
DISCRETE AND CONTINUOUS OPTIMIZATION FOR COLLABORATIVE AND MULTI-TASK

LEARNING

Arman Adibi

A DISSERTATION

in

Electrical and Systems Engineering

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2023

Supervisor of Dissertation

Hamed Hassani, Assistant Professor of Electrical and Systems Engineering

Graduate Group Chairperson

Troy Olsson, Associate Professor of Electrical and Systems Engineering

Dissertation Committee

George J Pappas (Chair), Professor of Electrical and Systems Engineering, University of
Pennsylvania
Amin Karbasi, Associate Professor of Electrical Engineering and Computer Science, Yale University
Sanjay Shakkottai, Professor of Electrical and Computer Engineering, University of Texas at Austin

DISCRETE AND CONTINUOUS OPTIMIZATION FOR COLLABORATIVE AND

MULTI-TASK LEARNING

COPYRIGHT

2023

Arman Adibi

To My Family.

iii

ACKNOWLEDGEMENTS

I consider myself incredibly fortunate to have been given the opportunity to pursue my Ph.D. degree

at the esteemed University of Pennsylvania. Above all, I want to express my deep appreciation to

Prof. Hamed Hassani, my advisor, whose unwavering guidance and mentorship have been invaluable

throughout this remarkable journey. He consistently engaged in thought-provoking discussions and

collaborative problem-solving sessions, showcasing not only his brilliance but also his kindness and

dedication to his students. His support extended beyond research, as he was always there to assist

with any challenges I faced. Prof. Hassani is not only an advisor but also one of my closest and

most cherished friends. I am truly grateful for his presence in my academic and personal life.

I would also like to extend my heartfelt thanks to my esteemed committee members, Prof. Amin

Karbasi, Prof. Sanjay Shakkottai, and Prof. George J. Pappas, for their valuable insights, constructive

criticism, and unwavering encouragement. Their expertise and feedback greatly contributed to the

development of my work. Additionally, I am immensely grateful to Prof. Aryan Mokhtari, Prof.

George J. Pappas, and Prof. Aritra Mitra, with whom I collaborated extensively on my research

projects. Their comments, suggestions, and unwavering support have been crucial to my academic

growth. Working closely with Prof. Aritra Mitra during the final two years of my Ph.D. studies

was a truly rewarding experience. His enthusiasm, clarity of thought, and academic guidance have

been immensely valuable. I would like to express my special appreciation to Aritra Mitra for his

invaluable feedback on all sections of this thesis. I am also thankful to Prof. Aryan Mokhtari for

our collaboration during the initial years of my Ph.D. studies. Furthermore, I extend my gratitude

to Nicolò Del Fabro, Alex Robey, and Mohammad Freydounian for their friendship, invaluable

assistance, and insightful suggestions, which played a pivotal role in making this thesis possible.

I wish to acknowledge the dedicated teachers who have influenced my academic journey at various

stages, consistently inspiring my growth. In particular, I want to express my gratitude to Prof.

Mohammad Mahdi Naghsh, Prof. M. Reza Koushesh, Prof. Reza Rezaeian Farashahi, and Prof.

Farzad Parvaresh for their unwavering support and encouragement. Their guidance has shaped my

iv

academic path significantly.

Throughout these transformative years, I have been fortunate to collaborate with and build meaningful

relationships with an exceptional group of individuals, including Alex Robey, Vahid Nikkhah,

Mohammad Freydounian, Mohamad Hossein Idjadi, Ehsan Nahvi, Juan Cervino, Mehran Ebrahimian,

Aryan Mokhtari, Saeed Sharifi-Malvajerdi, Behrad Moniri, Eric Lei, Hesam Nikpey, Raghu Arghal,

Nicolò Del Fabro, Mahdi Sabbaghi, Shayan Kiyani, Zebang Shen, Nikolaos Boussias, Sima Noorani,

Alena Rodionova, Ignacio Hounie, Aritra Mitra, Juan Elenter, Asma Fallah, Mostafa Akbari, Leila

Bahrami, Fariborz Soroush, Burce Lee, Thomas Zhang and many others. Their collaboration and

friendship have enriched my academic and personal experiences. I would also like to express my

sincere appreciation to my friends and colleagues in the labs of Dr. Hassani, Dr. Ribeiro, and Dr.

Pappas, whose presence has made my time at UPenn truly memorable.

Lastly, I owe my deepest gratitude to my wife, Sabiha, whose unwavering love and support have been

my anchor throughout this challenging journey. I also want to acknowledge the profound influence

of my late father, Behrouz, whose wise advice and tireless work ethic continue to inspire me. I am

grateful to my mother, Mina, for her unwavering support and affection, even from a distance. To

my brother, Armin, who has been a constant source of friendship and support, I am truly thankful.

Completing this transformative journey would have been impossible without the unconditional love

and support of my family, and I dedicate this thesis to them.

v

ABSTRACT

DISCRETE AND CONTINUOUS OPTIMIZATION FOR COLLABORATIVE AND MULTI-TASK

LEARNING

Arman Adibi

Hamed Hassani

This thesis is dedicated to addressing the challenges of robust collaborative learning and optimization

in both discrete and continuous domains. With the ever-increasing scale of data and the growing

demand for effective distributed learning, a multitude of obstacles emerge, including communication

limitations, resilience to failures and corrupted data, limited information access, and collaboration

in multi-task learning scenarios. The thesis consists of eight chapters, each targeting specific aspects

of these challenges.

In the second chapter, novel algorithms are introduced for collaborative linear bandits, offering a

comprehensive exploration of the benefits of collaboration in the presence of adversaries through

thorough analyses and lower bounds. The third chapter delves into multi-agent min-max learning

problems by tackling the presence of Byzantine adversarial agents. Chapter four delves into the

effects of delays within stochastic approximation schemes, investigating non-asymptotic convergence

rates under Markovian noise.

Moving forward, the fifth chapter focuses on analyzing the performance of standard min-max

optimization algorithms with delayed updates. The sixth chapter concentrates on robustness in

discrete learning, specifically addressing convex-submodular problems in mixed continuous-discrete

domains. The seventh chapter tackles the challenge of limited information access in collaborative

problems with distributed constraints, developing optimal algorithms for submodular maximization

under distributed partition matroid constraints.

Lastly, the eighth chapter introduces a discrete variant of multi-task learning and meta-learning. In

summary, this thesis contributes to the field of robust collaborative learning and decision-making by

vi

providing insights, algorithms, and theoretical guarantees in discrete and continuous optimization.

The advancements made across linear bandits, minimax optimization, distributed robust learning,

delayed optimization, and submodular maximization pave the way for future developments in

collaborative and multi-task learning.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF TABLES . xii

LIST OF ILLUSTRATIONS . xiii

CHAPTER 1 : Introduction . 1

CHAPTER 2 : Collaborative Linear Bandits with Adversarial Agents 4

2.1 Introduction . 4

2.2 Problem Formulation . 7

2.3 Robust Collaborative Phased Elimination Algorithm for Linear Bandits 8

2.4 Lower Bounds . 13

2.5 Extension to Generalized Linear Models with Adversaries 14

2.6 Robust Collaborative Contextual Bandits with Adversaries 17

2.7 Simulation Results . 20

2.8 Detailed Discussion of Related Work . 22

2.9 Further Comments on our Algorithms . 24

2.10 Analysis of RCLB: Proof of Theorem 1 . 28

2.11 Lower Bound Analysis: Proof of Theorem 2 . 37

2.12 Algorithms and Analysis for the Generalized Linear Bandit Model 42

2.13 Analysis for the Contextual Bandit Setting: Proof of Theorem 4 52

2.14 Alternate Strategies for Robust Collaborative Phased Elimination can lead to Sub-

Optimal Regret Bounds. 60

2.15 Experimental Results . 65

CHAPTER 3 : Distributed Min-Max Learning in the Presence of Byzantine Agents 70

viii

3.1 Introduction . 70

3.2 Problem Formulation . 73

3.3 Robust Distributed Extra-Gradient . 75

3.4 Performance Guarantees for RDEG . 77

3.5 Proof Sketch of Theorem 7 . 80

3.6 Simulations . 83

3.7 Conclusion . 84

CHAPTER 4 : Stochastic Approximation under Delays . 86

4.1 Summary . 86

4.2 Introduction . 87

4.3 Related Work . 90

4.4 Stochastic Approximation with Delays: Problem Formulation 93

4.5 Stochastic Approximation with Constant Delays . 98

4.6 Stochastic Approximation with Time-Varying Delays 104

4.7 Delay-Adaptive Stochastic Approximation . 109

4.8 Proofs of Lemmas and Theorems . 113

4.9 Appendix A: Proof of Theorem 9 . 115

4.10 Appendix B: Proof of Theorem 10 . 134

4.11 Appendix C: Proof of Theorem 11 . 146

CHAPTER 5 : Min-Max Optimization under Delays . 160

5.1 Introduction . 160

5.2 Problem Setting . 162

5.3 Analysis of Delayed Extra-gradient for Convex-Concave functions 166

5.4 Analysis of Delayed Gradient Descent-Ascent for Convex-Concave functions 172

5.5 Analysis of Delayed Gradient Descent-Ascent for Strongly Convex-Strongly Concave

functions . 178

CHAPTER 6 : Minimax Optimization: The Case of Convex-Submodular 184

ix

6.1 INTRODUCTION . 184

6.2 CONVEX-SUBMODULAR MINIMAX OPTIMIZATION 189

6.3 ALGORITHMS . 192

6.4 EXPERIMENTS . 198

6.5 CONCLUSION . 201

6.6 Appendix . 202

CHAPTER 7 : Submodular Maximization with Distributed Constraints 228

7.1 Introduction . 228

7.2 Related work . 230

7.3 Preliminaries . 232

7.4 Problem Statement . 234

7.5 Constraint-Distributed Continuous Greedy . 236

7.6 Convergence Analysis . 238

7.7 Simulation Results . 240

7.8 Conclusion . 241

7.9 Appendix A: Assumptions for Theorem 27 . 242

7.10 Appendix B: Preliminary Lemmas . 243

7.11 Appendix C: Proof of Theorem 27 . 248

CHAPTER 8 : Submodular Meta-Learning . 252

8.1 Introduction . 252

8.2 Problem Statement: Discrete Meta-Learning . 255

8.3 Algorithms for Discrete Submodular Meta-Learning 260

8.4 Simulation Results . 265

8.5 Comparison with Two-stage Submodular Optimization 269

8.6 Conclusion and Future Work . 270

8.7 Proof of Proposition 3 . 272

8.8 Proof of Proposition 4 . 274

x

8.9 Proof of Theorem 30 . 277

8.10 Proof of Theorem 31 . 280

8.11 Counter-example for Submodularity of the Objective in (8.7) 285

BIBLIOGRAPHY . 287

xi

LIST OF TABLES

TABLE 4.1 Summary of results. 98

TABLE 5.1 The table below presents a summary of our findings, outlining the conditions
required for each algorithm to achieve the specified convergence rate. In the
smooth convex-concave case, the convergence rate corresponds to the number
of iterations needed for the duality gap to be less than ϵ. For the smooth
strongly convex-strongly concave case (SC-SC), the rate corresponds to the
number of iterations needed for the distance to saddle points to be less than ϵ.
It is worth noting that in this table, we hide the dependence on G, L, and the
strong-convexity parameter in the O notation. 162

TABLE 6.1 Algorithms performance guarantee. Here cf is the cost of single computation of
f , cPx and cPy are cost of projection in X and Y , c∇xf is the cost of computing
gradient of f with respect to x, and c∇xF and c∇yF are the cost of computing
gradient of multilinear extension F with respect to x and y, respectively. k is
the cardinality constraint (|S| ≤ k) and n is size of the ground set |V | = n. . . 185

xii

LIST OF ILLUSTRATIONS

FIGURE 2.1 Plots of per-agent regret for the linear bandit experiment. (a) Comparison
between RCLB and a vanilla non-robust phased elimination algorithm. (b)
Performance of RCLB for varying number of agents M , with α = 0.1. (c)
Performance of RCLB for varying corruption fraction α, with M = 100. For (d),
we set α = 0.1, M = 100, and compare RCLB to a phased elimination algorithm
where the agents do not collaborate. We also plot theoretical upper-bounds:
f1(T) = 40

√
dT and f2(T) = 40(α+

√
(1/M))

√
dT 20

FIGURE 2.2 Performance of a vanilla non-robust distributed phased elimination algorithm
vs RCLB for the attack model in Eq. (2.86). 68

FIGURE 2.3 Plots of per-agent regret for the contextual bandit experiment. (a) Comparison
between our proposed algorithm, namely Algorithm 3, and a vanilla non-robust
distributed contextual bandit algorithm. (b) Performance of Algorithm 3 for
varying number of agents M, with α = 0.1. (c) Performance of Algorithm 3 for
varying corruption fraction α, with M = 100. (d) Comparison of Algorithm 3 to
a non-robust contextual bandit algorithm where the agents do not collaborate;
here, α = 0.1 and M = 100. We also plotted theoretical upper bounds:
g1(T) = 3

√
dT and g2(T) = 17(α+

√
1
M)
√
dT 69

FIGURE 3.1 A group of M agents collaborate to find a saddle point for the min-max learning
problem in Eq. (3.1). A fraction α of the agents is adversarial and upload
arbitrarily corrupted messages (denoted by ∗) to the server. All the remaining
good agents upload noisy partial gradients of f(x, y). 74

FIGURE 3.2 Top Left (a). Comparison between vanilla extra-gradient and RDEG. Top
Right (b). Performance of RDEG vs. level of corruption fraction. Bottom
Left (c). Performance of RDEG vs. number of agents. Bottom Right (d).
Performance of RDEG vs. level of noise variance. 85

FIGURE 5.1 The Extra-gradient algorithm fails to converge, even with just one step delay,
for the optimization problem minxmaxy⟨x, y⟩. In this plot, we used a step size
of α = 0.2. However, with the same step size and no delay, the Extra-gradient
algorithm converges to the origin, which is the saddle-point for this problem. . 165

FIGURE 6.1 Comparison of our proposed methods for convex-facility location functions(case
I and Case II) . 199

FIGURE 6.2 Comparison of our proposed methods for for Problem (6.11) (the green line is
the performance of the recommender system when there is no adversary) . . . 201

xiii

FIGURE 7.1 Area coverage simulation results for CDCG and SGA. (Top left) Random
initialization of n = 10 agents in a 10× 10 grid. (Top middle & right) Coverage
achieved by CDCG (top middle) and SGA (top right) from the random initialization
shown in the top left panel. (Bottom left) Comparison of the mean coverage
achieved by CDCG and SGA averaged over 10 random initializations. (Bottom
right) Comparison of the coverage achieved by CDCG and SGA for a setting in
which each agent’s starting point is the center of the grid. 240

FIGURE 8.1 (a) Optimal sets for each of the training tasks (k = 6); (b) the set obtained by
solving the average problem in (8.4); (c) the optimal set for a new task revealed
at test time, i.e. solving the problem in (8.2); (d) the optimal set for the new
task is also obtained by solving the meta-learning problem in (8.7) with l = 4
(brown set) and adding the task-specific elements at test time (red set). 258

FIGURE 8.2 Performance for Ride Share Optimization. 266
FIGURE 8.3 Performance for Movie Recommendation. 267
FIGURE 8.4 Comparison of two-stage framework and submodular meta-learning framework 268
FIGURE 8.5 y-axis: The lower bound of Proposition 4 divided by OPT, x-axis: γ/OPT. . . 277
FIGURE 8.6 Counter Example of Submodularity . 285

xiv

CHAPTER 1

Introduction

This thesis focuses on the challenges of robust collaborative learning and optimization in the context

of both discrete and continuous domains. With the increasing scale of data and the need for effective

distributed learning, numerous obstacles arise, including communication limitations, resilience to

failures and corrupted data, limited information access, and collaboration in multi-task learning

scenarios. The thesis comprises eight chapters, each addressing specific aspects of these challenges.

The second chapter introduces novel algorithms for collaborative linear bandits, striking a balance

between collaboration and adversarial disruptions. Leveraging robust confidence intervals, these

algorithms optimize exploration and exploitation, achieving regret bounds that approach optimality.

The benefits of collaboration in the presence of adversaries are explored through comprehensive

analyses and lower bounds, providing a deep understanding of collaborative linear bandits under

adversarial conditions.

In the third chapter, the thesis tackles multi-agent min-max learning problems by addressing the

presence of Byzantine adversarial agents. A robust distributed variant of the Extra-gradient algorithm

is proposed within the domain of distributed robust learning. By leveraging robust statistics, this

algorithm achieves convergence rates that are close to optimal, enabling the approximation of saddle

points for smooth convex-concave and smooth strongly convex-strongly concave functions. The

subsequent chapters delve into the challenges posed by delays in optimization.

The fourth chapter investigates the effects of delays within stochastic approximation schemes,

examining non-asymptotic convergence rates under Markovian noise. Delay-adaptive schemes are

introduced to enhance convergence rates without explicit knowledge of the delay sequence.

In the fifth chapter, the thesis analyzes the performance of standard min-max optimization algo-

rithms with delayed updates, specifically addressing stochastic optimization with delayed gradients.

The convergence guarantees of Gradient Descent-Ascent (GDA) and Extra-gradient (EG) algorithms

1

with delayed updates are established for convex-concave and strongly convex-strongly concave

settings, shedding light on the convergence slowdown induced by delays.

The sixth chapter focuses on robustness in discrete learning, particularly convex-submodular

problems in mixed continuous-discrete domains. The thesis designs algorithmic procedures to address

these challenges, providing convergence rates and characterizations of computational complexity. By

combining tools from discrete and continuous optimization, the proposed algorithms offer effective

solutions supported by theoretical guarantees and empirical evaluations.

The seventh chapter tackles the issue of limited information access in collaborative problems

with distributed constraints. Optimal algorithms for submodular maximization with distributed

constraints are developed, addressing the challenges of maximizing a submodular objective function

subject to a distributed partition matroid constraint. The thesis introduces the Constraint-Distributed

Continuous Greedy (CDCG) algorithm, which achieves a tight approximation factor of the optimum

global solution through local computation and communication. Empirical results demonstrate the

superiority of CDCG over sequential greedy methods in a multi-agent area coverage problem.

Finally, the eighth chapter introduces a discrete variant of multi-task learning and meta-learning.

A novel meta-learning framework is proposed in the discrete domain, where each task corresponds

to maximizing a set function under a cardinality constraint. The framework leverages prior data

to train a suitable initial solution set, facilitating quick adaptation to new tasks at a reduced

computational cost. Deterministic and randomized algorithms are presented to solve the challenging

discrete optimization problem, with strong theoretical guarantees, even when the training objective

may not be submodular. The effectiveness of the framework is demonstrated in real-world problem

instances, highlighting the significant reduction in computational complexity for solving new tasks

while incurring minimal performance loss.

In summary, this thesis contributes to addressing the challenges of robust collaborative learning and

decision-making by focusing on discrete and continuous optimization approaches. The insights, algo-

rithms, and theoretical guarantees provided across linear bandits, minimax optimization, distributed

2

robust learning, delayed optimization, and submodular maximization advance the field and pave the

way for further advancements in collaborative and multi-task learning.

