
SMART C: A Semantic Macro Replacement Translator for C

Matthew Jacobs E Christopher Lewis
Department of Computer and Information Science

University of Pennsylvania
{mrjacobs,lewis}@cis.upenn.edu

Abstract

Programmers often want to transform the source or bi-
nary representations of their programs (e.g., to optimize,
add dynamic safety checks, or add profile gathering code).
Unfortunately, existing approaches to program transforma-
tion are either disruptive to the source (hand transforma-
tion), difficult to implement (ad hoc analysis tools), or func-
tionally limited (macros). We propose an extension to the
C programming language called the Semantic Macro Re-
placement Translator (SMART C). SMART C allows for
the specification of very general type-aware transforma-
tions of all operations, statements, and declarations of the
C programming language without exposing the program-
mer to the complexities of the system’s internal representa-
tions. We have implemented a prototype SMART C source-
to-source translator and show its use in transforming pro-
grams for buffer overflow detection, format string vulnera-
bility detection, and weighted call graph profiling. We show
that SMART C achieves a pragmatic balance between gen-
erality and ease of use.

1. Introduction

Programmers and users often want to transform the

source or binary representations of their C language pro-

grams in particular ways. For example, the performance

conscious would like to perform domain or application-

specific optimization without hard coding these optimiza-

tions into the source program, thus preserving the natu-

ral (unoptimized) program logic. Programmers sometimes

want to encode dynamic checks in programs to ensure cer-

tain dynamic properties (e.g., that an array is not accessed

beyond its bounds), and users often want to use dynamic

checks to prevent potentially buggy applications from com-

promising user or system integrity (e.g., by restricting sys-

tem calls). Transformation is also used to inject instrumen-

tation code in order to gather profile data about a program’s

dynamic behavior which is useful in guiding offline opti-

mization.

A variety of techniques exists to effect such transforma-

tions on C programs, but they are each limited in that they

are disruptive to the program source, beyond the reach of

typical programmers, or restricted in the transformations

they may describe. Hand transformation clearly suffers

from the first limitation. The most powerful approach to

program transformation is to augment an existing compiler,

such as GCC, to build an ad hoc transformation tool. Un-

fortunately, this requires considerable effort and expertise;

most programmers lack one or both of these. Binary and

dynamic rewriting tools (e.g., ATOM [23] and Pin [16]) are

powerful, but they cannot reliably transform source-level

constructs because some constructs (e.g., structure field ac-

cess) are not necessarily apparent at the instruction level.

Aspect-oriented programming (AOP) systems [13] are easy

to use, but existing AOP designs (even those applied to

C) are limited in the language-level constructs that may be

transformed. Finally, macro systems such as cpp and m4
are simple and easy to use, but they are very limited in the

transformations they may specify.

In this paper, we propose a modest extension to the C

programming language called the Semantic Macro Replace-

ment Translator for C (SMART C). Unlike token-based

macros (e.g., those of cpp), semantic macros operate on the

abstract syntax of a program and are type aware. SMART C

allows for the transformation of any declarative or compu-

tational element of the C language without exposing the

internal representation of the compiler. As a result, pro-

grammers can freely transform variable and function dec-

larations, statements, and even primitive operations such

as arithmetic or logical operations. SMART C transfor-

mations can be predicated on both syntactic (e.g., variable

names) and semantic (e.g., variable types) properties of

the code. In addition, SMART C includes a limited form

of transformation-time evaluation that balances generality

and ease of use. Finally, the SMART C design preserves

the spirit of the C language, introducing little new syntax

and leveraging existing programmer intuition. In summary,

SMART C is powerful, general, compact, and easy to use.

In order to use SMART C, a programmer defines a

set of semantic macros (s-macros). S-macro expansion is

guided by patterns that determine what source-level con-

Proceedings of the Sixth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM'06)
0-7695-2353-6/06 $20.00 © 2006

Source code: Transformed code:

float a, b, c; =⇒ float a, b, c;
a = b/c; a = b * (1.0/c);

Transformation specification:

around(FP % / FP %) {
return tc operand * (1.0/tc operand2);

}

(a) Floating point division transformation.

Source code: Transformed code:

int a[10]; =⇒ struct {int value[10];
bool isValid;} a;

Transformation specification:

around(decl(Integer[] %)) {
struct{tc type value; bool isValid;} tc name;
tc body;

}

(b) Array declaration transformation.

Figure 1. Example SMART C transformation specification and their effect on C source.

structs (e.g., floating point division and integer array dec-

laration) are to be transformed. When a pattern specified

in an s-macro matches a source-level construct, the macro

is expanded. For example, suppose we wish to transform

floating point division into multiplication of the numera-

tor and the reciprocal of the denominator. The s-macro

to achieve this appears in Figure 1(a). The pattern “FP %
/ FP %” indicates that the s-macro should match all divi-

sion operations that have floating point operands (with any

names). The around keyword indicates that the macro

body should replace the division expression (versus be-

ing inserted before or after it). The macro body com-

putes the product as a function of the values of the numer-

ator expression (tc operand) and denominator expres-

sion (tc operand2). Figure 1(b) illustrates the transfor-

mation of all integer array declarations to structure decla-

rations containing the original integer array and a boolean

flag.

