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Abstract—We study the problem of stabilizing a linear system
over a wireless network using a simple in-network computation
method. Specifically, we study an architecture called the “Wire-
less Control Network” (WCN), where each wireless node main-
tains a state, and periodically updates it as a linear combination
of neighboring plant outputs and node states. This architecture
has previously been shown to have low computational overhead
and beneficial scheduling and compositionality properties. In
this paper we characterize fundamental topological conditions
to allow stabilization using such a scheme. To achieve this, we
exploit the fact that the WCN scheme causes the network to act
as a linear dynamical system, and analyze the coupling between
the plant’s dynamics and the dynamics of the network. We show
that stabilizing control inputs can be computed in-network if the
vertex connectivity of the network is larger than the geometric
multiplicity of any unstable eigenvalue of the plant. This con-
dition is analogous to the typical min-cut condition required in
classical information dissemination problems. Furthermore, we
specify equivalent topological conditions for stabilization over a
wired (or point-to-point) network that employs network coding
in a traditional way – as a communication mechanism between
the plant’s sensors and decentralized controllers at the actuators.

Index Terms—Networked control systems, decentralized con-
trol, wireless sensor networks, structured systems, in-network
control, network coding, cooperative control

I. INTRODUCTION

W ITH recent revolutions in sensor and actuator tech-
nologies, availability of powerful but inexpensive em-

bedded computing and introduction of new multi-hop wireless
network standards for industrial automation, control over wire-
less networks is becoming a disruptive technology. Traditional
wired interconnections between the plant sensors, controllers
and actuators can be replaced by wireless multi-hop mesh
networks, yielding cost and space savings for the plant op-
erator. These improvements have also enabled more efficient
and robust means of communication, and the opportunity to
move the computation of the control law within the network.
Despite this tremendous promise, the introduction of wire-

less communications into the feedback loop presents several
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challenges for real-time feedback control. For instance, delays
may be introduced if a multi-hop wireless network is used
to route information between the plant sensors, actuators and
controllers. Furthermore, transmissions in the network must be
scheduled carefully to avoid packet dropouts due to collisions
between neighboring nodes. These issues can be detrimental
to the goal of maintaining stability of the closed loop system
if not explicitly accounted for, and substantial research has
been devoted to understanding the performance limitations in
such settings (e.g., [2], [3], [4]). These works typically adopt
the convention of having one or more dedicated controllers
or state estimators located in the system, and study the
stability of the closed loop system assuming that the sensor-
estimator and/or controller-actuator communication channels
are unreliable (dropping packets with a certain probability, for
example). For this standard architecture, shown in Fig. 1(a),
the use of dedicated controllers imposes a routing requirement
along one or more fixed paths through the network, along with
strict end-to-end delay constraints to ensure stability [5].
Routing couples the communication, computation and con-

trol problems [6]. This introduces additional problems when
the network is shared among control loops (i.e., a node may
be involved in the feedback path for many plants), and new
control loops are added at run-time. With standard architec-
tures for control over wireless networks, it may be necessary to
completely recompute the control algorithms, communication
schedules, and computation schedules every time a new loop is
added to the system. To avoid this complexity, it is necessary
to derive a composable control scheme, where control loops
can be easily added and a simple compositional analysis can
be performed at run-time to ensure that a new loop does not
affect the functioning of existing control loops. In order to do
so, one requires an alternative to the routing-based approaches
currently employed for control over wireless networks.

A. The Wireless Control Network

Motivated by the above issues, in a recent paper [7] we
asked the following question: is it possible to do away with
the standard “sensor → channel → controller/estimator →
channel → actuator” architecture (Fig. 1(a)) and have the
computation of the control law be performed in-network? In
other words, is it possible to formulate a distributed algorithm
for the (resource constrained) wireless nodes to follow so that
the network itself acts as a controller for the plant?
To answer this question, we considered a setup where

a network of wireless nodes is deployed in the proximity
of a plant, with some nodes having access to the sensor
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Fig. 1. (a) Standard architectures used for control over wireless network; Red links/nodes - routing data from the plant’s sensors to the controller; Blue
links/nodes - routing data from the controller to the actuators; (b) A multi-hop Wireless Control Network, where the network acts as a distributed controller.

measurements (outputs) of the plant, and some nodes placed
within the listening range of the plant’s actuators (as shown in
Fig. 1(b)). To model resource constrained nodes, we assumed
that each node is capable of maintaining only a limited internal
state. We then presented a distributed algorithm in the form of
a linear iterative strategy for each node to follow, where each
node periodically updates its state to be a linear combination
of the states of the nodes in its immediate neighborhood. The
actuators of the plant also apply linear combinations of the
states of the nodes in their neighborhood. Given a linear plant
model and the network’s topology, we devised a design-time
procedure to derive the coefficients of the linear combinations
for each node and actuator to apply in order to stabilize
the plant. We showed that our method could also handle a
sufficiently low rate of packet dropouts in the network to
maintain mean square stability. We referred to this paradigm,
where the computation of the control law is done in-network
(i.e., in a distributed fashion by the wireless nodes), as a
Wireless Control Network (WCN). The scheme has several
benefits, including easy scheduling of wireless transmissions,
compositional design, and the ability to handle geographically
separated sensors and actuators. We illustrated the use of the
WCN in industrial process control applications in [8].
While our previous work has established the feasibility of

in-network computation for control, and provided numerical
algorithms to obtain appropriate control laws, an important
question remains unanswered: What fundamental topological
conditions should the network satisfy to be able to stabilize a
given plant? This question is the focus of this paper.

B. Topological Conditions For Stabilization Versus Informa-
tion Transmission

The simple linear updates performed by each node in
the WCN resembles the linear iterative algorithms used for
distributed function calculation and consensus (e.g., [9], [10],
[11]) and network coding (e.g., [12], [13], [14]). The key
difference pertains to the objective of the network. Specifically,
the goal of the WCN is not to get all nodes in the network
to agree on a certain value, or to allow sink nodes to recover
values injected into the network by source nodes. Instead, the
objective is to provide a simple distributed scheme (suitable
for implementation on resource constrained nodes), such that
the resulting network dynamics facilitate the stabilization of
the attached physical system.

Fig. 2. A simple example of a wireless network between the plant’s sensors
s1:p and actuators a1:m .

To illustrate the difference in the objectives, consider a plant
with p sensors (measuring plant outputs), and m actuators
(that apply control inputs to the plant to stabilize it), together
with the network shown in Fig. 2. Node v1 has access to the
measurements provided by the p sensors at each time-step (or
sampling period), and the actuators apply control inputs based
upon information received from node v2. Viewing the network
in its traditional role as a transmission medium, the values
from the p sensors (sources) would be expected to make their
way to the actuators within one time-step. Each source injects
one unit1 of information per time-step into the network, and so
the network needs a capacity of p units per time-step to deliver
all of this information to the actuators. If the capacity of the
edge (v1, v2) is only 1, the Min-Cut Max-Flow theorem [15]
indicates that this objective is not achievable in this network,
even without considering delay on any of the links.
However, the fact that this network is not capable of

delivering all of the source information to all of the sinks
at each time-step is not necessarily a cause for concern when
the main objective is to stabilize the system. Specifically, the
actuators do not necessarily need all of the source information,
and the information received by the actuators at each time-
step does not necessarily need to be a direct function of
the information injected into the network at that time-step.
Instead, the network only needs to supply the actuators with
an appropriate set of inputs to apply at each time-step (perhaps
after some additional computation at the actuators), and the
fidelity of these inputs can be continually improved by the
network based on the values received from the plant sensors.
Given this (potentially relaxed) objective, what conditions
should the network satisfy?

1In this paper, we consider the case of real-valued measurements, but in
practice, the measurements and computations will be quantized to some finite
precision.
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C. Contributions of this Paper

We answer the questions posed above by characterizing
network topologies that allow stabilization of a given linear
dynamical system. We consider the WCN scheme, which
causes the network to acts as a linear dynamical system,
and study the coupling between the dynamics of the physical
plant and the dynamics of the network. Our analysis draws
upon ideas from linear system theory, decentralized control
theory [16], [17], [18], [19], [20], [21], [22], and structured
system theory [23], [24], which allows for the use of graph-
theoretic tools to analyze dynamical systems. We show that for
stabilizable and detectable plants, if the wireless network pro-
vides a sufficient number of vertex disjoint paths from certain
plant sensors to certain plant actuators, then for the specific
topology, there exists a WCN configuration (i.e., coefficients
used in the linear iterative strategy) for which the closed-loop
system is stable.
While this is reminiscent of the classical min-cut max-

flow condition for information transmission, we prove that
the size of the minimum network cut required to stabilize the
network is not determined by the number of source nodes, as
in typical information dissemination schemes, but rather by
the maximal geometric multiplicity of all unstable eigenvalues
of the plant. This reveals the interdependence between the
dynamics of the physical process and the network topology.
We also provide generic network conditions that are sufficient
to stabilize almost any plant with a given structure – in the
context of the example shown in Fig. 2, we show that a class
of generic plants satisfying very loose structural conditions
can be stabilized with this simple network.
Finally, we use ideas from the algebraic approach to net-

work coding (e.g., [12], [25]) to specify equivalent topological
conditions for the case of control over a wired (point-to-point)
network, where network coding is used in its traditional role
as a transmission mechanism between the plant’s sensors and
controllers located at the actuators.