3

CHAPTER 2

Collaborative Linear Bandits with Adversarial Agents

2.1. Introduction

One of the primary challenges in modern large-scale computing systems is that of security. Given

that the individual agents in such large systems are often vulnerable to attacks, it is important to

understand how the overall system behaves in the face of adversarial corruptions. This observation

has spurred a line of research dedicated to the design and analysis of distributed algorithms that are

provably robust to a small fraction of adversarial agents; notably, motivated by emerging learning

paradigms such as federated learning (Konečnỳ et al., 2016; Bonawitz et al., 2019; McMahan et al.,

2017), this body of work has focused primarily on empirical risk minimization/stochastic optimization

(Chen et al., 2017b; Blanchard et al., 2017; Yin et al., 2018; Chen et al., 2018b; Alistarh et al., 2018;

Xie et al., 2018; Li et al., 2019a; Ghosh et al., 2019, 2020a,b; Karimireddy et al., 2021). However,

when it comes to multi-agent sequential decision-making problems under uncertainty (e.g., bandits

and reinforcement learning), our understanding of analogous questions is quite limited. Our goal in

this paper is to bridge the above gap by studying a collaborative linear bandit (Dani et al., 2008;

Abbasi-Yadkori et al., 2011) problem in the presence of adversaries. In our model, M agents interact

with the same linear bandit characterized by a d-dimensional unknown parameter θ∗, and a finite set

of K arms. These agents can collaborate via a central server to improve performance, as measured by

cumulative regret. As examples, consider (i) a team of robots exploring actions (arms) in a common

environment and interacting with a central controller; and (ii) a group of people exploring restaurants

(arms) and writing reviews for a web-recommendation server. In the absence of adversaries, there is

a clear reason to collaborate in either case: by exchanging information, each agent can reduce its

uncertainty about the arms faster than it could when it acts alone, and thereby incur lesser regret.

The situation becomes murkier and more delicate when certain agents misbehave: What if certain

robots get attacked or certain people deliberately write spam reviews? More generally, the main

question we ask in this paper is the following.

4

In a multi-agent linear stochastic bandit problem, can we still hope for benefits of collaboration when

a fraction α of the agents are adversarial? If so, what are the fundamental limits of such benefits?

As far as we are aware, the answers to these questions have thus far remained elusive, motivating our

current study. The main technical hurdle we must overcome is to delicately balance the exploration-

exploitation trade-off in the presence of both statistical uncertainties due to the environment, and

worst-case adversarial behavior. Importantly, the above trade-off - intrinsic to sequential decision-

making - is absent in static optimization problems. Thus, the ideas used to guarantee robustness for

distributed optimization do not apply to our problem, making our task quite non-trivial.

Our Contributions. In this paper, we contribute to a principled study of several canonical

structured linear bandit settings with adversarial agents. Our specific contributions are as follows.

• Robust Collaborative Linear Bandit Algorithm. We propose RCLB - a phased elimination

algorithm that relies on distributed exploration, and balances the exploration-exploitation dilemma

in the presence of adversaries via carefully constructed robust confidence intervals. We prove that

RCLB guarantees Õ
((
α+ 1/

√
M
)√

dT
)

regret for each good agent; see Theorem 1. This result is

both novel, and significant in that it reveals a clear benefit of collaboration (despite adversaries) for

small values of α. In particular, when α = 0, the regret bound of RCLB is minimax-optimal in all

relevant parameters: the model-dimension d, the horizon T , and the number of agents M .

• Fundamental Limits. At this stage, one may ask: Is the additive α
√
T term in Theorem 1

simply an artifact of our analysis? In Theorem 2, we establish a fundamental lower bound, revealing

that such a term is in fact unavoidable; it is the price one must pay due to adversarial corruptions. A

key implication of this result is that our work is the first to provide tight, near-optimal regret bounds

for collaborative linear bandits with adversaries. The proof of Theorem 2 relies on a novel connection

between the information-theoretic arguments in (Bubeck et al., 2013), and ideas from the robust

mean estimation literature (Chen et al., 2015; Lai et al., 2016). As such, our proof technique may

be relevant for related settings.

In our next set of contributions, we significantly extend our results to more general bandit models.

5

• Generalized Linear Bandit Setting. In Theorem 3, we prove that one can achieve bounds akin

to that in Theorem 1 for the generalized linear bandit model (GLM) (Filippi et al., 2010; Li et al.,

2017) that accounts for non-linear observation maps. To achieve this result, we propose a variant

of RCLB that leverages very recently developed tools from high-dimensional robust Gaussian mean

estimation (Dalalyan and Minasyan, 2022). Deriving robust confidence intervals for this setting

requires some work: we exploit regularity properties of the non-linear observation model along

with error bounds from (Dalalyan and Minasyan, 2022) for this purpose. As far as we are aware,

Theorem 3 is the first result to establish adversarial-robustness for GLMs, allowing our framework

to be applicable to a broad class of problems (e.g., logistic and probit regression models).

• Contextual Bandit Setting. Finally, we turn our attention to the contextual bandit setting

where the feature vectors of the arms can change over time. This setting is practically quite relevant

as web-recommendation systems are often modeled as contextual bandits (Li et al., 2010). The main

challenge here arises from the need to simultaneously contend with time-varying optimal arms and

adversaries. To handle this scenario, we develop a robust variant of the SUPLINREL algorithm (Auer,

2002) that guarantees a near-optimal regret bound identical to that of Theorem 1; see Theorem 4.

Overall, via the proposal of new robust algorithms complemented with tight analyses, our work takes

an important step towards multi-agent sequential decision-making in the presence of adversaries.

Related Work. There is a growing strand of literature that studies the effect of reward corruption

in stochastic bandits (for a single-agent setting) where the adversary has a fixed corruption budget

(Jun et al., 2018; Liu and Shroff, 2019; Lykouris et al., 2018; Gupta et al., 2019; Bogunovic et al.,

2020; Garcelon et al., 2020; Bogunovic et al., 2021; He et al., 2022). The techniques in these papers

do not apply to our work as our setting is very different: the adversarial agents in our model can act ar-

bitrarily, and have no budget constraints. Several papers study multi-agent bandit problems in the ab-

sence of adversaries (Liu and Zhao, 2010; Kalathil et al., 2014; Kar et al., 2011; Landgren et al., 2016,

2021; Shahrampour et al., 2017; Buccapatnam et al., 2015; Kolla et al., 2018; Wang et al., 2019;

Sankararaman et al., 2019; Martínez-Rubio et al., 2018; Dubey et al., 2020; Dubey and Pentland,

2020b; Lalitha and Goldsmith, 2020; Chawla et al., 2020a,b; Ghosh et al., 2021; Agarwal et al., 2021;

6

Zhu et al., 2021; Shi et al., 2021). A few very recent ones (Dubey and Pentland, 2020a; Vial et al.,

2021, 2022; Mitra et al., 2021a) also look at the effect of attacks, but for the simpler unstructured

multi-armed bandit problem. Accounting for adversarial agents in the structured linear bandit

setting we consider here requires significantly different techniques that we develop in this paper.

2.2. Problem Formulation

We consider a setting comprising of a central server and M agents; the agents can communicate only

via the server. Each agent i ∈ [M] interacts with the same linear bandit model characterized by an

unknown parameter θ∗ that belongs to a known compact set Θ ⊂ Rd. We assume ∥θ∗∥ ≤ 1.1 The set

of actions A for each agent is given by K distinct vectors in Rd, i.e., A = {a1, . . . , aK}, where K is a

finite, positive integer. Based on all the information acquired by an agent i up to time t− 1, it takes

an action ai,t ∈ A at time t, and receives a reward yi,t given by the following observation model:

yi,t = ⟨θ∗, ai,t⟩+ ηi,t. (2.1)

Here, {ηi,t} is a sequence of independent Gaussian random variables with zero mean and unit

variance. Thus far, we have essentially described a distributed/multi-agent linear stochastic bandit

model. Departing from this standard model, we focus on a setting where a fraction α ∈ [0, 1/2) of

the agents are adversarial; the adversarial set is denoted by B, where |B| = αM . In particular, we

consider a worst-case attack model, where each adversarial agent i ∈ B is assumed to have complete

knowledge of the system, and is allowed to act arbitrarily. Under this attack model, an agent i ∈ B

can transmit arbitrarily corrupted messages to the central server.

Our performance measure of interest is the following group regret metric RT defined w.r.t. the

non-adversarial agents:

RT = E

 ∑
i∈[M]\B

T∑
t=1

⟨θ∗, a∗ − ai,t⟩

 , (2.2)

where a∗ = argmaxa∈A⟨θ∗, a⟩ is the optimal arm, and T is the time horizon.2 We will work under
1We will use ∥ · ∥ to represent the Euclidean norm, and a′ to denote the transpose of a vector a.
2For ease of exposition, we assume that there is an unique optimal arm.

7

a regime where the horizon T is large, satisfying T ≥Md. The goal of the good (non-adversarial)

agents is to collaborate via the server and play a sequence of actions that minimize the group regret

RT . Let us now make a few key observations. In principle, each good agent can choose to act

independently throughout (i.e., not talk to the server at all), and achieve Õ(
√
dT) regret by playing

a standard bandit algorithm. Clearly, the group regret RT would scale as Õ
(
(1− α)M

√
dT
)

in

such a case. In the absence of adversaries however, one can achieve a significantly better group

regret bound of Õ
(√

MdT
)

via collaboration, i.e., the regret per good agent can be reduced by a

factor of
√
M relative to the case when it acts independently (see, for instance, (Wang et al., 2019)

and (Dubey and Pentland, 2020b)). Our specific interest in this paper is to investigate whether, and

to what extent, one can retain the benefits of collaboration despite the worst-case attack model

described above. Said differently, we ask: Can we improve upon the trivial per agent regret bound of

Õ(
√
dT) in the presence of adversaries?

Throughout the rest of the paper, we will answer the above question in the affirmative by deriving

novel robust algorithms for several canonical bandit models, and then establishing near-optimal

regret bounds for each such model.

2.3. Robust Collaborative Phased Elimination Algorithm for Linear Bandits

In this section, we develop a robust phased elimination algorithm that achieves the near-optimal

regret bound of Õ
((
α+

√
1/M

)√
dT
)

per good agent. This is non-trivial as we must account for

the worst-case attack model described in Section 4.4. To highlight the challenges that we need to

overcome, consider the following scenario. During the initial stages of the learning process, when

the arms in A have not been adequately sampled by the agents, even a good agent may have “poor

estimates" of the true payoffs associated with each arm, i.e., the variance associated with such

estimates may be large. This statistical uncertainty can be exploited by the adversarial agents to

their benefit. In particular, we need to devise an approach that can distinguish between benign

stochastic perturbations (due to the noise in our model) and deliberate adversarial behavior. In

what follows, we describe our proposed algorithm - Robust Collaborative Phased Elimination

for Linear Bandits (RCLB) - that precisely does so in a principled way.

8

Algorithm 1 Robust Collaborative Phased Elimination for Linear Bandits (RCLB)

Input: Action set A = {a1, . . . , aK}, confidence parameter δ, and corruption fraction α.
Initialize: ℓ = 1 and A1 = A.
1: Let Vℓ(π) ≜

∑
a∈Aℓ

π(a)aa′ and gℓ(π) ≜ maxa∈Aℓ
∥a∥2Vℓ(π)−1 . Server solves an approximate

G-optimal design problem to compute a distribution πℓ over Aℓ such that gℓ(πℓ) ≤ 2d and
|Supp(πℓ)| ≤ 48d log log d.

2: For each a ∈ Aℓ, server computes m(ℓ)
a via Eq. (2.5), and broadcasts {m(ℓ)

a }a∈Aℓ
to all agents.

3: for i ∈ [M] \ B do
4: For each arm a ∈ Aℓ, pull it m(ℓ)

a times. Let r(ℓ)i,a be the average of the rewards observed by
agent i for arm a during phase ℓ.

5: Compute local estimate θ̂(ℓ)i of θ∗ as follows.3

θ̂
(ℓ)
i = Ṽ −1

ℓ Yi,ℓ, where Ṽℓ =
∑

a∈Supp(πℓ)

m(ℓ)
a aa′ ; Yi,ℓ =

∑
a∈Supp(πℓ)

m(ℓ)
a r

(ℓ)
i,aa. (2.3)

6: Transmit θ̂(ℓ)i to server. Adversarial agents can transmit arbitrary vectors at this stage.
7: end for
8: Server computes robust mean pay-offs for each active arm: for each a ∈ Aℓ, estimate µ(ℓ)a as

µ(ℓ)a = Median
(
{⟨θ̂(ℓ)i , a⟩, i ∈ [M]}

)
.

9: Define robust confidence threshold γℓ ≜
√
2C
(
1 + α

√
M
)
ϵℓ, where C is as in Lemma 1. Server

performs phased elimination with the robust means and γℓ to update active arm set:

Aℓ+1 = {a ∈ Aℓ : max
b∈Aℓ

µ
(ℓ)
b − µ

(ℓ)
a ≤ 2γℓ}. (2.4)

10: ℓ = ℓ+ 1 and Goto line 1.

Description of RCLB (Algorithm 1). The RCLB algorithm we propose is inspired by the phased

elimination algorithm in (Lattimore and Szepesvári, 2020, Chapter 22), but features some key

differences due to the distributed and adversarial nature of our problem. The algorithm proceeds in

epochs/phases, and in each phase ℓ, the server maintains an active candidate set Aℓ of potential

optimal arms. The exploration of arms in Aℓ is distributed among the agents. Upon such exploration,

each agent i reports back a local estimate θ̂(ℓ)i of the unknown parameter θ∗; adversarial agents

can transmit arbitrarily corrupted messages at this stage. Using the local parameter estimates

{θ̂(ℓ)i }i∈[M], the server then constructs (i) a robust estimate of the true mean payoff ⟨θ∗, a⟩ for

each active arm a ∈ Aℓ, and (ii) an inflated confidence interval that captures both statistical and

adversarial uncertainties associated with such robust mean estimates. This step is crucial to our

9

scheme and requires a lot of care as we explain shortly. With the robust mean payoffs and associated

confidence intervals in hand, the server eliminates arms with rewards far away from that of the

optimal arm a∗. We now elaborate on the above ideas.

• Optimal Experimental Design. To minimize the regret incurred in each phase ℓ, we need to minimize

the number of arm-pulls made to arms in Aℓ. To that end, we appeal to a concept from statistics

known as optimal experimental design. The concept is as follows. Let π : A → [0, 1] be a distribution

on A such that
∑

a∈A π(a) = 1. Now define V (π) ≜
∑

a∈A π(a)aa
′; g(π) ≜ maxa∈A ∥a∥2V (π)−1 .

The so-called G-optimal design problem seeks to find a distribution (design) π∗ that minimizes g. In

essence, sampling each arm a ∈ A in proportion to π∗(a) minimizes the number of samples/arm-pulls

needed to achieve a desired level of precision in the estimates of the arm means ⟨θ∗, a⟩, a ∈ A. For

our purpose, we only need to solve an approximate G-optimal design problem: using the Frank-Wolfe

algorithm and an appropriate initialization, one can efficiently find an approximate optimal design π

such that g(π) ≤ 2d, and |Supp(π)| ≤ 48d log log d (Todd, 2016, Chapter 3). Accordingly, the server

computes such an approximate optimal distribution πℓ over Aℓ in each epoch ℓ (line 1 of Algo. 1).

• Construction of Robust Arm-Payoff Estimates and Confidence Intervals. In each phase ℓ, the

server computes T (ℓ)
a and m(ℓ)

a for every a ∈ Aℓ as follows:

T (ℓ)
a =

⌈
πℓ(a)d

ϵ2ℓ
log

(
1

δℓ

)⌉
and m(ℓ)

a =

⌈
T
(ℓ)
a

M

⌉
, (2.5)

where πℓ(a) is obtained from the approximate G-optimal design problem, ϵℓ = 2−ℓ, δℓ = δ̄/(Kℓ2),

and δ̄ is a design variable to be chosen later. The idea is to explore an arm a T
(ℓ)
a times to estimate

⟨θ∗, a⟩ up to a precision that scales linearly with ϵℓ; in later phases, we require progressively finer

precision (hence, ϵℓ decays exponentially with ℓ). The task of exploration is distributed among the

agents, with each agent i being assigned m
(ℓ)
a arm-pulls for every a ∈ Aℓ. Using the rewards that

it observes during phase ℓ, each good agent i ∈ [M] \ B computes a local estimate θ̂(ℓ)i of θ∗, and

transmits it to the server (lines 3-7 of Algo. 1). The key question now is as follows: How should the

3Throughout, we assume that Ṽ −1
ℓ is invertible in each epoch ℓ; this is the case when Aℓ spans Rd. If Aℓ does not

span Rd, we can consider the lower dimensional subspace given by span(Aℓ).

10

server use the local estimates {θ̂(ℓ)i }i∈[M]? Let us consider two natural strategies.

Candidate Strategies. One option could be to use the local estimates {θ̂(ℓ)i }i∈[M] along with a

high-dimensional robust mean estimation algorithm to compute a robust estimate of θ∗. Yet another

strategy could be for the server to query the raw observations (i.e., the yi,t’s) from the agents, use an

univariate robust mean estimation algorithm (e.g., trimmed mean or median) to generate a “clean"

version of each observation, and then use these clean observations to compute a robust estimate of

θ∗. Although feasible, each of the above strategies can unfortunately lead to an additional
√
d factor

in the regret bound; we discuss this point in detail in the Appendix. The main message we want to

convey here is that certain natural candidate solutions can lead to sub-optimal regret bounds.

Main Ideas. Our main insight is the following: to achieve near-optimal optimal regret bounds, one

need not go through the route of first computing a robust estimate of θ∗. As our analysis will soon

reveal, it suffices to instead compute robust estimates of the arm pay-offs {⟨θ∗, a⟩}a∈Aℓ
directly by

employing the estimator in line 8 of Algo. 1. The key statistical property that we exploit here is

that for each a ∈ Aℓ and i ∈ [M] \ B, the quantity ⟨θ̂(ℓ)i , a⟩ is conditionally-Gaussian with mean

⟨θ∗, a⟩. This observation informs the choice of the median operator in line 8 of Algo. 1. Our next

task is to compute appropriate confidence intervals for the robust arm-mean-estimates in order to

eliminate sub-optimal arms. This is a delicate task as such confidence intervals need to account

for both statistical uncertainties and adversarial perturbations. Indeed, if the confidence intervals

are too tight, then they can lead to elimination of the optimal arm a∗; if they are too loose, then

they can lead to large regret. The confidence threshold γℓ in line 9 of Algo. 1 strikes just the right

balance; the choice of such intervals is justified in Lemma 1.

We now state and discuss our main result concerning the performance of RCLB.

Theorem 1. (Performance of RCLB) Suppose α ∈ [0, 0.5). Given any δ ∈ (0, 1), set δ̄ = δ/(10K).

Then, RCLB guarantees that with probability at least 1− δ, the following holds for each good agent

i ∈ [M] \ B:
T∑
t=1

⟨θ∗, a∗ − ai,t⟩ = Õ
((
α+

√
1/M

)√
dT
)
. (2.6)

11

Main Takeaways. From Theorem 1, we note that RCLB guarantees sublinear regret despite the

presence of adversarial agents. More importantly, the regret bound in Eq. (2.6) has optimal

dependence on the model-dimension d, the horizon T , and also on the number of agents M when

α = 0 (i.e., in the absence of adversaries). When α is small, Eq. (2.6) reveals that one can indeed

retain the benefits of collaboration, and improve upon the trivial per agent regret of Õ(
√
dT).

Interestingly, this result mirrors that of a similar flavor for distributed stochastic optimization under

attacks: given M machines, α fraction of which are corrupt, the authors in (Yin et al., 2018) showed

that no algorithm can achieve statistical error lower than Ω̃
(
α/
√
T + 1/

√
MT

)
for strongly convex

loss functions; here, T is the number of samples on each machine. As far as we are aware, this is

the first work to establish an analogous result for collaborative linear bandits. Inspired by the lower

bound in (Yin et al., 2018), one may ask: Is the additive α
√
T term in Eq. (2.6) unavoidable? We

will provide a definitive answer in Section 2.4. Finally, we note that Theorem 1 immediately implies

a bound of Õ
((
αM +

√
M
)√

dT
)

on the group regret RT . We provide a formal proof of this fact

in Appendix 2.10.

