρR
{(

πt
π?
t

)φπ
(
Yt
Yq

)φY
}1−ρR

eεR,t , εR,t ∼ N(0, σ2
R).

In the third example, the mechanism generating seasonality is misspecified. I assume

that a researcher thinks that the seasonality in preference originates from shifts in

the habit term bq, but not τq. To compare the biases across specifications in a

24In this respect, the proposed procedure resembles the one-step approach of trend estimation in
Ferroni (2011).
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systematic way, as in Ferroni (2011) I consider the following quadratic loss function

that measures overall distortions:

QL = (θ − θtrue)Σθ(θ − θtrue)
′,

where θ = 1/N
∑N

i=1 θi and Σθ = 1/N
∑L

l=1(θ − θi)(θ − θi)
′. Thus a larger value of

quadratic loss implies larger bias.25

Table 2.8 presents the results under various model specifications. Two things

emerge. First, when seasonality is explicitely modelled, parameter biases are likely

to be modest even when other parts of the model are misspecified. In contrast, when

seasonality is not modelled, the biases are large. This suggests that misspecification

arising from ignoring seasonality is practically important in potentially misspecified

models. For example, when both the Taylor rule and the mechanism for seasonality

is misspecified, the quadratic loss is 0.0209. This is less than half compared to

when seasonality is not modelled (0.1238 and 0.0791).26 Second, although a smaller

marginal likelihood does not necessarily imply larger parameter biases, it appears to

be a relatively good indicator for a measure of biases. Other forms of misspecifications

not considered here may imply substantially larger biases. Nevertheless, a researcher

can diagnose the presence of misspecification by comparing marginal likelihoods.

25In the vectors θ and θtrue, I only include the structural parameters that are common between
the seasonal and aseasonal models.

26When X-12-Arima-filtered data are used (Table 2.4), the quadratic loss is 0.0669.
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2.7 Conclusion

Conventional wisdom among economists is that seasonal adjustments represent an

innocuous data filtering that allows econometricians to focus on the estimation of

objects of interest with little distortion. In this paper, I have challenged that view.

Using a state-of-the-art DSGE model that can match salient features of U.S. sea-

sonal and nonseasonal fluctuations, I showed that estimation using seasonally ad-

justed data leads to important distortions. The problem cannot be mitigated by

constructing alternative seasonal adjustment filters, as the distortions still arise in

large sample environments with “ideal” filters. This is because the effects of season-

ality, which are magnified by several frictions built into the model, are propagated

across the entire frequency domain.

One limitation of the analysis in this paper is that I have focused my attention

on a full-information likelihood approach. Since the main reason for the distortions

is that agents have different responses to shocks across seasons, we may be able to

obtain better estimates by using only moments that do not condition on a season. For

example, as I mentioned in Section 4, since “seasonally adjusted” impulse responses

from the seasonal model and impulse responses from the aseasonal model are almost

identical when the same parameter values are used, it seems reasonable to perform

indirect inference by matching impulse responses of seasonally adjusted data and the

aseasonal model. A systematic investigation of this idea is left for future research.
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2.8 Tables and Figures

Table 2.1: Parameters that are fixed across quarters

Parameter Description Value

Panel A: Technology, preference, policy
g SS government spending 0.19
δ0 SS depreciation rate 0.025
δ2 Curvature of utilization cost 0.1
γ SS technology growth 1.003
π SS inflation rate 1.011
β Discount factor 0.998
θp

θp−1 − 1 SS price markup 0.1
θw

θw−1 − 1 SS wage markup 0.1

α Capital share 0.3
b Habit persistence 0.7
η Inverse Frisch elasticity 2
κ Investment adjustment cost 1
ξp Calvo price 0.6
ξw Calvo wage 0.6
χp Price indexation 0.3
χw Wage indexation 0.3
ρR Taylor rule smoothing 0.7
φπ Taylor rule inflation 1.7
φY Taylor rule output 0.2
Panel B: Shock process
ρz Neutral technology 0.95
ρτ Preference 0.95
ρµ Investment technology 0.95
ρπ Inflaton target 0.95
ρg Government spending 0.95
100σz Neutral technology 0.9
100στ Preference 1.7
100σµ Investment technology 1.4
100σπ Inflation target 0.1
100σR Monetary policy 0.1
100σg Government spending 1
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Table 2.2: Parameters that vary across quarters

Parameter Description Q1 Q2 Q3 Q4 Average
zq Neutral technology 0.99 1.00 0.99 1.02 1.00
τq Preference 0.85 1.04 1.01 1.10 1.00
µq Investment technology 0.88 1.06 0.98 1.08 1.00

Table 2.3: Seasonal patterns

Data Model
Series Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Output∗ -6.37 3.08 0.61 2.69 -6.37 3.08 0.61 2.69
Consumption -6.50 2.27 0.09 4.14 -5.59 2.07 0.58 2.94
Investment∗ -8.12 5.30 0.68 2.14 -8.11 5.30 0.68 2.14
Hours∗ -3.83 3.00 1.59 -0.59 -3.87 2.97 1.55 -0.64
Wage growth -0.45 -0.53 0.36 0.61 -0.53 0.17 0.06 0.30
Inflation rate 0.09 0.23 -0.14 -0.18 0.40 0.01 -0.06 -0.35
Interest rate -0.03 0.04 0.01 -0.03 0.00 0.00 0.00 0.00