D. Organization of the Paper

The rest of the paper is organized as follows. Section II
provides our notation and a basic overview of linear systems.
In Section III, we describe the WCN paradigm, along with its
mathematical model. Section IV introduces concepts from de-
centralized control theory and structured system theory, which
are used to derive topological conditions for stabilization of
a generic class of linear systems with the WCN (Section V).
In Section VI, we describe how to design a network with the
minimal connectivity for stabilization. Section VII provides
topological conditions for a numerically specified plant; this
plant might fall within the measure zero set that is not covered
by our analysis of generic systems. In Section VIII, we trans-
late our results to the case when network coding over networks
with point-to-point links is used to communicate information
from sensors to controllers (placed at the actuators). Finally,
we summarize our work in Section IX.

II. NOTATION AND TERMINOLOGY

We use ei to denote the column vector (of appropriate size)
with a 1 in its i-th position and 0’s elsewhere. With IN we

denote the N×N identity matrix, while I denotes the identity
matrix of appropriate dimensions. In addition,A′ indicates the
transpose of matrix A. For a square matrix Q, Λ(Q) denotes
the set of eigenvalues of Q. The cardinality of a set S is
denoted by |S|, and for two sets S and R, we use S \ R to
denote the set of elements in S that are not in R. Finally, we
denote the setsM = {1, 2, ...,m} and P = {1, 2, ..., p}.

A. Linear Systems

Consider a system Σ of the form:

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k],
(1)

where x[k] ∈ R
n is the system state, u[k] ∈ R

m is the
input, and y[k] ∈ R

p is the output, and the matrices are of
appropriate dimensions. For convenience, we will denote the
system as Σ = (A,B,C).
The system is said to be stable if x[k] → 0 for any initial

state x[0] when u[k] = 0 for all k. The system is said to
be controllable if for any initial state x[0] and for any final
state xf , there exists an input sequence of finite length that
transfers the state from x[0] to xf . The system is said to be
stabilizable if for any initial state x[0], there is a sequence
of inputs that causes x[k] → 0 as k → ∞. The system is
observable if for any unknown initial state x[0], there exists
a finite integer k1 > 0 such that the knowledge of the input
and output sequences u[k] and y[k] from k = 0 to k1 suffices
to uniquely determine x[0]. A generalization of observability
is the concept of detectability, which says that y[0] = 0 and
u[k] = 0 for all k implies that x[k]→ 0 as k →∞.

B. Structured Linear Systems

A linear system of the form (1) is said to be structured if
each entry in the system matrices is either a fixed zero or an
independent free parameter [23]. A structured system Σ can
be represented via a directed graph GΣ = {VΣ, EΣ}, which
is sometimes referred to as a structural graph. The vertex set
is given by VΣ = {X ∪ U ∪ Y} where X = {x1, ..., xn}
denotes the set of state vertices, while U = {u1, ..., um} and
Y = {y1, ..., yp} denote the sets of input and output vertices,
respectively. The edge set is given by EΣ = EA ∪ EB ∪ EC
with EA = {(xi, xj)|aji �= 0}, EB = {(ui, xj)|bji �= 0},
EC = {(xi, yj)|cji �= 0}.
For a structured system, a simple path is called a U-rooted

path if the path has its starting vertex in U. A number of
mutually disjoint U-rooted paths is called a U-rooted path
family. Similarly, a simple path that has its end vertex in Y is
called a Y-topped path, while a number of mutually disjoint
Y-topped paths is called a Y-topped path family.
We will be interested in properties of a structured system

that can be inferred purely from the zero/nonzero structure
of the system matrices. These properties will hold almost
everywhere (i.e., the set of parameters for which the property
does not hold has Lebesgue measure zero), and thus they are
called generic properties [23]. Finally, two systems will be
called structurally equivalent if they have the same number
of states, inputs and outputs, and their system matrices have
zeros in the same locations.
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III. THE WIRELESS CONTROL NETWORK

We consider the system presented in Fig. 1(b), where a
wireless network is placed in the proximity of a system Σ =
(A,B,C) with state x ∈ R

n, input u ∈ R
m and output

y ∈ R
p. The output vector y[k] contains measurements of the

plant state vector x[k] provided by the sensors from the set
S = {s1, s2, . . . , sp}, while the input vector u[k] corresponds
to the signals applied to the plant by actuators from the set
A = {a1, a2, . . . , am}.
The wireless network is described by a graph G = {V , E},

where V = {v1, v2, . . . , vN} is the set of N nodes and
E ⊆ V × V represents the radio connectivity (communication
topology) in the network (i.e., edge (vj , vi) ∈ E if node vi can
receive information directly from node vj). We define VS ⊆ V
as the set of nodes that can receive information directly from at
least one sensor, and VA ⊆ V as the set of nodes whose trans-
missions can be heard by at least one actuator. Furthermore,
we define a new graph Ḡ = {V ∪ S ∪A, E ∪ Ein ∪ Eout} that
includes the initial graph G, the plant’s sensors and actuators
and the edge sets:

Eout =
{
(sl, vi)

sl ∈ S, vi ∈ VS,
vi can receive values from sensor sl

}
,

(2)

Ein =

{
(vi, al)

al ∈ A, vi ∈ VA,
actuator al can receive values from vi

}
.

(3)

In [7], we proposed a method for distributed in-network
computation of a stabilizing input sequence. The WCN scheme
requires that each wireless node maintains a scalar2 state and
implements a simple, lightweight linear iterative procedure. At
every time step (i.e., once every communication frame) each
node in the network updates its state to be a linear combination
of its previous state and the states of its neighbors. The update
procedure of each node from the set VS also includes a linear
combination of the sensor measurements (i.e., plant outputs)
from all sensors in its neighborhood. Denoting node vi’s state
at time step k by zi[k], the update procedure is given by:3

zi[k+1] = wiizi[k] +
∑

vj∈Nvi

wijzj [k] +
∑

sj∈Nvi

hijyj[k]. (4)

Remark 1: For each node, the above update rule mimics
the form of a traditional dynamical controller for system
stabilization, with the difference that each node also views
the states of adjacent nodes as inputs (and most nodes will not
have access to the plant’s outputs). Furthermore, the dimension
of the state maintained by each node can be very small
(e.g., a scalar), which is in contrast to the usual large state
vectors maintained in typical controllers. As mentioned in the
introduction, the WCN can also be viewed as a form of linear
network coding [12], where each node repeatedly updates and
transmits a value which is a linear combination of received
values. Once again, the salient point is that the dynamics

2The small state size accounts for resource and computational constraints in
the wireless nodes. The procedure can be extended to handle vector states at
each node in a straightforward manner. However, the fundamental topological
conditions for system stabilization, derived in this paper, will not change.
3The neighborhood Nv of a vertex v is with respect to the graph Ḡ.

are introduced at each node to facilitate stabilization of the
attached plant, and not to simply transmit information from
one side of the network to the other.
The original WCN scheme from [7] requires each plant

input ui[k], i ∈ {1, 2, ...,m}, to be a linear combination
of values from the nodes in actuator ai’s neighborhood.
In this work we generalize this and allow each actuator
ai, (i ∈ {1, 2, ...,m}) to maintain a (possibly) vector state4
denoted by zai [k] ∈ R

ni (for some ni ∈ Z). The procedure
implemented by actuator ai can be described as:

zai [k + 1] = Waizai [k] +
∑

vj∈Nai

gijzj [k]

ui[k] = t′ai
zai [k] +

∑
vj∈Nai

kijzj [k],
(5)

for some matricesWai , vectors gij , tai and scalars kij . Note
that the above equation models the situation where the plant
sensors and actuators are geographically separated, preventing
the plant input from directly depending on any of the plant’s
outputs.
To specify the evolution of the states of all nodes and actu-

ators in the network, we define at each time step k the node
state vector z[k] =

[
z1[k]

′ z2[k]
′ . . . zN [k]′

]′
and the ac-

tuator state vector za[k] =
[
za1 [k]

′ za2 [k]
′ . . . zam [k]′

]′
.