Proof Outline of Theorem 1. The first main step in our analysis of Theorem 1 is to provide

guarantees on the estimates {µ(ℓ)a }a∈Aℓ
computed in line 8 of RCLB. This is achieved as follows.

Lemma 1. (Robust Confidence Intervals) Fix any epoch ℓ. There exists an universal constant

C > 0 such that for each active arm b ∈ Aℓ, the following holds with probability at least 1− δℓ:

|µ(ℓ)b − ⟨θ∗, b⟩| ≤ γℓ, where γℓ =
√
2C
(
1 + α

√
M
)
ϵℓ. (2.7)

Equipped with the above result, we argue that with high-probability, (i) the optimal arm a∗ is never

eliminated by RCLB (Lemma 4 in App. 2.10); and (ii) in each epoch ℓ, an active arm in Aℓ can

contribute to at most O(γℓ) per-time-step regret (Lemma 5 in App. 2.10). Putting these pieces

together in a careful manner yields the desired result; we defer a detailed proof of Theorem 1 to

Appendix 2.10.

In the next section, we derive a lower bound that provides fundamental insights into the impact

12

of the adversarial agents for the multi-agent sequential decision-making problem considered in this

paper.

2.4. Lower Bounds

In this section, we assess the optimality of the regret bound obtained in Theorem 1. To do so, we

consider a slightly different attack model: we assume that each of the agents is adversarial with

probability α, independently of the other agents. Thus, the expected fraction of adversaries is α.

Next, to provide a clean argument, we will focus on a class of policies Π where at each time-step

t, the server assigns the same action to every agent, i.e., ai,t = at, ∀i ∈ [M]. We note that all the

algorithms developed in this paper adhere to policies in Π. Moreover, policies within the class Π

yield the minimax optimal per-agent regret bound of order Õ(
√
dT/
√
M) when α = 0. Since the

standard multi-armed bandit setting (Auer et al., 2002) is a special case of the structured linear

bandit setting considered here, a lower bound for the former implies one for the latter. With this in

mind, let us denote by E(K)
N (1) the class of multi-armed bandits with K arms, where the reward

distribution of each arm is Gaussian with unit variance. An instance νµ ∈ E(K)
N (1) is characterized

by the mean vector µ ∈ RK associated with the K arms. Finally, let R(s)
T (νµ) denote the expected

cumulative regret of the server (which is the same as that of a good agent i ∈ [M] \ B) when it

interacts with the instance νµ. We can now state the following result which establishes a fundamental

lower bound for our problem.

Theorem 2. (Fundamental Lower Bound) Given any policy in Π, there exist two distinct

instances νµ, νµ′ ∈ E
(2)
N (1), and an universal constant c > 1, such that

max{R(s)
T (νµ), R

(s)
T (νµ′)} ≥ cα

√
T , (2.8)

irrespective of the number of agents M .

Main Takeaways. Observe from Eq. (2.6) that even when M is arbitrarily large, the additive α
√
T

term due to the adversaries remains unaffected - Is this term truly unavoidable or just an artifact

of our analysis? Theorem 2 settles this question by revealing a fundamental performance limit:

13

every policy in Π has to suffer the additive α
√
T regret, regardless of the number of agents. Thus,

taken together, Theorems 1 and 2 provide the first set of tight, near-optimal regret guarantees for the

setting considered in this paper. We consider this to be a significant contribution of our work.

Proof Idea for Theorem 2. For our setting, the standard techniques to prove lower bounds for non-

adversarial bandits do not directly apply. The lower-bound proofs used for reward-corruption models

(Kapoor et al., 2019), and attacks with a fixed budget (Bogunovic et al., 2021), are not applicable

either. This motivates us to use a new proof technique that combines information-theoretic arguments

in (Bubeck et al., 2013) with ideas from the robust mean estimation literature (Chen et al., 2015;

Lai et al., 2016). Specifically, for a two-armed bandit setting, we carefully construct two instances

and attack strategies such that the joint distribution of rewards seen by the server is identical for

both instances. Moreover, the instances are constructed such that (i) the optimal arm in one instance

is sub-optimal for the other; and (ii) the per-time-step regret for selecting a sub-optimal arm in

either instance is Ω(α/
√
T). For a detailed proof, see Appendix 2.11.

Having established tight bounds for the linear bandit model in Section 4.4, in the sequel, we will

show how our algorithmic ideas and results can be significantly extended to more general settings.

2.5. Extension to Generalized Linear Models with Adversaries

In this section, we will show how to achieve a regret bound akin to that in Theorem 1 for the non-

linear observation model shown below (Filippi et al., 2010; Li et al., 2017), known as the generalized

linear model (GLM):

yi,t = µ (⟨θ∗, ai,t⟩) + ηi,t, (2.9)

where µ : R→ R is a continuously differentiable function typically referred to as the (inverse) link

function, and ηi,t ∼ N (0, 1) is as before. Our goal is to now control the following notion of regret:

RGLM
T = E

 ∑
i∈[M]\B

T∑
t=1

(µ (⟨θ∗, a∗⟩)− µ (⟨θ∗, ai,t⟩))

 , (2.10)

14

where a∗ = argmaxa∈A µ(⟨θ∗, a⟩). The main technical challenge relative to the setting considered

in Section 4.4 pertains to the construction of the robust confidence intervals. In particular, the

non-linearity of the map µ(·) makes it hard to apply the technique adopted in line 8 of RCLB,

necessitating a different approach that we describe next. We start with the following standard

assumption (Filippi et al., 2010; Li et al., 2017).

Assumption 1. The function µ : R → R is continuously differentiable, Lipschitz with constant

k2 ≥ 1, and such that

k1 = min{1, inf
θ∈Θ,a∈A

µ̇(⟨θ, a⟩)} > 0.

Here, µ̇(·) is used to represent the derivative of µ(·).

Next, for any θ ∈ Rd, we define hℓ(θ) ≜
∑

a∈Supp(πℓ)m
(ℓ)
a µ(⟨θ, a⟩)a. We now describe a variant of

RCLB - dubbed RC-GLM - for generalized linear models. Notably, unlike the standard bandit algorithms

(Filippi et al., 2010; Li et al., 2017) for GLM’s that build on LinUCB, RC-GLM is based on phased

elimination.

Description of RC-GLM. Our algorithm uses as a sub-routine the recently proposed Iteratively

Reweighted Mean Estimator for computing a robust estimate of the mean of high-dimensional

Gaussian random variables with adversarial outliers (Dalalyan and Minasyan, 2022). Specifically,

suppose we are given M d-dimensional samples x1, . . . , xM , such that (1− α)M of these samples

are drawn i.i.d. from N (v,Σ), where v ∈ Rd is an unknown mean vector, and Σ ∈ Rd×d is a

known covariance matrix. The remaining αM samples are adversarial outliers and can be arbitrary.

The estimator in (Dalalyan and Minasyan, 2022) takes as input the M samples, the corruption

fraction α, and the covariance matrix Σ. It then outputs an estimate v̂ of v such that with

high probability, ∥v̂ − v∥ = Õ
(
∥Σ∥1/22

(√
d/M + α

√
log(1/α)

))
. Importantly, the estimator in

(Dalalyan and Minasyan, 2022) runs in polynomial-time, and is minimax-rate-optimal. Let us now

see how this estimator - described in Appendix 2.12 - can be applied to our setting.

We only describe the key differences of RC-GLM relative to RCLB here, and defer a detailed description

of RC-GLM to Appendix 2.12. To get around the difficulty posed by the non-linear link function, our

15

main idea is to first compute a robust estimate θ̂(ℓ) of θ∗ at the server, and then use it to develop a

phased elimination strategy. To that end, instead of computing a local estimate θ̂(ℓ)i as in RCLB, each

good agent i ∈ [M] \ B transmits Yi,ℓ to the server, and the server computes a vector Xℓ as follows:

Xℓ = ITW({Ṽ −1/2
ℓ Yi,ℓ, i ∈ [M]}). Here, Ṽ −1/2

ℓ and Yi,ℓ are as in Eq. (2.3), and we used ITW(·) to

denote the output of the robust estimator in (Dalalyan and Minasyan, 2022). Our key observation

here is that for each good agent i, Ṽ −1/2
ℓ Yi,ℓ is a d-dimensional Gaussian random variable with mean

Ṽ
−1/2
ℓ hℓ(θ∗), and covariance matrix Σ = Id, justifying the use of the robust Gaussian mean estimator

in (Dalalyan and Minasyan, 2022). The fact that Σ = Id is crucial in our algorithm design as the

error-bound in (Dalalyan and Minasyan, 2022) scales with the 2-norm of Σ. Essentially, the above

steps enable us to extract a statistic Xℓ that captures information about the agents’ observations

during epoch ℓ. Using this statistic, the server next computes an estimate θ̂(ℓ) of θ∗ by solving

hℓ(θ̂
(ℓ)) = Ṽ

1/2
ℓ Xℓ,4 and employs the following phased elimination strategy:

Aℓ+1 = {a ∈ Aℓ : maxb∈Aℓ
µ(⟨θ̂(ℓ), b⟩)− µ(⟨θ̂(ℓ), a⟩) ≤ 2γ̄ℓ}; γ̄ℓ = C̄(k2/k1)

(√
d+ α

√
M log(1/α)

)
ϵℓ,

where C̄ is an universal constant known to the server. Deriving an analogue of Lemma 1 to compute

the robust confidence threshold γ̄ℓ requires some work. This is achieved by exploiting the regularity

properties of the link function in tandem with the confidence bounds in (Dalalyan and Minasyan,

2022); see Appendix 2.12 for details and a proof of our main result for RC-GLM stated below.

Theorem 3. (Performance of Algorithm RC-GLM) Suppose α < (5 −
√
5)/10, and M =

Ω(log(KT)). Given any δ ∈ (0, 1), RC-GLM guarantees that with probability at least 1 − δ, the

following holds for each good agent i ∈ [M] \ B:

T∑
t=1

(µ (⟨θ∗, a∗⟩)− µ (⟨θ∗, ai,t⟩)) = Õ
(
(k2/k1)

(
α
√
log (1/α) +

√
d/M

)√
dT
)
. (2.11)

Main Takeaways. Theorem 3 significantly generalizes Theorem 1 and shows that even for general

non-linear observation maps, one can reap the benefits of collaboration in the presence of adversaries.
4We argue in Appendix 2.12 that this equation admits a unique solution.

16

Algorithm 2 Robust BaseLinUCB (at Server)

Input: Confidence parameter δ̄, corruption fraction α, and index set ψt ⊆ [t− 1].
1: At ← Id

M +
∑

τ∈ψt
xτ,aτx

′
τ,aτ .

2: for i ∈ [M] do ▷ Compute local parameters for each agent
3: bi,t ←

∑
τ∈ψt

ri,τxτ,aτ ; θ̂i,t ← A−1
t bi,t.

4: end for
5: for a ∈ [K] do ▷ Compute robust estimates for each feature vector

6: r̂t,a ← Median
(
{⟨θ̂i,t, xt,a⟩, i ∈ [M]}

)
;wt,a ←

(
α+ 2C

√
log(1

δ̄
)

M

)
∥xt,a∥A−1

t
, where C is as in

Lemma 1.
7: end for

The additional
√
d factor in the bound of (2.11) relative to that in (2.6) is inherited from the error-

rate guarantees in (Dalalyan and Minasyan, 2022); the task of tightening this bound is left as future

work. Nonetheless, Theorem 3 is the only result we are aware of that provides adversarial-robustness

guarantees for GLMs.

Remark 1. (Communication Complexity of RCLB and RC-GLM) It is not hard to see that the

number of epochs/phases in RCLB and RC-GLM is O(log(MT)). Since communication between the

server and the agents occurs only once in every epoch, we note that the communication complexity

of these algorithms scale logarithmically with the horizon T . Thus, our proposed algorithms not

only lead to near-optimal regret bounds in the face of worst-case adversarial attacks, they are also

communication-efficient by design. This is an important point to take note of as communication-

efficiency is a key consideration in large-scale computing paradigms such as federated learning.

2.6. Robust Collaborative Contextual Bandits with Adversaries

In this section, we will consider a collaborative contextual bandit setting where at each time-step

t ∈ [T], the server and the agents observe K d-dimensional feature vectors, {xt,a|a ∈ [K]}, with

∥xt,a∥ ≤ 1,∀a ∈ [K] and ∀t ∈ [T]. We assume that the adversarial agents have no control over the

generation of the feature vectors. Associated with each arm a ∈ [K], the stochastic reward observed

by an agent i ∈ [M] comes from the following observation model:

yi,t(a) = ⟨θ∗, xt,a⟩+ ηi,t(a), (2.12)

17

Algorithm 3 Robust Collaborative SupLinUCB for Contextual Bandits (at Server)
Input: Confidence parameter δ, corruption fraction α, and horizon T .
1: S ← ⌈lnT ⌉;ψ(s)

1 ← ∅,∀s ∈ [S].
2: for t ∈ [T] do
3: s← 1 and A1 ← [K].
4: repeat
5: Use Algorithm 2 with δ̄ = δ/(KST), and index set ψ(s)

t to compute robust estimates
{r̂(s)t,a , w

(s)
t,a} of the means and variances of the payoffs associated with each arm a ∈ As.

6: If w(s)
t,a > 2−s/

√
M for some a ∈ As, then choose this arm, i.e., set at = a. Store the

corresponding phase: ψ(s)
t+1 = ψ

(s)
t ∪ {t}, ψ

(ℓ)
t+1 = ψ

(ℓ)
t ∀ℓ ̸= s.

7: Else if w(s)
t,a ≤ 1/

√
MT ∀a ∈ As, then select the arm with the highest robust upper confidence

bound : at = argmaxa∈As

(
r̂
(s)
t,a + w

(s)
t,a

)
. Do not store this phase, i.e., ψ(ℓ)

t+1 = ψ
(ℓ)
t ∀ℓ ∈ [S].

8: Else if w(s)
t,a ≤ 2−s/

√
M ∀a ∈ As, then update active arm-set as

As+1 = {a ∈ As|max
b∈As

(
r̂
(s)
t,b + w

(s)
t,b

)
−
(
r̂
(s)
t,a + w

(s)
t,a

)
≤ 2(1−s)/

√
M}.

9: s← s+ 1.
10: until an action at is chosen.
11: Broadcast the chosen action at to every agent (i.e., ai,t = at, ∀i ∈ [M]), and receive corre-

sponding rewards {ri,t}i∈[M]. Adversarial agents can transmit arbitrary reward values.
12: end for

where {ηi,t(a)} are drawn i.i.d. from N (0, 1). At each time step t, a good agent i ∈ [M] \ B plays

an action ai,t ∈ [K], and receives the corresponding reward ri,t ≜ yi,t(ai,t) based on the observation

model in (2.12). The main difference of the setting considered here relative to the one in Section

4.4 is that the feature vectors for each arm can change over time. As a result, the optimal action

a∗t = argmaxa∈[K]⟨θ∗, xt,a⟩ can change over time, making it particularly challenging to compete with

a time-varying optimal action in the presence of adversaries. This dictates the need for a different

algorithmic strategy compared to the one we developed in Section 1. Before we develop such a

strategy, let us first formally define the performance metric of interest to us in this setting:

RContext
T = E

 ∑
i∈[M]\B

T∑
t=1

⟨θ∗, xt,a∗t − xt,ai,t⟩

 . (2.13)

The main question we ask is: For the contextual bandit setting described above, can one continue to

hope for benefits of collaboration in the presence of adversaries? In what follows, we will answer this

18

question in the affirmative by developing a variant of the SUPLINREL algorithm in (Auer, 2002).

Description of Algorithm 3. At each time-step t, our proposed algorithm, namely Algorithm 3,

scans through the set A of arms to determine a suitable action at. This scanning process (lines 4-10

of Algo. 3) is done at the server over S phases. Corresponding to each phase s ∈ [S], the server

maintains a set ψ(s)
t ; the set ψ(s)

t stores all the time-steps in [t− 1] where an action is chosen in phase

s of the scanning process based on line 6 on Algo. 3. The scanning process itself relies on Algorithm

2 as a sub-routine. Specifically, in each phase s, the server first invokes Algorithm 2 to obtain a

robust estimate r̂(s)t,a of ⟨θ∗, xt,a⟩ for each arm a ∈ As, along with an associated inflated confidence

width w(s)
t,a (line 5 of Algo. 3). If the confidence width is too large for a particular arm (as in line 6),

then such an arm requires exploration and is accordingly chosen to be at. If, on the other hand, the

confidence widths of all arms are sufficiently small (as in line 7), then at is chosen to be the arm

with the highest upper-confidence bound. Thus, we follow the principle of optimism in the face of

uncertainty here, while exercising caution to account for the presence of adversaries (via the use of

inflated confidence intervals). If the conditions in lines 6 and 7 both fail, then the arms in As require

further screening. Accordingly, we move to the next phase s+ 1, retaining only those arms that are

sufficiently close to the optimal arm a∗t ; see line 8 of Algo. 3. Our main innovation lies in (i) the

construction of the robust arm-estimates in Algo. 2 that account for both statistical and adversarial

behavior, and (ii) the careful use of such estimates in lines 6-8 of Algo. 3 to pick the action at. The

next result reveals that the combination of these ideas yields near-optimal regret bounds.

Theorem 4. (Performance of Algo. 3) Suppose α ∈ (0, 0.5). Given any δ ∈ (0, 1), Algo. 3

guarantees that with probability at least 1− δ, the following holds for each good agent i ∈ [M] \ B:

T∑
t=1

⟨θ∗, xt,a∗t − xt,ai,t⟩ = Õ
((
α+

√
1/M

)√
dT
)
. (2.14)

Main Takeaways. For the contextual bandit setting considered here, the single-agent minimax

optimal regret in the absence of adversaries is Õ(
√
dT) (Auer, 2002). In light of the lower bound in

Theorem 2, we see that Theorem 4 provides a near-optimal regret guarantee, just as Theorem 1.

19

(a) (b) (c)

(d)

Figure 2.1: Plots of per-agent regret for the linear bandit experiment. (a) Comparison between
RCLB and a vanilla non-robust phased elimination algorithm. (b) Performance of RCLB for varying
number of agents M , with α = 0.1. (c) Performance of RCLB for varying corruption fraction α, with
M = 100. For (d), we set α = 0.1, M = 100, and compare RCLB to a phased elimination algorithm
where the agents do not collaborate. We also plot theoretical upper-bounds: f1(T) = 40

√
dT and

f2(T) = 40(α+
√

(1/M))
√
dT .

Remark 2. For ease of exposition, we have considered Gaussian noise (in the observation model)

throughout the paper. However, both our algorithms and results can be extended with slight modifica-

tions to sub-Gaussian noise sequences. We elaborate on this point in Appendix 2.9.

2.7. Simulation Results

We report simulation results on synthetic data to corroborate our developed theory. Additional

simulations on contextual bandits and alternate attack models are presented in Appendix 2.15.

