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Abstract

In this paper we study the last round of the discrete Voronoi game in R2, a problem which is
also of independent interest in competitive facility location. The game consists of two players P1
and P2, and a finite set U of users in the plane. The players have already placed two disjoint sets
of facilities F and S, respectively, in the plane. The game begins with P1 placing a new facility
followed by P2 placing another facility, and the objective of both the players is to maximize
their own total payoffs. In this paper we propose polynomial time algorithms for determining
the optimal strategies of both the players for arbitrarily located existing facilities F and S. We
show that in the L1 and the L∞ metrics, the optimal strategy of P2, given any placement of
P1, can be found in O(n log n) time, and the optimal strategy of P1 can be found in O(n5 log n)
time. In the L2 metric, the optimal strategies of P2 and P1 can be obtained in O(n2) and O(n8)
times, respectively.

1 Introduction

The main objective in any facility location problem is to place a set of facilities serving a set of
users such that certain optimality criteria are satisfied. Facilities and users are generally modeled
as points in the plane. The set of users (demands) is either discrete, consisting of finitely many
points, or continuous, that is, a region where every point is considered to be a user. We assume
that the facilities are equally equipped in all respects, and a user always avails the service from its
nearest facility. Consequently, each facility has its service zone, consisting of the set of users that
are served by it. (Refer to the book by Drezner and Hamacher [14] for a comprehensive discussion
on facility location problems and their manifold many generalizations.)

Competitive facility location is concerned with the favorable placement of facilities by competing
market players [16, 17]. In general, the users choose the facilities based on the nearest-neighbor
rule, and the optimization criteria is to maximize the cardinality or the area of the service zone
depending on whether the demand region is discrete or continuous, respectively. For a recent survey
on the applications of competitive facility location in economics and operations research, refer to
[13].
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In this paper, we study the discrete Voronoi game in R2 in the presence of existing facilities,
which is the game-theoretic variant of a competitive facility location problem for discrete demands
in R2. The game consists of two players P1 and P2, and a finite set U of users in the plane. The
players have already placed two sets of facilities F and S, respectively, in the plane. To begin with,
P1 places a new facility followed by P2 placing another facility, and the objective of both the players
is to maximize their own total payoffs, where the payoff of P1/P2 is the cardinality of the set of
points in U which are closer to a facility owned by P1/P2 than to every facility owned by P2/P1.
Apart from being the (m+ 1)-th round of discrete Voronoi game in R2, when |F | = |S| = m, this
problem is also of independent interest in competitive facility location: Imagine two competing
companies are providing service to a set of users in a city. Suppose both these companies already
have their respective service centers located in different parts of the city. If each of them now wishes
to open a new service center while attempting to maximize its total payoff, then the problem is an
instance of the Voronoi game described above.

In this paper, we develop algorithms and provide geometric characterizations for the optimal
strategies of the two players for the discrete Voronoi game in R2 in the presence of existing facilities.

1.1 Related Work The rich history of competitive facility location problems goes back to the
1929 seminal paper by Hotelling [20] that considers the competitive facility location problem where
the users are located uniformly on a line segment. Dehne et al. [12] studied a competitive facility
location problem for continuous demand regions, where the problem is to find a new point q amidst
a set of n existing points F such that the Voronoi region of q is maximized. They showed that
when the points in F are in convex position, the area function has only a single local maximum
inside the region where the set of Voronoi neighbors do not change. For the same problem, Cheong
et al. [10] gave a near-linear time algorithm that determines the location of the new optimal point
approximately, when the points in F are in general position. A variation of this problem, involving
maximization of the area of Voronoi regions of a set of points placed inside a circle, was considered
by Bhattacharya [7]. In the discrete user case, the analogous problem is to place a set of new
facilities amidst a set of existing ones such that the number of users served by the new facilities is
maximized [8, 9].

A game-theoretic analogue of such competitive problems for continuous demand regions is a
situation where two players alternately place two disjoint set of facilities in the demand region.
In this case, the payoff of player P1/P2 is the area of the region that is closer to the facilities
owned by P1/P2 than to the other player, and the player which finally owns the larger area is the
winner of the game. Ahn et al. [1] studied a one-dimensional Voronoi game, where the demand
region is a line segment. They showed that when the players place one facility each for m rounds,
the second player always has a winning strategy that guarantees a payoff of 1/2 + ε, with ε > 0.
However, the first player can force ε to be arbitrarily small. On the other hand, in the one-round
game, where the players alternately place m facilities simultaneously, the first player always has
a winning strategy. The one-round Voronoi game in R2 was studied by Cheong et al. [11], for
a square-shaped demand region. They proved that for any placement W of the first player, with
|W | = m, there is a placement B of the second player |B| = m such that the payoff of the second
player is at least 1/2 + α, where α > 0 is an absolute constant and m large enough. Fekete and
Meijer [18] studied the two-dimensional one-round game played on a rectangular demand region
with aspect ratio ρ. Recently, variants of these games when the demand region is a graph equipped
with the shortest-path distance [3], and the demand region is a simple polygon equipped with the
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geodesic distance [6], have been studied.
A natural variant of this game can be played on a graph equipped with the shortest-path