Therefore, these states evolve as:

z[k + 1] = Wz[k] +Hy[k] , (6)

za[k + 1] = Waza[k] +Gz[k]. (7)

In the above equations, the matrix Wa ∈
R

(
∑m

i=1 ni)×(
∑m

i=1 ni) is a block-diagonal matrix, while
the matrices W ∈ R

N×N , H ∈ R
N×p and G ∈ R

m×N

have sparsity constraints imposed by the underlying WCN
topology – the connections between the nodes in the network
(for matrix W), from the sensors to the nodes (for H), and
from the nodes to the actuators (for G). Specifically, for all
i ∈ {1, . . . , N}, wij = 0 if vj /∈ Nvi ∪ {vi}, hij = 0 if
sj /∈ Nvi , and gij = 0 if vj /∈ Nai .
Aggregating the node and actuator states into the network

state vector ẑ =
[
z[k]′ za[k]

′]′, the behavior of the network
can be described as:

ẑ[k + 1] =

[
W 0
G Wa

]
︸ ︷︷ ︸

Wd

ẑ[k] +

[
H
0

]
︸ ︷︷ ︸

Hd

y[k]

u[k] = Taza[k] +Kz[k] =
[
K Ta

]
︸ ︷︷ ︸

Gd

ẑ[k],

(8)

where Ta ∈ R
m×m is a block-diagonal matrix, and K ∈

R
m×N is a structured matrix with sparsity constraints imposed

by the links from the network nodes to the actuators. From
(8) we observe that the linear iterative strategy employed by
all nodes and actuators causes the entire network to behave as
a structured linear system. The dynamics of the system will
be designed to stabilize the plant, and thus the wireless nodes
and the actuators together act as a dynamical compensator.

4This scenario is motivated by practical reasons, since actuators are usually
placed in fixed positions and are not power constrained, allowing them to
utilize more powerful CPUs than the battery-operated wireless nodes.
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Remark 2: Note that in the above scheme, the network
operates at the same rate as the plant (i.e., the duration of
the time-step k in (8) is the same as the duration of the time-
step k for the plant Σ in (1)). In particular, there is no routing
involved in this control scheme: information does not have
to travel from the sensors to the actuators within one time-
step. Instead, the dynamics of the network (encapsulated by
its state vector and the update rule in (8)) allow the network to
generate an appropriate stabilizing input u[k] at each time-step
k. Meanwhile, the injected sensor measurements propagate
through the network (via the nearest-neighbor rule specified
in (4)) over time, updating the state and refining the control
inputs that are generated.
To describe the closed-loop system we denote with x̂[k] =[

x[k]′ z[k]′ za[k]
′]′ the overall system state that contains

the state of the plant and states of the nodes and actuators.
The overall closed-loop system evolves as:

x̂[k + 1] =

[
A BGd

HdC Wd

] [
x[k]
ẑ[k]

]
� Âx̂[k]. (9)

The closed-loop system described by (9) is stable if the
matrix Ãd = Ãd(Wd,Hd,Gd) has all of its eigenvalues
inside the unit circle. Since matrices Wd,Hd,Gd are struc-
tured, choosing their values to obtain a stable Â can be
cast in the form of a static output feedback problem with
sparsity constraints on the gain matrix. This is a nonconvex
problem (and hence difficult to solve in general), but various
numerical procedures have been proposed in the literature
(e.g., [26], [27]). In [7], we adapted some of these numerical
procedures to find values for the nonzero WCN parameters
so that the closed-loop system is stable, given a network
topology and a predefined state size maintained by each
node. In addition, a procedure similar to the ones from [7],
[8] can be used to extract a stabilizing configuration5 for
the closed-loop system with unreliable communication links.6

However, the proposed design-time procedure is iterative in
nature, and convergence depends on the initialization point
for the algorithm. Therefore, even in cases when a stabilizing
configuration exists, the procedure might not be able to find
it.
In this paper, we take a more fundamental approach and

identify topological conditions on the network that guarantee
the existence of a stabilizing configuration. To do this, we
will use concepts from decentralized control theory pertaining
to fixed modes of the linear system. Furthermore, since the
WCN acts as a structured linear dynamical compensator, we
use ideas from structured systems theory to obtain generic
conditions that guarantee stabilization in this scenario.

IV. DECENTRALIZED FIXED MODES

In decentralized control systems, a set of non-interacting
local controllers is used to control a dynamical system (plant);
each of the controllers generates the appropriate plant inputs
by observing only a subset of the plant’s outputs. Due to

5In this work, matrices Wd, Hd and Gd that satisfy the topological
constraints and guarantee stability of Â are referred to as a stabilizing
configuration.
6If the links can be modeled as independent Bernoulli processes, the

stabilizing configuration guarantees mean square stability of the system.

these limitations imposed on each of the local controllers,
it is possible that even a controllable and observable system
can not be stabilized with the aforementioned setup. As
shown in [16], the problem of decentralized control can be
formulated as a static output feedback control problem, where
the feedback matrix potentially has some sparsity constraints.
Furthermore, [16] introduced the notion of fixed modes to
derive conditions for the existence of a stabilizing set of
decentralized controllers. The concept of fixed modes was
generalized in [24] to handle arbitrary feedback patterns, and
to enable a graph-theoretic analysis of the problem.
To formally define fixed modes, we consider a discrete-time

system Σ = (A,B,C) controlled by a set of m controllers
where each controller is located at a different actuator, and
has direct access to only a subset of the plant outputs.
Definition 1: The decentralized feedback patterns are spec-

ified as m sets J1, J2, ..., Jm ⊆ P (P = {1, 2, ..., p}) such
that for each i ∈ M (M = {1, 2, ...,m}), j ∈ Ji if and only
if output yj can be directly used to calculate input ui.
Using the above definition, m linear time-invariant dynam-

ical feedback compensators are described as (i = 1, ...,m):

zi[k + 1] = Fizi[k] +
∑
j∈Ji

qijyj [k]

ui[k] = h′
izi[k] +

∑
j∈Ji

kijyj[k],
(10)

where zi ∈ R
ni is the controller’s state vector, while matrix

Fi and vectors qi,hi are of appropriate dimensions. Based on
the feedback patterns J1, J2, . . . , Jm, we define the set

Kf =
{
K ∈ R

m×p|kij = 0 if j /∈ Ji
}
. (11)

Definition 2 ([16], [24]): For the system Σ = (A,B,C),
the set Λf =

⋂
K∈Kf

Λ (A+BKC) is called the set of
fixed modes with respect to the feedback structure constraints
specified by J1, J2, ..., Jm.
In words, the fixed modes are the eigenvalues ofA+BKC

that remain fixed despite the choice of matrix K ∈ Kf . The
following classical result explains the vital of fixed modes in
the stabilizability analysis of linear dynamical systems.
Theorem 1 ([16]): The system Σ can be stabilized using

the set of controllers defined in (10) if and only if all of its
fixed modes are stable.
Remark 3: The above result applies to the case where each

of the decentralized controllers is a linear time-invariant (LTI)
system. In general, it has been shown in the literature that one
can obtain more relaxed conditions for decentralized stabi-
lization by considering linear time-varying (LTV) controllers;
these conditions are in terms of a concept known as quotient
fixed modes [22], building on the notion of system complete-
ness from [20], [21]. Furthermore, it has been shown that it
is without loss of generality to consider LTV controllers for
decentralized stabilization (i.e., if a given LTI system cannot
be stabilized by a set of decentralized LTV controllers, then
it cannot be stabilized by decentralized nonlinear controllers
either) [22]. In this paper, we focus on LTI controllers of the
form (5) at the actuators in order to develop a framework for
stabilization over a WCN (with dynamics of the form (8)); the
extension of our results to the general case of time-varying
controllers is an avenue for future research.
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For any subset I ⊆ M we define J =
⋃

i∈M\I Ji. The
following theorem characterizes the fixed modes of a given
system with respect to the feedback pattern J1, J2, . . . , Jm.
Theorem 2 ([18]): A complex number λ is a fixed mode of

the system Σ = (A,B,C) if and only if there exists a subset
I ⊆M such that

rank

[
A− λI BI

CJ 0

]
< n, (12)

where BI and CJ are the columns and rows of B and C
indexed by the elements in sets I and J , respectively.
Various other algebraic tests have been proposed to deter-

mine if a given system Σ has unstable fixed modes with respect
to a given feedback pattern (e.g. [28], [17], [19]). These
numerical tests are usually computationally intensive, and
require calculation of the rank of a large number of matrices.
In an effort to get away from numerical calculations and to
analyze fixed modes of large-scale systems with uncertain
parameters, a purely graph-theoretic test was provided in [24]
to test whether a given system with a certain sparsity structure
would have any fixed modes under a given feedback pattern.
As described in [17], there are two distinct reasons for a

fixed mode. A fixed mode can either arise from a loss of rank
due to a ‘perfect cancellation’ of the numerical parameters
(which is a degenerate case), or it can be caused by deeper
issues relating to the system structure. The latter set of fixed
modes are called structural fixed modes.
Definition 3 ([17]): The system Σ has structural fixed

modes with respect to the feedback pattern J1, J2, . . . , Jm if
every system structurally equivalent to Σ has fixed modes with
the same feedback pattern.
As described in Section II-B, one can associate a graph
GΣ = {VΣ, EΣ} with the structure of a given system Σ. The
graph can be augmented to capture a given feedback pattern
J1, J2..., Jm via a set of edges EJ = {(yj , ui)|i ∈ M, j ∈ Ji}.
This produces the graph GΣ,J = {VΣ, EΣ ∪ EJ}. From
this graphical representation of the closed-loop system, and
using the approach from [24], we can state the following
theorem that provides a graph-theoretic characterization of the
conditions for nonexistence of structural fixed modes.
Theorem 3: The discrete-time system Σ with feedback pat-

tern J1, J2, . . . , Jm has no structural fixed modes if and only
if both of the following conditions hold:
i. Each state vertex xk ∈ X is contained in a strong
component of GΣ,J that includes an edge from EJ .

ii. There exists a set of disjoint cycles that covers all state
vertices.