Notes: The table reports percent changes of variables from the previous quarter, taken from

sample averages in the data and seasonal steady states in the model. Variables with ∗ indicate

those used as calibration targets.
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Table 2.4: Posterior estimates

Parameter Description True Unadjusted X-12
α Capital share 0.3 0.29 0.50

(0.0120) (0.0431)

b Habit persistence 0.7 0.73 0.71
(0.0134) (0.0270)

η Inverse Frisch elasticity 2 2.01 1.01
(0.1287) (0.1646)

κ Investment adjustment cost 1 1.03 1.49
(0.0760) (0.1905)

ξp Calvo price 0.6 0.60 0.57
(0.0024) (0.0084)

ξw Calvo wage 0.6 0.59 0.49
(0.0061) (0.0321)

χp Price indexation 0.3 0.30 0.33
(0.0080) (0.0311)

χw Wage indexation 0.3 0.30 0.35
(0.0112) (0.0409)

ρR Taylor rule smoothing 0.7 0.71 0.72
(0.0178) (0.0302)

φπ Taylor rule inflation 1.7 1.69 2.11
(0.1398) (0.3506)

φY Taylor rule output 0.2 0.22 0.34
(0.0499) (0.1047)

ρz Neutral technology 0.95 0.95 0.95
(0.0020) (0.0059)

ρτ Preference 0.95 0.94 0.97
(0.0091) (0.0076)

ρµ Investment technology 0.95 0.96 0.92
(0.0103) (0.0222)

ρπ Inflation target 0.95 0.96 0.95
(0.0066) (0.0105)

ρg Government spending 0.95 0.95 0.62
(0.0109) (0.1210)

(Table continues on the next page.)
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Table 2.4: Posterior estimates (continued)

Parameter Description True Unadjusted X-12
100σz Neutral technology 0.9 0.90 0.78

(0.0452) (0.0397)

100στ Preference 1.7 1.72 1.52
(0.1010) (0.1441)

100σµ Investment technology 1.4 1.68 1.41
(0.2194) (0.1878)

100σπ Inflation target 0.1 0.09 0.11
(0.0120) (0.0168)

100σR Monetary policy 0.1 0.10 0.12
(0.0054) (0.0072)

100σg Government spending 1 0.90 1.48
(0.0472) (0.1551)

z̃1 Neutral technology Q1 0.97 0.97 –
(0.0005)

z̃2 Neutral technology Q2 0.97 0.97 –
(0.0003)

z̃3 Neutral technology Q3 0.97 0.97 –
(0.0001)

τ̃1 Preference Q1 0.77 0.74 –
(0.0126)

τ̃2 Preference Q2 0.95 0.94 –
(0.0023)

τ̃3 Preference Q3 0.92 0.92 –
(0.0037)

µ̃1 Investment technology Q1 0.81 0.80 –
(0.0121)

µ̃2 Investment technology Q2 0.98 0.97 –
(0.0034)

µ̃3 Investment technology Q3 0.91 0.91 –
(0.0069)

Notes: The table reports the MCMC estimates of posterior means. Standard deviations are

reported in parentheses. The following reparameterizations are used: z̃q = zq/z4, τ̃q = τq/τ4, and

µ̃q = µq/µ4 for q = 1, 2, 3.
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Table 2.5: Business cycle statistics: seasonally adjusted vs. unadjusted estimates

Percent standard deviation Corr. with output growth
Series True Unadjusted X-12 True Unadjusted X-12
Output growth 0.96 0.94 0.83 – – –
Consumption growth 0.57 0.57 0.54 0.38 0.31 0.12
Investment growth 2.78 2.87 1.48 0.89 0.88 0.84
Hours growth 0.99 0.98 1.10 0.54 0.53 0.48
Wage growth 0.41 0.41 0.39 0.77 0.77 0.60
Inflation rate 0.73 0.78 0.70 -0.22 -0.21 -0.21
Interest rate 0.69 0.77 0.69 -0.18 -0.15 -0.16

Notes: True moments are calculated by applying the X-12-Arima filter to the simulated data from

the seasonal model, where the parameters are fixed at their true values. Similarly, seasonally

unadjusted moments are calculated by applying the X-12-Arima filter to the simulated data from

the seasonal model, where the parameters are fixed at the posterior means of seasonally

unadjusted estimates. X-12-Arima moments are calculated using simulated data from the

aseasonal model, where the parameters are fixed at the posterior means of X-12-Arima-filtered

estimates. I did not apply any seasonal adjustment filter to the simulated data for X-12-Arima

moments. All simulations are based on 100 replications of artificial time-series of length 200.
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Table 2.6: Percent standard deviation of variables under alternative values of φπ:
seasonally adjusted vs. unadjusted estimates

φπ

Series 1.7 2.5 5.0 7.5 10.0
Output growth
True 0.96 1.00 1.12 1.21 1.27

[1.00] [1.04] [1.17] [1.26] [1.32]

Unadjusted 0.95 0.97 1.11 1.20 1.26
[1.00] [1.03] [1.17] [1.26] [1.33]