This work makes the following contributions. We

present the design of a semantic macro system for C that

is simple (leveraging programmer intuition, requiring lit-

tle new syntax, avoiding exposing intermediate representa-

tions), powerful (useful and interesting transformations may

be specified), and concise (requiring very little SMART C

code to achieve useful transformations). We describe our

SMART C implementation and show its utility in three dif-

ferent application contexts.

2. SMART C Design
SMART C macro expansion is a source-to-source trans-

formation guided by a set of user-specified transformation

specifications. Each transformation specification consists

of both semantic macros (s-macros) and (transformation-

local) auxiliary code and data declarations required by the

s-macros. An s-macro consists of (i) a pattern describing the

expressions, statements, or declarations to be transformed,

(ii) a body containing code, and (iii) a modifier describ-

ing how the matched entity is to be transformed. We call

the untransformed and transformed programs the base code
and target code, respectively. A matching entity in the base

code is called a match site. Below we introduce the compo-

nents of s-macros, but space constraints preclude complete,

manual-style presentation.

2.1. Patterns

An s-macro pattern is an abstract description of C

source-level primitives and can describe any expression,

statement, or declaration (variable or function). The match-

ing process matches on both the primitive (e.g., addition or

function call) and the types/names of the operands. For ex-

ample, the s-macro in Figure 1(a) only matches division of

floating point operands. Patterns have three components,

each of which plays a role in pattern matching: (i) a type

specifying the type of an operand (e.g., a floating point num-

ber), (ii) a specification of the name of an operand (e.g., a

function called malloc), and (iii) a C language primitive

(e.g., division or variable declaration). Below, we describe

each pattern component.

Pattern types. A pattern type specifies the data type of an

operand in a pattern. In addition to all the C primitive data

types, pattern types may include any user-defined data types

or any of the additional (shaded) types appearing in the type

hierarchy in Figure 2. These additional types are only avail-

able in SMART C patterns. (i.e., they cannot be used in any

C code). Each pattern type in Figure 2 matches all C types

in the nodes beneath it, thus allowing for the concise spec-

ification of a set of related types (e.g., all signed integers

of any precision). Derived types such as structures, point-

ers or arrays may be created from these primitive types. In

addition, the Any type can be used to specify any possible

type, including derived types. The Any type may also be

refined, as in the case of the pattern type Any *, which

matches pointers to any type. The syntax of pattern types is

borrowed directly from the C language.

Pattern names. A pattern name specifies the name of an

operand in a pattern. This includes variable and function

names as well as literals. Names may include the wild-

card character %, which matches any number of characters.

For example, the pattern name %alloc would match both

malloc and calloc. Pattern names can also represent

literals by using quotes. The literals matched will depend

Proceedings of the Sixth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM'06)
0-7695-2353-6/06 $20.00 © 2006

Primitive

Number void

Integer

Signed
Int

Unsigned
Int

FP

long
double double float

unsigned
char

unsigned
int

unsigned
short

unsigned
long

char int shortlong

Figure 2. Primitive type hierarchy used for
matching in SMART C.

upon the pattern type (above). For example, if the pattern

type is Integer, then "1" refers to the integer literal 1, while

"%" refers to any integer literal. Although general regu-

lar expressions would provide additional flexibility beyond

our wildcard character, we have not found a need for this

generality.

Pattern primitives. A pattern primitive specifies the C

language primitive that the pattern should match. Pattern

primitives are built from names and types (specifying the

name and types of the primitive operands, where applica-

ble), and can represent C expressions, statements, or decla-

rations. The syntax of pattern primitives, again, is borrowed

from the C language itself. For example, the pattern in the

s-macro of Figure 1(a) matches division primitives; the two

type/name operands specify that we should only match if

the division operands are floating point values of any preci-

sion with any name.

SMART C provides expression patterns for all arith-

metic, comparison, and logical operators, in addition to

other primitive operations of the C language (dereference,

address-of, array access, structure access, function call).

SMART C provides pattern primitives representing sets of

related C primitives, thus allowing for the specification of

more generic patterns. For example, the Binop primi-

tive matches all binary operations and Unop matches all

unary operations. These abstract primitives are further re-

fined based on their potential return types (e.g., arithmetic

versus logical binary operations).

Statement patterns (if, ifelse, switch, while,

dowhile, for) do not require any pattern types or names

(i.e., an if pattern will match all if statements indepen-

dent of the type of its predicate expression or structure of its

body). We have not found a need for more selective match-

ing.

Declaration patterns match either variable or function

declaration. There our four kinds of variable declara-

tion patterns: decl, globaldecl, localdecl, and

formaldecl. The decl pattern matches all variable dec-

larations, while the remaining three match global, local, and

formal parameter declarations, respectively.

SMART C also contains the boolean patterns not, and,

and or that combine multiple patterns, which have the nat-

ural interpretation. This admits, for example, patterns that

match additions in which either operand is a pointer type.

2.2. Modifiers

An s-macro modifier describes how the s-macro body

should be inserted at a match site. The modifier may take

on the values of before, after, or around (terms bor-

rowed from aspect-oriented programming [13]), indicating

whether the body of the s-macro should be inserted before,

after, or instead of, respectively, the matching expression,

statement, or declaration. The method by which bodies are

inserted is described in the next section.