distance. As before, the players alternately chose nodes (facilities) from the graph, and all vertices
(customers) are then assigned to their closest facilities based on the graph distance. The payoff of
a player is the number of customers assigned to it. Dürr and Thang [15] showed that deciding the
existence of a Nash equilibrium for a given graph is NP-hard. Teramoto et al. [25] studied the same
problem in a restricted case: the game arena is an arbitrary graph, the first player occupies just one
vertex which is predetermined, and the second player occupies m vertices in any way. They proved
that even in this strongly case it is NP-hard to decide whether the second player has a winning
strategy. They also proved that for a given graph G and the number r of rounds, determining
whether the first player has a winning strategy on G is PSPACE-complete. Recently, Gerbner et
al. [19] derived bounds on the payoff of the players for many graphs, and showed that there are
graphs for which the second player gets almost all vertices.

Banik et al. [4] introduced the discrete Voronoi game in R, where the demand region is a
finite set of points on the line, and users avail the services of facilities closest to them, in Euclidean
distance. Given a set of users U ⊂ R, with |U | = n, player Player 1 (P1) chooses a set of m facilities,
following which Player 2 (P2) chooses another disjoint set of m facilities, and the objective of both
the players is to maximize their respective payoffs. The authors showed that if the sorted order of
the points in U along the line is known, then the optimal strategy of P2, given any placement of
facilities by P1, can be computed in O(n) time, and the optimal strategy of P1 can be computed in
O(nm−λm) time, where 0 < λm < 1, is a constant depending only on m. Recently, using connections
to ε-nets, Banik et al. [5] obtained approximation algorithms for a version of the discrete Voronoi
game in R2.

1.2 Summary of Results In this paper we initiate the study of the discrete Voronoi game when
the users are a finite set of points in R2, equipped with the L1, L2, or L∞ metrics. To this end, for
a finite set U of users and a set F of facilities, define for every f ∈ F ,

U(f,F) = {ua ∈ U : d(ua, f) < d(ua, h), ∀h ∈ F\{f}}, (1.1)

where the distance d(·, ·) is measured in the L1, L2, or L∞ metrics (to be denoted by d1(·, ·), d2(·, ·),
and d∞(·, ·), respectively).

Now, consider a set U of users in the plane and two players P1 and P2. Throughout the paper,
we assume that two facilities are not allowed to be placed in the same location. For any placement
of facilities A and B by P1 and P2, respectively, the payoff of P2, to be denoted by P2(A,B), is
defined as the cardinality of the set of points in U which are closer to a facility owned by P2 than
to every facility owned by P1, that is, P2(A,B) = |⋃f∈B U(f,A

⋃
B)|. Similarly, the payoff of P1,

P1(A,B) = |U | − P2(A,B). Note that this definition implies that if an user is equidistant from
a facility in A and another facility in B, then it contributes to the payoff of P1, that is, ties are
broken in favor of P1.

The problem studied in this paper can now be formally stated as follows:

One Round Discrete Voronoi Game in R2 in Presence of Existing Facilities: Let U be a set of n users
in the plane, and F and S be two sets of facilities owned by two competing players P1 and
P2, respectively. To begin with, P1 chooses a facility f1 following which P2 chooses another
facility f2 such that
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(a) maxf ′2∈R2 P2(F
⋃{f1}, S⋃{f ′2}) is attained at the point f2.

(b) maxf∈R2 ν(f) is attained at the point f1, where

ν(f) = n− max
f ′2∈R2

P2(F
⋃
{f}, S

⋃
{f2}). (1.2)

The quantity ν(f1) is called the optimal payoff of P1 and f1 is the optimal strategy of P1. Hereafter,
we shall refer to this game as Gn(F, S).1

When |F | = |S| = m, the optimal strategies of the game Gn(F, S) is the last round of the
(m + 1)-round discrete Voronoi game in R2. To the best of our knowledge, the Gn(F, S) game
has never been studied before in the generality described above. However, few special cases are
known. For example, when both F and S are empty, then it is a well-known fact that optimal
strategy of P1 in the Gn(F, S) game is at the halfspace median of U [22], which can be computed in
O(n log3 n) time [21]. However, when the sets F and S are non-empty the problem becomes much
more complicated, and answering questions regarding the strategy of P1 is often very difficult. In
this paper, we initiate the study of this game, for general placements of the existing facilities F
and S, and propose polynomial time algorithms for the optimal strategies of both the players and
provide geometric characterizations of the solution space.

f

f1

f2

s1

s2

u1 u2
u3

u4

u5

u6

u7

Figure 1: Optimal strategy of P2 in the L2 metric: The users served by F
⋃{f} correspond to the centers

of the red circles (the users u2, u3, u4, and u5). The centers of the blue circles (the users u1, u6, and u7)
correspond to the users served by S. The optimal strategy of P2 is to place a new facility in the region
intersected by the maximum number of red circles (the shaded region).