Experimental Setup. We consider a setting with 50 actions in R5; we describe how these actions

and θ∗ are generated in Appendix 2.15. The rewards are generated based on the observation model

in Eq. (2.1). We now describe the attack model. To manipulate the server into selecting sub-optimal

arms, each adversarial agent i employs the simple strategy of reducing the rewards of the good

20

arms and increasing the rewards of the bad arms. More precisely, in each epoch ℓ, upon pulling

an arm a and observing the corresponding reward ya, an adversarial agent i does the following: if

ya > p⟨θ∗, a∗⟩, then this reward is corrupted to ỹa = ya − β; and if ya ≤ p⟨θ∗, a∗⟩, then the reward is

corrupted to ỹa = ya + β. For this experiment, we fix p = 0.6 and β = 5. Agent i ∈ B then uses all

the corrupted rewards in epoch ℓ to generate the local model estimate θ̂(ℓ)i that is transmitted to the

server.

Discussion of Simulation Results. Fig. 2.1 summarizes our experimental results. In Fig. 2.1(a),

we compare our proposed algorithm RCLB to a vanilla distributed phased elimination (PE) algorithm

that does not account for adversarial agents. Specifically, the latter is designed by replacing the

median operation in line 8 of Algorithm 1 with a mean operation, and setting the threshold γℓ in

line 9 to be ϵℓ. Fig. 2.1(a) shows that even a small fraction α = 0.1 of adversaries can cause the

non-robust PE algorithm to incur linear regret. In contrast, RCLB continues to guarantee sub-linear

regret bounds despite adversarial corruptions. Furthermore, the regret bound of RCLB in the presence

of a small fraction of adversarial agents is close to that of the non-robust algorithm in the absence of

adversaries. This goes on to establish the robustness of RCLB.

Fig. 2.1(b) depicts the performance of RCLB for varying values of the number of agents M , at a fixed

corruption level α = 0.1. We observe that increasing M results in lower regret, indicating a clear

benefit of collaboration despite the presence of adversaries. In Fig. 2.1(c), we vary the corruption

fraction α, keeping M fixed at 100. As expected, increasing α leads to higher (albeit sub-linear)

regret. Importantly, the trends observed in both Fig. 2.1(b) and Fig. 2.1(c) are consistent with the

theoretical upper-bound of O((α+ 1/
√
M)
√
dT) predicted by Theorem 1.

A trivial way to avoid adversarial corruption is for a good agent to not participate in any collaboration

at all, and run a standard single-agent bandit algorithm. This would result in such an agent incurring

O(
√
dT) regret. The purpose of Fig. 2.1(d) is to drive home the point that RCLB can lead to significant

improvements over a trivial non-collaborative strategy. To make this point clear, we compare RCLB

to a standard single-agent phased elimination algorithm that does not involve any collaboration,

and observe that despite adversarial corruption, RCLB leads to considerably lower regret bounds as

21

compared to the non-collaborative strategy. This highlights the importance of our approach.

2.8. Detailed Discussion of Related Work

Below, we provide a detailed discussion of relevant work.

• Reward Corruption Attacks in Stochastic Bandits. In the single-agent setting, there is a

rich body of work that studies the effect of reward-corruption in stochastic bandits, both for the un-

structured multi-armed bandit problem (Jun et al., 2018; Liu and Shroff, 2019; Lykouris et al., 2018;

Gupta et al., 2019), and also for structured linear bandits (Bogunovic et al., 2020; Garcelon et al.,

2020; Bogunovic et al., 2021; He et al., 2022). In these works, an adversary can modify the

true stochastic reward/feedback on certain rounds; a corruption budget C captures the total

corruption injected by the adversary over the horizon T . The attack model we study is fun-

damentally different: the adversaries in our setting can inject corruptions of arbitrary magni-

tude in all rounds, i.e., there are no budget constraints. As such, the algorithmic techniques in

(Jun et al., 2018; Liu and Shroff, 2019; Lykouris et al., 2018; Gupta et al., 2019; Bogunovic et al.,

2020; Garcelon et al., 2020; Bogunovic et al., 2021) do not apply to our model.

Continuing with this point, we note that in (Gupta et al., 2019), the authors proved an algorithm-

independent lower bound of Ω(C) on the regret. This lower bound suggests that for the reward-

corruption attack model, when the attacker’s budget C scales linearly with the horizon T , there is no

hope for achieving sub-linear regret. In (Kapoor et al., 2019), the authors studied a reward-corruption

model closely related to those in (Lykouris et al., 2018; Gupta et al., 2019; Bogunovic et al., 2020),

where in each round, with probability η (independently of the other rounds), the attacker can bias

the reward seen by the learner. Similar to the lower bound in (Gupta et al., 2019), the authors in

(Kapoor et al., 2019) proved a lower bound of Ω(ηT) on the regret for their model. In sharp contrast

to the fundamental limits established in (Gupta et al., 2019; Kapoor et al., 2019), for our setup, as

long as the corruption fraction α is strictly less than half, we prove that with high-probability it is

in fact possible to achieve sub-linear regret. The key is that for our setting, the server can leverage

“clean" information from the good agents in every round; of course, the identities of such good agents

are not known to the server. We finally note that beyond the task of minimizing cumulative regret,

22

the impact of fixed-budget reward-contamination has also been explored for the problem of best-arm

identification in (Zhong et al., 2021).

•Multi-Agent Bandits. There is a growing literature that studies multi-agent multi-armed bandit

problems in the absence of adversaries, both over peer-to-peer networks, and also for the server-client

architecture model (Liu and Zhao, 2010; Kalathil et al., 2014; Kar et al., 2011; Landgren et al., 2016,

2021; Shahrampour et al., 2017; Buccapatnam et al., 2015; Kolla et al., 2018; Wang et al., 2019;

Sankararaman et al., 2019; Martínez-Rubio et al., 2018; Dubey et al., 2020; Dubey and Pentland,

2020b; Lalitha and Goldsmith, 2020; Chawla et al., 2020a,b; Ghosh et al., 2021; Agarwal et al., 2021;

Zhu et al., 2021; Shi et al., 2021). The main focus in these papers is the design of coordination

protocols among the agents that balance communication-efficiency with performance. A few very

recent works (Dubey and Pentland, 2020a; Vial et al., 2021, 2022; Mitra et al., 2021a) also look at

the effect of attacks, but for the simpler unstructured multi-armed bandit problem (Auer et al., 2002).

Accounting for adversarial agents in the structured linear bandit setting we consider here requires

significantly different ideas that we develop in this paper. At this point, we should mention that the

concurrent work of (Kwon et al., 2022) looks at a contextual bandit model somewhat different from

what we study; they identify fundamental performance limits and design efficient robust algorithms.

• Security in Distributed Optimization and Federated Learning. As we mentioned ear-

lier, several papers have studied the problem of accounting for adversarial agents in the context

of supervised learning (Chen et al., 2017b; Blanchard et al., 2017; Yin et al., 2018; Chen et al.,

2018b; Alistarh et al., 2018; Xie et al., 2018; Li et al., 2019a; Sundaram and Gharesifard, 2018;

Ghosh et al., 2019, 2020a,b; Su and Vaidya, 2020; Kuwaranancharoen et al., 2020; Gupta et al.,

2021; Karimireddy et al., 2021; Adibi et al., 2022a). One of the primary applications of interest

here is the emerging paradigm of federated learning (Konečnỳ et al., 2016; Bonawitz et al., 2019;

McMahan et al., 2017). Different from the sequential decision-making setting we investigate in our

paper, the aforementioned works essentially abstract out the supervised learning task as a static

distributed optimization problem, and then apply some form of secure aggregation on either gradient

vectors or parameter estimates.

23

• Robust Statistics. The algorithms that we develop in this paper borrow tools from the

literature on robust statistics, pioneered by Huber (Huber, 1992, 2004). We point the reader to

(Chen et al., 2015; Lai et al., 2016; Cheng et al., 2019; Minsker, 2018; Lugosi and Mendelson, 2021;

Dalalyan and Minasyan, 2022), and the references therein, to get a sense of some of the main results

in this broad area of research. In a nutshell, given multiple samples of a random variable - with a

small fraction of samples corrupted by an adversary - the essential goal of this line of work is to

come up with statistically optimal and computationally efficient robust estimators of the mean of the

random variable. Notably, unlike both the sequential bandit setting and the iterative optimization

setting, the robust statistics literature focuses on one-shot estimation. In other words, the adversary

gets to corrupt the batch of samples only once, and the effect of such corruption does not compound

over time or iterations.

2.9. Further Comments on our Algorithms

In what follows, we comment on certain key aspects of our proposed algorithms.

• On the knowledge of the corruption fraction. In practice, if we do not know the corruption

fraction α, but have access to an upper bound on α, say α̃, we can essentially use α̃ as a proxy for

α, both in our algorithms and their analyses. In this case, all our results go through identically by

simply replacing α with α̃ in the bounds. However, if we have no idea at all about α, then it is not

clear whether one can design a robust algorithm that achieves minimax-optimal rates for the setting

we consider in this paper. The main reason is as follows. Note that although computing a median

does not require knowledge of α, the robust confidence threshold we use in line 9 of Algorithm 1

critically relies on the knowledge of the corruption fraction α (or an upper-bound on it). Moreover,

the correctness of our overall approach, and the fact that it is minimax-optimal, relies heavily on the

tightness of the robust confidence thresholds in Lemma 1. Thus, at the moment, we do not know of

a way that can achieve tight regret bounds without any knowledge whatsoever of α; investigating

this aspect further is an interesting topic of future research.

• Beyond Gaussian Noise. In what follows, we explain in detail that both our algorithms and

analysis apply, with slight modifications, to both sub-Gaussian noise, and more generally, noise with

24

bounded variance. The reason why we chose Gaussian noise was primarily for ease of exposition.

Suppose the noise samples are i.i.d. with zero-mean (a standard assumption) and unit variance (the

argument we present next trivially extends to bounded variance σ2). To deal with such general

noise distributions, we need to make two minor changes to Algorithm 1. First, we replace the

Median operation in line 8 of Algorithm 1 with the scalar univariate trimmed mean estimator

recently proposed in (Lugosi and Mendelson, 2021). The estimator in (Lugosi and Mendelson, 2021)

is easily implementable and minimax-optimal. Second, we set the robust threshold γℓ in line 9 to

be γℓ = C(1 +
√
αM)ϵℓ, where C is a suitably large universal constant; note that the only thing

that has changed from before is the replacement of α by
√
α in γℓ. We will justify the choice of this

threshold shortly, but before that, we mention the implications.

Implications. With the two minor modifications to Algorithm 1 described above, we can establish

an analogue of Theorem 1 where for each good agent, with probability at least 1− δ, the regret is

bounded above by Õ
((√

α+
√

1/M
)√

dT
)
. Compared to the bound in Theorem 1, we note that

our new bound is worsened by the replacement of α with
√
α - this is the price paid to account for

general non-Gaussian distributions. For robust mean estimation with general noise distributions

(with bounded fourth moments), the additive
√
α factor is unavoidable; see (Lugosi and Mendelson,

2021), for instance. Thus, we conjecture that the bound on regret we mentioned above is also

minimax-optimal.

For sub-Gaussian distributions, we can achieve a tighter regret bound: by setting the robust

confidence threshold to be γℓ = C(1 +α
√

log(1/α)M)ϵℓ, we can achieve a per-agent regret bound of

Õ
((
α
√

log(1/α) +
√

1/M
)√

dT
)
. Hence, with sub-Gaussian noise, we essentially recover the same

bounds as with Gaussian noise (up to logarithmic factors). It is very likely that with sub-Gaussian

noise, the median will continue to yield the bound above, i.e., we may not even need the univariate

trimmed mean estimator from (Lugosi and Mendelson, 2021). However, we do not have a concrete

proof of this fact yet.

Changes in Analysis. We now go over the minor changes that need to be made to the anal-

ysis of Theorem 1 in view of replacing the median operator by the trimmed mean estimator in

25

(Lugosi and Mendelson, 2021). We first need an analog of Lemma 2 in Appendix 2.10. This is

supplied by Theorem 1 in (Lugosi and Mendelson, 2021) that provides guarantees on the univariate

trimmed mean estimator. Suppose we are given M data samples, where all the good samples are

i.i.d. with mean µ and variance σ2. Moreover, suppose the fraction of bad samples is at most 1/2.

With probability at least 1− δ, we then have

|µ̂− µ| ≤ C

(
√
α+

√
log(1/δ)

M

)
σ,

where µ̂ is the output of the univariate trimmed mean estimator. Equipped with this result, one can

follow the exact same steps as in the proof of Lemma 1 to justify the choice of the robust confidence

threshold γℓ = C(1 +
√
αM)ϵℓ. When the noise is additionally sub-Gaussian, the above bound can

be tightened by replacing
√
α with α

√
log(1/α). The rest of the proof goes through identically.

To sum up, we have argued that with minor modifications to both our algorithm and analysis, our

overall approach can handle both sub-Gaussian noise, and noise with bounded variance.

• Is it possible to tolerate a corruption fraction α > 0.5? The key question here is: Who

is the learner? The agent or the server? As we explain shortly, the answer to this question has

significant implications for whether or not we can tolerate the α > 0.5 case. Suppose the learners are

the agents, in that each good agent is capable of taking their own decisions (actions). If it is known

ahead of time that α > 0.5, then acting alone is the most natural thing to do. This is because there

is nothing to be gained by collaborating: no robust aggregation scheme can provide any guarantees

when α > 0.5; indeed, α = 0.5 is a fundamental breakdown point when one considers an arbitrary

corruption model. On the other hand, when α < 0.5, one can significantly improve upon the trivial

per-agent regret of O(
√
dT) by using the approach developed in our paper. This is revealed not only

by our theory, but the simulations that we report in Section 3.6.

Now suppose the learner is the server, i.e., the actions are decided by the server, and the agents

interact with an unknown environment and report certain relevant statistics to the server. As a

26

concrete example, consider a web-advertising example where the server displays ads (actions) to

a group of people (agents), assesses their (potentially corrupted) feedback, and then decides upon

subsequent ad displays to maximize click-through rates. Crucially, unlike the previous setting (where

the learners were the agents), the only way the server can acquire feedback about the environment is

by interacting with the agents (some of whom might be adversarial). In other words, the server does

not have at its disposal the trivial option of not interacting with the agents, and acting alone. Since

in this setting, the server is forced to interact with potentially corrupted agents, α < 0.5 is the only

scenario that can lead to meaningful regret bounds. More precisely, when α > 0.5, there is no hope

of achieving sub-linear regret, let alone benefiting from collaboration.

27

2.10. Analysis of RCLB: Proof of Theorem 1

In this section, we will prove Theorem 1. We start with a standard result from robust statistics on

the guarantees afforded by the median operator for robust mean estimation of univariate Gaussian

random variables; see, for instance, (Lai et al., 2016).

Lemma 2. Consider a set S = {x1, . . . , xM} of M samples partitioned as S = Sg ∪ Sb, such that

(i) all the samples in Sg are drawn i.i.d. from N (µ, σ2), where µ, σ2 ∈ R; (ii) the samples in

Sb are chosen by an adversary, and can be arbitrary; and (iii) |Sb| < α|S|, where α < 1/2. Let

µ̂ = Median ({xi}, i ∈ [M]) . Given any δ ∈ (0, 1), we then have that with probability at least 1− δ,

|µ̂− µ| ≤ C

α+

√
log(1δ)

M

σ, (2.15)

where C is a suitably large universal constant.

The next key lemma - a restatement of Lemma 1 in the main body of the paper - informs us about

the quality of the robust mean payoffs computed in line 8 of Algorithm 1. Before proceeding to

prove this result, we define by Fℓ the σ-algebra generated by all the actions and rewards up to the

beginning of epoch ℓ.

Lemma 3. (Robust Confidence Intervals) Fix any epoch ℓ. For each active arm b ∈ Aℓ, the

following holds with probability at least 1− δℓ:

|µ(ℓ)b − ⟨θ∗, b⟩| ≤ γℓ, where γℓ =
√
2C
(
1 + α

√
M
)
ϵℓ, (2.16)

where C is as in Lemma 2.

Proof. Fix an epoch ℓ, an active arm b ∈ Aℓ, and a good agent i ∈ [M] \ B. We start by analyzing

28

the statistics of the quantity ⟨θ̂(ℓ)i , b⟩. From the definition of θ̂(ℓ)i and Ṽℓ in Eq.(2.3), we have

θ̂
(ℓ)
i = Ṽ −1

ℓ Yi,ℓ

= Ṽ −1
ℓ

 ∑
a∈Supp(πℓ)

m(ℓ)
a r

(ℓ)
i,aa

= Ṽ −1

ℓ

 ∑
a∈Supp(πℓ)

m(ℓ)
a

(
⟨θ∗, a⟩+ η̄

(ℓ)
i,a

)
a

= θ∗ + Ṽ −1

ℓ

 ∑
a∈Supp(πℓ)

m(ℓ)
a η̄

(ℓ)
i,aa

 .

(2.17)

For the third equality above, we used the observation model (2.1), and denoted by η̄(ℓ)i,a the average

of the noise terms associated with the rewards observed by agent i during phase ℓ for arm a. From

(2.17), we then have

⟨θ̂(ℓ)i , b⟩ = ⟨θ∗, b⟩+
∑

a∈Supp(πℓ)

m(ℓ)
a η̄

(ℓ)
i,a⟨Ṽ

−1
ℓ a, b⟩. (2.18)

Now conditioned on Fℓ, the only randomness in the above equation corresponds to the noise terms

{η̄(ℓ)i,a}a∈Supp(πℓ). Furthermore, based on our noise model, it is clear that η̄(ℓ)i,a ∼ N (0, 1/m
(ℓ)
a) for each

a ∈ Supp(πℓ). It then follows that

E
[
⟨θ̂(ℓ)i , b⟩|Fℓ

]
= ⟨θ∗, b⟩.

We also have
E
[(
⟨θ̂(ℓ)i − θ∗, b⟩

)2
|Fℓ
]
=

∑
a∈Supp(πℓ)

m(ℓ)
a

(
⟨Ṽ −1
ℓ a, b⟩

)2

= b′Ṽ −1
ℓ

 ∑
a∈Supp(πℓ)

m(ℓ)
a aa′

 Ṽ −1
ℓ b

= ∥b∥2
Ṽ −1
ℓ
,

(2.19)

where we used the fact that the noise terms are independent across arms. We conclude that

conditioned on Fℓ,

⟨θ̂(ℓ)i , b⟩ ∼ N
(
⟨θ∗, b⟩, ∥b∥2Ṽ −1

ℓ

)
.

29

In each epoch ℓ, the server has access to a set S(ℓ)b = {⟨θ̂(ℓ)i , b⟩}i∈[M], where the samples corresponding

to agents in [M] \ B are independent and identically distributed as per the distribution above.

Moreover, at most α ∈ [0, 1/2) fraction of the samples in S(ℓ)b are corrupted. Recalling that

µ
(ℓ)
b = Median

(
{⟨θ̂(ℓ)i , b⟩, i ∈ [M]}

)
, and using Lemma 2, we immediately observe that conditioned

on Fℓ, with probability at least 1− δℓ,

|µ(ℓ)b − ⟨θ∗, b⟩| ≤ C

α+

√
log(1

δℓ
)

M

 ∥b∥Ṽ −1
ℓ
. (2.20)

We now proceed to bound the term ∥b∥Ṽ −1
ℓ

. To that end, let us start by noting that

Ṽℓ =
∑

a∈Supp(πℓ)

m(ℓ)
a aa′

=
∑

a∈Supp(πℓ)

⌈
T
(ℓ)
a

M

⌉
aa′

≽
1

M

∑
a∈Supp(πℓ)

T (ℓ)
a aa′

≽
d

Mϵ2ℓ
log

(
1

δℓ

) ∑
a∈Supp(πℓ)

πℓ(a)aa
′

=
d

Mϵ2ℓ
log

(
1

δℓ

) ∑
a∈Aℓ

πℓ(a)aa
′

=
d

Mϵ2ℓ
log

(
1

δℓ

)
Vℓ(πℓ).