The second condition from the above theorem ensures that
the system Σ does not have any fixed modes at zero. Although
such modes are a concern for continuous-time systems, they
are not an issue for stabilization of discrete-time plants (be-
cause fixed modes at zero are stable and would not violate
Theorem 1). Hence, we state the following corollary.
Corollary 1: The discrete-time system Σ with feedback

pattern J1, J2, . . . , Jm has no structural fixed modes (other
than at the origin) if and only if each state vertex xk ∈ X
is contained in a strong component of GΣ,J that includes an
edge from EJ .

Since a system can have stable fixed modes outside of zero,
the above corollary specifies sufficient (but not necessary)
conditions for the existence of a set of stabilizing feedback
controllers for almost every plant that has the given structure,
with the given feedback pattern. A couple of caveats are in
order. First, the theorem does not specify the size of the
stabilizing controllers (i.e., the values for ni, i = 1, ...,m,
from (10)); only that sufficiently large controllers can be found
at each actuator to jointly stabilize the system. This could be
an issue when resource constrained processors are used as
controllers (e.g., when wireless nodes in the WCN are used
to compute the control laws). The second major caveat is that
the existing analysis of decentralized feedback control systems
assumes that each actuator has direct access to at least one of
the plant outputs (i.e., the quantities qij and kij in (10) are
nonzero). This leads to a nonempty set Kf in (11), and this
assumption is utilized in the proof of sufficiency from [16] to
show that all non-fixed modes can be stabilized.
These caveats prevent Corollary 1 from being directly used

to analyze whether the system can be stabilized using a
WCN. We would like the wireless nodes to maintain only
small state vectors (ideally scalars). Even more importantly,
from (5) it can be seen that plant inputs (actuators) do not
have a direct connection from plant outputs. Instead, each
node in the network uses the values received from other
neighboring nodes, with only a few nodes incorporating sensor
measurements in their updates. As a result, Kf from (11)
contains only the zero matrix. Therefore, in this case, the
role of fixed modes in stabilization over a network must be
carefully studied. We do this in the subsequent sections.

V. GENERIC TOPOLOGICAL CONDITIONS FOR SYSTEM
STABILIZATION WITH WIRELESS CONTROL NETWORKS

In this section, we provide conditions for a given system to
not have structural fixed modes when controlled using a WCN,
where each node in the network maintains only a scalar state,
and the actuator nodes maintain vector states.
We start our analysis by initially disregarding the effects of

the actuators on the plant; i.e., we assume that at each time-
step the plant actuators do not use transmissions from the
nodes in the set VA to actuate the plant (via (5)). This allows
us to consider the plant Σ = (A,B,C) and the WCN together
as a linear system Σ̃, where the outputs of the plant are injected
into the WCN (see Fig. 3). If we view the transmissions of
the nodes in VA as the output of the system Σ̃, the system can
be specified as:

x̂[k + 1] =

[
x[k + 1]
z[k + 1]

]
=

[
A 0
HC W

]
︸ ︷︷ ︸

Ã

[
x[k]
z[k]

]
+

[
B
0

]
︸︷︷︸
B̃

u[k],

ŷ[k] =
[
0 EVA

]
︸ ︷︷ ︸

C̃

[
x[k]
z[k]

]
. (13)

Here, EVA =
[
ei1 ei2 ... eit

]′
selects the state values

from the set VA = {vi1 , vi2 , ..., vit} (where t = |VA|). In
other words, the vector ŷ[k] contains the states transmitted by
the wireless nodes closest to the actuators at time-step k.
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WCN

•
•
•

Fig. 3. Dynamical system Σ̃ that contains the dynamics of the plant and
WCN; the states of the nodes from the set VA represent the output of the
system.

The structural graph GΣ̃ = (VΣ̃, EΣ̃) of the system Σ̃ is
obtained by composing the structural graph of the initial plant
Σ and the network graph G = (V , E):7

VΣ̃ = X ∪ U ∪ V , EΣ̃ = EA ∪ EB ∪ E ∪ EO.
Recall that X is the set of state vertices (corresponding to
the states of the plant), U is the set of p input vertices
(corresponding to the actuators), and V is the set of vertices
corresponding to the network nodes. The set EA represents
the edges between state vertices (given by the matrix A),
and EB represents edges from the plant inputs to the states
(given by the matrix B). The set E represents the topology of
the network, and the set EO captures how the state vertices
influence the vertices in the wireless network. Specifically, the
states of the plant affect the outputs of the plant (via the edge
set EC), and each plant output connects to one or more nodes
(via the edge set Eout defined in (2)). As the output vertices
simply pass the information about the state vertices through to
the wireless network, we can remove the output vertices from
the representation and introduce connections directly from the
state vertices to the wireless vertices as follows:

EO = {(xi, vj) ∈ X × VS |∃yk ∈ Y , (xi, yk) ∈ EC, (yk , vj) ∈ Eout}.

Remark 4: Note that the edges from the set EO correspond
to elements in the matrix HC from (13). To be able to
reason about generic properties of a structured system, it
is necessary for technical reasons to ensure that all of the
system’s parameters are independent [23]. Hence, we assume
that the matrices H and C satisfy the property that either H
has a single nonzero entry in each column (e.g., by having
a dedicated node for each plant output), or C has a single
nonzero entry in each row. This guarantees that each nonzero
entry in HC will be an independent free parameter if each
nonzero entry in H and C is an independent free parameter.
Furthermore, the matrix EVA in (13) is a zero-one matrix

with a single 1 in each row. While these are not independent
free parameters, this does not affect the structural analysis
because each row i can be effectively scaled by an inde-
pendent free parameter pi to produce the matrix EVA =
[p1ei1 p2ei2 ... pteit ]

′; these parameters can then be taken
into account while deriving the values for matrix G from (7).

7While G = (V , E) refers to the ‘physical’ graph, when all the nodes
in the network maintain a scalar state there is a one-to-one correspondence
between this graph and a structural graph of the WCN (viewed as a structured
controller (6)). Therefore, we will also use G as a structural graph.

Thus, to simplify the notation and without loss of generality,
we directly work with the system Σ̃ as specified in (13).
The above representation of the system Σ̃ allows us to

map the problem of stabilization using the WCN into a
decentralized feedback control framework. Note that in (5),
for each actuator ai and each node vj ∈ Nai there exists
some row l of ŷ[k] in (13) such that zj[k] = ŷl[k]. Hence, the
terms

∑
vj∈Nai

gijzj [k] and
∑

vj∈Nai
kijzj[k] correspond to

linear combinations of the system Σ̃’s outputs ŷ[k]. In this
setup, the overall system Σ̃ in (13) is to be controlled with a
set of m decentralized feedback controllers described by (5).
In addition, the feedback pattern is specified with the edge
set Ein from (3) (i.e., in this case EJ = Ein). The key insight
is the following: by having each wireless node run a linear
strategy, the WCN and the plant together form a linear system
Σ̃. Then, by viewing the transmissions of the wireless nodes
closest to the actuators as the new ‘outputs’ of the system Σ̃,
the problem of stabilizing the system with compensators at the
actuators fits within the classical decentralized control formu-
lation described in Section IV. Consequently, Corollary 1 can
be applied to obtain the following topological condition that
guarantees the existence of a stabilizing WCN configuration.
Theorem 4: Almost any system structurally equivalent to

system Σ = (A,B,C) can be stabilized with a WCN if for
each plant state vertex xi ∈ X in the structural graph GΣ̃in

=
(VΣ̃, EΣ̃∪Ein) there exists a cycle that contains the state vertex
xi ∈ X and any WCN vertex from V .