X-12 0.86 0.86 0.91 0.95 0.97
[1.00] [1.00] [1.06] [1.10] [1.12]

Inflation
True 0.73 0.53 0.41 0.36 0.34

[1.00] [0.73] [0.56] [0.50] [0.47]

Unadjusted 0.77 0.55 0.42 0.37 0.35
[1.00] [0.72] [0.55] [0.49] [0.46]

X-12 0.84 0.62 0.45 0.42 0.39
[1.00] [0.74] [0.54] [0.50] [0.46]

Notes: Other monetary policy paramters are set to the true benchmark values

(ρR = 0.7, φY = 0.2). The numbers in square brackets indicate the ratios relative to the

benchmark case (φπ = 1.7). For simulation details, see the footnote of Table 2.5.
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Table 2.8: Comparison across alternative model specifications

Source of misspecification
Seasonality Misspecified Misspecified Marginal Quadratic
not modelled Taylor rule seasonality likelihood loss

5824.4 0.0039
X 5802.3 0.0157

X 5788.4 0.0135
X X 5761.8 0.0209

X 5259.2 0.1238
X X 5226.4 0.0791

Notes: The marginal likelihoods are calculated based on the modified harmonic mean estimator

by Geweke (1999). For the truncation value I use p = 0.5. Other values deliver similar results.
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Figure 2.1: Likelihood profiles: seasonally adjusted vs. unadjusted data
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Notes: The figure plots likelihood profiles for seasonally unadjusted data (solid lines) and

X-12-Arima-filtered data (dashed lines). Vertical lines signify true values.
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Figure 2.2: Impulse response: neutral technology shock
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Notes: Each panel describes the percentage-point response to a one-standard-deviation shock.

Computations are based on 1,000 draws from the posterior distributions.
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Figure 2.3: Impulse response: monetary policy shock
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Notes: Each panel describes the percentage-point response to a one-standard-deviation shock.

Computations are based on 1,000 draws from the posterior distributions.
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Figure 2.4: Log spectrum of the simulated data (output growth)
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Figure 2.5: Log spectrum of the seasonal and aseasonal model
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Notes: Thick solid and dashed lines plot spectra of seasonal and aseasonal model whose

parameters are fixed at the values used to generate data in the main experiment. Thin solid lines

plot spectra of the aseasonal model whose parameters are fixed at the asymptotic maximum

likelihood estimates when seasonally adjusted data are used.

96



Figure 2.6: Cumulative likelihood ratio
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2.9 Appendix

2.9.1 Data Source

I report the sources of data used in Table 3 in the main text and Table 2.9 in this

Appendix. The data set spans the period 1965Q1 to 2004Q4. Whenever the data

set is provided in monthly frequencies, I simply take the average to transform it into

quarterly frequencies. Both seasonally adjusted and unadjusted National Income

and Product Accounts data are downloaded from the Bureau of Economic Analy-

sis website. Nominal GDP, nominal consumption (defined as the sum of personal

consumption expenditures on nondurables and services), and nominal investment

(defined as the sum of gross private domestic investment and personal consumption

expenditure on durables) are divided by the civilian noninstitutional population,

downloaded from the Bureau of Labor Statistics (BLS hereafter) website, to convert

the variables into per capita terms. To convert the variables into real terms, I divide

them by the consumer price index for all urban consumers, available on the BLS

website.27 Working hours are measured by aggregate weekly hours in total private

industries (available on the BLS website) divided by the population. Real wages are

measured by average hourly earnings of production workers in total private indus-

tries (available on the BLS website), divided by the CPI. Inflation rates are measured

by changes in the CPI. I use the effective federal funds rates (downloaded from the

Federal Reserve Board website) to measure the nominal interest rates.

27I use the CPI for measuring price level since the seasonally unadjusted GDP deflator is not
available.
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2.9.2 Solving the Seasonal DSGE Model

The equilibrium of the baseline seasonal DSGE model in the main text is char-

acterized by the equilibrium conditions below (B.1). To solve for the equilbrium,

I log-linearize the equilibrium conditions (B.3) around the seasonal steady states

(B.2). After carefully stacking the log-linearized equilibrium conditions so that they

are consistent with the seasonal orderings, I can obtain the law of motion of the econ-

omy using a standard solution method of linear rational expectations models. A few

words on notation: variables with a tilde denote detrended variables (Ãt = At/Xt)

and variables with a hat denote log deviations of variables from their seasonal steady

states (B̂t = ln(Bt/Bq)).