(2.21)

Thus, we have

Ṽ −1
ℓ ≼

Mϵ2ℓ

d log
(

1
δℓ

)V −1
ℓ (πℓ).

30

Using the above bound, we proceed as follows.

∥b∥Ṽ −1
ℓ

=

√
b′Ṽ −1

ℓ b

≤ ϵℓ

√√√√ M

d log
(

1
δℓ

)√b′V −1
ℓ (πℓ)b

≤ ϵℓ

√√√√ M

d log
(

1
δℓ

)√max
a∈Aℓ

∥a∥2
V −1
ℓ (πℓ)

(a)
= ϵℓ

√√√√ M

d log
(

1
δℓ

)√gℓ(πℓ)
(b)

≤ ϵℓ

√√√√ 2M

log
(

1
δℓ

) .

(2.22)

In the above steps, we used the definition of gℓ(πℓ) for (a); for (b), we used the fact that based

on the approximate G-optimal design problem solved by the server in line 1 of RCLB, gℓ(πℓ) ≤ 2d.

Plugging the bound from (2.22) into (2.20), and using the fact that log
(

1
δℓ

)
≥ 1, we have that

P
(
|µ(ℓ)b − ⟨θ∗, b⟩| ≥ γℓ|Fℓ

)
≤ δℓ. (2.23)

Consider the following event Eℓ ≜ {|µ
(ℓ)
b − ⟨θ∗, b⟩| ≥ γℓ}. Now observe that

P(Eℓ) = E[1Eℓ]

= E [E[1Eℓ |Fℓ]]

= E [P(Eℓ|Fℓ)]

≤ δℓ,

(2.24)

where we used 1Eℓ to denote an indicator random variable associated with the event Eℓ; also, for the

last line, we used (2.23).

In the following two results, we use the robust confidence intervals from Lemma 3 to construct clean

events that hold with high probability on which (i) the optimal arm a∗ is never eliminated (Lemma

31

4); and (ii) any arm retained in epoch ℓ contributes at most O(γℓ) regret in each time-step within

epoch ℓ (Lemma 5). To proceed, for each a ∈ A, define the arm-gap ∆a = ⟨θ∗, a∗ − a⟩.

Lemma 4. Define the event G1 ≜ {a∗ ∈ Aℓ, ∀ℓ ∈ [L]}, where L is the total number of epochs. It

then holds that P(G1) ≥ 1− 4δ̄.

Proof. Based on the arm-elimination criterion in line 9 of Algorithm 1, it follows that {a∗ ∈ Aℓ, a∗ /∈

Aℓ+1} =⇒ {∃b ∈ Aℓ : µ
(ℓ)
b − µ

(ℓ)
a∗ > 2γℓ}. Now for any fixed b ∈ Aℓ, we have

µ
(ℓ)
b − µ

(ℓ)
a∗ > 2γℓ

=⇒
(
µ
(ℓ)
b − ⟨θ∗, b⟩

)
+
(
⟨θ∗, a∗⟩ − µ(ℓ)a∗

)
> 2γℓ +∆b

=⇒
(
µ
(ℓ)
b − ⟨θ∗, b⟩

)
+
(
⟨θ∗, a∗⟩ − µ(ℓ)a∗

)
> 2γℓ,

(2.25)

where for the second step, we used the fact that ∆b ≥ 0. Thus, the event {µ(ℓ)b − µ
(ℓ)
a∗ > 2γℓ} implies

the occurrence of either {µ(ℓ)b − ⟨θ∗, b⟩ > γℓ} or {⟨θ∗, a∗⟩ − µ(ℓ)a∗ > γℓ}. From Lemma 3, we further

know that the probability of each of these latter events is at most δℓ. Putting these pieces together,

and using an union bound, we have

P(Gc1) ≤
∑
ℓ∈[L]

P(a∗ ∈ Aℓ, a∗ ̸∈ Aℓ+1)

≤
∑
ℓ∈[L]

P(∃b ∈ Aℓ : µ
(ℓ)
b − µ

(ℓ)
a∗ > 2γℓ)

≤ 2K
∑
ℓ∈[L]

δℓ

= 2K
∑
ℓ∈[L]

δ̄

Kℓ2

≤ 2
∞∑
ℓ=1

δ̄

ℓ2

≤ 2δ̄

∫ ∞

x=1

1

x2
dx ≤ 4δ̄.

(2.26)

This completes the proof.

32

In our next result, we work towards bounding the regret incurred from playing each active arm in a

given epoch.

Lemma 5. Consider any arm a ∈ A \ {a∗}. Let ℓa be defined as ℓa ≜ min{ℓ : γℓ < ∆a
4 }. It then

holds that P(a ∈ Aℓa+1) ≤ 6δ̄.

Proof. Let us start by observing that

P(a ∈ Aℓa+1) = P(a ∈ Aℓa+1, a
∗ ∈ Aℓa) + P(a ∈ Aℓa+1, a

∗ ̸∈ Aℓa)

≤ P(a ∈ Aℓa+1, a
∗ ∈ Aℓa) + P(a∗ ̸∈ Aℓa)

≤ P(a ∈ Aℓa , a ∈ Aℓa+1, a
∗ ∈ Aℓa) + 4δ̄,

(2.27)

where for the last step, we used the fact that {a ∈ Aℓa+1} =⇒ {a ∈ Aℓa}, and Lemma 4. Now, to

bound P(a ∈ Aℓa , a ∈ Aℓa+1, a
∗ ∈ Aℓa), we note based on line 9 of RCLB that

P(a ∈ Aℓa , a ∈ Aℓa+1, a
∗ ∈ Aℓa) ≤ P

(
max
b∈Aℓa

µ
(ℓa)
b − µ(ℓa)a ≤ 2γℓa

)
≤ P

(
µ(ℓa)a∗ − µ

(ℓa)
a ≤ 2γℓa

)
≤ P

((
µ(ℓa)a − ⟨θ∗, a⟩

)
+
(
⟨θ∗, a∗⟩ − µ(ℓa)a∗

)
> ∆a − 2γℓa

)
≤ P

(
µ(ℓa)a − ⟨θ∗, a⟩ > γℓa

)
+ P

(
⟨θ∗, a∗⟩ − µ(ℓa)a∗ > γℓa

)
≤ 2δℓa ,

(2.28)

where we used ∆a > 4γℓa for the second last step, and Lemma 3 for the last step. Noting that δℓa ≤ δ̄,

and combining the bounds in equations (2.27) and (2.28) leads to the claim of the lemma.

We are now in place to prove Theorem 1.

Proof. (Proof of Theorem 1) We start by constructing an appropriate clean event E for our

subsequent analysis. Accordingly, let us define:

E = {a∗ ∈ Aℓ,∀ℓ ∈ [L]}
⋂
{∩a∈A\{a∗}{a /∈ Aℓa+1}}. (2.29)

33

Based on Lemmas 4 and 5, we then have

P(Ec) ≤ 4δ̄ +
∑

a∈A\{a∗}

P(a ∈ Aℓa+1)

≤ 4δ̄ + 6δ̄K

≤ 10δ̄K = δ,

(2.30)

as per the choice of δ̄ in Theorem 1. Thus, P(E) ≥ 1− δ. Throughout the rest of the proof, we will

condition on the clean event E . Based on the definition of the event E , it is easy to see that for any

epoch ℓ ∈ [L], a ∈ Aℓ =⇒ ∆a ≤ 8γℓ. Using this key fact, we now proceed to bound the regret of

any good agent i ∈ [M] \ B.

T∑
t=1

⟨θ∗, a∗ − ai,t⟩ =
L∑
ℓ=1

∑
a∈Supp(πℓ)

m(ℓ)
a ⟨θ∗, a∗ − a⟩

=

L∑
ℓ=1

∑
a∈Supp(πℓ)

⌈
T
(ℓ)
a

M

⌉
∆a

≤
L∑
ℓ=1

∑
a∈Supp(πℓ)

T
(ℓ)
a

M
∆a︸ ︷︷ ︸

T1

+

L∑
ℓ=1

∑
a∈Supp(πℓ)

∆a︸ ︷︷ ︸
T2

.

(2.31)

34

We now bound T1 and T2 separately. For bounding T1, we have:

T1 =

L∑
ℓ=1

∑
a∈Supp(πℓ)

T
(ℓ)
a

M
∆a

=
d

M

L∑
ℓ=1

1

ϵ2ℓ
log

(
1

δℓ

) ∑
a∈Supp(πℓ)

πℓ(a)∆a

≤ 8d

M

L∑
ℓ=1

1

ϵ2ℓ
log

(
1

δℓ

)
γℓ

=
8
√
2C(1 + α

√
M)d

M

L∑
ℓ=1

1

ϵℓ
log

(
10K2ℓ2

δ

)

≤ 8
√
2C(1 + α

√
M)d

M
log

(
10K2L2

δ

) L∑
ℓ=1

2ℓ

= O

(
(1 + α

√
M)d

M
log

(
10K2L2

δ

)
2L

)
.

(2.32)

In the third step above, we used
∑

a∈Supp(πℓ) πℓ(a) = 1. We now need an upper-bound on the term

2L. To that end, notice that the length of the horizon T is bounded below by the length of the last

epoch, i.e., the L-th epoch. Moreover, the duration of the L-th epoch corresponds to the number of

arm-pulls made by any single good agent during the L-th epoch. We thus have:

T ≥
∑

a∈Supp(πL)

T
(L)
a

M

≥ 4Ld

M

∑
a∈Supp(πL)

πL(a) log

(
1

δL

)

=
4Ld

M
log

(
10K2L2

δ

) ∑
a∈Supp(πL)

πL(a)

=
4Ld

M
log

(
10K2L2

δ

)
.

(2.33)

Thus, 2L ≤
√
MT/(d log (10K2L2/δ). Plugging this bound in (2.32), we obtain

T1 = O

((
α+

1√
M

)√
log

(
KT

δ

)
dT

)
= Õ

((
α+

1√
M

)√
dT

)
.

35

As for the term T2, we have

T2 =

L∑
ℓ=1

∑
a∈Supp(πℓ)

∆a

≤ 8

L∑
ℓ=1

γℓ|Supp(πℓ)|

(a)

≤ 384
√
2Cd log log d

(
1 + α

√
M
) L∑
ℓ=1

2−ℓ

= O
(
d log log d

(
1 + α

√
M
))

(b)
= Õ

((
α+

1√
M

)√
dT

)
.

(2.34)

In the above steps, for (a), recall from line 1 of RCLB that |Supp(πℓ)| ≤ 48d log log d based on the

approximate G-optimal design computation. For (b), we used the fact that by assumption, T ≥Md.

Combining the bounds on T1 and T2, and recalling that P(E) ≥ 1− δ, we have that with probability

at least 1− δ,

T∑
t=1

⟨θ∗, a∗ − ai,t⟩ = O

((
α+

1√
M

)√
log

(
KT

δ

)
dT

)
= Õ

((
α+

1√
M

)√
dT

)
. (2.35)

This concludes the proof.

The following is an immediate corollary of Theorem 1 on the group regret RT .

Corollary 1. (Bound on Group Regret) Under the conditions of Theorem 1, we have:

RT = Õ
((
αM +

√
M
)√

dT
)
. (2.36)

Proof. (Proof of Corollary 1) Recall from the proof of Theorem 1 that there exists a clean event E

of measure at least 1− δ on which the regret of every good agent is bounded above as per Eq. (2.35).

Let C̃ be an upper bound on the maximum instantaneous regret, i.e.,

max
a∈A
⟨θ∗, a∗ − a⟩ ≤ C̃.

36

Now set δ = 1
MT and observe that:

RT = E

 ∑
i∈[M]\B

T∑
t=1

⟨θ∗, a∗ − ai,t⟩

= E

 ∑
i∈[M]\B

T∑
t=1

⟨θ∗, a∗ − ai,t⟩
∣∣∣E
P(E) + E

 ∑
i∈[M]\B

T∑
t=1

⟨θ∗, a∗ − ai,t⟩
∣∣∣Ec
P(Ec)

≤ C1

(
αM +

√
M
)√

log (KMT) dT + C̃MT × 1

MT

= O
((
αM +

√
M
)√

log (KMT) dT
)

= Õ
((
αM +

√
M
)√

dT
)
.

(2.37)

In the above steps, C1 is a suitably large universal constant.

2.11. Lower Bound Analysis: Proof of Theorem 2

In this section, we will prove Theorem 2. Before diving into the technical details, we remind the

reader that we consider a slightly different adversarial model from the one considered throughout

the paper. In this modified model, with probability α, each agent is adversarial independently of

the other agents. We will consider a class of policies Π where at each time-step, the same action

(decided by the server) is played by every agent. Thus, the regret incurred by any individual agent

is the same as the regret incurred by the server. Finally, to prove the lower bound, we will focus on

a class of 2-armed bandits where the reward distribution of each arm is Gaussian with unit variance;

such a class of bandits is succinctly denoted by E(2)N (1).

We will have occasion to use the following result (Lattimore and Szepesvári, 2020, Theorem 14.2).

Lemma 6. (Bretagnolle-Huber Inequality) Let P and Q be two probability measures on the

same measurable space (Ω,F), and let A ∈ F be any arbitrary event. Then,

P (A) +Q(Ac) ≥ 1

2
exp (−KL(P,Q)) ,

where Ac is the complement of the event A, and KL(P,Q) is the Kullback-Leibler distance between

37

P and Q.

Our proof comprises of two main steps. First, we construct two distinct bandit instances within

the class E(2)N (1) such that the two instances - although different - appear identical to the server.

Second, we devise an attack strategy and argue that regardless of the policy played by the server, it

will end up suffering a regret of Ω(α
√
T) upon interacting with at least one of the two instances;

here, T is the horizon for our problem. We now elaborate on these two steps.

• Step 1. Construction of the two bandit instances. We first take a detour and describe

an idea that is typically used to prove lower bounds for the robust mean estimation literature

(Chen et al., 2015; Lai et al., 2016). It will soon be apparent how such an idea can be exploited to

construct the two bandit instances for our problem. We show that there are two univariate Gaussian

distributions P1 = N (µ1, 1), P2 = N (µ2, 1), and two T -dimensional distributions Q1, Q2, such that

∥µ1 − µ2∥2 = Ω(α/
√
T), and:

(1− α)P T1 + αQ1 = (1− α)P T2 + αQ2, (2.38)

where P T1 (resp., P T2) is the joint distribution of T i.i.d. samples drawn from P1 (resp., P2). Clearly,

P T1 (resp., P T2) is equivalent to a T -dimensional Gaussian distribution N (µ1, IT) (resp., N (µ2, IT)),

where µ1 (resp., µ2) is a T -dimensional vector with each entry equal to µ1 (resp., µ2). Let ϕ1 be the

p.d.f. of P T1 and ϕ2 be the p.d.f. of P T2 . Next, let µ1 and µ2 be chosen such that the total variation

distance δ(P T1 , P T2) between P T1 and P T2 is

1

2

∫
∥ϕ1 − ϕ2∥1dx =

α

1− α
.

Let Q1 be the distribution with p.d.f. 1−α
α (ϕ2 − ϕ1)1ϕ2≥ϕ1 , and Q2 be the distribution with p.d.f.

1−α
α (ϕ1 − ϕ2)1ϕ1≥ϕ2 . With such a construction of Q1 and Q2, one can verify that the equality in

Eq. (2.38) is satisfied; see, for instance, the arguments in Appendix E of (Chen et al., 2015). Now

38

from Pinsker’s inequality, we know that:

√
1

2
KL(P T1 , P T2) ≥ δ(P T1 , P T2) =

α

1− α
,

where we used KL(P T1 , P T2) to denote the Kullback-Leibler distance between P T1 and P T2 . We

conclude that:
1

2
∥µ1 − µ2∥22 = KL(P T1 , P

T
2) ≥ 2

(
α

1− α

)2

.

This, in turn, implies
√
T (|µ1 − µ2|) = ∥µ1 − µ2∥2 ≥

2α

1− α
≥ 2α.

We have thus shown that there exist µ1, µ2 ∈ R, satisfying |µ1 − µ2| ≥ 2α/
√
T , such that with

P1 = N (µ1, 1), P2 = N (µ2, 1), one can satisfy Eq. (2.38) with appropriately chosen T -dimensional

distributions Q1 and Q2. With these ideas in place, we now return to our bandit problem.

Without loss of generality, suppose µ2 > µ1, where µ2 and µ1 are as in the construction described

above. Let us construct two bandit instances ν and ν ′, each involving two arms, i.e., A = {a1, a2}.

Let r(ν)ak and r(ν
′)

ak denote the reward distribution of arm ak, k ∈ {1, 2}, in instance ν and instance ν ′,

respectively. These reward distributions are chosen as follows.

Instance ν : r(ν)a1 ∼ N
(
µ1 + µ2

2
, 1

)
; r(ν)a2 ∼ N (µ1, 1)

Instance ν ′ : r(ν
′)

a1 ∼ N
(
µ1 + µ2

2
, 1

)
; r(ν

′)
a2 ∼ N (µ2, 1).

(2.39)

Thus, the distribution of the first arm is the same in both instances. However, as µ2 > µ1, the

first arm is the best arm in the first instance while the opposite is true for the second instance.

The attack strategy for the adversarial agents will be dictated by the distributions Q1 and Q2 in a

manner to be described shortly.

• Step 2. The attack strategy and regret analysis. Inspired by the argument in the proof of

(Bubeck et al., 2013, Theorem 5), we consider a full information setting where the server has access

to t reward samples from each arm from each agent at time-step t. Since this full information setting

39

is simpler than the bandit setting, a lower bound for the former implies one for the latter.

Here is the attack strategy. Suppose an agent is adversarial (which happens with probability α). In

either instance, for arm 1, it reports samples from the true distribution for arm 1 corresponding to

that instance. In other words, the reward samples for arm 1 are not corrupted by the agent. As for

arm 2, in instance ν (resp., ν ′), the first t reward samples (where t ∈ [T]) corresponding to a2 are

generated from Qt1 (resp., Qt2) by the adversarial agent. Here, Qt1 (resp., Qt2) is the marginal of the

T -dimensional distribution Q1 (resp., Q2) corresponding to the first t components. To sum up, in

instance ν, the joint distribution D(ν)
a1 of rewards for a1 over the horizon T , as seen by the server from

any given agent, is the T -dimensional Gaussian distribution N (µ̄, IT), where µ̄ is a T -dimensional

vector with each component equal to µ1+µ2
2 . Based on our discussion above, D(ν)

a1 = D
(ν′)
a1 . Let D(ν)

a2

and D(ν′)
a2 have analogous meanings for arm a2. Then, we have:

D(ν)
a2 = (1− α)P T1 + αQ1; D(ν′)

a2 = (1− α)P T2 + αQ2. (2.40)

In light of Eq. (2.38), however, we have D(ν)
a2 = D

(ν′)
a2 . Essentially, what we have established is the

following: the joint distribution of rewards for each arm over the horizon T , as seen by the server

from each agent, is identical for both instances.

In what follows, given any two distributions D1 and D2, let D1 ⊗ D2 represent their product

distribution. Since the rewards across arms are independent, the joint distribution of rewards for

both arms is given by D(ν) ≜ D
(ν)
a1 ⊗D

(ν)
a2 in instance ν, and D(ν′) ≜ D

(ν′)
a1 ⊗D

(ν′)
a2 in instance ν ′.