Proof: Consider the graph GΣ̃ = (VΣ̃, EΣ̃) of the struc-
tured system (13) composed of the plant and the WCN. For
each plant state vertex xi ∈ X in the structural graph GΣ, let
Ai denote the set of input vertices from which xi is reachable
in the initial system, while VAi denotes the set of WCN nodes
that are neighbors of the actuators in Ai. If for a plant state
vertex xi there exists a WCN state vertex zj ∈ VAi reachable
from xi, then xi belongs to a strong component with an
edge from Ein. Since this holds for all plant state vertices,
if all network state vertices belong to a strong component that
contains an edge from Ein, Corollary 1 will be satisfied, and
the system will not have structural fixed modes outside of the
origin.
On the other hand, a fixed mode will be introduced with

each WCN state vertex zi that does not belong to a strong
component in the graph GΣ̃in

= (VΣ̃, EΣ̃ ∪ Ein) with an edge
from Ein (this might happen if the network is disconnected).
However, by setting to zero all the weights associated with the
links outgoing from zi, this WCN state vertex is effectively
removed from the network. In this case, due to the state vertex
zi the system has a structured fixed mode in the origin. Thus,
in both cases the closed-loop system does not have structured
fixed-modes outside of zero, meaning that almost every system
with this structure will be stabilizable using the WCN.

VI. MINIMAL STABILIZING FEEDBACK CONNECTIONS

In this section, we investigate the minimal connectivity that
the WCN should provide to ensure that the conditions from
the previous section hold.
For traditional decentralized continuous-time systems, [29]

considered the problem of determining the minimal number of
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direct connections between plant outputs and inputs to ensure
that the system does not have structured fixed modes. We will
now present a simplified procedure for discrete-time control
systems by leveraging the fact that fixed modes at zero do not
cause problems for stabilization in discrete-time. Specifically,
we determine a minimal set of feedback edges that guarantee
the absence of nonzero structural fixed modes. We will then
use this result in conjunction with our results from the previous
section to infer properties that the WCN should satisfy in order
to stabilize the plant.
Consider a system Σ = (A,B,C). For all sets I ⊆M and

J ⊆ P we denote with BI and CJ submatrices of B and
C consisting of columns of B and rows of C with indices
in I and J , respectively. A system ΣIJ = (A,BI ,CJ) can
be described with a graph GΣIJ = {VΣIJ , EΣIJ }, which can
be obtained from GΣ = {VΣ, EΣ} by keeping input vertices
from the index set I and output vertices associated with set J .
These sets are denoted by UI and YJ , respectively. We will
require the following results that specify a set of conditions
for structural controllability/observability.
Theorem 5 ([23]): A structured system is structurally con-

trollable (observable) if and only if each state vertex in the
corresponding graph is the end (beginning) of a U-rooted (Y-
topped) path, and there exists a disjoint union of a U-rooted
(Y-topped) path family and a cycle family that covers all state
vertices.
The condition pertaining to disjoint paths and cycles in

the above theorem is only to preclude uncontrollable and
unobservable modes at zero. As with the case of fixed modes,
these modes at the origin are not a major concern for discrete-
time systems, and thus we present the following simplified
tests for structural stabilizability and detectability.
Corollary 2: A structured system is structurally stabilizable

(detectable) if each state vertex is the end (beginning) of a U-
rooted (Y-topped) path.
Definition 4: A stabilizable subset of the plant inputs (i.e.,

actuators) is a set I ⊆ M such that (A,BI) is structurally
stabilizable. Similarly, a detectable subset of the outputs (i.e.,
sensors) is a set J ⊆ P for which (A,CJ) is structurally
detectable.
For some stabilizable subsets I , it may be possible to find

an even smaller stabilizable subset I ′ ⊂ I . Since we wish to
investigate the minimal feedback connectivity requirements,
we use the notion of essential input and output sets from [29].
Definition 5: A stabilizable subset I is called an essential

input set if there is no structurally stabilizable (strict) subset
I ′ ⊂ I . A detectable subset J is called an essential output set
if there is no structurally detectable (strict) subset J ′ ⊂ J .
Note that for a particular system Σ = (A,B,C) there might

exist several different essential input and output sets, with
potentially different numbers of elements. We use essential
input and output sets to determine the minimal number of
feedback connections that would guarantee that a system does
not have nonzero structural fixed modes. From Corollary 1, for
essential input and output sets I and J , at least max(|I|, |J |)
feedback connections have to be used. We now show that this
number of feedback connections is also sufficient.
Theorem 6: For a structurally stabilizable and detectable

system Σ = (A,B,C), let I and J be an essential input

and output set, respectively. Then the system can be stabilized
by introducing max(|I|, |J |) feedback connections (directly
between appropriate outputs and inputs).
The proof (in Appendix A) defines Algorithm 1 that takes

the sets I and J as input and creates max(|I|, |J |) feedback
lines between output vertices from YJ and input vertices from
UI , which satisfy the conditions from Corollary 1.
We now apply these general results to the case where a

WCN is used for control. As before, the key trick is to view
the composition of the WCN and the plant as a new dynamical
system. In this case, the set of nodes VA (in the neighborhood
of the actuators) corresponds to the outputs of the new system.
The new system will be structurally detectable if there exists
a path between each essential plant output and a node from
VA. Therefore, we introduce the following results.
Definition 6: A detectable set of WCN nodes VDET ⊆ VA

is a set of nodes such that for each sensor sj that corresponds
to an output yj from an essential output set J , there exists a
path from sj to a node from VDET .
Corollary 3: Consider a structurally stabilizable and de-

tectable system Σ(A,B,C) with essential input and output
sets I and J . The system can be stabilized with a WCN
described by a graph G = {V , E} using max(|I|, |VDET |)
links between the nodes from a detectable set VDET and
actuators corresponding to the essential input set I .
The proof of the above corollary is readily obtained by

noticing that if such a detectable set of nodes VDET ⊆ VA
exists, then due to structural detectability of the plant there
would be a path from each plant state vertex to a vertex
representing the state of a node from VDET . Furthermore, all
network nodes that do not have a path to at least one node
from VDET can be disregarded as in the proof of Theorem 4
(by setting all related weights to zero). Hence, the ‘new’
system Σ̃ that contains the plant and the network is structurally
detectable. Similarly, it can be shown that the ‘new’ system
is stabilizable and the proof follows from Theorem 6, by
applying Algorithm 1.
However, there is a possibility that the feedback edges

created by Algorithm 1 cannot be physically implemented,
as it might cause an actuator to rely on a wireless node that is
not actually in its neighborhood (e.g., if an actuator is outside
of a node’s communication range). The following corollary in-
troduces a straightforward condition to preclude this case, and
a requirement for designing WCNs that guarantee stabilization
of almost all systems with a certain structure.
Corollary 4: Almost every structurally stabilizable and de-

tectable system Σ = (A,B,C) can be stabilized if the
following conditions are met:

i. The WCN is strongly connected.
ii. There exists an essential output set with each sensor in
the set connected to the network.

iii. There exists an essential input set where each actuator
in the set is a neighbor of at least one network node.

The corollary follows from Theorem 4 since in a strongly
connected network where each sensor (i.e., plant output)
connects to at least one network node, there is a path from
every sensor to every node, including all nodes from VA.
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VII. WCN TOPOLOGY DESIGN TO STABILIZE A
NUMERICALLY SPECIFIED PLANT

In the previous sections, we have been focused on designing
a WCN for a plant from a purely structural perspective,
without regard for the numerical values. This allowed us to
characterize WCN properties that would guarantee stabiliza-
tion of almost any plant having a certain structure. However,
one may be interested in designing a WCN for a given
(numerically specified) system Σ = (A,B,C). If this system
falls within the measure zero set that is not covered by the
structural analysis, one has to be more careful in designing the
WCN. Specifically, any plant that has nonzero eigenvalues of
multiplicity larger than 1 will not be captured by the generic
set [18], and we will show that the multiplicity of eigenvalues
in the plant will require the WCN to contain linkings of a
sufficiently large size.8 To the best of our knowledge this is
the first work that studies the interplay between numerically
specified systems (with eigenvalues of multiplicity larger than
one), and structured systems (where graph-theoretic analysis
dominates). Previous approaches that used graph-theory to
analyze numerical systems were limited to the cases where
all eigenvalues have multiplicity equal to one (e.g., [19]).
Consider a WCN used to control a given (numerically

specified) system Σ = (A,B,C), where the pair (A,C) is
detectable, and the pair (A,B) is stabilizable. Assuming for
now that the plant actuators do not close the loop via the
transmissions of nearby wireless nodes, the overall system
Σ̃ = (Ã, B̃, C̃) (plant and wireless network) is given by
(13). As in the previous sections, we consider the following
problem. How should the WCN be designed to guarantee that
a dynamic compensator can be designed at each actuator to
stabilize the system, when each actuator only receives the
transmissions of the wireless nodes in its neighborhood?
To answer this, for any actuator ai, let Vai denote the WCN

nodes whose transmissions can be heard by ai. For any set
I ⊆ M, define VM\I =

⋃
i∈M\I Vai as the set of all nodes

that are in the neighborhood of actuators not in I . To show
that the system (13) has no fixed modes with respect to the
feedback structure Va1 , ...,Vam , we use Theorem 2 to prove
that for all unstable eigenvalues λ of the matrices A or W,
rank(M̃I,F (λ)) ≥ n+N where

M̃I,F (λ) �

⎡
⎣A− λI 0 BI

HC W − λI 0
0 EF 0

⎤
⎦ . (14)

Here, EF is a matrix with a single 1 in each row, selecting
the portions of the WCN state vector z[k] corresponding to
the nodes in VM\I . We start with the following lemma.
Lemma 1: For almost any choice of nonzero parameters in

W, a nonzero eigenvalue λ of A is a fixed mode of Σ̃ =
(Ã, B̃, C̃) if and only if it is a fixed mode of the system
Σ = (A,B,EVA(W − λI)−1HC).