We begin with the optimal strategy of P2. It is easy to see that the optimal strategy of P2,
given any placement of P1, follows from the results of Cabello et al. [9]. Suppose we are given
a set of users U , existing facilities F and S, and any placement of a new facility f by P1. Let
U1 ⊆ U denote the subset of users that are served by P1, in presence of F , S, and f . For every
point u ∈ U1, consider the nearest-facility disk Cu centered at u and passing through the facility in
F
⋃{f} which is closest to u. Note that a new facility s placed by P2 will serve any user u ∈ U1

if and only if s ∈ Cu. If C = {Cu|u ∈ U1}, the optimal strategy for P2, given any placement f of
P1, is to place the new facility at a point where maximum number of disks in C overlap (Figure 1).

1A related problem was considered by Plastria [24], where the goal was to place a new facility among a set of
existing friendly facilities F and competitive facilities C, with the objective to maximize the total payoff of the friendly
facilities, while taking in to account the possibility that the competing facilities can raise their current quality in
order to gain back users.
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Therefore, in the L2 metric, this is the problem of finding the maximum depth in an arrangement
of n disks, and can be computed in O(n2) time [2]. In the L1/L∞ metric this becomes the problem
of finding the maximum depth in an arrangement of squares, which can be done in O(n log n) time
[2].

To obtain the optimal strategy of P1 each cell in the arrangement of the nearest-facility
squares/discs have to partitioned further into finer cells inside which the payoff of P1 remains
fixed. To this end, we have the following theorems:

Theorem 1.1. In the L1 and L∞ metrics the optimal strategy of P1 in the Gn(F, S) game can be
found in O(n5 log n) time.

Theorem 1.2. In the L2 metric the optimal strategy of P1 in the Gn(F, S) game can be found in
O(n8) time.

The above theorems achieve more than just the optimal strategy of P1. In fact, our algorithm
computes the locus of all points which attains the maximum payoff of P1. More generally, it
computes the level sets L (r) = {f ∈ R2 : ν(f) ≥ r}, with ν(f) as in (1.2). Note that if f1 is an
optimal location of P1, then L (ν(f1)) is the set of all points which maximizes the payoff of P1.

2 Preliminaries

Let U = {u1, u2, . . . , un} be a set of n users in the plane and F and S be the sets of existing facilities
of two competing players P1 and P2, respectively. The set of facilities F and S, will divide the set
of users U into two groups UF and US , where UF is the set of users served by the facilities placed
by P1 and US is the set of users served by the facilities placed by P2. Let f be any new placement
by P1. Denote by UFS(f), the set of users that are served by f , that is,

UFS(f) = {ua ∈ U : d(ua, f) ≤ d(ua, h), ∀h ∈ F
⋃
S)}, (2.1)

where the distance d(·, ·) is measured in the L1, L2, or L∞ metrics. The set of users that are
served by the set of facilities F and S after the placement of f , will be denoted by UF\f and US\f
respectively. More formally,

UF\f =
⋃
h∈F

U(h, F
⋃
S
⋃
{f}) and US\f =

⋃
h∈S

U(h, F
⋃
S
⋃
{f}). (2.2)

Hence, any facility f by P1 will divide the set of users into three disjoint sets UFS(f), UF\f
and US\f (see Figure 2(a)). Now, any new placement s by P2 can serve a subset of users from all
these three sets. Let Uf (s) ⊆ UFS(f) be the subset of users that s steals from f , that is,

Uf (s) = {ua ∈ UFS(f)|d(ua, s) < d(ua, f)}.

Similarly, define the set of users

UF\f (s) = {ua ∈ UF\f |d(ua, s) < d(ua, fk), ∀fk ∈ F} (2.3)

(see Figure 2(b)). This is the subset of users that s steals from F\{f}.
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UF\f US\f

UFS(f )

(a)

UF\f US\f

UFS(f )

Uf(s)

UF\f(s)

(b)

Figure 2: Distribution of users among facilities in F and S: (a) after placing f , (b) after placing both f
and s.

Observe for any placement f and s by P1 and P2 respectively, the payoff of P2 is

P2(F
⋃
{f}, S

⋃
{s}) = |US\f |+ |Uf (s)|+ |UF\f (s)|

Note that given any placement of the facility f , US\f does not depend on s. Thus, for any given
placement of facility f by P1, optimal placement by P2 corresponds to the point s ∈ R2 which
maximizes |Uf (s)| + |UF\f (s)|. For any placement of facility f by P1 define effective depth of f ,
denoted by δ(f), as

δ(f) = max
s∈R2

(|US\f |+ |Uf (s)|+ |UF\f (s)|) = |US\f |+ max
s∈R2

(|Uf (s)|+ |UF\f (s)|). (2.4)

The optimal strategy of P1 is to find the point f with the minimum effective depth.