2.3. Bodies

An s-macro body defines the code that is to be inserted

(according to the modifier) into the program (at the match

site). The body simply consists of C code, augmented with

SMART C-specific variables and syntax that allow the body

to be parameterized based on the context in which it is in-

serted. Context variables describe properties of the matched

expression, statement, or declaration; and transformation-
time control statements allow for the body to be customized

based on these properties.

Context variables. Context variables are place holders for

values, names, declarations, code, or operations that are

part of the matching expression, statement, or declaration.

Context variables allow the body code to be parameterized

based on properties of the match site. Each context variable

is recognized by the “tc ” prefix (“this context”). Since

context variables appear only in SMART C code, the us-

age of variables beginning with “tc ” in C remains unre-

stricted.

Table 1 shows the context variables available for each

type of pattern (although we will see that the context vari-

ables in parentheses are not defined for all bodies). The

context variables that are available in a particular body are

determined by the properties of the match site, which are

apparent from the pattern associated with the body. The

tc func context variable always denotes the function in

which the match site is located.

Expression patterns are created out of operands and an

operation. The value of a matching expression can be ac-

cessed via tc expr. Each operand can, in general, be an

arbitrary expression of any type. The type and value of the

first matched operands are accessed through the tc type
and tc operand context variables. When matching bi-

Proceedings of the Sixth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM'06)
0-7695-2353-6/06 $20.00 © 2006

Pattern Available Context Variables
Expression tc expr, tc operand, tc type,

(tc operand2), (tc type2), tc operation,

tc rettype, (tc args), (tc numargs),

tc func

Statement tc stmt, tc expr, (tc expr2), (tc expr3),

tc block, (tc block2), tc func

Declaration tc declscope, tc name, tc type, tc decl,

tc body, (tc args), tc func

Table 1. Context Variables.

nary expressions, the tc type2 and tc operand2 con-

text variables are also available. The operation is accessed

via the tc operation() function. The result type of

the operation is denoted by tc rettype. If the ex-

pression is a function call, then the argument list is via

tc args. This is an array of arguments, each possess-

ing type and value information. For example, the context

variables tc args[1].expr and tc args[1].type
are place holders for the value of the value and type of

the second argument to the function. The number of ar-

guments to the function is denoted by the context variable

tc numargs.

Statement patterns match control-flow statements. The

statement matched by the pattern may be accessed by

tc stmt. In each control-flow statement, there is an ex-

pression or series of expressions to be evaluated and con-

trol goes to a block of statements based upon the expres-

sion value. These expressions are denoted by the tc expr
context variables, and the code blocks are denoted by the

tc block context variables. For example, an if-else state-

ment possesses one expression to evaluate, and a choice of

two code blocks to be conditionally executed. The context

expressions tc expr, tc block, and tc block2 will

be available to use in the transformation body.

Declaration patterns match variable or function declara-

tions. Each variable declaration is associated with a state-

ment block, logically giving each declaration its own scope.

The context variable tc declscope is used to denote

the combination of the declaration and its associated code

block. The declaration itself is denoted by tc decl and

the associated code block by tc body. The type and

name of the declared variable are denoted by tc type and

tc name. For function declarations, the context variables

tc type and tc name denote the return type and func-

tion name respectively. In this case, the function body is

represented by tc body, and the function prototype by

tc decl. As in the function call case, the arguments can

be accessed though the tc args context variable.

It is often useful to have the textual representation of

that which a context variable represents. For example,

suppose tc operand represents some match site variable

counter. It is useful to make the string "counter"

available to the transformation body. This is achieved by

preceding any context variable with a dollar sign. In this

example, we could include the following code in our body:

fprintf(log, $tc operand).

Transformation-time control statements. Like con-

text variables, transformation-time control constructs are

a SMART C-specific construct that can appear within s-

macro bodies. The three possible transformation-time con-

trol constructs are IF-ELSE, FOR, and SWITCH. These

statements are formed in the same way as their C counter-

parts. However, they are restricted in what they may contain

so that they may be evaluated at transformation-time.

The IF and IF-ELSE constructs selectively include

code in the target program based on the value of a predi-

cate (i.e., the predicate is evaluated at transformation time

and either the then or the else statement—if one exists—

is included in the target code). The predicate must be a

transformation-time constant expression, consisting of C

literals, context variables, any C operation, and the func-

tional subset of the string library. A simple example

adapted from Engler [10] appears in Figure 3. If a non-

reentrant function is called from within a signal handler

(by convention named with a “sig ” prefix), the transfor-

mation results in an error and program termination. This

s-macro matches all calls to non-reentrant functions (just

nonreentrant() in this example). SMART C also

provides transformation-time display (PRINTF()) and ter-

mination (EXIT()) operations that could be used in this

example to report the same error at transformation time.

PRINTF() and EXIT() cannot be nested within C con-

trol flow, but appearing within transformation-time control

flow is allowed.

Unlike the C for loop, the SMART C FOR loop must

iterate a transformation-time constant number of iterations,

requiring that (i) the initializer must be a simple assignment

of an integer transformation-time constant, (ii) the com-

parator must compare the induction variable to an integer

transformation-time constant, and (iii) the incrementor may

increment or decrement the induction variable by an inte-

ger transformation-time constant. During transformation,

the number of iterations is computed and the loop is fully

unrolled.