Since rewards across agents are independent, the joint distributions of rewards from all agents, as

seen by the server in each of the two instances, are given by:

D
(ν)
M ≜ D(ν) ⊗D(ν) ⊗ · · · ⊗D(ν)︸ ︷︷ ︸

M -fold product distribution

; D
(ν′)
M ≜ D(ν′) ⊗D(ν′) ⊗ · · · ⊗D(ν′)︸ ︷︷ ︸

M -fold product distribution

.

Let Eν [·] (resp., Eν′ [·]) represent the expectation operation w.r.t. the measure D(ν)
M (resp., D(ν′)

M).

Let us use Pν as a shorthand for D(ν)
M , and Pν′ as a shorthand for D(ν′)

M . Furthermore, let nk(T)

40

be the random variable representing the total number of times arm ak, k ∈ {1, 2}, is chosen by the

server over the horizon T . Finally, recall that R(s)
T (ν) (resp., R(s)

T (ν ′)) is the regret incurred by the

server upon interaction with instance ν (resp., instance ν ′).

In instance ν, each time arm 2 is chosen by the server, it incurs an instantaneous regret of (µ2−µ1)/2.

We thus have:

R
(s)
T (ν) =

(
µ2 − µ1

2

)
(T − Eν [n1(T)]) ≥

(µ2 − µ1)T
4

Pν
(
n1(T) ≤

T

2

)
. (2.41)

To see why the latter inequality is true, observe:

Eν [n1(T)] = Eν
[
n1(T)|n1(T) ≤

T

2

]
Pν
(
n1(T) ≤

T

2

)
+ Eν

[
n1(T)|n1(T) >

T

2

]
Pν
(
n1(T) >

T

2

)
≤ T

2
Pν
(
n1(T) ≤

T

2

)
+ T

(
1− Pν

(
n1(T) ≤

T

2

))
= T − T

2
Pν
(
n1(T) ≤

T

2

)
.

(2.42)

In instance ν ′, each time arm 1 is chosen by the server, it incurs an instantaneous regret of (µ2−µ1)/2.

We thus have:

R
(s)
T (ν ′) =

(
µ2 − µ1

2

)
Eν′ [n1(T)] ≥

(µ2 − µ1)T
4

Pν′
(
n1(T) >

T

2

)
. (2.43)

Combining Eq. (2.41) and Eq. (2.43) yields:

max{R(s)
T (ν), R

(s)
T (ν ′)} ≥ 1

2

(
R

(s)
T (ν) +R

(s)
T (ν ′)

)
≥ (µ2 − µ1)T

8

(
Pν
(
n1(T) ≤

T

2

)
+ Pν′

(
n1(T) >

T

2

))
(a)

≥ (µ2 − µ1)T
16

exp (−KL (Pν ,Pν′))

(b)

≥ α
√
T

8
exp (−KL (Pν ,Pν′))

(c)
=
α
√
T

8
.

(2.44)

41

In the above steps, we used the Bretagnolle-Huber inequality (namely, Lemma 6) for (a); for (b), we

used the fact that µ2 and µ1 were chosen in Step 1 to satisfy µ2−µ1 ≥ 2α/
√
T ; and for (c), we used

KL (Pν ,Pν′) = 0. To see why KL (Pν ,Pν′) = 0, we use the chain-rule for relative entropies to obtain:

KL (Pν ,Pν′) = KL
(
D

(ν)
M , D

(ν′)
M

)
=M

(
KL
(
D(ν), D(ν′)

))
=M

(
KL
(
D(ν)
a1 , D

(ν′)
a1

)
+ KL

(
D(ν)
a2 , D

(ν′)
a2

))
= 0,

(2.45)

where the last step is a consequence of the fact that D(ν)
a1 = D

(ν′)
a1 , and D(ν)

a2 = D
(ν′)
a2 . The claim of

Theorem 2 follows from noting that the resulting lower bound in Eq. (2.44) holds regardless of the

number of agents M .

■

Remark 3. The proof of Theorem 2 above reveals a constructive attack strategy for the adversarial

agents to follow. As future work, it would be interesting to see if similar ideas can be extended to

more general reinforcement learning problems.

2.12. Algorithms and Analysis for the Generalized Linear Bandit Model

In this section, we first provide a detailed outline of the RC-GLM algorithm introduced in Section 2.5;

see Algorithm 4. We then proceed to analyze RC-GLM, and provide a proof for Theorem 3. Finally,

since RC-GLM uses the iteratively reweighted mean estimator from (Dalalyan and Minasyan, 2022)

as a sub-routine, we also provide a description of this estimator to keep the paper self-contained;

this description, however, is deferred to the end of the section. We start by reminding the reader

that the non-linear observation model of interest to us in this section is as follows:

yi,t = µ (⟨θ∗, ai,t⟩) + ηi,t, (2.47)

42

where µ : R→ R is the link function. We also recall the definition of hℓ(θ):

hℓ(θ) ≜
∑

a∈Supp(πℓ)

m(ℓ)
a µ(⟨θ, a⟩)a,∀θ ∈ Θ.

From comparing RC-GLM (Algorithm 4) to RCLB (Algorithm 1), we note that while both algorithms

share the same general structure, the key difference between the two stems from the manner in which

the robust confidence thresholds are computed. In particular, to tackle the difficulty posed by the

non-linearity of the observation map, we first compute a robust estimate θ̂(ℓ) of θ∗ at the server - a

route that we avoided in RCLB - and then use such an estimate to devise a phased elimination rule.

2.12.1. Proof of Theorem 3

In this section, we prove Theorem 3. The crux of the analysis lies in deriving a robust confidence

bound akin to that in Lemma 1. To work towards such a result, we need to first go through a few

intermediate steps; these are as follows.

Step 1. Prove that conditioned on Fℓ, for each i ∈ [M] \ B, Ṽ −1/2
ℓ Yi,ℓ is a d-dimensional Gaussian

random variable with mean Ṽ −1/2
ℓ hℓ(θ∗), and covariance matrix Σ = Id.5

Step 2. Use the result from Step 1, along with the error-bounds of the iteratively reweighted Gaussian

mean estimator from (Dalalyan and Minasyan, 2022), to derive a high-probability error-bound on

∥Xℓ − Ṽ
−1/2
ℓ hℓ(θ∗)∥.

Step 3. Exploit regularity properties of the link function in tandem with the bounds from Step 2,

to derive high-probability error bounds on |µ(⟨θ̂(ℓ), a⟩)− µ(⟨θ∗, a⟩)|, for each a ∈ Aℓ.

We now proceed to formally establish each of the above steps, starting with step 1.

Lemma 7. For each epoch ℓ, and each good agent i ∈ [M] \ B, it holds that:

E
[
Ṽ

−1/2
ℓ Yi,ℓ|Fℓ

]
= Ṽ

−1/2
ℓ hℓ(θ∗); and (2.48)

5Recall that Fℓ is the σ-algebra generated by all the actions and rewards up to the beginning of epoch ℓ.

43

E
[(
Ṽ

−1/2
ℓ Yi,ℓ − Ṽ

−1/2
ℓ hℓ(θ∗)

)(
Ṽ

−1/2
ℓ Yi,ℓ − Ṽ

−1/2
ℓ hℓ(θ∗)

)′
|Fℓ
]
= Id. (2.49)

Proof. Fix an epoch ℓ, and a good agent i ∈ [M] \ B. We start by observing that:

Yi,ℓ =
∑

a∈Supp(πℓ)

m(ℓ)
a r

(ℓ)
i,aa

=
∑

a∈Supp(πℓ)

m(ℓ)
a

(
µ (⟨θ∗, a⟩) + η̄

(ℓ)
i,a

)
a

= hℓ(θ∗) +
∑

a∈Supp(πℓ)

m(ℓ)
a η̄

(ℓ)
i,aa,

(2.50)

where for the last step, we used the definition of hℓ(θ∗). Just as in the proof of Theorem 1, we have

used η̄(ℓ)i,a to denote the average of the noise terms associated with the rewards observed by agent i

during phase ℓ for arm a. We thus have:

Ṽ
−1/2
ℓ Yi,ℓ = Ṽ

−1/2
ℓ hℓ(θ∗) + Ṽ

−1/2
ℓ

 ∑
a∈Supp(πℓ)

m(ℓ)
a η̄

(ℓ)
i,aa

 .

Now conditioned on Fℓ, the only randomness in the above equation stems from the noise terms

{η̄(ℓ)i,a}, a ∈ Supp(πℓ), that are each zero-mean. The claim in Eq. (2.48) thus follows.

Based on Eq. (2.50), we have:

E
[
(Yi,ℓ − hℓ(θ∗)) (Yi,ℓ − hℓ(θ∗))′ |Fℓ

]
= E

 ∑
a∈Supp(πℓ)

m(ℓ)
a η̄

(ℓ)
i,aa

 ∑
a∈Supp(πℓ)

m(ℓ)
a η̄

(ℓ)
i,aa

′ ∣∣∣Fℓ

(a)
=

∑
a∈Supp(πℓ)

(
m(ℓ)
a

)2
E
[(
η̄
(ℓ)
i,a

)2]
aa′

(b)
=

∑
a∈Supp(πℓ)

m(ℓ)
a aa′

(c)
= Ṽℓ.

(2.51)

In the above steps, (a) follows by observing that the noise terms are independent across different

arms; hence, the expectation of each of the cross-terms vanish. For (b), we used the fact that η̄(ℓ)i,a

44

is the average of m(ℓ)
a independent Gaussian noise terms, each with zero-mean and unit variance;

hence, E
[(
η̄
(ℓ)
i,a

)2]
= 1/(m

(ℓ)
a). For (c), we simply used the definition of Ṽℓ. In light of Eq. (2.51), it

is easy to see why Eq. (2.49) holds.

We now state - adapted to our notation - one of the main convergence guarantees from (Dalalyan and Minasyan,

2022) for the iteratively reweighted mean estimator.

Lemma 8. Suppose we are given M d-dimensional samples x1, . . . , xM , such that (1−α)M of these

samples are drawn i.i.d. from N (v,Σ), where v ∈ Rd is an unknown mean vector, and Σ ∈ Rd×d

is a known covariance matrix. The remaining αM samples can be arbitrary. Let the corruption

fraction α satisfy α < (5−
√
5)/10, and let δ ∈ (16 exp (−M), 1) be a given tolerance level. Then,

with probability at least 1− δ, we have

∥v̂ − v∥2 ≤ C1∥Σ∥1/22

(√
d+ log(16/δ)

M
+ α

√
log

1

α

)
, (2.52)

where C1 is a suitably large universal constant, and v̂ is the output of the Iteratively Reweighted

Mean Estimator, namely Algorithm 1 in (Dalalyan and Minasyan, 2022), when it takes as input the

M samples, the covariance matrix Σ, and the corruption fraction α.

Let us now see how the above bound can assist in our cause. Fix any epoch ℓ, and recall that

δℓ = δ̄/(Kℓ2), where δ̄ = δ/(10K), and δ is the given confidence parameter. Suppose we want to

derive an error-bound based on Lemma 8 that holds with probability at least 1 − δℓ. For this to

happen, we need δℓ > 16 exp (−M). Since ℓ ≤ T , one can verify that the aforementioned condition

is satisfied as long as M is large enough in the following sense:

M > log

(
160K2T 2

δ

)
. (2.53)

From now on, we assume that the above condition holds. Next, recall that

Xℓ = ITW({Ṽ −1/2
ℓ Yi,ℓ, i ∈ [M]}).

45

Based on Lemma 7, Lemma 8, and the same line of reasoning as used to arrive at Eq. (2.24), we

have that with probability at least 1− δℓ:

∥Xℓ − Ṽ
−1/2
ℓ hℓ(θ∗)∥ ≤ C1

(√
d+ log(16/δℓ)

M
+ α

√
log

1

α

)
. (2.54)

We will call upon the above bound later in our analysis. For now, this ends Step 2. As for Step 3,

we start with the following result.

Lemma 9. Consider any θ1, θ2 ∈ Θ, and any epoch ℓ. There exists a symmetric positive definite

matrix Gℓ(θ1; θ2) satisfying k1Ṽℓ ≼ Gℓ(θ1; θ2) ≼ k2Ṽℓ, such that:

hℓ(θ1)− hℓ(θ2) = Gℓ(θ1; θ2)(θ1 − θ2). (2.55)

Proof. For any θ ∈ Θ, let us denote by ∇hℓ(θ) the Jacobian matrix of hℓ(·) at θ. Such a matrix

exists based on Assumption 1. Now based on the mean value theorem, ∃α ∈ (0, 1) such that

hℓ(θ1)− hℓ(θ2) = (∇hℓ (αθ1 + (1− α)θ2)) (θ1 − θ2).

Let θ̄ = αθ1 + (1− α)θ2, and Gℓ(θ1; θ2) = ∇hℓ(θ̄). To complete the proof, we need to show that the

matrix Gℓ(θ1; θ2) defined above is symmetric, positive definite, and bounded above and below (in

the Loewner sense) by scalar multiples of Ṽℓ. To that end, observe that:

∇hℓ(θ̄)
(a)
=

∑
a∈Supp(πℓ)

m(ℓ)
a µ̇(⟨θ̄, a⟩)aa′

(b)

≽ k1

 ∑
a∈Supp(πℓ)

m(ℓ)
a aa′

= k1Ṽℓ.

(2.56)

In the above steps, we used the definition of hℓ(·) for (a); and for (b), we used Assumption 1. From

the above steps, it is clear that Gℓ(θ1; θ2) is symmetric. That it is also positive definite follows from

the fact that Ṽℓ ≻ 0. Finally, using the fact that µ(·) is k2-Lipschitz, and a similar line of reasoning,

46

one can show that Gℓ(θ1; θ2) ≼ k2Ṽℓ. This concludes the proof.

We now have all the pieces required to establish an analogue of Lemma 1.

Lemma 10. (Robust Confidence Intervals for RC-GLM) Suppose M satisfies the condition in

Eq. (2.53), and α < (5−
√
5)/10. Fix any epoch ℓ. For each arm a ∈ Aℓ, with probability at least

1− δℓ, it holds that:

|µ(⟨θ̂(ℓ), a⟩)− µ(⟨θ∗, a⟩)| ≤ γ̄ℓ, where γ̄ℓ = 4C1
k2
k1

(√
d+ α

√
M log(1/α)

)
ϵℓ, (2.57)

and C1 is as in Lemma 8.

Proof. Let us start by conditioning on the event of measure at least 1− δℓ on which Eq. (2.54) holds.

Invoking Lemma 9, we know that there exists a symmetrix positive definite matrix Gℓ such that

k1Ṽℓ ≼ Gℓ ≼ k2Ṽℓ, and:6

Gℓ

(
θ̂(ℓ) − θ∗

)
= hℓ(θ̂

(ℓ))− hℓ(θ∗)

= Ṽ
1/2
ℓ Xℓ − hℓ(θ∗)

= Ṽ
1/2
ℓ

(
Xℓ − Ṽ

−1/2
ℓ hℓ(θ∗)

)
.

(2.58)

For the second step above, we used the fact that based on line 9 of RC-GLM, hℓ(θ̂(ℓ)) = Ṽ
1/2
ℓ Xℓ. Now

fix any arm a ∈ Aℓ, and observe that:

⟨θ̂(ℓ) − θ∗, a⟩ =
〈
G−1
ℓ Ṽ

1/2
ℓ

(
Xℓ − Ṽ

−1/2
ℓ hℓ(θ∗)

)
, a
〉
.

This, in turn, implies:

|⟨θ̂(ℓ) − θ∗, a⟩| ≤ ||[||
]
G−1
ℓ Ṽ

1/2
ℓ

(
Xℓ − Ṽ

−1/2
ℓ hℓ(θ∗)

)
Ṽℓ︸ ︷︷ ︸

T1

||[||
]
aṼ −1

ℓ
. (2.59)

6Here, we have dropped the dependence of Gℓ on θ̂(ℓ) and θ∗ to lighten the notation.

47

We bound T1 as follows.

T1 =

√(
Xℓ − Ṽ

−1/2
ℓ hℓ(θ∗)

)′
Ṽ

1/2
ℓ G−1

ℓ ṼℓG
−1
ℓ Ṽ

1/2
ℓ

(
Xℓ − Ṽ

−1/2
ℓ hℓ(θ∗)

)
(a)

≤ 1√
k1

√(
Xℓ − Ṽ

−1/2
ℓ hℓ(θ∗)

)′
Ṽ

1/2
ℓ G−1

ℓ Ṽ
1/2
ℓ

(
Xℓ − Ṽ

−1/2
ℓ hℓ(θ∗)

)
(b)

≤ 1

k1

√(
Xℓ − Ṽ

−1/2
ℓ hℓ(θ∗)

)′ (
Xℓ − Ṽ

−1/2
ℓ hℓ(θ∗)

)
(c)

≤ C1

k1

(√
d+ log(16/δℓ)

M
+ α

√
log

1

α

)
.

(2.60)

For both (a) and (b) above, we used k1Ṽℓ ≼ Gℓ; for (c), we invoked the bound in Eq. (2.54). Now

recall from Eq. (2.22) that

||[||
]
aṼ −1

ℓ
≤ ϵℓ

√√√√ 2M

log
(

1
δℓ

) .
Combining the above bound with the ones in Eq. (2.59) and Eq. (2.60), and using log(1/δℓ) ≥ 1, we

obtain

|⟨θ̂(ℓ) − θ∗, a⟩| ≤
√
2C1

k1

(√
d+

log(16/δℓ)

log(1/δℓ)
+ α

√
M log

1

α

)
ϵℓ.

Elementary calculations coupled with the fact that log(1/δℓ) ≥ 1 yields:

log(16/δℓ)

log(1/δℓ)
≤ 4.

Putting all the pieces together, and simplifying, we arrive at the following bound:

|⟨θ̂(ℓ) − θ∗, a⟩| ≤
4C1

k1

(
√
d+ α

√
M log

1

α

)
ϵℓ. (2.61)

Using the fact that µ(·) is k2-Lipschitz then yields:

|µ(⟨θ̂(ℓ), a⟩)− µ(⟨θ∗, a⟩)| ≤ k2|⟨θ̂(ℓ) − θ∗, a⟩| ≤ 4C1
k2
k1

(
√
d+ α

√
M log

1

α

)
ϵℓ,

which is the desired claim. This completes the proof.

48

Having derived the robust confidence bounds for RC-GLM, we can complete the proof of Theorem 3.

Proof. (Proof of Theorem 3). Using essentially the same arguments as those used to prove Lemmas

4 and 5, we can prove that there exists a clean event, say E , of measure at least 1− δ, such that on

E , the following hold: (i) a∗ ∈ Aℓ,∀ℓ ∈ [L], where L is the total number of epochs; and (ii) for any

epoch ℓ ∈ [L], a ∈ Aℓ =⇒ ∆̃a ≤ 8γ̄ℓ. Here, ∆̃a = µ(⟨θ∗, a∗⟩)− µ(⟨θ∗, a⟩). Let us condition on this

clean event E . The remainder of the proof follows the same line of reasoning as that of Theorem 1.

For any good agent i ∈ [M] \ B, we can bound the regret as follows.

T∑
t=1

(µ(⟨θ∗, a∗⟩)− µ(⟨θ∗, ai,t⟩)) =
L∑
ℓ=1

∑
a∈Supp(πℓ)

m(ℓ)
a (µ(⟨θ∗, a∗⟩)− µ(⟨θ∗, a⟩))

=

L∑
ℓ=1

∑
a∈Supp(πℓ)

⌈
T
(ℓ)
a

M

⌉
∆̃a

≤
L∑
ℓ=1

∑
a∈Supp(πℓ)

T
(ℓ)
a

M
∆̃a︸ ︷︷ ︸

T1

+
L∑
ℓ=1

∑
a∈Supp(πℓ)

∆̃a︸ ︷︷ ︸
T2

.