3 Optimal Placement of P1 in the L1 metric

In this section we consider the optimal strategy of P1 in the L1 metric. The analogous problem in
the L∞ metric can be dealt with similarly by rotating the axes by 45◦.

f1

f2

f3

s1

s2
s3

u1

u2

u3

u4
u5

u6
u7

u8

λ

Figure 3: Distribution of users among the facilities F and S.

For any two points x, y ∈ R2, denote by d1(x, y) the L1 distance between x and y. For any user
ua ∈ U , let Ra be the open L1 ball centered at ua with radius d1(ua, h), where h ∈ F ⋃S is the
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facility closest to ua (in L1 distance) among the set of facilities F
⋃
S. Note that the boundary of

Ra is a square centered at ua and diagonals coinciding with the x-axis and y-axis and one of the
sides touching h. Let RFS = {Ra|ua ∈ U} be the collection of these nearest-facility squares, which
will tessellate R2 into a set of regions (see Figure 3). Denote this tessellation by T (F, S).

For each cell λ in this tessellation T (F, S), and any placement of a facility f by P1 in that
cell, the sets US\f , UFS(f) and UF\f remain unchanged. For notational brevity, for any fixed cell
λ ∈ T (F, S) and for all points f ∈ λ, the three sets US\f , UFS(f) and UF\f will be denoted by
US\λ, UFS(λ) and UF\λ, respectively. For example, in Figure 3 for the cell λ,

US\λ = {u5, u8}, UFS(λ) = {u1, u2, u4}, UF\λ = {u3, u6, u7}.

Our goal is to tessellate λ further such that for all points in each finer the effective depth remains
fixed. To this end, for any placement of facility x by P1 and for any user ua, let Ra(x) be the open
square centered at ua and passing through the facility closest (in L1 distance) to ua from the set of
facilities F

⋃
S
⋃{x}. Recall that δ(x) denotes the effective depth of x (2.4). The following lemma

shows that the effective depth of a point x ∈ R2 can be determined by the intersection properties
of pairwise nearest-facility squares.

Lemma 3.1. If points x, y belong to the same cell λ of T (F, S) with δ(x) 6= δ(y), then there exist
two users ua, ub ∈ UFS(λ)

⋃
UF\λ such that Ra(x)

⋂
Rb(x) 6= ∅ and Ra(y)

⋂
Rb(y) = ∅ or vice

versa.

Proof. For any placement x in the cell λ of T (F, S), recall that δ(x) is maximum depth of the
collection R(x) := {Ra(x) : ua ∈ UFS(λ)

⋃
UF\λ} of squares. Let P(x) be the subset of R(x) which

attains this maximum depth, that is, the largest subset of R(x) for which
⋂
R∈P(x)R 6= ∅.

Now, suppose there are two points x, y ∈ λ such that, δ(x) 6= δ(y), and for all ua, ub ∈
UFS(λ)

⋃
UF\λ, Ra(x)

⋂
Rb(x) 6= ∅ if and only if Ra(y)

⋂
Rb(y) 6= ∅. Without loss of general-

ity, assume δ(x) > δ(y).
By definition, for each pair Ra(x), Rb(x) ∈ P(x), Ra(x)

⋂
Rb(x) 6= ∅. Therefore, by assumption,

Ra(y)
⋂
Rb(y) 6= ∅, for each pair Ra(y), Rb(y) ∈ P(y) := {Ra(y) : Ra(x) ∈ P(x)}. Therefore, by

Helly’s theorem for axis-parallel squares [23, Corollary 1.5],
⋂
R∈P(y)R 6= ∅, which implies that

δ(y) ≥ |P(y)| = |P(x)| = δ(x),

which is a contradiction. This completes the proof of the result.

In light of this lemma we define, for each pair of users ua, ub ∈ U , and any placement of facility
x ∈ R2 by P1, the indicator variable,

Tab(x) =

{
1 if Ra(x)

⋂
Rb(x) 6= ∅

0 otherwise

Let T (x) = ((Tab(x)))1≤a,b≤|U | be the 2 dimensional array of size |U |×|U | where each entry Tab(x) is
defined as above. From Lemma 3.1 and the above definition, the following observation is immediate.