Proof: For a structured square matrix W and for a finite
set of nonzero complex numbers L, the eigenvalues of W
will all be different from the elements of L for almost any
8For a directed graph G = {V ,E}, given two subsets V1,V2 ⊂ V , an

r-linking from V1 to V2 is a set of r vertex disjoint paths, each with start
vertex in V1 and end vertex in V2.

choice of parameters in W [18]. In particular, this implies
that any nonzero eigenvalue λ of A will not be an eigenvalue
of W (for almost any choice of free parameters). Then, for
any I ⊆ M, the matrix M̃I,F from (14) has rank as shown
in (15).
Therefore, λ is a fixed mode of Σ̃ = (Ã, B̃, C̃) with

respect to Va1 , ...,Vam if and only if it is a fixed mode of
(A,B,EVA(W − λI)−1HC), with respect to the feedback
pattern Va1 , ...,Vam .
Consider any set I ⊆ M, and let rank

[
A− λI BI

]
=

n − dI , where dI is a nonnegative integer. Thus, to ensure
that λ is not a fixed mode of the system Σ̃, the matrix[
EF (W − λI)−1HC 0

]
must provide dI rows that are

linearly independent of all rows in
[
A− λI BI

]
. We will

derive conditions on the WCN topology to guarantee this.
Due to the assumption that the pair (A,C) is detectable,

we have rank
[
A−λI

C

]
= n for any unstable eigenvalue λ of

A [30]. This means that for any set I ⊆M, there are at least
dI rows in the matrix

[
C 0

]
that are linearly independent of

the rows in
[
A− λI BI

]
. Let J ′

1, J
′
2, . . . , J

′
s be all possible

sets of dI rows of C that satisfy this linear independence
property, and let Y1,Y2, . . . ,Ys be the sets of dI outputs of
the plant corresponding to those rows. If we can guarantee
that the row space of CJ′

i
is contained in the row space of

EF (W − λI)−1HC for some i, then the right hand side of
(15) will be at least N + n.
To satisfy this condition, we start by noting that EF (W−

λI)−1H in (15) is the transfer function of the WCN (where
the outputs are taken to be nodes in the set VM\I ) evaluated
at λ. This matrix must have rank at least dI in order for
the right hand side of (15) to have rank N + n. To analyze
this condition, we can consider a general structured linear
system Σ. We are interested in the largest possible rank of
the transfer function over all possible values of the nonzero
free parameters and λ; this is called the generic rank of the
transfer function matrix for the system. The following results
relate this rank to a property of the graph associated with the
system.
Lemma 2 ([31]): Let Σ = (A,B,C) be a linear system,

and let λ be such thatA−λI is invertible. Then rank(M(λ)) =
rank

(
C(A− λI)−1B

)
+ n, where M(λ) =

[
A−λI B

C 0

]
Theorem 7 ([31]): Let Σ = (A,B,C) be a structured

linear system, and GΣ its associated graph. The generic rank
of the transfer function matrix is equal to the size of the largest
linking from the input vertices to the output vertices in GΣ.

We can now derive a condition that guarantees that the
transfer function matrix has full rank when evaluated at certain
values λ.
Lemma 3: Consider the structured system Σ = (A,B,C)

where the graph GΣ contains a linking of size m from the
input to the output vertices. Let L = {λ1, λ2, . . . , λr} be a
predefined finite set of nonzero complex numbers. Then,

rank(C(A− λiI)
−1B) = m, i ∈ {1, 2, . . . , r} (16)

for almost any choice of free parameters in (A,B,C).
The proof of the lemma can be found in Appendix B.
Now that we have a handle on some rank properties of

the matrix EF (W − λI)−1H, we return to the problem of
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rank
(
M̃I,F (λ)

)
= rank

⎡
⎣ A− λI 0 BI

0 W − λI 0
EF (W − λI)−1HC 0 0

⎤
⎦

= N + rank

[
A− λI BI

EF (W − λI)−1HC 0

]
(15)

ensuring that the row space of CJ′
i
is contained in the row

space of EF (W − λI)−1HC, for some i ∈ {1, 2, . . . , s}.
The following theorem provides topological conditions for the
WCN to satisfy in order to guarantee that this condition holds.
Theorem 8: Consider the detectable and stabilizable (nu-

merical) system Σ = (A,B,C), along with a WCN. Let λ
be an unstable eigenvalue of A. For any subset I ⊆ M, let
dI = n − rank [A− λI BI

]
. If for every possible subset

I , there exists a subset J ′ of dI plant outputs such that
rank

[
A−λI BI

CJ′ 0

]
= n, and the WCN contains a dI linking

from those outputs to VM\I , then for almost any choice of
free parameters in W and H, λ is not a fixed mode of the
system Σ̃. Furthermore, if the above holds for every unstable
eigenvalue of A, then for almost any choice of parameters in
W and H such thatW is a stable matrix, system Σ̃ will have
no unstable fixed modes.
The proof of the theorem is provided in Appendix C.
To illustrate the use of the above theorem, we consider

a WCN with the topology from Fig. 2, where the network
provides a path between each sensor-actuator pair. Thus, if
for any unstable eigenvalue λ the plant satisfies the condition
that rank(A − λI) = n − 1, then the WCN can guaran-
tee closed-loop system stability. Note that the condition is
true if all eigenvalues of A are distinct. However, even if
some of the unstable eigenvalues are repeated (i.e., have
algebraic multiplicity larger than one), the WCN can ensure
system stability as long as the rank condition is satisfied.
To specify this condition we can also use the notion of
geometric multiplicity of eigenvalues of the plant: for any
eigenvalue λ, rank(A − λI) = n − dλ, where dλ denotes
its geometric multiplicity. Therefore, for the topology from
Fig. 2, the WCN can stabilize all plants that have the maximal
geometric multiplicity of all unstable eigenvalues (d) equal to
1. Similarly, we observe that the WCN from Fig. 4(b) can
ensure stability of all plants with d ≤ 3.
While the above result provides a method to check if the

system has any fixed modes when controlled over a WCN, it
requires all possible subsets ofM to be tested. The following
much simpler result provides a sufficient condition for the
system to have no fixed modes.
Theorem 9: Consider the detectable and stabilizable system

Σ = (A,B,C), along with a WCN. Let d denote the largest
geometric multiplicity of any unstable eigenvalue of A. Sup-
pose the vertex connectivity of the network is at least d, and
each actuator has at least d WCN nodes in its neighborhood.
Then, there exists a stabilizing WCN configuration.

Proof: First, note that for any unstable eigenvalue λ of
A, we have rank(A − λI) ≥ n − d, and thus the quantity
dI specified in Theorem 8 is no larger than d. Also, for any
subset I ⊂M, let J ′ be the set of dI outputs specified in that

theorem, let Y ′ be the corresponding set of outputs, and let
V ′
S be the nodes in the WCN that receive information from
the outputs in Y ′. Next, note that |VM\I | ≥ d ≥ dI by the
assumption that each actuator has at least d wireless nodes
in its neighborhood. Since the connectivity of the network
is d, and since |VM\I | ≥ d and |V ′

S | = |Y ′| = dI ≤ d
(by the assumption from Remark 4), there exists a linking of
size dI from the set V ′

S to VM\I [32]. Thus, for almost any
choice of parameters in W and H such that W is stable, all
conditions in Theorem 8 are satisfied; the system will have
no unstable fixed modes which means that it can be stabilized
via a dynamic compensator at each actuator.