Similarly, the SWITCH statement must be governed by a

transformation-time constant expression. Although this ex-

pression may be any transformation-time constant expres-

sion, expressions representing C types will be particularly

useful, allowing for the insertion of type-specific code dur-

ing transformation. An example (also adapted from En-

gler [10]) exploiting both the FOR and SWITCH statements

appears in Figure 4. In this example, the programmer calls

an output(...) function in the base code that is type-

unaware. This function call is transformed to an appropriate

type-dependent printf() call.

Proceedings of the Sixth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM'06)
0-7695-2353-6/06 $20.00 © 2006

before(Any nonreentrant()) {
IF(strncmp($tc_func,"sig_",4) == 0) {
printf("Sig handling error");
exit(1);
}
}

Figure 3. S-macro using IF.

around(void output(...)) {
char typeString[] = {0};
FOR(int i=0; i<tc_numargs; i++) {
SWITCH(tc_args[i].type) {
CASE FP:

strcat(typeString, "%f"); break;
CASE Char *:

strcat(typeString, "%s"); break;
CASE Any *:

strcat(typeString, "%p"); break;
...
}
}
printf(typeString, tc_args);
}

Figure 4. S-macro using FOR and SWITCH.

The above transformation-time control allows s-macro

bodies to be parameterized based on the context of the

match site, yet they remain easy to reason about for both

the compiler (enabling static type checking) and program-

mer. We have considered more general computation (e.g.,
including transformation-time variables), but we have not

yet found a pressing need for it.

2.4. Discussion

SMART C presents a simple model of transformation

to programmers. In order to leverage the user’s intuition

from the C language and obviate the need to learn internal

representations, programmers can only define patterns that

match single primitives in the language (e.g., binary oper-

ations, function calls, declarations, etc.). SMART C users

can build patterns that match the operations or operands in

complex expressions (e.g., a + b + c), but they cannot

match the whole expression. SMART C sacrifices this gen-

erality for three reasons: (i) the resulting language is much

simpler from a user’s perspective, (ii) the practical limita-

tion is minimal because multi-primitive patterns are fragile

in that they are tied to particular programming idioms, and

(iii) we find that the resulting language is still quite useful

and powerful.

S-macro bodies are type checked to ensure that if the

pattern they contain match any base code construct, the re-

sulting target code with be type correct (as far as the C lan-

guage is concerned). S-macros may be type checked inde-

pendent of the code to which they are applied because types

(or classes of types) are statically apparent from the s-macro

itself. The general procedure for type checking is identical

to C type checking except that context variables can take

on multiple types. This set of types is determined from the

pattern associated with the s-macro. The type checker con-

servatively assumes the context variables may have any of

these types and rejects programs that may violate C’s typing

rules.

3. Implementation
This section describes how pattern matching and s-

macro expansion are realized. We also summarize the cur-

rent implementation status.

3.1. Pattern Matching

Pattern matching determines which match sites will be

transformed by SMART C. First, the SMART C pattern

matcher walks though the list of declarations in the pro-

gram, attempting to match each against any of declaration

patterns. If a match is found, both the declaration and as-

sociated code block are transformed accordingly. An ex-

ample of this can be found in Figure 7(a). The SMART

C pattern matcher then walks through the AST and exam-

ines each statement. If this statement matches a statement

pattern, the transformation is applied at this time. Finally,

the expression matching is performed by doing a bottom-up

walk over the syntax tree of this statement. Each opera-

tion is checked for a match against all expression patterns,

and a transformation is applied if a match is found. In each

case, the pattern is considered a match only when the pat-

tern primitive matches as well as any expression, name or

type information embedded within the pattern matches as

well.

Each transformation specification (consisting of sets of

s-macros) operates independently of all other transforma-

tion specifications. They are composed by applying one

to the result of another. The order of application is spec-

ified by the user. This simple strategy allows transforma-

tion specifications to be modular. For example, a program-

mer could write transformation specifications that add null

pointer checks and log all function calls. These could be

written separately and independently, and applied in either

order.

For each transformation specification, any source code

primitive may match and be transformed by at most one

s-macro. To resolve ambiguities (i.e., multiple patterns

matching at a single match site), the user-specified order of

s-macros in a transformation specification is used. The first

matching s-macro “wins.” To achieve this, SMART C pro-

cesses the s-macros in the order they appear in the source

file. This gives the programmer flexibility to resolve ambi-

guities.

3.2. Code Transformation

Once SMART C has found a pattern match, it must deter-

mine how to transformation the match site. SMART C must

Proceedings of the Sixth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM'06)
0-7695-2353-6/06 $20.00 © 2006

Source code: Transformed code:

int *ptr, result; =⇒ int *ptr, *temp, result;
ptr = (int *) ptr = (int *)

malloc(sizeof(int)); malloc(sizeof(int));
result = *ptr; if (ptr == 0)

error("NULL DEREF");
temp = ptr;
result = *temp;

S-macro:

before(*Any* %) {
if (tc operand == 0) error("NULL DEREF")

}

(a) Before transformation on dereference expression.

Source code: Transformed code:

int a, b; =⇒ int a, b;
a = b * 2; a = b << 1;

S-macro:

around(Integer % * "2"){
return tc operand << 1;

}

(b) Around transformation on multiply expression.