Observation 3.1. If the points x, y belong to the same cell of T (F, S) and the two arrays T (x) =
T (y), in every coordinate, then δ(x) = δ(y).
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Hence, the goal is to tessellate cells of T (F, S) into finer set of cells such that for any two points
x and y in the same cell, T (x) = T (y). Observation 3.1 would then imply that for all points in a
finer cell, the effective depth remains constant. Hence, by checking each cell once we can find out
the point with minimum effective depth. To this end, let ua, ub ∈ UFS(λ)

⋃
UF\λ, and consider

T (ua, ub) =
{
f ∈ R2 : Ra(f)

⋂
Rb(f) = ∅

}
. (3.1)

Now, denote by f(ua) the facility in F
⋃{f} closest to ua ∈ UFS(λ)

⋃
UF\λ. Then

T (ua, ub) = T1(ua, ub)
⋃
T2(ua, ub)

⋃
T2(ub, ua)

⋃
T3(ua, ub),

where

T1(ua, ub) =
{
f ∈ R2 : Ra(f)

⋂
Rb(f) = ∅ and f(ua), f(ub) ∈ F

}
,

T2(ua, ub) =
{
f ∈ R2 : Ra(f)

⋂
Rb(f) = ∅ and f(ua) ∈ F, f(ub) = f

}
,

T2(ub, ua) =
{
f ∈ R2 : Ra(f)

⋂
Rb(f) = ∅ and f(ub) ∈ F, f(ua) = f

}
,

T3(ua, ub) =
{
f ∈ R2 : Ra(f)

⋂
Rb(f) = ∅ and f(ua) = f(ub) = f

}
. (3.2)

fk

ub

Rb

d1(ua, Rb)

ua

(a)

ua

ub

f

(b)

Figure 4: (a) The shaded region denotes the set T2(ua, ub). (b) The shaded region denotes the set T3(ua, ub).

Lemma 3.2. For every pair of users ua, ub ∈ UFS(λ)
⋃
UF\λ, the sets T1(ua, ub), T2(ua, ub),

T2(ub, ua), and T3(ua, ub) can be found in O(1) time.

Proof. Recall that for ua ∈ U , the square Ra is the open L1 ball centered at ua with radius d1(ua, h),
where h ∈ F ⋃S is the facility closest to ua (in L1 distance) among the set of facilities F

⋃
S. Then

it is easy to see that T1(ua, ub) = (Ra
⋃
Rb)

c.
To compute T2(ua, ub), without loss of generality, assume that f(ub) = fk ∈ F . Let the minimum

L1 distance between ua and Rb be d := d1(ua, Rb) (see Figure 4(a)). Denote by B1(ua, d) the
closed L1 ball with center at ua and distance d. Observe that for any new facility f ∈ B1(ua, d),
Ra(f)

⋂
Rb(f) = ∅, which implies T2(ua, ub) = B1(ua, d) ∩ Rb\Ra. The set T2(ub, ua) can be

obtained similarly. Both these sets can be computed in O(1) time.
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Next, we consider the set T3(ua, ub). Consider the four lines making 45 ◦ and 135 ◦ angle with
the x-axis and passing through the points ua and ub (see Figure 4(b)). These four lines will divide
the plane into nine regions, one bounded and the other eight are unbounded. Observe that except
for the bounded region, for any facility f placed in one of the unbounded regions, Ra(f)

⋂
Rb(f)

will either contain ua or ub, that is, Ra(f)
⋂
Rb(f) 6= ∅. On the other hand, for any point f in the

bounded region, the closures of Ra(f) and Rb(f) will share a common edge, but their interiors will
not intersect. Therefore, T3(ua, ub) is the shaded region in Figure 4(b) intersected with Ra

⋂
Rb.

This can be computed in O(1) time as well.

Completing the Proof of Theorem 1.1: Consider the arrangement in R2 generated by the
collection of sets {

T (ua, ub) : ua, ub ∈ UFS(λ)
⋃
UF\λ and λ ∈ T (F, S)

}
. (3.3)

Note that this arrangement consists of O(n2) rectangles which can be computed in O(n2) time by
Lemma 3.2 above. These O(n2) rectangles intersect to generate O(n4) cells, and by Observation
3.1, all points in a particular cell have the same the effective depth. Note that the effective depth
of a cell can be computed in O(n log n) time, by finding the maximum depth of the arrangement of
squares {Ra(f) : ua ∈ UFS(λ)

⋃
UF\λ}, for any point f in the cell [9, Theorem 8]. Therefore, the

optimal strategy of P1 in the L1 metric can be computed in O(n5 log n) time. Note that since we
search over all cells of the tesselation (3.3), the level sets L(r) = {f ∈ R2 : ν(f) ≥ r}, where ν(f)
is the payoff P1 when placed at the point f ∈ R2 (1.2), can be computed in same running time.

4 Optimal Placement of P1 in the L2 metric

For ua ∈ U , denote by Ca the disc centered at ua and passing through the facility closest to ua
among the set of facilities F

⋃
S. Let CFS = {Ca : ua ∈ U} be the collection of all such discs, which

will tessellate R2 into a set of regions (see Figure 1). As in the case of the L1 metric, denote this
tessellation by T (F, S).

For any placement of facility x ∈ R2 by P1 and any user ua ∈ U , let Ca(x) be the open disc
centered at ua and passing through the facility closest to ua among the facilities in F

⋃
S
⋃{x}.