Equilbrium Conditions

K̃t

Ht

=
α

1− α

(
w̃t

rkt

)
(B.1.1)

mct =
1

ztαα(1− α)1−α
(w̃t)

1−α(rkt )
α (B.1.2)

p∗t =
θp

θp − 1

(
P n
t

P d
t

)
(B.1.3)

P n
t =λ̃tmctỸt + ξpβEt

(
π
χp

t π1−χp

πt+1

)−θp

P n
t+1 (B.1.4)

P d
t =λ̃tỸt + ξpβEt

(
π
χp

t π1−χp

πt+1

)1−θp

P d
t+1 (B.1.5)

1 =(1− ξp)(p
∗
t )

1−θp + ξp

(
π
χp

t−1π
1−χp

πt

)1−θp

(B.1.6)

Ỹt =(p̃t)
θpztK̃

α
t H

1−α
t (B.1.7)
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(p̃t)
−θp =(1− ξp)(p

∗
t )

−θp + ξp

(
π
χp

t−1π
1−χp

πt

)−θp

(B.1.8)

λ̃t =
γτt

γC̃t − bC̃t−1

− βbEt

(
τt+1

γC̃t+1 − bC̃t

)
(B.1.9)

1 =βEt

[
λt+1

λt

(
Rt

γπt+1

)]
(B.1.10)

λ̃t =ψ̃tµt

[
1− S

(
γĨt

Ĩt−1

)
− S ′

(
γĨt

Ĩt−1

)
γĨt

Ĩt−1

]
+ βEt

[
ψ̃t+1

γ
µt+1S

′
(
γĨt+1

Ĩt

)(
γĨt+1

Ĩt

)2]
(B.1.11)

γψ̃t =βEt[λ̃t+1r
k
t+1ut+1 + ψ̃t+1(1− δ(ut+1))] (B.1.12)

λ̃tr
k
t =ψ̃tδ

′(ut) (B.1.13)

K̃t =utK̃
p
t−1 (B.1.14)

γK̃p
t =(1− δ(ut))K̃

p
t−1 + µt

(
1− S

(
γĨt

Ĩt−1

))
Ĩt (B.1.15)

f 1
t =f 2

t (B.1.16)

f 1
t =(w̃∗

t )
1−θw λ̃tHtw̃t + ξwβEt

(
πχw
t π1−χww̃∗

t

π̃w
t+1w̃

∗
t+1

)1−θw

f 1
t+1 (B.1.17)

f 2
t =

θw
θw − 1

(w̃∗
t )

−θw(1+η)ϕH1+η
t + ξwβEt

(
πw
t π

1−χww̃∗
t

π̃w
t+1w̃

∗
t+1

)−θw(1+η)

f2
t+1 (B.1.18)

1 =(1− ξw)(w̃
∗
t )

1−θw + ξw

(
πχw

t−1π
1−χw

π̃w
t

)1−θw

(B.1.19)

π̃w
t =

πtw̃t

w̃t−1

(B.1.20)

Rt

R
=

(
Rt−1

R

)ρR
{(

πt
π?
t

)φπ
(
Ỹt/Ỹt−1

Ỹq/Ỹq−1

)φY
}1−ρR

eεR,t (B.1.21)

Ỹt =C̃t + Ĩt + gtỸt (B.1.22)

ln

(
zt
zq

)
=ρz ln

(
zt−1

zq−1

)
+ εz,t (B.1.23)
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ln

(
τt
τq

)
=ρτ ln

(
τt−1

τq−1

)
+ ετ,t (B.1.24)

ln

(
µt

µq

)
=ρµ ln

(
µt−1

µq−1

)
+ εµ,t (B.1.25)

ln

(
π?
t

πq

)
=ρπ ln

(
π?
t−1

πq−1

)
+ επ,t (B.1.26)

ln

(
gt
g

)
=ρg ln

(
gt−1

g

)
+ εg,t (B.1.27)

Seasonal Steady States

K̃q

Hq

=
α

1− α

(
w̃q

rkq

)
(B.2.1)

mcq =
1

zqαα(1− α)1−α
(w̃q)

1−α(rkq )
α (B.2.2)

p∗q =
θp

θp − 1

(
P n
q

P d
q

)
(B.2.3)

P n
q =λ̃qmcqỸq + ξpβ

(
π
χp
q π1−χp

πq+1

)−θp

P n
q+1 (B.2.4)

P d
q =λ̃qỸq + ξpβ

(
π
χp
q π1−χp

πq+1

)1−θp

P d
q+1 (B.2.5)

1 =(1− ξp)(p
∗
q)

1−θp + ξp

(
π
χp

q−1π
1−χp

πq

)1−θp

(B.2.6)

Ỹq =(p̃q)
θpzqK̃

α
q H

1−α
q (B.2.7)

(p̃q)
−θp =(1− ξp)(p

∗
q)

−θp + ξp

(
π
χp

q−1π
1−χp

πq

)−θp

(B.2.8)

λ̃q =
γτq

γC̃q − bC̃q−1

− βb

(
τq+1

γC̃q+1 − bC̃q

)
(B.2.9)

1 =β

[
λq+1

λq

(
R

γπq+1

)]
(B.2.10)
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λ̃q =ψ̃qµq

[
1− S

(
γĨq

Ĩq−1

)
− S ′

(
γĨq

Ĩq−1

)
γĨq

Ĩq−1

]
+ β

[
ψ̃q+1

γ
µq+1S

′
(
γĨq+1

Ĩq

)(
γĨq+1

Ĩq

)2]
(B.2.11)

γψ̃q =β[λ̃q+1r
k
q+1uq+1 + ψ̃q+1(1− δ(uq+1))] (B.2.12)

λ̃qr
k
q =ψ̃qδ

′(uq) (B.2.13)

K̃q =uqK̃
p
q−1 (B.2.14)