Figure 5. Example SMART C expression transformations.

Source code: Transformed code:

if (x > 0) =⇒ printf("Test %s",
foo(x); "x > 0");

if (x > 0)
foo(x);

S-macro:

before(if) {
printf("Test %s", $tc expr);

}

(a) Before transformation on if statement.

Source code: Transformed code:

for(i=0; i < 10; i++) =⇒ i = 0;
{printf("i=%d", i); while (i < 10) {

} printf("i=%d", i);
i++; }

S-macro:

around(for){
tc expr;
while(tc expr2) {
tc block;
tc expr3; }

}

(b) Around transformation on for statement.

Figure 6. Example SMART C statement transformations.

resolve both the transformation-time control constructs and

context variables that appear in the transformation body. All

of the context variables may be statically determined by ex-

amining the match site. Each context variable is replaced by

the appropriate variable, type, operation, expression, decla-

ration or code block, as described above.

Expression transformation. Expression transformation is

governed by the before, after, or around s-macro

modifiers. Since the expression is part of a statement, it

is desirable to isolate this expression from the rest of the

statement for transformation purposes. To do this, SMART

C creates a temporary variable of the expression’s type and

replaces the appearance of the expression at the match site

with this temporary variable.

If the transformation modifier is before or after, a

new statement is created that assigns the matched expres-

sion into the temporary variable from above. At this point,

the macro body (with context variables replaced, as above)

is inserted before or after the newly created statement. An

example is shown in Figure 5(a).

If the modifier is around, the expression will be re-

placed by the result of the macro body. In this case, the

macro body must end with a return statement which spec-

ifies a value of the same type as the matched expression.

This expression is assigned into the temporary variable de-

scribed above, and the macro body is inserted before this

statement. An example is shown in Figure 5(b).

Statement transformation. A statement may be trans-

formed by a s-macro using the before, after, or

around modifiers. If the modifier is before or after,

the macro body is inserted directly before or after the match

site. If the modifier is around, then the statement is re-

placed with the macro body. Examples of each are shown

in Figure 6.

Declaration transformation. A declaration may be trans-

formed by a s-macro using the before, around, or

after modifiers. This pattern matches on the declaration,

and may replace or add to the declaration and the code in

the scope associated with matched declaration. The modi-

fiers specify where code is added so that a before s-macro

will add declarations before the match site and code before

the associated scope. The after and around cases are

Proceedings of the Sixth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM'06)
0-7695-2353-6/06 $20.00 © 2006

Source code: Transformed code:

int a; =⇒ int a;
foo(); add object(a);

foo();
del object(a);

S-macro:

around(decl(Integer %)) {
tc decl;
add object(tc name);
tc body;
del object(tc name);

}

(a) Around transformation on variable declaration.

Source code: Transformed code:

foo(int a, float b) =⇒ foo(int a, float b) {
{ do stuff(); } init table();

do stuff();
delete table(); }

S-macro:

around(decl(Any %(...))){
tc decl {
init table();
tc body;
delete table(); }

}

(b) Around transformation on function declaration.

Figure 7. Example SMART C declaration transformations.

similar. An example of changing a variable declaration has

already been presented in Figure 1(b). Examples demon-

strating another transformation of a variable declaration and

the body of a function declaration are shown in Figure 7.

3.3. Implementation Status

SMART C is implemented as a source-to-source trans-

lator. SMART C takes as input one file containing an arbi-

trary number of transformation specifications, and any files

containing source code that the user wishes to transform.

SMART C outputs the transformed versions of each of these

source files.

Our SMART C implementation has been built using the

C-Breeze compiler infrastructure [15]. C-Breeze provides a

number of predefined phases and allows for custom phases

to be built. Our implementation uses four phases. First, the

source code and the transformation specifications are parsed

into an AST. Next they are dismantled using C-Breeze’s

built-in dismantler, resulting in a three-address-code-like

intermediate representation. The next phase walks through

the dismantled AST to search for C constructs which match

a s-macro pattern. Upon a pattern match, the transformation

body is expanded and applied to the match site as discussed

in the previous section. The final phase “undismantles” the

code, converting it to a higher-level, more readable version,

which serves as the output.

4. Applications
This section demonstrates the use of SMART C across

a wide variety of application domains. Space constraints

preclude the presentation of complete transformation spec-

ifications, so we instead describe only the most important

s-macros.

4.1. Buffer Overflow Detection

Recently, there has been a great amount of work done

to make C programs safe with respect to buffer overflows.

Buffer overflows are possible in C because no explicit

typedef struct {
void * value;
void * base;
unsigned size;
enum {Heap, Local, Global} storageClass;
int capability;

} SafePtr;

around(decl(Any * %)) {
SafePtr tc_name; //make all ptrs into SafePtrs
tc_body; //keep body the same

}

Figure 8. SafeC s-macro that transforms
pointer declaration to fat pointer declaration
translation.

bounds-checking occurs. Hackers have found numerous

ways to construct malicious input which subverts control

of the system by overwriting critical control areas through

the use of carefully constructed strings which overwrite

unchecked buffers in C code. There are a variety of solu-

tions to this problem; we will examine two here. Both of

the solutions have been proposed and implemented previ-

ously by modifying a compiler. We will show that SMART

C provides a way to offer this functionality without having

to deal with the complexity of compiler internals.