As before, for any fixed cell λ ∈ T (F, S) and for all points f ∈ λ, the three sets US\f , UFS(f) and
UF\f will be denoted by US\λ, UFS(λ) and UF\λ, respectively. Then, similar to Lemma 3.1, we
have the following:

Lemma 4.1. If the points x, y belong to some cell λ of T (F, S) with δ(x) 6= δ(y), then there
exist three users ua, ub, uc ∈ UFS(λ)

⋃
UF\λ such that either Ca(x)

⋂
Cb(x)

⋂
Cc(x) 6= ∅ and

Ca(y)
⋂
Cb(y)

⋂
Cc(y) = ∅ or vice versa.

Proof. As in Lemma 3.1, we shall prove the result by contradiction. To this end, assume δ(x) >
δ(y), and for every three users ua, ub, uc ∈ UFS(λ)

⋃
UF\λ, if Ca(x)

⋂
Cb(x)

⋂
Cc(x) 6= ∅ then

Ca(y)
⋂
Cb(y)

⋂
Cc(y) 6= ∅.

For any placement x in the cell λ, δ(x) is maximum depth of the collection C(x) := {Ca(x) :
ua ∈ UFS(λ)

⋃
UF\λ} of squares. Let D(x) be the subset of C(x) which attains this maxi-

mum depth, that is, the largest subset of C(x) for which
⋂
C∈D(x)C 6= ∅. By definition, for

each triple Ca(x), Cb(x), Cc(x) ∈ D(x), Ca(x)
⋂
Cb(x)

⋂
Cc(x) 6= ∅. Therefore, by assumption,
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Ca(y)
⋂
Cb(y)

⋂
Cc(y) 6= ∅, for each triple Ca(y), Cb(y), Cb(c) ∈ D(y) := {Ca(y) : Ca(x) ∈ D(x)}.

Therefore, by the Helly’s theorem for discs [22, Theorem 1.3.2],
⋂
C∈D(y)C 6= ∅, which implies that

δ(y) ≥ |D(y)| = |D(x)| = δ(x),

which is a contradiction. This completes the proof of the result.

In light of this lemma, we define, for each triplet of users ua, ub, uc ∈ U , and any placement of
facility x ∈ R2 by P1, the indicator variable,

Tabc(x) =

{
1 if Ca(x)

⋂
Cb(x)

⋂
Cc(x) 6= ∅

0 otherwise

Let T (x) = ((Tabc(x)))1≤a,b,c≤|U | be the 3-dimensional array with cardinality |U | × |U | × |U |,
where each cell Tabc(x) is defined as above. Then by Lemma 4.1, the following observation is
immediate.

Observation 4.1. If the points x, y belong to the same cell of T (F, S) and the two arrays T (x) =
T (y) in every coordinate, then δ(x) = δ(y).

As in Section 3, our goal is to tessellate T (F, S) in to finer set of cells such that for any two
points x and y in the same cell, T (x) = T (y). As in (3.1), define, for ua, ub, uc ∈ U ,

T (ua, ub, uc) =
{
x ∈ R2 : Ca(x)

⋂
Cb(x)

⋂
Cc(x) = ∅

}
. (4.1)

Definition 4.1. Given any placement x by P1 and a user ua ∈ UFS(x)
⋃
UF\x, the disc C(x) is

called an old disc if it is centered at ua and passes through some facility fj ∈ F , where fj is the
facility closest to ua among the set of facilities F

⋃{x}, that is, ua ∈ UF\x (recall (2.2)). The disc
C(x) is called a new disc if it is centered at ua and passes through x, that is u ∈ UFS(x) (recall
(2.1)).

Let ua, ub, uc ∈ UFS(λ)
⋃
UF\λ, for some cell λ of T (F, S). For S ⊆ {a, b, c}, define the following

sets:

TS(ua, ub, uc) = {x ∈ T (ua, ub, uc) : Cs(x) is new, if s ∈ S, and Cs(x) is old, if s /∈ S},

where new/old are as defined in Definition 4.1. Note that

T (ua, ub, uc) =
⋃

S⊆{a,b,c}

TS(ua, ub, uc). (4.2)

Therefore, to compute the set T (ua, ub, uc), it suffices to understand the sets TS(ua, ub, uc), for
S ⊆ {a, b, c}. To this end, we have the following lemma:

Lemma 4.2. Let ua, ub, uc ∈ UFS(λ)
⋃
UF\λ, for some cell λ of T (F, S). Then

(a) T∅(ua, ub, uc) = (Ca
⋃
Cb
⋃
Cc)

c.

(b) T{a,b,c}(ua, ub, uc) = ∆(ua, ub, uc)
⋂

(Ca
⋂
Cb
⋂
Cc), where ∆(ua, ub, uc) is the triangle formed

by ua, ub, and uc.
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(c) T{c}(ua, ub, uc) = D{c}(a, b)
⋂
Cc\ (Ca

⋃
Cb), where D{c}(a, b) is the closed disc centered at uc

and passing through the point in Ca
⋂
Cb closest to uc in the L2 metric. The sets T{a}(ua, ub, uc),

and T{b}(ua, ub, uc) are defined similarly.