Remark 5: The linking and connectivity conditions from
Theorems 8 and 9 are reminiscent of the classical requirement
that a system having an unstable eigenvalue of geometric
multiplicity d must have at least d outputs in order to be
detectable [30]; they ensure that the new plant defined in (13)
is detectable. Similar investigations of the sizes of cut-sets
required for stabilization can be found in [33], [34], [35].

It is worth noting that the obtained results only ensure
the existence of a stabilizing WCN configuration where each
network node maintains a scalar state; these topological con-
ditions do not provide any guarantees on the sizes of the states
maintained by the actuators. As shown in [16], controllers used
in the decentralized control setup from (10) could be (in the
worst case) as large as the plant itself. As described before,
in most industrial automation or process control scenarios this
is not a concern since, due to physical constraints, actuators
cannot typically be battery operated. This enables the use
of more powerful computational platforms at the actuators,
capable of implementing large-state controllers.

We have investigated this issue on several examples. In [36],
we considered a setup where a single-input-single-output plant
with three states is to be controlled using the WCN with two
nodes, as in Fig. 2, where the additional link v2 → v1 was
added. We showed that for 3-state plants, stabilizing WCN
configurations can be extracted where the single actuator
maintains a state from R

2. Furthermore, in [7] we showed that
the same plant can be stabilized by a WCN consisting of nine
nodes with a mesh topology, where the actuator maintains a
dynamical controller with a scalar state. Finally, we generated
stabilizing WCN configurations for 4×4 mesh networks used
to control random plants with n = 50 states, m = 10 inputs,
and p = 10 outputs, where all ten actuators maintain scalar
states [7]. Consequently, it is natural to ask if there exists a
dependency between the sizes of the controllers maintained at
the actuators, plant dynamics, and the topology of the network.
In the above examples, we were able to “shift” some of the
computation from the actuators into the network, thus reducing
the controllers’ sizes. However, specifying a formal trade-off
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between the sizes of actuators’ controllers and the network
topology will be an avenue for future work.

VIII. EXTENSIONS TO POINT-TO-POINT NETWORKS

Although we have focused thus far on dynamical system
stabilization using a Wireless Control Network (which em-
ploys a local broadcast communication model), our analysis
can be extended in a straightforward manner for control
over networks with wired (or point-to-point) communication
links. We consider the problem of network synthesis for the
case where network coding over point-to-point communication
links is used (as shown in Fig. 4(a)). Our goal is to provide
topological conditions that guarantee that there exist linear
dynamical controllers (at the actuators) that can stabilize the
plant. We focus on two scenarios. We start with the case when
the network delay (over each link in the network) is equal to
the sampling period of the plant. We then investigate the case
when an idealized, delay-free network is used. It is worth
noting that this scenario can be used to model closed-loop
systems where the speed of the network is much higher than
the sampling period of the plant.
Suppose that Gc = (Vc, Ec ∪ Y1:p ∪ U1:m) is a network

with point-to-point links, where Y1:p = ∪pi=1Yi represents the
links coming into the network from the plant’s sensors, and
U1:m = ∪mj=1Uj represents the set of links coming out of
the network into the plant’s actuators. As is standard in linear
network coding, the information sent on each outgoing edge
from a given network node is a linear combination of informa-
tion carried on the edges entering that node. Note that in the
wired communication model, the linear combinations on each
outgoing edge are allowed to be different. As shown in [12],
from the graph Gc we can obtain the (unique) directed labeled
line graph B = (VB, EB), where VB = Ec ∪ Y1:p ∪ U1:m, and
for all ei, ej ∈ VB, (ei, ej) ∈ EB if and only if there exist
v1, v2, v3 ∈ Vc such that ei = (v1, v2) and ej = (v2, v3)
(i.e., head(e1) = tail(e2)). Each link (ei, ej) ∈ EB is labeled
with the coefficient (i.e., weight) assigned to the information
received over edge ei in the linear combination that is used to
produce information over ej . An illustration of this procedure
is shown in Fig. 4(b), where the labeled line graph is given for
the network from Fig. 4(a). Note that each link in the initial
graph corresponds to a unique vertex in the labeled line graph.
If each link in the initial network introduces a fixed com-

munication delay (as in Time-Triggered networks [6]), the
labeled line graph directly corresponds to the WCN model.
In this case the matrices W,H,G contain the gains between
network links, between inputs and network links, and network
links and the outputs, respectively. Therefore, if we are able to
derive a stabilizing configuration for the corresponding WCN,
the same configuration (i.e., the network coding parameters
and parameters of the controllers) would guarantee stability
when network coding is used in the initial point-to-point
network Gc. We start by noting that Theorems 8 and 9 specify
sufficient conditions for the WCN topology to ensure that such
a configuration exists. These conditions require a sufficient
vertex cut (i.e., linking) for the WCN topology. Since each
vertex in the WCN corresponds to a specific edge in the initial
network (and vice versa), we can directly obtain sufficient
topological conditions for a network that uses network coding

over point-to-point links. Thus, we can specify a theorem
equivalent to Theorem 9 (a theorem equivalent to Theorem 8
can also be stated).
Theorem 10: Consider the detectable and stabilizable sys-

tem Σ = (A,B,C), and a network whose link communication
delay is equal to the plant’s sampling time and which employs
network coding over point-to-point links. Let d denote the
largest geometric multiplicity of any unstable eigenvalue of
A. If the minimal edge cut of the network between sensors
and actuators is at least d, then the system Σ̃ can be stabilized
via a dynamic compensator at each actuator.
Similar results can be obtained in the case with delay-free

communication networks, where the information injected in
the network by the plant’s sensors is expected to be instanta-
neously available at the actuators. In this case, as described
in [12], for the directed labeled graph of the initial network
we can defineW – the adjacency matrix of the labeled graph.
Here, wij is the weight assigned to the edge ei in the linear
combination used to derive ej (if head(ei) �= tail(ej) then
wij = 0).9 Using the matrix W, as in [12] it can be shown
that for any set I ⊆M, EF (W−I)−1H is the transfer matrix
of the network, from the input edges (i.e., from the sensors)
to the output edges (i.e., to the actuators specified in the set
AM\I =

⋃
i∈M\I ai).

10 This is equal to the WCN transfer
function, evaluated at λ = 1, which is used in the proof of
Theorem 8. Therefore, by using the same approach from the
proof of Theorem 8, we can formulate theorems equivalent to
Theorems 8 and 9 (as in the case where networks introduce
delay). This means that, even for delay-free networks that
use network coding over point-to-point links, Theorem 10
specifies sufficient conditions for the existence of network
coding parameters for which the plant can be stabilized via
controllers at the actuators.
As an illustration, we consider the networks from Fig. 2

and Fig. 4(b). In the first case, all plants with the maximal
geometric multiplicity of all unstable eigenvalues (d) equal to
1 can be stabilized with controllers at actuators. Similarly, for
the network from Fig. 4(a) and for all plants with d ≤ 3 there
exist network coding parameters and stabilizing controllers at
the actuators.

IX. CONCLUSION

In this paper, we have studied the problem of stabilizing a
given dynamical system over a network. In contrast to tradi-
tional approaches that treat the network purely as a routing
mechanism (delivering sensor measurements to controllers,
and control inputs to actuators), we propose a fundamentally
different approach that relies on inducing carefully chosen
dynamics on the network (via the form of a simple distributed
algorithm), and using those dynamics to stabilize the plant.
This approach does away with end-to-end routing entirely, and
only requires that nodes transmit information to their nearest
neighbors at each time-step. We provided topological condi-
tions on the network that allow the system to be stabilized

9Note that in this case, the initial graph has to be acyclic, which in-turn
causes the line graph to be acyclic.
10In this context we can also observe that the result from Theorem 7 is a

structural equivalent for the results from [12], [25], [35] that relate the size
of the minimal edge cut of the network with the rank of the transfer matrix.
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Fig. 4. (a) Point to point communication in a simple network [12]; Sources Y1:2 represent input processes, U1:3 denotes the network outputs; (b) The
directed labeled line graph for the graph from (a) (only some of the links have been labeled to reduce clutter).

in this manner. Specifically, we showed that if the network is
sufficiently well connected, each node and actuator can use
a linear iterative strategy with appropriately chosen weights
to stabilize the plant; furthermore, the connectivity required is
determined by the dynamics of the plant, rather than the num-
ber of source nodes (as in traditional information transmission
scenarios). Our approach also extends in a straightforward
manner to wired (point-to-point) networks via a standard graph
transformation.