The first buffer overflow detection mechanism we con-

sider is SafeC [2]. SafeC is a program transformation

that changes the representation of pointers to “fat pointers,”

which are C structures that contain spatial and temporal at-

tributes. This transformation requires that every use of a

pointer must be transformed to update or check this pointer

metadata appropriately.

In SMART C, these transformations are easy to express.

The SafeC system has been implemented via SMART C us-

ing fifteen transformations, requiring 150 lines of code (ex-

cluding the C runtime library routines). The most important

SMART C-based SafeC transformation is the conversion

Proceedings of the Sixth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM'06)
0-7695-2353-6/06 $20.00 © 2006

around(Void* %alloc(...)) {
tc_rettype ptr;
ptr = tc_expr; //ptr stores result of malloc
add_object(ptr, tc_args[0].expr); // add to table
return ptr; //return address

}

Figure 9. CRED s-macro that transforms
malloc call to allocation plus object inser-
tion.

of pointer declarations to fat pointers. The transformation

specification to achieve this appears in Figure 8. Each oper-

ation that performs pointer arithmetic is modified to update

the correct SafePtr components. Assignments to pointers

must also reflect the new SafePtr representation. Pointer

creation through a malloc call or the ‘&’ operation must

generate pointer attributes to place in the SafePtr rep-

resentation. The transformation of pointer dereferencing

does not change the semantics of dereference, but inserts

checks to ensure the spatial and temporal attributes of the

pointer result in a valid dereference. Finally, each function

body must be transformed to include prologue and epilogue

code to generate and discard scoping information, which is

used by the SafePtr representation to update and verify

its temporal attributes.

Next, we consider the buffer overflow detection tech-

nique proposed by Ruwase and Lam [19] called CRED (C

Range Error Detector). CRED does not change the pointer

representation; rather, it keeps object metadata in an auxil-

iary runtime table, and checks each pointers’ value against

this table to verify its validity. This involves adding bounds

information about each object in the program to the table,

and updating it appropriately when objects are deallocated.

These transformations are easy to describe in SMART

C. The object table, out-of-bounds (OOB) table, and helper

functions which provide an interface to modify the tables

are provided at the top level of the transformation specifica-

tion. Objects must be inserted into the object table for each

object (non-pointer) declaration and each call to malloc.

The code for the malloc case is shown in Figure 9. These

objects are deleted upon the termination of a scope or a call

to free, respectively. S-macros are also necessary to up-

date the tables appropriately and to perform checks upon

pointer dereference. The transformation for binary opera-

tions where the first operand is a pointer is shown in Fig-

ure 10.

4.2. Format String Vulnerability Detection

Programs written in C are also subject to format string

attacks. These attacks are achieved by giving the program a

string which will be passed to printf as a format string.

This string can be formed in a particular way to use it’s %

directives to write an arbitrary value to memory. Format

around(and(BinOp(Any * %, Any %),
not(BinOp(Any * %, Any * %))) {
//matches all expr of form : ptr (op) non-ptr

tc_type base;
tc_rettype result, retval;
result = tc_operation(

get_oob(tc_operand), tc_operand2);
//look up ptr in OOB, do original operation

if (check_ptr(result)) retval=result;
//nothing to do if object is inbounds

else
retval = add_oob(result, base_obj(tc_operand));
//if OOB, add (address,base) to OOB

return retval; //return result of computation }

Figure 10. CRED s-macro that transforms a
binary operation to use object and OOB table
information.

before(Int printf(...) {
char * formatStr = tc_args[0].expr;
int numPercent = parse(formatStr);
if (numPercent > tc_numargs-1) {

printf("Attack detected!");
exit(1);

}
}

Figure 11. FormatGuard s-macro that trans-
forms calls to printf to check the number
of arguments.

string vulnerabilities are possible in C because no check-

ing is performed to ensure that the format string contains %

directives that match the number and types of further argu-

ments passed to printf.

FormatGuard [7] detects many forms of this attack by

dynamically ensuring that the number of arguments to

printf() are the same as the number of % directives in

the format string. While FormatGuard uses cpp to effect

this transformation, SMART C admits a much simpler spec-

ification (Figure 11).

Alternatively, format string vulnerabilities can be stati-

cally detected. Shankar et al. use type qualifiers (specif-

ically tainted) to discover when format strings are de-

rived from user-supplied input [20]. SMART C can gener-

ate code to dynamically compute the same thing. To achieve

this, taintedness information is maintained and propagated

for each string, and all strings used as format strings are

checked to ensure that they are not tainted. This transfor-

mation is similar to Safe C, in that SMART C changes the

representation of strings to include a taintedness bit, and

each access to a string must be transformed in the obvious

manner.

Proceedings of the Sixth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM'06)
0-7695-2353-6/06 $20.00 © 2006

4.3. Weighted Call Graph Construction

The call graph is a useful tool in application profiling.

Call graphs encode the control flow between functions by

counting how many times and from where each procedure

gets dynamically called. Call graphs are typically con-

structed as the program runs and analyzed offline.

Weighted call graph construction is easily realized with

SMART C. The main function is augmented with code to

initialize a global data structure as its prologue, and code

to calculate the call graph from the global data structure

as its epilogue. Internally, pairs of (caller, callee) func-

tions are stored in a hash table and associated with a count.