Proof. The sets T∅(ua, ub, uc) and T{a,b,c}(ua, ub, uc) can be derived easily from the definitions.
To characterize T{c}(ua, ub, uc), let p0 be the point in Ca

⋂
Cb which is closest to uc in the L2

metric. Note thatD{c}(a, b) is the closed disk centered at uc and passing through p0. Note that if x ∈
D{c}(a, b)∩Cc\ (Ca

⋃
Cb), then Ca(x)

⋂
Cb(x)

⋂
Cc(x) = ∅, and if x /∈

(
D{c}(a, b)

)c∩Cc\ (Ca
⋃
Cb),

then p0 ∈ Ca(x)
⋂
Cb(x)

⋂
Cc(x). This implies, T{c}(ua, ub, uc) = D{c}(a, b)

⋂
Cc\ (Ca

⋃
Cb).

The above result shows that the sets TS(ua, ub, uc), for |S| 6= 2, can be easily computed in
O(1) time. Thus, it remains to compute TS(ua, ub, uc), for |S| = 2. In this case, the sets are more
complicated, and it is difficult to explicitly describe the structure of these sets geometrically. The
following lemma shows that these sets can also be computed in O(1) time, and through the proof
of this lemma the precise geometry of these sets can be described.

Lemma 4.3. Let ua, ub, uc ∈ UFS(λ)
⋃
UF\λ, for some cell λ of T (F, S). Then the boundary of

T{a,b}(ua, ub, uc) is made up of O(1) circular arcs, and can be computed in O(1) time.

4.1 Proof of Lemma 4.3: For a set A ⊆ R2 denote by A and ∂A, the closure and the boundary

of A, respectively. For example, Ca(x) is the closed disc centered at ua and passing through
the facility closest to ua among the facilities in F

⋃
S
⋃{x}. We begin with the following simple

observation:

Observation 4.2. Let ua, ub, uc ∈ UFS(λ)
⋃
UF\λ, for some cell λ of T (F, S). Then

∂T{a,b}(ua, ub, uc) =
{
p ∈ (Ca

⋂
Cb)\Cc :

∣∣∣Ca(p)⋂Cb(p)
⋂
Cc(p)

∣∣∣ = 1
}
.

Moreover, the set ∂T{a,b}(ua, ub, uc) is symmetric about the line joining ua, ub, that is, if p ∈
∂T{a,b}(ua, ub, uc) then its reflection about the line joining ua, ub p

⊥ also belongs to ∂T{a,b}(ua, ub, uc).

Proof. Suppose that p ∈ (Ca
⋂
Cb)\Cc is such that Ca(p)

⋂
Cb(p)

⋂
Cc(p) = {q}, where q is

a point on the boundary of Ca(p)
⋂
Cb(p). Next, note that for any point x in the interior of

Ca(p)
⋂
Cb(p), Ca(x)

⋂
Cb(x) is a proper subset of Ca(p)

⋂
Cb(p), and Ca(x)

⋂
Cb(x)

⋂
Cc(x) = ∅,

since Cc(x) = Cc is an old circle. Therefore, every point in the interior of Ca(p)
⋂
Cb(p) be-

longs to T{a,b}(ua, ub, uc). Similarly, if x lies outside Ca(p)
⋃
Cb(p), then q is in the interior of

Ca(x)
⋂
Cb(x), and Ca(x)

⋂
Cb(x)

⋂
Cc(x) 6= ∅. Therefore, every open ball centered at p intersects

both T{a,b}(ua, ub, uc) and the complement T{a,b}(ua, ub, uc)c, that is, p ∈ ∂T{a,b}(ua, ub, uc).
Similarly, it can be shown that if Ca(p)

⋂
Cb(p)

⋂
Cc(p) contains zero points or more than 1

point, then the point p does not belong to the boundary of T{a,b}(ua, ub, uc).
Finally, to prove the symmetry, observe that for any point p ∈ (Ca

⋃
Cb) \Cc, the bound-

aries of the discs Ca(p) and Cb(p) intersect at points p and p⊥. Hence, if for any point p,

Ca(p)
⋂
Cb(p)

⋂
Cc(p) is a singleton set then Ca(p⊥)

⋂
Cb(p⊥)

⋂
Cc(p⊥) is also singleton, since

Cc(p) = Cc(p
⊥) = Cc is an old circle. This completes the proof.
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Note that for p ∈ T{a,b}(ua, ub, uc), the circle Cc(p) is an old circle, which does not depend on
p. Hereafter, we will drop the dependence on p and denote this circle by Cc. Now, define sets

Wa :=
{
p ∈ ∂T{a,b}(ua, ub, uc) :