γK̃p
q =(1− δ(uq))K̃

p
q−1 + µq

(
1− S

(
γĨq

Ĩq−1

))
Ĩq (B.2.15)

f1
q =f 2

q (B.2.16)

f1
q =(w̃∗

q)
1−θw λ̃qHqw̃q + ξwβ

(
πχw
q π1−χww̃∗

q

π̃w
q+1w̃

∗
q+1

)1−θw

f 1
q+1 (B.2.17)

f2
q =

θw
θw − 1

(w̃∗
q)

−θw(1+η)ϕH1+η
q + ξwβ

(
πw
q π

1−χww̃∗
q

π̃w
q+1w̃

∗
q+1

)−θw(1+η)

f 2
q+1 (B.2.18)

1 =(1− ξw)(w̃
∗
q)

1−θw + ξw

(
πχw

q−1π
1−χw

π̃w
q

)1−θw

(B.2.19)

π̃w
q =

πqw̃q

w̃q−1

(B.2.20)

Ỹq =C̃q + Ĩq + gỸq (B.2.21)

Log-linearized Equilibrium Conditions

̂̃
Kt − Ĥt = ̂̃wt − r̂kt (B.3.1)

m̂ct =− ẑt + (1− α) ̂̃wt + αr̂kt (B.3.2)
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p̂∗t =P̂
n
t − P̂ d

t (B.3.3)

P n
q P̂

n
t =λ̃qmcqỸq(

̂̃
λt + m̂ct +

̂̃
Y t)

+ ξpβ

(
π
χp
q π1−χp

πq+1

)−θp

P n
q+1[θp(Etπ̂t+1 − χpπ̂t) + EtP̂

n
t+1] (B.3.4)

P d
q P̂

d
t =λ̃qỸq(

̂̃
λt +

̂̃
Yt)

+ ξpβ

(
π
χp
q π1−χp

πq+1

)1−θp

P d
q+1[(θp − 1)(Etπ̂t+1 − χpπ̂t) + EtP̂

d
t+1]

(B.3.5)

0 =(1− ξp)(p
∗
q)

1−θp p̂∗t + ξp

(
π
χp

q−1π
1−χp

πq

)1−θp

(χpπ̂t−1 − π̂t) (B.3.6)

̂̃
Y t =θp̂̃pt + ẑt + α

̂̃
Kt + (1− α)

̂̃
H t (B.3.7)

(p̃q)
−θp ̂̃pt =(1− ξp)(p

∗
q)

−θp p̂∗t + ξp

(
π
χp

q−1π
1−χp

πq

)−θp

(χpπ̂t−1 − π̂t) (B.3.8)

λ̃q
̂̃
λt =

γbτq

(γC̃q − bC̃q−1)2
C̃q−1

̂̃
Ct−1 −

[
γ2τq

(γC̃q − bC̃q−1)2
+

βb2τq+1

(γC̃q+1 − bC̃q)2

]
C̃q

̂̃
Ct

+
γβbτq+1

(γC̃q+1 − bC̃q)2
C̃q+1Et

̂̃
Ct+1

+
γτq

γC̃q − bC̃q−1

τ̂t −
βbτq+1

γC̃q+1 − bC̃q

Etτ̂t+1 (B.3.9)

0 =Et
̂̃
λt+1 + R̂t −

̂̃
λt − Etπ̂t+1 (B.3.10)

λ̃q
̂̃
λt =ψ̃qµqκ

(
γĨq

Ĩq−1

)(
3γĨq

Ĩq−1

− 2γ

)̂̃
I t−1

+ ψ̃qµq

[
1− κ

2

(
γĨq

Ĩq−1

− γ

)2

− κ

(
γĨq

Ĩq−1

− γ

)(
γĨq

Ĩq−1

)]
(
̂̃
ψt + µ̂t)

−
[
ψ̃qµqκ

(
γĨq

Ĩq−1

)(
3γĨq

Ĩq−1

− 2γ

)
+
β

γ
ψ̃q+1µq+1κ

(
γĨq+1

Ĩq

)2(
3γĨq+1

Ĩq
− 2γ

)]̂̃
It
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+
β

γ
ψ̃q+1µq+1κ

(
γĨq+1

Ĩq

)2(
γĨq+1

Ĩq
− γ

)
Et

̂̃
ψt+1

+
β

γ
ψ̃q+1µ̃q+1κ

(
γĨq+1

Ĩq

)2(
γĨq+1

Ĩq
− γ

)
Etµ̂t+1

+
β

γ
ψ̃q+1µq+1κ

(
γĨq+1

Ĩq

)2(
3γĨq+1

Ĩq
− 2γ

)
Et
̂̃
I t+1 (B.3.11)

γψ̃q
̂̃
ψt =βλ̃q+1r

k
q+1uq+1Et

̂̃
λt+1

+ βλ̃q+1r
k
q+1uq+1Et

̂̃rkt+1

+ βψ̃q+1

[
1− δ0 − δ1(uq+1 − 1)− δ2

2
(uq+1 − 1)2

]
Et

̂̃
ψt+1 (B.3.12)

0 =− λ̃qr
k
q (
̂̃
λt + r̂kt ) + ψ̃q[(δ1 + δ2(uq − 1))

̂̃
ψt + δ2uqût] (B.3.13)̂̃

Kt =ût +
̂̃
K

p

t−1 (B.3.14)