(2.62)

As in the proof of Theorem 1, we bound T1 and T2 separately. For bounding T1, we have:

T1 =
L∑
ℓ=1

∑
a∈Supp(πℓ)

T
(ℓ)
a

M
∆̃a

=
d

M

L∑
ℓ=1

1

ϵ2ℓ
log

(
1

δℓ

) ∑
a∈Supp(πℓ)

πℓ(a)∆̃a

≤ 8d

M

L∑
ℓ=1

1

ϵ2ℓ
log

(
1

δℓ

)
γ̄ℓ

=
32C1d

(√
d+ α

√
M log(1/α)

)
M

(
k2
k1

) L∑
ℓ=1

1

ϵℓ
log

(
10K2ℓ2

δ

)

≤
32C1d

(√
d+ α

√
M log(1/α)

)
M

(
k2
k1

)
log

(
10K2L2

δ

) L∑
ℓ=1

2ℓ

= O

(k2
k1

) d
(√

d+ α
√
M log(1/α)

)
M

log

(
10K2L2

δ

)
2L

 .

(2.63)

49

Recall the following fact that we proved earlier for Theorem 1:

2L ≤

√
MT

d log (10K2L2/δ)
.

Plugging this bound in Eq. (2.63), we obtain:

T1 = O

((
k2
k1

)(
α
√
log(1/α) +

√
d

M

)√
log

(
KT

δ

)
dT

)
.

One can upper-bound T2 using the same bound as above using exactly the same steps as in the

proof of Theorem 1. Combining the bounds on T1 and T2 leads to the desired claim.

• Comments on solving for θ̂(ℓ) in RC-GLM. Recall that line 9 of Algorithm RC-GLM requires the

server to solve for θ̂(ℓ) based on the following equation:

hℓ(θ̂
(ℓ)) = Ṽ

1/2
ℓ Xℓ. (2.64)

Based on Lemma 9, we have that for any θ1, θ2 ∈ Θ such that θ1 ̸= θ2:

(θ1 − θ2)′ (hℓ(θ1)− hℓ(θ2)) = (θ1 − θ2)′Gℓ(θ1; θ2) (θ1 − θ2) > 0,

since Gℓ(θ1; θ2) is positive-definite. Thus, the map hℓ : Rd → Rd is injective, and h−1
ℓ is well-defined.

This, in turn, implies that Eq. (2.64) has a unique solution.

2.12.2. The Iteratively Reweighted Mean Estimation Algorithm

In this section, we briefly explain the main idea behind the Iteratively Reweighted Mean Estimation

Algorithm in (Dalalyan and Minasyan, 2022). Suppose we are given an α-corrupted set X of samples,

namely, M d-dimensional samples x1, . . . , xM , such that (1− α)M of these samples are drawn i.i.d.

from N (v,Σ), and the remaining αM samples are arbitrarily corrupted by an adversary. The goal

is to recover the unknown mean vector v ∈ Rd, given knowledge of the samples X , the corruption

50

fraction α, and the covariance matrix Σ. To see how this is done, let us define a couple of quantities

for any pair of vectors w ∈ [0, 1]d and µ ∈ Rd:

x̄w =
M∑
i=1

wixi; G(w, µ) = λmax

(
M∑
i=1

wi (xi − µ) (xi − µ)′ − Σ

)
. (2.65)

The basic idea is to find a weight vector ŵ within the d-dimensional probability simplex such that

the weighted average x̄ŵ is close to the true mean v. Intuitively, a “small" value of G(ŵ, x̄ŵ) is an

indicator of a good candidate for such a weight vector. This is essentially the strategy pursued in

Algorithm 5 where one iteratively updates the weight vectors, and the associated weighted averages,

so as to minimize the function G(·, ·) defined in Eq. (2.65). At the termination of this algorithm,

say after N iterations, the goal is to output a weight vector ŵN that mimics the ideal weight vector

w∗ defined by: w∗
j = 1(j ∈ I)/|I|, where I is the set of good samples (inliers). The steps of the

Iteratively Reweighted Mean Estimator are outlined in Algorithm 5.

Algorithm 5 Iteratively Reweighted Mean Estimator (ITW)
1: Input: α-corrupted set of M samples X , corruption fraction α, and covariance matrix Σ.
2: Output: Robust estimate of the mean v̂.

3: Initialize: Compute v̂0 as a minimizer of argmin
µ

M∑
i=1
∥xi − µ∥.

4: Let N = 0 ∨
⌈

log(4rΣ)−2 log(α(1−2α))
2 log((1−2α))−log(α)−log(1−α)

⌉
. Here, rΣ = Trace(Σ)/∥Σ∥2.

5:
6: for k = 1 to N do
7: Compute current weights:

w ∈ argmin
(M−Mϵ)∥w∥∞≤1

λmax

(
M∑
i=1

wi(xi − v̂k−1)(xi − v̂k−1)
′ − Σ

)
∨ 0.

8: Update the estimator:

v̂k =

M∑
i=1

wixi.

9: end for
10: Return v̂ = v̂K .

51

2.13. Analysis for the Contextual Bandit Setting: Proof of Theorem 4

The proof of Theorem 4 proceeds in multiple steps. We start with an analysis of the Robust

BaseLinUCB subroutine, namely Algorithm 2.

Lemma 11. (Bounds for Robust BaseLinUCB) Suppose the input index set Ψt is constructed

so that for fixed xτ,aτ , τ ∈ Ψt, the rewards {ri,τ}τ∈Ψt are independent random variables for each good

agent i ∈ [M] \ B. Then, for each a ∈ [K], with probability at least 1− δ̄, it holds that:

|r̂t,a − ⟨θ∗, xt,a⟩| ≤

α+ 2C

√√√√ log
(
1
δ̄

)
M

 ∥xt,a∥A−1
t
, (2.66)

where C is as in Lemma 2.

Proof. Fix any agent i ∈ [M] \ B. Now from the expression for θ̂i,t in Algorithm 2, observe that:

θ̂i,t = A−1
t bi,t

= A−1
t

(∑
τ∈Ψt

ri,τxτ,aτ

)

= A−1
t

(∑
τ∈Ψt

(⟨θ∗, xτ,aτ ⟩+ ηi,τ)xτ,aτ

)

= A−1
t

(∑
τ∈Ψt

xτ,aτx
′
τ,aτ

)
θ∗ +A−1

t

(∑
τ∈Ψt

ηi,τxτ,aτ

)

=

(
Id −

A−1
t

M

)
θ∗ +A−1

t

(∑
τ∈Ψt

ηi,τxτ,aτ

)
,

(2.67)

where we used ηi,τ as a shorthand for ηi,τ (aτ). Now consider any a ∈ [K]. Using the above expression,

we will now decompose the error in estimation of ⟨θ∗, xt,a⟩ into a bias term and a variance term:

⟨θ̂i,t − θ∗, xt,a⟩ = −
1

M
⟨A−1

t θ∗, xt,a⟩︸ ︷︷ ︸
bias term

+
∑
τ∈Ψt

⟨A−1
t xτ,aτ , xt,a⟩ηi,τ︸ ︷︷ ︸

variance term

. (2.68)

52

For a fixed set of feature vectors, under our assumption that {ri,τ}τ∈Ψt are independent random

variables, the variance term is a sum of independent zero-mean Gaussian noise variables. Thus,

E

[∑
τ∈Ψt

⟨A−1
t xτ,aτ , xt,a⟩ηi,τ

]
=
∑
τ∈Ψt

⟨A−1
t xτ,aτ , xt,a⟩E [ηi,τ] = 0.

Furthermore, we have:

E

(∑
τ∈Ψt

⟨A−1
t xτ,aτ , xt,a⟩ηi,τ

)2
 = x′t,aA

−1
t

(∑
τ∈Ψt

E
[(
η2i,τ
)]
xτ,aτx

′
τ,aτ

)
A−1
t xt,a

= x′t,aA
−1
t

(∑
τ∈Ψt

xτ,aτx
′
τ,aτ

)
A−1
t xt,a

≤ x′t,aA−1
t

(
Id
M

+
∑
τ∈Ψt

xτ,aτx
′
τ,aτ

)
︸ ︷︷ ︸

At

A−1
t xt,a

= ∥xt,a∥2A−1
t
.

(2.69)

From the above arguments, we conclude that for each i ∈ [M] \ B,

⟨θ̂i,t, xt,a⟩ ∼ N
(
⟨θ∗ −

A−1
t θ∗
M

,xt,a⟩, σ2
)
, where σ2 ≤ ∥xt,a∥2A−1

t
.

Since the noise samples are independent across agents, we also know that {⟨θ̂i,t, xt,a⟩}i∈[M]\B are

independent. Recalling that r̂t,a = Median
(
{⟨θ̂i,t, xt,a⟩, i ∈ [M]}

)
, and invoking Lemma 2, we then

have that with probability at least 1− δ̄,

|r̂t,a − ⟨θ∗ −
A−1
t θ∗
M

,xt,a⟩| ≤

α+ C

√√√√ log
(
1
δ̄

)
M

 ∥xt,a∥A−1
t
. (2.70)

This immediately implies:

|r̂t,a − ⟨θ∗, xt,a⟩| ≤
1

M
|⟨A−1

t θ∗, xt,a⟩|+

α+ C

√√√√ log
(
1
δ̄

)
M

 ∥xt,a∥A−1
t
. (2.71)

53

It remains to bound the first term in the above display. To that end, we proceed as follows:

1

M
|⟨A−1

t θ∗, xt,a⟩| =
1

M
|⟨A−1

t xt,a, θ∗⟩|

≤ 1

M
∥A−1

t xt,a∥∥θ∗∥

(a)

≤ 1√
M

√
x′t,aA

−1
t

Id
M
A−1
t xt,a

≤ 1√
M

√√√√x′t,aA
−1
t

(
Id
M

+
∑
τ∈Ψt

xτ,aτx
′
τ,aτ

)
A−1
t xt,a

=
1√
M
∥xt,a∥A−1

t

(b)

≤ C

√√√√ log
(
1
δ̄

)
M

∥xt,a∥A−1
t
,

(2.72)

where for (a), we used the fact that ∥θ∗∥ ≤ 1 by assumption; and for (b), we used C ≥ 1, log
(
1
δ̄

)
≥ 1.

Combining the above bound with the one in Eq.(2.71) leads to the desired claim.

For Lemma 11 to hold, the crucial requirement is for the rewards corresponding to indices in Ψt to be

independent. Our next result shows that this is indeed the case; the proof of this lemma essentially

follows the same arguments as that of (Auer, 2002, Lemma 14), we reproduce these arguments here

only for completeness.

Lemma 12. (Independence of Samples) Fix any agent i ∈ [M] \ B. For each s ∈ [S] and

each t ∈ [T], given any fixed sequence of feature vectors {xτ,aτ }τ∈Ψ(s)
t

, the rewards {ri,τ}τ∈Ψ(s)
t

are

independent random variables.

Proof. Let us start by observing that a time-step t can be added to Ψ
(s)
t only in line 6 of Algorithm

3. Thus, the event {t ∈ Ψ
(s)
t } only depends on all prior phases ∪ℓ<sΨ

(ℓ)
t , and on the confidence width

w
(s)
t,a . From the definition of w(s)

t,a in line 7 of Algorithm 2, we note that w(s)
t,a depends only on the

feature vectors xτ,aτ , τ ∈ Ψ
(s)
t , and xt,a. Combining the above observations, it is easy to see that

{t ∈ Ψ
(s)
t } only depends on the feature vectors. Noting that the feature vector sequence is fixed, and

cannot be controlled by the adversarial agents, leads to the claim of the lemma.

54

The next result tells us that with high-probability, at each time-step t ∈ [T], (i) the best arm a∗t is

retained in all stages of the screening process; and (ii) an active arm in phase s can contribute to at

most 8/(2s
√
M) instantaneous regret.

Lemma 13. With probability at least 1− δ̄KST , for any t ∈ [T] and any s ∈ [S], the following hold:

(i) |r̂(s)t,a − ⟨θ∗, xt,a⟩| ≤ w
(s)
t,a ,∀a ∈ As.

(ii) a∗t ∈ As.

(iii) ⟨θ∗, xt,a∗t ⟩ − ⟨θ∗, xt,a⟩ ≤ 8/(2s
√
M), ∀a ∈ As.

Proof. Part (i) of the result follows directly from Lemma 11, and an union bound over all time-steps,

phases and arms.

For part (ii), let us condition on the clean event, say E , on which part (i) holds. From the

rules of Algorithm 3, it holds trivially that a∗t ∈ As for s = 1. Now suppose there exists some

phase s > 1 such that a∗t ∈ As−1, but a∗t /∈ As. From line 8 in Algorithm 3, we must have

w
(s−1)
t,a ≤ 21−s/

√
M, ∀a ∈ As−1. From the phased elimination strategy in line 8 of Algorithm 3,

a∗t /∈ As implies the existence of some arm a ∈ As such that:

(
r̂
(s−1)
t,a + w

(s−1)
t,a

)
−
(
r̂
(s−1)
t,a∗t

+ w
(s−1)
t,a∗t

)
>

22−s√
M

(a)
=⇒ ⟨θ∗, xt,a⟩+ 2w

(s−1)
t,a −

(
r̂
(s−1)
t,a∗t

+ w
(s−1)
t,a∗t

)
>

22−s√
M

(b)
=⇒ ⟨θ∗, xt,a − xt,a∗t ⟩+ 2w

(s−1)
t,a >

22−s√
M

(c)
=⇒ 2w

(s−1)
t,a >

22−s√
M
,

(2.73)

which leads to a contradiction as w(s−1)
t,a ≤ 21−s/

√
M . In the above steps, both (a) and (b) follow

from the defining property of the clean event E ; for (c), we used ⟨θ∗, xt,a − xt,a∗t ⟩ ≤ 0 from the

optimality of a∗t . This completes the proof of part (ii).

For part (iii), let us once again condition on the clean event E on which part (i) holds. Now

55

a ∈ As =⇒ a ∈ As−1. We also know from part (ii) that a∗t ∈ As−1. The retention of arm a in As

implies (based on line 8 of Algorithm 3),

(
r̂
(s−1)
t,a∗t

+ w
(s−1)
t,a∗t

)
−
(
r̂
(s−1)
t,a + w

(s−1)
t,a

)
≤ 22−s√

M

(a)
=⇒ ⟨θ∗, xt,a∗t ⟩ −

(
r̂
(s−1)
t,a + w

(s−1)
t,a

)
≤ 22−s√

M

(b)
=⇒ ⟨θ∗, xt,a∗t − xt,a⟩ ≤

22−s√
M

+ 2w
(s−1)
t,a

(c)
=⇒ ⟨θ∗, xt,a∗t − xt,a⟩ ≤

8

2s
√
M
,

(2.74)

which is the desired claim. Here, for (a) and (b) we used the defining property of E . As for (c), we

used the fact that w(s−1)
t,a ≤ 21−s/

√
M .

The final piece needed in the proof of Theorem 4 is a bound on |Ψ(s)
T | for each s ∈ [S].

To that end, we will make use of the elliptical potential lemma from (Abbasi-Yadkori et al., 2011).

Lemma 14. (Elliptical Potential Lemma) Let {Xt}∞t=1 be a sequence in Rd, V a d× d positive

definite matrix, and define V̄t = V +
∑t

τ=1XτX
′
τ . If ∥Xt∥ ≤ L for all t, then we have that

T∑
t=1

min{1, ∥Xt∥2V̄ −1
t−1
} ≤ 2 log

det(V̄T)

det(V)
≤ 2(d log ((trace(V) + TL2)/d)− log(detV)).

We have the following result.

Lemma 15. (Bound on |Ψ(s)
T |) Fix any s ∈ [S]. The following then holds:

|Ψ(s)
T | ≤ 2s

√
M

α+ 2C

√√√√ log
(
1
δ̄

)
M

√2d|Ψ(s)
T | log(2M |Ψ

(s)
T |). (2.75)

Proof. Fix any phase s ∈ [S]. Now consider any time-step t ∈ Ψ
(s)
T . Since t ∈ Ψ

(s)
T , based on line 6

56

of Algorithm 3, it must be that:

1

2s
√
M

< w
(s)
t,at =

α+ 2C

√√√√ log
(
1
δ̄

)
M

 ∥xt,at∥A−1
s,t
, where (2.76)

As,t =

 Id
M

+
∑
τ∈Ψ(s)

t

xτ,aτx
′
τ,aτ

 .

Also, since s ≥ 1, we have the following trivial inequality:

1

2s
√
M

<

α+ 2C

√√√√ log
(
1
δ̄

)
M

 .

Combining the above inequality with the one in (2.76), we note that for each t ∈ Ψ
(s)
T , it holds that:

1

2s
√
M

<

α+ 2C

√√√√ log
(
1
δ̄

)
M

min{1, ∥xt,at∥A−1
s,t
}.

Summing the above display over all indices in Ψ
(s)
T yields:

|Ψ(s)
T |

2s
√
M

<

α+ 2C

√√√√ log
(
1
δ̄

)
M

 ∑
t∈Ψ(s)

T

min{1, ∥xt,at∥A−1
s,t
}

(a)

≤

α+ 2C

√√√√ log
(
1
δ̄

)
M

√√√√|Ψ(s)
T |

∑
t∈Ψ(s)

T

min{1, ∥xt,at∥
2
A−1

s,t
}

(b)

≤

α+ 2C

√√√√ log
(
1
δ̄

)
M

√

2d|Ψ(s)
T | log

(
1 +

M

d
|Ψ(s)

T |
)

≤

α+ 2C

√√√√ log
(
1
δ̄

)
M

√
2d|Ψ(s)

T | log
(
2M |Ψ(s)

T |
)
,

(2.77)

57

where (a) follows from Jensen’s inequality, and (b) follows from an application of Lemma 14.

Reorganizing the resulting inequality above leads to the desired claim.

We are now ready to prove Theorem 4.

Proof. (Proof of Theorem 4) Since S = ⌈log T ⌉, we have 1/(2S
√
M) ≤ 1/(

√
MT). Thus, from

the rules of Algorithm 3, it is apparent that at every time-step t, an action at is always chosen,

either based on line 6, or on line 7. If we use ΞT to store those time steps in [T] where an action is

chosen based on line 7 of Algorithm 3, then the above reasoning implies: [T] = ΞT ∪
⋃
s∈[S]Ψ

(s)
T .

Throughout the rest of the proof, we will condition on the clean event on which items (i)-(iii) in

Lemma 13 hold. We also recall that this clean event has measure at least 1− δ̄KST . Now fix any

good agent i ∈ [M] \ B, and note that the same action at is played by every good agent at time t.

The cumulative regret for agent i can thus be decomposed as follows:

T∑
t=1

(
⟨θ∗, xt,a∗t ⟩ − ⟨θ∗, xt,ai,t⟩

)
=
∑
t∈ΞT

(
⟨θ∗, xt,a∗t ⟩ − ⟨θ∗, xt,at⟩

)
︸ ︷︷ ︸

T1

+
S∑
s=1

∑
t∈Ψ(s)

T

(
⟨θ∗, xt,a∗t ⟩ − ⟨θ∗, xt,at⟩

)
︸ ︷︷ ︸

T2

.

(2.78)

58

Let us first bound T2 as follows.