For each occurrence of a (caller, callee) pair, the count is

incremented. Each function body is transformed to begin

with an update to the hash table that stores the callee name.

Each function call is transformed to also include an update

to the hash table that stores the call site. Upon termination

of the program, there will be a sequence of pairs of func-

tion names (caller, callee) with an associated count. From

this information, it is simple to construct the weighted call

graph.

5. Related Work

Code transformation approaches may be distinguished

by the representations on which they operate. Below we

summarize systems that operate on the token stream, the

abstract syntax tree, or the machine code of a program.

Syntax-based patterns. Transformation systems which op-

erate on the syntactic structure of C code have more ex-

pressiveness than token-based transformations, and allow

transformations to be architecture-independent, unlike bi-

nary translators. SMART C provides the ability to match

and transform primitives of the C language. MAGIK [10]

provides a library to access AST primitives and transform

them. Unlike SMART C, traversals over the AST must be

explicitly performed by the programmer.

Systems exist that are able to match and transform ar-

bitrary ASTs. These transformations are sensitive to pro-

grammer idioms, and may be more brittle than transfor-

mations on primitives. Moreover, writing transformational

code is harder for these systems since there are more pieces

of the AST to reason about. The Code Transformation

Tool (ctt) [4] is an example of such a system. The Strat-
ego [25] system uses term rewriting to express transforma-

tions. ASTLOG [8] uses a Prolog variant as a transforma-

tion language. ASF+SDF is an environment for automati-

cally constructing languages and provides facilities for their

transformation [24].

Transformation systems may also operate on keywords

introduced by the programmer that will expand into C code.

ASTEC [17] is a system which operates on code that has not

yet been pre-processed, and is designed to be a replacement

for cpp. As cpp does, ASTEC matches on keywords in-

troduced by the programmer, and is therefore inappropriate

for applying transformations to preexisting base code. Like-

wise, the MS2 (Meta Syntactic Macro System) [26] uses a

language that may access pieces of the AST directly and use

them in code expansion.

Aspect-oriented programming (AOP) [13] is a general

framework for expressing crosscutting concerns in a modu-

lar fashion. The most well-known versions are AspectJ [12]

and AspectC++ [22]. These systems allow programmers to

match and transform method calls and variable access, and

refine the match sites by further matching upon dynamic

control flow information. Many systems have brought AOP

concepts to C, including AspectC [5], c4 [27], Aspicere [1],

Arachne [9] and TinyC [28]. These systems all provide the

ability to match on function calls, and in some cases vari-

able access and dynamic control flow information. We ar-

gue that SMART C patterns made up of all primitive oper-

ations of C allow a more expressive set of transformations

than solely function calls. In fact, the dynamic control flow

matching provided in some of these languages can be ex-

pressed as a transformation specification in SMART C, ob-

viating the need for a special language construct.

Token-based patterns. Transformation tools that reason

about a token representation of base code include the cpp
and m4 macro systems. These tools suffer from the disad-

vantage that no contextual information is available about the

match site. Furthermore, subtle errors may be introduced

due to precedence and side-effects that are not obvious from

the macro code.

Binary-based patterns. Systems that operate on the binary

representation of the program are designed with a different

set of goals than systems which operate on ASTs. They seek

to provide a machine-specific transformation capability, at

the loss of semantic information (such as types), potential

optimization opportunities, and portability across architec-

tures. ATOM [23] and EEL [14] are examples of compile-

time transformation systems which operate on the binary

representation of the program. There are also a variety of

run-time transformation systems which allow programmers

hooks into the binary representation of a program, some ex-

amples include Dynamo [3], Pin [16], and DISE [6].

Metaprogramming. The concept of transformation-time

control in SMART C (IF-ELSE, FOR, SWITCH) is an

instance of metaprogramming. Other metaprogramming

systems include Template Haskell [21] and the Scheme

language [11]. Metaprogramming allows programmers to

write code which produces other code. Many metapro-

gramming systems, such as tcc [18], allow this metacode

to be arbitrary. In general, this makes code written in a

metaprogramming language to be difficult to reason about.

SMART C provides only a limited set of language con-

Proceedings of the Sixth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM'06)
0-7695-2353-6/06 $20.00 © 2006

structs to produce code at transformation-time. Again, this

is an example where SMART C attempts to limit the com-

plexity of transformational code, while still maintaining

enough power to express meaningful transformations.

6. Conclusion
We have introduced semantic macros to the C program-

ming language via SMART C (Semantic Macros Replace-

ment Transformer for C). Our SMART C extensions allow

for far more transformation power than traditional C macro

systems because (i) type information is used the pattern

matching/replacement process, (ii) any C language prim-

itive may be transformed, and (iii) our macro bodies are

highly parameterizable. We show the use of SMART C in

several practical contexts (buffer overflow detection, format

string vulnerability detection, and call graph profiling), and

we find that powerful transformations can very simply and

succinctly be represented with SMART C.

References
[1] B. Adams and T. Tourwé. Aspect Orientation for C: Express

yourself. In Proceedings of Software-Engineering Proper-
ties of Languages and Aspect Technologies, 2005.