γK̃p
q
̂̃
K

p

t =

[
1− δ0 − δ1(uq − 1)− δ2

2
(uq − 1)2

]
K̃p

q−1
̂̃
K

p

t−1

+ κ

(
γĨq

Ĩq−1

− γ

)(
γĨq

Ĩq−1

)
µq Ĩq

̂̃
I t−1

− (δ1 + δ2(uq − 1))uqK̃
p
q−1ût +

(
1− κ

2

(
γĨq

Ĩq−1

− γ

)2)
µq Ĩqµ̂t

+ κ

(
γĨq

Ĩq−1

− γ

)(
γĨq

Ĩq−1

)
µq Ĩq

̂̃
I t−1 (B.3.15)

f̂ 1
t =f̂ 2

t (B.3.16)

f 1
q f̂

1
t =

[
(w̃∗

q)
1−θw λ̃qHqw̃q + ξwβ

(
πχw
q π1−χww̃∗

q

π̃w
q+1w̃

∗
q+1

)1−θw

f1
q+1

]
(1− θw) ̂̃w∗

t

+ (w̃∗
q)

1−θw λ̃qHqw̃q(
̂̃
λt + Ĥt + ̂̃wt)

+ ξwβ

(
πχw
q π1−χww̃∗

q

π̃w
q+1w̃

∗
q+1

)1−θw

f 1
q+1

× [(1− θw)(χwπ̂t − Et
̂̃πw

t+1 − Et
̂̃w∗
t+1) + Etf̂

1
t+1] (B.3.17)
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f 2
q f̂

2
t =−

[
θw

θw − 1
(w̃∗

q)
−θw(1+η)ϕH1+η

q + ξwβ

(
πχw
q π1−χww̃∗

q

π̃w
q+1w̃

∗
q+1

)−θw(1+η)

f 2
q+1

]
× θw(1 + η) ̂̃w∗

t

+
θw

θw − 1
(w̃∗

q)
−θw(1+η)ϕH1+η

q (1 + η)Ĥt

+ ξwβ

(
πχw
q π1−χww̃∗

q

π̃w
q+1w̃

∗
q+1

)−θw(1+η)

f 2
q+1

× [−θw(1 + η)(χwπ̂t − Et
̂̃πw

t+1 − Et
̂̃w∗
t+1) + Etf̂

2
t+1] (B.3.18)

0 =(1− ξw)(w̃
∗
q)

1−θw ̂̃w∗
t + ξw

(
πχw

q−1π
1−χw

π̃w
q

)1−θw

(χwπ̂t−1 − ̂̃πw

t ) (B.3.19)

π̂w
t =π̂t + ̂̃wt − ̂̃wt−1 (B.3.20)

R̂t =ρRR̂t−1 + (1− ρR)[φπ(π̂t − π̂∗
t ) + φY (

̂̃
Y t −

̂̃
Y t−1)] + εR,t (B.3.21)

(1− g)Ỹq
̂̃
Y t =C̃

̂̃
Ct + Ĩ

̂̃
I t + gỸqĝt (B.3.22)

ẑt =ρz ẑt−1 + εz,t (B.3.23)

τ̂t =ρτ τ̂t−1 + ετ,t (B.3.24)

µ̂t =ρµµ̂t−1 + εµ,t (B.3.25)

π̂?
t =ρππ̂

?
t−1 + επ,t (B.3.26)

ĝt =ρgĝt−1 + εg,t (B.3.27)

2.9.3 Additional Tables and Figures

Table 2.9 compares the business cycle statistics in the data and in the baseline DSGE

model (Section 3 in the main text). The model tends to underpredict the volatility

of both investment and wage growth and overstate the volatility of hours growth.

The model also tends to underpredict the correlation of consumption growth with
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respect to output growth and overpredict the correlation of both investment and wage

growth with respect to output growth. Nevertheless, overall the model is successful

in replicating salient features of the U.S. aggregate data.

Table 2.11 reports posterior estimates of the main experiment using Tramo-Seats-

filtered and DSGE-based-filtered data (Section 4 in the main text). The Tramo-Seats

filter and the DSGE-based filter deliver similar biases compared to the X-12-Arima

filter. (See, for example, the biases in some of the key structural parameters, α, η,

and κ.) As in Section 6 in the main text, I consider the quadratic loss function by

Ferroni (2011) that measures overall distortions. For the four estimation experiments

considered,

1. Seasonally unadjusted data: QL = 0.0039

2. X-12-Arima-filtered data: QL = 0.0669

3. Tramo-Seats-filtered data: QL = 0.0455

4. DSGE-based-filtered data: QL = 0.0418

The DSGE-based-filtered data deliver considerable biases, although the magnitude is

slightly smaller than that of the Tramo-Seats filter. I also note that all other results

in Section 4 (impulse responses, business cycle statistics, and policy analysis) are

robust to the choice of a seasonal adjustment filter. Figure 2.7 plots the log-likelihood

profiles for the model parameters given seasonally adjusted and unadjusted data.