∣∣∣Cb(p)⋂Cc

∣∣∣ = 1
}
,

Wb :=
{
p ∈ ∂T{a,b}(ua, ub, uc) :

∣∣∣Ca(p)⋂Cc

∣∣∣ = 1
}
,

Wc :=
{
p ∈ ∂T{a,b}(ua, ub, uc) :

∣∣∣Cb(p)⋂Cb(p)
∣∣∣ = 1

}
. (4.3)

The sets Wa,Wb,Wc can obtained using the above observation:

ua ub

pa
pb

Cc

Qa

Qb

Wa Wb

(a)

ua ub

Cc

pa
pb

(b)

Figure 5: (a) The sets Wa and Wb, and (b) the set Wc, as defined in (4.3).

Wa/Wb: Let the point closest to ua in Cc be pa, and let Qa and Qb be the circles with centers at
ua and ub and radii d2(ua, pa)) and d2(ua, pb)), respectively. Then for all points p ∈ Qa\Qb
Ca(p)

⋂
Cb(p)

⋂
Cc = {pa}, that is, Wa = (Qa\Qb)

⋂
(Ca

⋂
Cb)\Cc (blue curve in Figure

5(a)). The set Wb can be obtained similarly (red curve in Figure 5(a)).

Wc: In this case, it is easy to see that Wc = [ua, ub]
⋂
∂Cc. These are the two red points in Figure

5(b). This set is empty in Figure 5(a).

Finally, let

W0 := ∂T{a,b}(ua, ub, uc)\
(
Wa

⋃
Wb

⋃
Wc

)
. (4.4)

This is the set of all points p such that Ca(p)
⋂
Cb(p)

⋂
Cc is a singleton set, but the intersection

of no two of them is a singleton.

W0: Recall that pa is the point closest to ua in Cc. Let pb be the point closest to ub in Cc. If the line
joining ua, ub does intersect Cc, then W0 is the arc between pa and pb (arc colored in green in
Figure 5(a)) and its reflection on the line joining ua and ub (see Observation 4.2), intersected
with (Ca

⋂
Cb)\Cc. Otherwise, ua, ub does intersect Cc, and the segment of the arc between

pa and pb above the line joining ua, ub (green arcs in Figure 5(b)) and its reflection on the
line joining ua and ub gives the set W0, when intersected with (Ca

⋂
Cb)\Cc.
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The sets Wa, Wb, Wc, and W0 together make up the boundary of the set T{a,b}(ua, ub, uc).
Putting these together, we get the shapes in Figure 6, depending on whether or not the line
joining ua and ub intersects the disc Cc. The set T{a,b}(ua, ub, uc) can be obtained when the
shapes (the regions bounded by the blue curves) in Figure 6 are intersected with Ca

⋂
Cb\Cc.

This shows that the boundary of T{a,b}(ua, ub, uc) is made up of O(1) circular-arcs. Therefore, the
set T{a,b}(ua, ub, uc) can be computed in O(1) time, which completes the proof of Lemma 4.3.

ua ub

pa

Cc

C⊥
c

p⊥a

pb

p⊥b

(a)

ua

pb

C⊥
c

Cc

p⊥b
ub

pa

p⊥a

(b)

Figure 6: The set T{a,b}(ua, ub, uc) (a) when the line joining ua and ub does not intersect Cc, and (b) when
line joining ua and ub intersects Cc.

4.2 Completing the Proof of Theorem 1.2: Consider the arrangement in R2 generated by
the collection of sets

{
T (ua, ub, uc) : ua, ub, uc ∈ UFS(λ)

⋃
UF\λ and λ ∈ T (F, S)

}
. Lemmas 4.2

and 4.3 show that the arrangement is made up of O(n3) discs, circular arcs, and line segments,
which can be computed in O(n3) time. These intersect to generate O(n6) cells in T (F, S), and by
Observation 4.1, all points in a particular cell have the same effective depth. Note that effective
depth of a cell can be computed in O(n2) time, by finding the maximum depth of the arrangement
{Ca(x) : ua ∈ UFS(λ)

⋃
UF\λ}, for any point x in the cell [9, Theorem 1]. Therefore, the optimal

strategy of P1 in the L2 metric can be computed in O(n8) time. The corresponding level sets can
be computed in the same running time.
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[9] Sergio Cabello, José Miguel Dı́az-Báñez, Stefan Langerman, Carlos Seara, and Inmaculada Ventura.
Facility location problems in the plane based on reverse nearest neighbor queries. European Journal of
Operational Research, 202(1):99–106, 2010.

[10] Otfried Cheong, Alon Efrat, and Sariel Har-Peled. Finding a guard that sees most and a shop that sells
most. Discrete & Computational Geometry, 37(4):545–563, 2007.

[11] Otfried Cheong, Sariel Har-Peled, Nathan Linial, and Jiŕı Matousek. The one-round Voronoi game.
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