[2] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient Detec-
tion of All Pointer and Array Access Errors. In Proceedings
of Conference on Programming Language Design and Im-
plementation, pages 290–301, 1994.

[3] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Trans-
parent Dynamic Optimization System. In Proceedings of
Conference on Programming Language Design and Imple-
mentation, pages 1–12, 2000.

[4] M. Boekhold, I. Karkowski, and H. Corporaal. Trans-
forming and Parallelizing ANSI C Programs Using Pattern
Recognition. In Proceedings of International Conference on
High-Performance Computing and Networking, pages 673–
682, 1999.

[5] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using
AspectC to Improve the Modularity of Path-Specific cus-
tomization in operating system code. In Foundations of Soft-
ware Engineering, 2001.

[6] M. L. Corliss, E. C. Lewis, and A. Roth. DISE: A Pro-
grammable Macro Engine for Customizing Applications. In
Proceedings of International Symposium on Computer Ar-
chitecture, pages 362–373, 2003.

[7] C. Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman.
FormatGuard: Automatic Protection From printf Format
String Vulnerabilities. In Proceedings of USENIX Security
Symposium, 2001.

[8] R. F. Crew. ASTLOG: A Language for Examining Abstract
Syntax Trees. In Proceedings of Conference on Domain-
Specific Languages, 1997.

[9] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud, M. Segura-
Devillechaise, and M. Sudholt. An expressive aspect lan-
guage for system applications with Arachne. In Proceedings
of International Conference on Aspect-oriented software de-
velopment, 2005.

[10] D. R. Engler. Incorporating application semantics and con-
trol into compilation. In Proceedings of Conference on
Domain-Specific Languages, 1997.

[11] R. Kelsey, W. Clinger, and J. R. (Editors). Revised5 report
on the algorithmic language Scheme. ACM SIGPLAN No-
tices, 33(9):26–76, 1998.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An Overview of AspectJ. In Proc. of
European Conf. on Object-Oriented Programming, 2001.

[13] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Akşit and S. Matsuoka, editors, Pro-
ceedings of European Conference on Object-Oriented Pro-
gramming, volume 1241, pages 220–242. Springer-Verlag,
Berlin, Heidelberg, and New York, 1997.

[14] J. R. Larus and E. Schnarr. EEL: Machine-Independent Exe-
cutable Editing. In Proceedings of Conference on Program-
ming Language Design and Implementation, pages 291–
300, 1995.

[15] C. Lin, S. Z. Guyer, and D. Jimenez. The C-Breeze Com-
piler Infrastructure. Technical Report TR-01-43, The Uni-
versity of Texas at Austin, November 2001.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building Customized Program Analysis Tools with Dy-
namic Instrumentation. In Proceedings of Conference on
Programming Language Design and Implementation, pages
190–200, 2005.

[17] B. McCloskey and E. Brewer. ASTEC: A New Approach to
Refactoring C. In Proceedings of Foundations of Software
Engineering, 2005.

[18] M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: A Sys-
tem for Fast, Flexible, and High-level Dynamic Code Gener-
ation. In Proceedings of Conference on Programming Lan-
guage Design and Implementation, pages 109–121, 1997.

[19] O. Ruwase and M. S. Lam. A Practical Dynamic Buffer
Overflow Detector. In Proceedings of Network and Dis-
tributed System Security Symposium, pages 159–169, 2004.

[20] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detect-
ing Format String Vulnerabilities with Type Qualifiers. In
Proceedings of USENIX Security Symposium, 2001.

[21] T. Sheard and S. P. Jones. Template Meta-programming for
Haskell. In Proceedings of Workshop on Haskell, pages 1–
16, 2002.

[22] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. As-
pectC++: An Aspect-Oriented Extension to C++. In
Proceedings of International Conference on Technology of
Object-Oriented Langiages and Systems, 2002.

[23] A. Srivastava and A. Eustace. ATOM: A System for Build-
ing Customized Program Analysis Tools. In Proceedings of
Conference on Programming Language Design and Imple-
mentation, pages 196–205, 1994.

[24] M. van den Brand, J. Heering, H. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. Olivier, J. Scheerder,
J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-
Environment: a Component-Based Language Development
Environment. In Proceedings of Compiler Construction
2001 (CC 2001), LNCS. Springer, 2001.

[25] E. Visser. Program transformation with Stratego/XT:
Rules, strategies, tools, and systems in StrategoXT-0.9. In
C. Lengauer et al., editors, Domain-Specific Program Gen-
eration, volume 3016 of Lecture Notes in Computer Science,
pages 216–238. Spinger-Verlag, 2004.

[26] D. Weise and R. Crew. Programmable Syntax Macros. In
Proceedings of Conference on Programming Language De-
sign and Implementation, pages 156–165, 1993.

[27] M. Yuen, M. Fiuczysnki, R. Grimm, Y. Coady, and
D. Walker. Making extensibility of system software prac-
tical with the C4 toolkit. In AOSD Workshop on Software
Engineering Properties of Languages and Aspect Technolo-
gies, 2006.

[28] C. Zhang and H.-A. Jacobssen. TinyC2: Towards Building
a Dynamic Weaving Aspect Language for C. In Foundations
of Aspect-Oriented Languages, 2003.

Proceedings of the Sixth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM'06)
0-7695-2353-6/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