Tables 2.12, 2.13, and 2.14 report some model statistics of the alternative models

considered in Section 5 in the main text. I briefly comment on each alternative

model.
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1. No investment adjustment cost model: The calibrated seasonal shifts in in-

vestment technology are almost constant across seasons (Table 2.12).28 Also,

the model significantly underpredicts the volatilities of real wage growth, the

inflation rate, and the interest rate (Table 2.14).

2. No wage rigidity model: The model overpredicts seasonality and volatility in

real wage growth (Tables 2.13 and 2.14).

3. Capital adjustment cost model: The model does a good job of replicating data

moments, although it slightly underpredicts the volatilities of investment and

wage growth (Table 2.14).

4. Labor adjustment cost model: The model significantly overpredicts seasonality

and volatility in real wage growth (Tables 2.13 and 2.14). Also, it underpredicts

the correlation of seasonally adjusted hours and wage growth with respect to

output growth (Table 2.14).

28Some readers may think that the distortions in the estimated parameters in the baseline model
are driven by the seasonal shifts in investment technology. To address this issue, I recomputed the
probability limits for the baseline model but this time fixed the steady-state investment technology
level constant across seasons. The result remained basically unchanged.
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Table 2.9: Business cycle statistics

Percent standard Corr. with
deviation output growth

Series Data Model Data Model
Output growth 0.95 0.96 – –
Consumption growth 0.59 0.57 0.63 0.38
Investment growth 3.21 2.77 0.66 0.89
Hours growth 0.86 0.99 0.63 0.54
Wage growth 0.55 0.41 0.56 0.77
Inflation rate 0.75 0.73 -0.48 -0.22
Interest rate 0.76 0.69 -0.34 -0.18

Notes: Moments are calculated by applying the X-12-Arima filter to the simulated data from the

seasonal model, where the parameters are fixed at their true values. All simulations are based on

100 replications of artificial time-series of length 200.
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Table 2.10: Posterior estimates

Parameter Description True Unadjusted T-S DSGE-based
α Capital share 0.3 0.29 0.58 0.53

(0.0120) (0.0325) (0.0361)

b Habit persistence 0.7 0.73 0.66 0.67
(0.0134) (0.0255) (0.0270)

η Inverse Frisch elasticity 2 2.01 0.96 1.06
(0.1287) (0.1443) (0.1569)

κ Investment adjustment cost 1 1.03 1.44 1.55
(0.0760) (0.1681) (0.1936)

ξp Calvo price 0.6 0.60 0.56 0.56
(0.0024) (0.0073) (0.0075)

ξw Calvo wage 0.6 0.59 0.56 0.52
(0.0061) (0.0187) (0.0230)

χp Price indexation 0.3 0.30 0.34 0.31
(0.0080) (0.0322) (0.0303)

χw Wage indexation 0.3 0.30 0.33 0.35
(0.0112) (0.0309) (0.0309)

ρR Taylor rule smoothing 0.7 0.71 0.71 0.71
(0.0178) (0.0254) (0.0230)

φπ Taylor rule inflation 1.7 1.69 1.97 1.85
(0.1398) (0.2413) (0.2012)

φY Taylor rule output 0.2 0.22 0.29 0.26
(0.0499) (0.0732) (0.0664)

ρz Neutral technology 0.95 0.95 0.95 0.95
(0.0020) (0.0054) (0.0056)

ρτ Preference 0.95 0.94 0.97 0.97
(0.0091) (0.0050) (0.0068)

ρµ Investment technology 0.95 0.96 0.88 0.90
(0.0103) (0.0207) (0.0210)

ρπ Inflation target 0.95 0.96 0.95 0.95
(0.0066) (0.0099) (0.0103)

ρg Government spending 0.95 0.95 0.27 0.52
(0.0109) (0.0903) (0.1152)

(Table continues on the next page.)
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Table 2.11: Posterior estimates (continued)

Parameter Description True Unadjusted T-S DSGE-based
100σz Neutral technology 0.9 0.90 0.83 0.84

(0.0452) (0.0416) (0.0422)

100στ Preference 1.7 1.72 1.47 1.54
(0.1010) (0.1232) (0.1356)

100σµ Investment technology 1.4 1.68 1.11 1.18
(0.2194) (0.1144) (0.1348)

100σπ Inflation target 0.1 0.09 0.11 0.10
(0.0120) (0.0142) (0.0142)

100σR Monetary policy 0.1 0.10 0.12 0.11
(0.0054) (0.0065) (0.0064)

100σg Government spending 1 0.90 1.30 1.46
(0.0472) (0.0954) (0.1464)

z̃1 Neutral technology Q1 0.97 0.97 – –
(0.0005)

z̃2 Neutral technology Q2 0.97 0.97 – –
(0.0003)

z̃3 Neutral technology Q3 0.97 0.97 – –
(0.0001)

τ̃1 Preference Q1 0.77 0.74 – –
(0.0126)

τ̃2 Preference Q2 0.95 0.94 – –
(0.0023)

τ̃3 Preference Q3 0.92 0.92 – –
(0.0037)

µ̃1 Investment technology Q1 0.81 0.80 – –
(0.0121)

µ̃2 Investment technology Q2 0.98 0.97 – –
(0.0034)

µ̃3 Investment technology Q3 0.91 0.91 – –
(0.0069)