APPENDIX A
PROOF OF THEOREM 6

Proof: A directed graph GΣ = {VΣ, EΣ}, representing
the structured system Σ, can be uniquely decomposed into k
strongly connected components ξ = {ξ1, ..., ξk}. A component
ξi is referred to as a root component if no vertex in the
component has incoming edges from vertices in any other
component. Also, ξj is called a leaf component if no vertex in
ξj has an outgoing edge to a vertex in any other component.
Consider a directed acyclic graph Gξ = {ξ ∪ UI ∪ YJ , Eξ ∪
EIξ ∪ EJ ξ}, where (ξi, ξj) ∈ Eξ if and only if component ξj
has an incoming edge from a vertex in ξi, and

EIξ =

{
(ui, ξt)

i ∈ I, ξt is a root component from ξ,
ξt has an edge from input vertex ui

}
,

EJξ =

{
(ξt, yj)

j ∈ J, ξt is a leaf component in ξ,
output vertex yj has an edge from ξt

}
.

The graph Gξ is called a condensation of the initial graph [18].
Since the system Σ is structurally stabilizable and de-

tectable, each leaf component has to be connected to an output
vertex yj ∈ YJ and each root component is connected to an
input vertex ui ∈ UI . We now use Algorithm 1 to introduce
EF , a set of feedback links between output vertices from YJ
and input vertices from UI .
In step 1 there has to exist an output yj1 as components

connected to ui1 have to be connected to at least one output
(since the system is detectable). Step 2 will create a cycle
C in the newly obtained graph Gξ,F = {ξ ∪ UI ∪ YJ , Eξ ∪
EIξ ∪ EJ ξ ∪ EF} that contains the same number of input and
output nodes. In step 3, pairs of input and output vertices are
selected from all input and output vertices from I and J that
are not a part of the cycle. If (yj , ui) is such a pair, yj is not
reachable from ui in the initial graph Gξ (otherwise vertex ui

would be selected in step 2). In addition, there has to exist a
vertex ur ∈ C from which vertex yj can be reached, since if
that is not the case the vertices ur, yj would be selected in
step 2. Similarly, there exists a vertex yl ∈ C reachable from
ui. Therefore, in the newly created graph Gξ,F there would
exist a cycle containing vertices yj , ui, yl, ur.

Algorithm 1 Creating a minimal set of feedback connections
1. Select an input vertex ui1 ∈ UI and a corresponding
output vertex yj1 ∈ YJ such that yj1 is reachable from ui1

in the graph Gξ.
2. At iteration t ≥ 1, select an input vertex uit+1 ∈ UI \
{ui1 , ..., uit} such that there exists an output vertex yjt+1 ∈
YJ \ {yj1 , ..., yjt} reachable from uit+1 in the graph Gξ . If
such an input uit+1 does not exist, add the edge (yjt , ui1)
to EF , and go to the next step. Otherwise, add the edge
(yjt , uit+1) to the set EF , set t← t+ 1 and repeat step 2.

3. If {ui1 , ..., uit} �= I and {yj1 , ..., yjt} �= J then select
uit+1 /∈ {ui1 , ..., uit} and yjt+1 /∈ {yj1 , ..., yjt} and add the
edge (yjt+1 , uit+1) to EF . Set t← t+1 and repeat step 3.

4. If {ui1 , ..., uit} = I then for all yj /∈ {yj1 , ..., yjt} add
the edge (yj , ui) to EF , where ui is an input vertex from
which yj can be reached in the initial graph Gξ .
5. If {yj1 , ..., yjt} = J then for all ui /∈ {ui1 , ..., uit}
add the edge (yj , ui) to EF , where yj is an output vertex
reachable from ui in the graph Gξ .

After step 3, min(|I|, |J |) feedback links will be added to
the set EF . Finally, in steps 4 and 5 the remaining output or
input vertices, respectively, will be connected to the vertices
from which they can be reached. Hence, Algorithm 1 will use
max(|I|, |J |) feedback connections, and for each input and
output vertex ui ∈ I and yj ∈ J such that yj is reachable
from ui in the graph Gξ , there will exist a path from yj to
ui in the new graph Gξ,F that contains an edge from EF .
Thus, each component ξi will belong to a strongly connected
component with an edge from EF , which (from Corollary 1)
implies that the system will not have structural fixed modes.

APPENDIX B
PROOF OF LEMMA 3

Proof: We first show that there exist free parameters
for which rank(C(A − λiI)

−1B) = m for i ∈ {1, 2, ..., r}.
We then show that this holds for almost any choice of free
parameters.
If the graph GΣ contains an m-linking, Theorem 7 and

Lemma 2 tell us that there is a numerical choice of free
parameters and λ for which rank(M(λ)) = n + m. Thus,
there must exist an (n +m)-th order minor of M(λ) that is
nonzero. If we replace λ with a variable z, and revert all of
the nonzero values in the system matrices to free parameters,
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this minor is a nonzero polynomial f(z) in z and the free
parameters (we leave out the free parameters in the argument
of f(·) for clarity).
For the specific choice of free parameters that guarantees

that rank(C(A − λI)−1B) = m, if f(z) has no roots in
common with the set L, then we have shown that there
exists one choice of free parameters for which (16) holds
(because f(λi) �= 0 for i ∈ {1, 2, . . . , r}, which means that
rank(M(λi)) = n + m). Otherwise let λmin be the nonzero
root of f(z) with smallest magnitude, and let α be a positive
real number such that αλmin has larger magnitude than the
largest element of L. Then, if we scale A,B and C by α,
one can verify that the resulting (n + m)-th order minor of
M(z) becomes αn+mf( zα ). The roots of this polynomial are
the roots of f(z) scaled by α, and so all nonzero roots will
have magnitude larger than any elements in L. Thus, there
exists a choice of free parameters for which (16) holds.
To show that (16) holds for almost any choice of free

parameters, we denote with g(z) a polynomial whose roots
are the elements of L (extended to include complex conjugate
roots if necessary). By the above argument, f(z) and g(z)
will have no roots in common for some choice of free
parameters, or equivalently, the resultant of f(z) and g(z)
will be nonzero.11 If we revert f(z) to be a polynomial in
the free parameters, the resultant of g(z) and f(z) will also
be a nonzero polynomial in the free parameters. The set of
parameters causing this resultant to be zero are the parameters
for which f(z) has a root in L. Thus, the set of free parameters
for which (16) does not hold lies on an algebraic variety, which
proves the lemma.

APPENDIX C
PROOF OF THEOREM 8

Proof: For a given subset I and the corresponding set
VM\I , denote the graph of the structured system ΣWCN =
(W,H,EF ) by GΣWCN .

12 Noting that the inputs to the WCN
are the outputs of the plant, the input vertices in GΣWCN are
given by Y . Furthermore, denote the output vertices of GΣWCN

by VM\I . Consider any subset I ⊆M for which dI > 0, and
let Y ′ be the set of dI outputs corresponding to the set J ′

described in the theorem. According to the assumption in the
theorem, the graph GΣWCN contains a linking of size dI from
these outputs to VM\I . Let HJ′ denote the matrix consisting
of the columns of H corresponding to the outputs in set Y ′,
and consider the system (W,HJ′ ,EF ). The graph of this
system is obtained simply by removing the vertices that are
not in Y ′ from the graph GΣWCN . Since this reduced graph
has a dI -linking from the inputs to the outputs, Theorem 7 and
Lemma 3 indicate that EF (W−λI)−1HJ′ will have rank dI
for almost choice of free parameters in W and HJ′ . Thus,
EF (W − λI)−1HJ′CJ′ will have rank dI , and

rank

[
A− λI BI

EF (W − λI)−1HJ′CJ′ 0

]
= n.

11The resultant of two polynomials is the determinant of the Sylvester
matrix associated with those polynomials, and is nonzero if and only if the
polynomials have no roots in common [37].
12Although EF is a zero-one matrix, as in Remark 4 the fact that the

matrix contains a single 1 in each row allows us to consider the system as
structured.

The matrix
[

A−λI BI

EF (W−λI)−1HC 0

]
has rank n for some

choice ofW and H (i.e., by setting the columns ofH that are
not in J ′ to be zero, and choosing all other parameters almost
arbitrarily). Therefore, there is an n-th order minor of the
above matrix that is nonzero. Setting all nonzero entries in the
columns of H that are not in HJ′ to be free parameters, this
minor will be a nonzero polynomial in those parameters. Thus,
the set of parameters for which the rank of the above matrix
is less than n lies on an algebraic variety, and so the matrix
has rank at least n for almost any choice of free parameters.
The above analysis holds for every subset I ⊆ M, and

thus λ is not a fixed mode of the system. Furthermore, if the
conditions in the theorem hold for every unstable eigenvalue of
A, all of these eigenvalues will not be fixed modes for almost
any choice of free parameters in W and H. Finally, note that
the eigenvalues of Ã in (13) are the union of the eigenvalues
of A and W. The set of free parameters that makes W a
stable matrix has measure greater than zero, and the above
analysis will hold for almost any such choice of parameters.
This guarantees that no eigenvalue of W can be an unstable
fixed mode, which concludes the proof.
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