Notes: The table reports the MCMC estimates of posterior means. Standard deviations are

reported in parentheses. The following reparameterizations are used: z̃q = zq/z4, τ̃q = τq/τ4, and

µ̃q = µq/µ4 for q = 1, 2, 3.
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Table 2.12: Parameters that vary across quarters: alternative models

Parameter Description Q1 Q2 Q3 Q4 Average
Panel A: No investment adjustment cost
z Neutral technology 0.99 1.00 0.99 1.02 1.00
τ Preference 0.85 1.04 1.01 1.10 1.00
µ Investment technology 1.00 1.00 1.00 1.00 1.00
Panel B: No wage rigidity
z Neutral technology 0.99 1.00 0.99 1.02 1.00
τ Preference 0.84 1.04 1.01 1.10 1.00
µ Investment technology 0.87 1.06 0.99 1.08 1.00
Panel C: Capital adjustment cost
z Neutral technology 0.99 1.00 0.99 1.02 1.00
τ Preference 0.85 1.04 1.01 1.10 1.00
µ Investment technology 0.94 1.00 1.01 1.04 1.00
Panel D: Labor adjustment cost
z Neutral technology 1.00 1.00 0.99 1.02 1.00
τ Preference 0.84 1.04 1.02 1.10 1.00
µ Investment technology 0.87 1.05 0.99 1.09 1.00
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Table 2.13: Seasonal patterns: alternative models

Series Q1 Q2 Q3 Q4
Panel A: No investment adjustment cost
Output∗ -6.32 3.18 0.59 2.55
Consumption -5.46 2.11 0.51 2.85
Investment∗ -8.20 5.55 0.76 1.89
Hours∗ -3.92 3.05 1.60 -0.73
Wage growth -0.51 0.16 0.05 0.30
Inflation rate 0.39 0.02 -0.05 -0.35
Interest rate 0.00 0.00 0.00 0.00
Panel B: No wage rigidity
Output∗ -6.37 3.08 0.61 2.69
Consumption -5.58 2.07 0.58 2.94
Investment∗ -8.12 5.30 0.68 2.14
Hours∗ -3.87 2.96 1.55 -0.64
Wage growth -4.11 7.50 -1.13 -2.26
Inflation rate -0.02 0.66 0.16 -0.80
Interest rate 0.00 0.00 0.00 0.00
Panel C: Capital adjustment cost
Output∗ -6.38 3.08 0.61 2.69
Consumption -5.59 2.07 0.58 2.94
Investment∗ -8.12 5.31 0.68 2.14
Hours∗ -3.87 2.95 1.55 -0.64
Wage growth -0.53 0.17 0.06 0.30
Inflation rate 0.40 0.01 -0.06 -0.35
Interest rate 0.00 0.00 0.00 0.00
Panel D: Labor adjustment cost
Output∗ -6.37 3.08 0.61 2.69
Consumption -5.59 2.07 0.58 2.94
Investment∗ -8.11 5.30 0.68 2.14
Hours∗ -3.87 2.96 1.55 -0.64
Wage growth -13.95 26.45 -9.59 -2.92
Inflation rate -0.95 2.04 0.30 -1.39
Interest rate 0.00 0.00 0.00 0.00

Notes: The table reports percent changes of variables from the previous quarter, taken from

seasonal steady states in the model. Variables with ∗ indicate those used as calibration targets.
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Table 2.14: Business cycle statistics: alternative models

Percent standard Corr. with
Series deviation output growth
Panel A: No investment adjustment cost
Output growth 0.91 –
Consumption growth 0.55 0.23
Investment growth 2.90 0.89
Hours growth 0.86 0.92
Wage growth 0.17 0.58
Inflation rate 0.13 -0.18
Interest rate 0.18 0.18
Panel B: No wage rigidity
Output growth 0.98 –
Consumption growth 0.58 0.46
Investment growth 2.71 0.89
Hours growth 0.97 0.09
Wage growth 1.05 0.60
Inflation rate 0.73 -0.42
Interest rate 0.64 -0.32
Panel C: Capital adjustment cost
Output growth 0.94 –
Consumption growth 0.58 0.73
Investment growth 2.13 0.90
Hours growth 0.74 0.42
Wage growth 0.43 0.79
Inflation rate 0.73 -0.39
Interest rate 0.67 -0.20
Panel D: Labor adjustment cost
Output growth 0.96 –
Consumption growth 0.57 0.28
Investment growth 2.92 0.88
Hours growth 0.83 0.15
Wage growth 2.06 0.24
Inflation rate 0.72 -0.38
Interest rate 0.70 -0.26

Notes: Moments are calculated by applying the X-12-Arima filter to the simulated data from the

seasonal model, where the parameters are fixed at their true values. All simulations are based on

100 replications of artificial time-series of length 200.
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Figure 2.7: Likelihood profiles: seasonally adjusted vs. unadjusted data
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(Figure continues on the next page.)
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Figure 2.8: Likelihood profiles: seasonally adjusted vs. unadjusted data (continued)
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Notes: The figure plots likelihood profiles for seasonally unadjusted data (thick solid lines),

X-12-Arima-filtered data (thick dashed lines), Tramo-Seats-filtered data (solid lines), and

DSGE-based-filtered data (dashed lines). Vertical lines signify true values.
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