T2 =

S∑
s=1

∑
t∈Ψ(s)

T

(
⟨θ∗, xt,a∗t ⟩ − ⟨θ∗, xt,at⟩

)
(a)

≤
S∑
s=1

∑
t∈Ψ(s)

T

8

2s
√
M

=

S∑
s=1

8

2s
√
M
|Ψ(s)

T |

(b)

≤
S∑
s=1

8

α+ 2C

√√√√ log
(
1
δ̄

)
M

√2d|Ψ(s)
T | log(2M |Ψ

(s)
T |)

(c)

≤ 8S

α+ 2C

√√√√ log
(
1
δ̄

)
M

√2dT log(2MT)

≤ 8(1 + log(T))

α+ 2C

√√√√ log
(
1
δ̄

)
M

√2dT log(2MT),

(2.79)

where for (a), we used item (iii) of Lemma 13; for (b), we invoked Lemma 15 to bound |Ψ(s)
T |; and

for (c), we used the trivial bound |Ψ(s)
T | ≤ T . With δ̄ = δ/(KST), the bound on T2 reads as follows:

T2 = O

α+ 2C

√
log
(
KT
δ

)
M

 log(T)
√
2dT log(2MT)

 . (2.80)

Now let us turn to bounding T1. Consider any time-step t ∈ ΞT where the action at is chosen based

on line 7 of Algorithm 3. Since a∗t is never eliminated on the clean event (item (ii) of Lemma 13),

and since at has the highest robust upper confidence bound among all active arms, it must be that:

r̂
(s)
t,a∗t

+ w
(s)
t,a∗t
≤ r̂(s)t,at + w

(s)
t,at

=⇒ ⟨θ∗, xt,a∗t − xt,at⟩ ≤ 2w
(s)
t,at

=⇒ ⟨θ∗, xt,a∗t − xt,at⟩ ≤
2√
MT

,

(2.81)

59

where for the first implication, we used item (i) of Lemma 13; and for the second, we used the

fact for an action to be chosen based on line 7, it’s confidence width must be bounded above by

1/(
√
MT). We conclude that

T1 =
∑
t∈ΞT

(
⟨θ∗, xt,a∗t ⟩ − ⟨θ∗, xt,at⟩

)
= O

(√
T

M

)
.

Combining the above bound on T1 with that on T2 in Eq. (2.80), we have that with probability at

least 1− δ, the following is true for each good agent i ∈ [M] \ B:

T∑
t=1

(
⟨θ∗, xt,a∗t ⟩ − ⟨θ∗, xt,at⟩

)
= O

α+ 2C

√
log
(
KT
δ

)
M

 log(T)
√
2dT log(2MT)

= Õ

((
α+

√
1/M

)√
dT
)
.

(2.82)

This completes the proof.

2.14. Alternate Strategies for Robust Collaborative Phased Elimination can lead to Sub-

Optimal Regret Bounds.

In Section 2.3, where we introduced RCLB, we alluded to the fact that certain natural candidate

strategies may lead to sub-optimal regret bounds. In this section, we elaborate on this point. Note

that our end goal is to come up with a phased elimination step akin to line 9 of RCLB. To achieve

this, in every epoch ℓ, we need estimates of ⟨θ∗, a⟩ along with associated confidence intervals for

each a ∈ Aℓ. In what follows, we will consider two natural candidate strategies for the same, and

demonstrate that they each lead to confidence bounds that are looser than the ones we derived in

Lemma 1. As such, using such bounds in the phased elimination step will lead to regret guarantees

that are sub-optimal in their dependence on the model dimension d.

• Candidate Strategy 1. Suppose in every epoch ℓ, the server collects the local model estimates

{θ̂(ℓ)i }i∈[M], and aims to first construct a robust estimate θ̂(ℓ) of θ∗. Subsequently, it uses ⟨θ̂(ℓ), a⟩

as an estimate of ⟨θ∗, a⟩ for each active arm a ∈ Aℓ. To extract θ̂(ℓ) from the local estimates

60

{θ̂(ℓ)i }i∈[M], we need a high-dimensional robust mean estimator. One natural candidate for this is

the Iteratively Reweighted Mean Estimator from (Dalalyan and Minasyan, 2022) since it leads to

minimax-optimal error bounds. However, there is an immediate obstacle to directly applying the

estimator from (Dalalyan and Minasyan, 2022) on the model estimates {θ̂(ℓ)i }i∈[M]. This stems from

the observation that although θ̂(ℓ)i is an unbiased estimate of θ∗ for each good agent i, the covariance

matrix associated with such an estimate may be ill-conditioned. In particular, it is not hard to verify

that for each i ∈ [M] \ B:

E
[(
θ̂
(ℓ)
i − θ∗

)(
θ̂
(ℓ)
i − θ∗

)′ ∣∣∣Fℓ] = Ṽ −1
ℓ .

Thus, if we were to construct θ̂(ℓ) as

θ̂(ℓ) = ITW({θ̂(ℓ)i , i ∈ [M]}),

then based on Lemma 8, the error bound ∥θ̂(ℓ)− θ∗∥ would scale with ∥Ṽ −1
ℓ ∥

1/2
2 .7 This is undesirable

as ∥Ṽ −1
ℓ ∥

1/2
2 can potentially take on a large value. To bypass this problem, we can use the same

trick as we did for RC-GLM, and compute θ̂(ℓ) as follows:

θ̂(ℓ) = Ṽ
−1/2
ℓ

(
ITW({Ṽ 1/2

ℓ θ̂
(ℓ)
i , i ∈ [M]})

)
.

The rationale behind the above approach is that the covariance matrix associated with Ṽ 1/2
ℓ θ̂

(ℓ)
i , i ∈

[M] \ B, is Id. Using Lemma 8, and following similar arguments as used to arrive at Lemmas 1 and

10, one can show that for each a ∈ Aℓ, with probability at least 1− δℓ, it holds that:

|⟨θ̂(ℓ), a⟩ − ⟨θ∗, a⟩| = O
((√

d+ α
√
M log(1/α)

)
ϵℓ

)
. (2.83)

It is instructive to compare the above estimate on ⟨θ∗, a⟩ with the estimate µ(ℓ)a we used in RCLB.
7Recall that we use ITW(·) to represent the output of the Iteratively Reweighted Mean Estimator from

(Dalalyan and Minasyan, 2022), namely Algorithm 5.

61

Specifically, recall from Lemma 1 that for each a ∈ Aℓ, with probability at least 1− δℓ, it holds that

|µ(ℓ)a − ⟨θ∗, a⟩| = O
((

1 + α
√
M
)
ϵℓ

)
.

Comparing the above upper bound with the one in Eq. (2.83), we note that while the former is

independent of the dimension d, the latter does exhibit a dependence via the
√
d term. Now suppose

we use the upper-bound from Eq. (2.83) to construct a robust confidence threshold - say γ̃ℓ - and

use it to devise a phased elimination step as the one in line 9 of RCLB. Then, following the reasoning

as that used to prove Theorem 1, one can establish a per-agent regret bound of

Õ

((
α
√

log(1/α) +

√
d

M

)
√
dT

)
,

which is unfortunately weaker than the guarantee we have in Theorem 1.

• Candidate Strategy 2. The main idea is as follows. In every epoch ℓ, the server queries each

agent i ∈ [M] to report their aggregate observation r
(ℓ)
i,a for each arm a ∈ Supp(πℓ). Recall that

r
(ℓ)
i,a is the average of the rewards for arm a observed by agent i during epoch ℓ. The server next

computes an aggregate “clean" observation r̃(ℓ)a for each a ∈ Supp(πℓ) as follows:

r̃(ℓ)a = Median
(
{r(ℓ)i,a , i ∈ [M]}

)
.

It then uses these clean observations to compute an estimate θ̂(ℓ) of θ∗ as follows:

θ̂(ℓ) = V̄ −1
ℓ Yℓ, where V̄ℓ =

∑
a∈Supp(πℓ)

T (ℓ)
a aa′ ; Yℓ =

∑
a∈Supp(πℓ)

T (ℓ)
a r̃(ℓ)a a,

and

T (ℓ)
a =

⌈
πℓ(a)d

ϵ2ℓ
log

(
1

δℓ

)⌉
.

The quantity θ̂(ℓ) obtained above is now used to compute ⟨θ̂(ℓ), a⟩ as an estimate of the true mean

payoff ⟨θ∗, a⟩ of each arm a ∈ Aℓ.8 As before, our goal is to bound |⟨θ̂(ℓ), a⟩− ⟨θ∗, a⟩| for each a ∈ Aℓ.
8Note that the observations obtained from each agent i, namely r

(ℓ)
i,a, a ∈ Supp(πℓ), provide direct information

62

To that end, we start by noting that for each good agent i, r(ℓ)i,a ∼ N
(
⟨θ∗, a⟩, 1

m
(ℓ)
a

)
. Invoking Lemma

2 then tells us that with probability at least 1− δℓ,

|r̃(ℓ)a − ⟨θ∗, a⟩| ≤ C

α+

√
log(1

δℓ
)

M

 1√
m

(ℓ)
a

≤ C

(
α
√
M +

√
log

(
1

δℓ

))
1√
T
(ℓ)
a

. (2.84)

For our subsequent discussion, let us condition on the event on which the above bound holds for

every arm in Aℓ. On this event, we can say that for each a ∈ Aℓ, r̃
(ℓ)
a = ⟨θ∗, a⟩+ e(ℓ)a , where e(ℓ)a is an

error term satisfying the bound in Eq. (2.84). Now fix any b ∈ Aℓ. Simple calculations reveal that:

|⟨θ̂(ℓ) − θ∗, b⟩| =
∣∣∣ ∑
a∈Supp(πℓ)

T (ℓ)
a ⟨V̄ −1

ℓ a, b⟩e(ℓ)a
∣∣∣

≤
∑

a∈Supp(πℓ)

T (ℓ)
a |⟨V̄ −1

ℓ a, b⟩||e(ℓ)a |

(a)

≤ C

(
α
√
M +

√
log

(
1

δℓ

)) ∑
a∈Supp(πℓ)

√
T
(ℓ)
a |⟨V̄ −1

ℓ a, b⟩|

︸ ︷︷ ︸
T1

(b)

≤ C

(
α
√
M +

√
log

(
1

δℓ

))√√√√√|Supp(πℓ)|

b′V̄ −1
ℓ

 ∑
a∈Supp(πℓ)

T
(ℓ)
a aa′

 V̄ −1
ℓ b

≤ C

(
α
√
M +

√
log

(
1

δℓ

))√
|Supp(πℓ)| ∥b∥V̄ −1

ℓ

(c)

≤ C

(
α
√
M +

√
log

(
1

δℓ

))√
48d log log d ∥b∥V̄ −1

ℓ

(d)
= Õ

(√
d
(
1 + α

√
M
)
ϵℓ

)
.

(2.85)

In the above steps, for (a) we used the bound from Eq. (2.84); for (b), we used Jensen’s inequality;

for (c), we used the fact that |Supp(πℓ)| ≤ 48d log log d; and for (d), following a similar argument as

about the mean payoffs of arms only in Supp(πℓ). However, for the phased elimination step, we need estimates of the
mean payoffs of all arms in Aℓ, not just the ones in Supp(πℓ) ⊆ Aℓ. This is precisely why we need to go through an
intermediate regression step to first compute an estimate of θ∗.

63

in the proof of Lemma 1, we used that

∥b∥V̄ −1
ℓ

= O

(
ϵℓ√

log (1/δℓ)

)
.

Comparing the bound in Eq. (2.85) with the one in Lemma 1, we once again note that while the

latter bound is d-independent, the former has a clear dependence on
√
d. At the risk of sounding

repetitive, if one were to employ the bound in Eq. (2.85) to construct a confidence threshold for

phased elimination, and run through the same arguments as in the proof of Theorem 1, one would

end up with a per-agent regret bound of

Õ
((

1 + α
√
M
)
d
√
T
)
.

Unlike the near-optimal guarantee we have in Theorem 1, the above bound is clearly off by a factor

of
√
d from the optimal dependence on the model dimension d. The looseness in the bound mainly

stems from the following fact: the error terms {e(ℓ)a }a∈Supp(πℓ) are not necessarily sub-Gaussian

random variables that are independent across arms. One can contrast this to the analysis in Lemma

1, where the noise terms {η̄(ℓ)i,a}a∈Supp(πℓ) were in fact Gaussian, and independent across arms. It is

precisely the lack of nice statistical properties for the error terms {e(ℓ)a }a∈Supp(πℓ) that compels us

to use Jensen’s inequality to bound the term T1 in Eq. (2.85). At the moment, it is unclear to us

whether one can come up with a tighter bound for this candidate strategy.

Main Takeaway. The main message from this section is that deriving robust confidence intervals

that lead to near-optimal bounds (such as the one in Theorem 1) is non-trivial, and requires a lot

of care. In particular, the above discussion serves to highlight the significance of our algorithmic

approach.

64

2.15. Experimental Results

In this section, we will provide various simulation results on synthetic data to corroborate the theory

developed in our work. We start by describing the experimental setup for the linear bandit setting

considered in Section 3.6.

2.15.1. Experiments for the Linear Bandit Setting

Linear Bandit Experimental Setup. We generate 50 arms a1, a2, . . . , a50 ∈ Rd, where d = 5.

Each arm aj , j ∈ [50], is generated by drawing each of the arm’s coordinates i.i.d from the interval

[− 1√
d
, 1√

d
]. It thus follows that ∥aj∥2 ≤ 1,∀j ∈ [50]. The model parameter θ∗ is chosen to be

a 5-dimensional vector with each entry equal to 1/
√
d. The rewards are generated based on the

observation model in Eq. (2.1). We now describe the attack model for the linear bandit setting.

Attack Model for Linear Bandit Setting. The collective goal of the adversarial agents is to

manipulate the server into selecting sub-optimal arms. To that end, each adversarial agent i employs

the simple strategy of reducing the rewards of the good arms and increasing the rewards of the bad

arms. More precisely, in each epoch ℓ, upon pulling an arm a and observing the corresponding reward

ya, an adversarial agent i does the following: if ya > p⟨θ∗, a∗⟩, then this reward is corrupted to

ỹa = ya − β; and if ya ≤ p⟨θ∗, a∗⟩, then the reward is corrupted to ỹa = ya + β. For this experiment,

we fix p = 0.6 and β = 5. Agent i ∈ B then uses all the corrupted rewards in epoch ℓ to generate

the local model estimate θ̂(ℓ)i that is transmitted to the server.

An Alternate Attack Model. To further test the robustness of RCLB, we consider an attack

model different from the one in Section 3.6. In this attack, in each epoch ℓ, every adversarial agent

i ∈ B generates and transmits the following corrupted local model estimate to the server:

θ̂
(ℓ)
i = −M

|B|
θ∗ −

1

|B|
∑

j∈[M]\B

θ̂
(ℓ)
j . (2.86)

The idea behind the above attack is to trick the server into thinking that the true model estimate

is −θ∗, as opposed to θ∗, by shifting the average of the agents’ local model estimates towards −θ∗.

65

As we can see from Figure 2.2, the adversarial agents succeed in doing so when one employs a

vanilla non-robust distributed phased elimination algorithm. However, our proposed approach RCLB

continues to remain immune to such attacks, and guarantees sub-linear regret as suggested by our

theory.

2.15.2. Experiments for the Contextual Bandit Setting

The goal of this section is to validate our proposed robust collaborative algorithm for the contextual

bandit setting, namely Algorithm 3.

Contextual Bandit Experimental Setup. As in the linear bandit experiment, we set the number

of arms K to be 50, the model dimension d to be 5, and the true parameter θ∗ to be a d-dimensional

vector with each entry equal to 1/
√
d. At each time-step t, for each a ∈ A, we generate the feature

vector xt,a by drawing each of its entries i.i.d from the interval [− 1√
d
, 1√

d
]. The rewards are then

generated based on the observation model in Eq. (2.12).

Attack Model for Contextual Bandit Setting. We use an attack strategy similar in spirit to the

first attack model for the linear bandit setting. Specifically, at each time-step t, each adversarial agent

i ∈ B does the following: if ri,t > p⟨θ∗, xt,a∗t ⟩, then the attacker sets r̃i,t = ri,t−β; if ri,t < p⟨θ∗, xt,a∗t ⟩,

then the attacker sets r̃i,t = ri,t + β. The corrupted reward r̃i,t is then sent to the server. In this

experiment, we fixed p = 0.6 and β = 5.

Discussion of Simulation Results. Figure 2.3 illustrates the results for the contextual linear

bandit experiment. In Figure 2.3(a), we compare our proposed algorithm, namely Algorithm 3, to

a naive distributed implementation of Algorithm 3 that does not account for adversarial agents.

Similar to what we observed in Figure 2.1(a), while the non-robust algorithm incurs linear regret

in the presence of adversaries, Algorithm 3 continues to guarantee sub-linear regret bounds. The

plots in Figures 2.3(b)-(d) are analogous to the ones in Figures 2.1(b)-(d). In short, these plots once

again indicate a clear benefit of collaboration (for small α) in the presence of adversarial agents,

thereby highlighting the importance of Algorithm 3, and validating Theorem 4.

66

Algorithm 4 Robust Collaborative Phased Elimination for Generalized Linear Bandits (RC-GLM)

Input: Action set A = {a1, . . . , aK}, confidence parameter δ, and corruption fraction α.
Initialize: ℓ = 1 and A1 = A.
1: Let Vℓ(π) ≜

∑
a∈Aℓ

π(a)aa′ and gℓ(π) ≜ maxa∈Aℓ
∥a∥2Vℓ(π)−1 . Server solves an approximate

G-optimal design problem to compute a distribution πℓ over Aℓ such that gℓ(πℓ) ≤ 2d and
|Supp(πℓ)| ≤ 48d log log d.

2: For each a ∈ Aℓ, server computes m(ℓ)
a via Eq. (2.5), and broadcasts {m(ℓ)

a }a∈Aℓ
to all agents.

3: for i ∈ [M] \ B do
4: For each arm a ∈ Aℓ, pull it m(ℓ)

a times. Let r(ℓ)i,a be the average of the rewards observed by
agent i for arm a during phase ℓ.

5: Compute Ṽℓ and Yi,ℓ as follows.

Ṽℓ =
∑

a∈Supp(πℓ)

m(ℓ)
a aa′ ; Yi,ℓ =

∑
a∈Supp(πℓ)

m(ℓ)
a r

(ℓ)
i,aa.

6: Transmit Yi,ℓ to server. Adversarial agents can transmit arbitrary vectors at this stage.
7: end for
8: Server computes a statistic Xℓ as follows:

Xℓ = ITW({Ṽ −1/2
ℓ Yi,ℓ, i ∈ [M]}),

where ITW(·) is the output of the Iteratively Reweighted Mean Estimator from
(Dalalyan and Minasyan, 2022).

9: Server computes a robust estimate θ̂(ℓ) of θ∗ by solving:

hℓ(θ̂
(ℓ)) = Ṽ

1/2
ℓ Xℓ.

10: Define robust confidence threshold γ̄ℓ = 4C1(k2/k1)
(√

d+ α
√
M log(1/α)

)
ϵℓ, where ϵℓ = 2−ℓ,

and C1 is as in Lemma 8. Server performs phased elimination with the estimate θ̂(ℓ) and
confidence threshold γ̄ℓ to update active arm set:

Aℓ+1 = {a ∈ Aℓ : max
b∈Aℓ

µ(⟨θ̂(ℓ), b⟩)− µ(⟨θ̂(ℓ), a⟩) ≤ 2γ̄ℓ}. (2.46)

11: ℓ = ℓ+ 1 and Goto line 1.

67

Figure 2.2: Performance of a vanilla non-robust distributed phased elimination algorithm vs RCLB
for the attack model in Eq. (2.86).

68

(a) (b)

(c) (d)

Figure 2.3: Plots of per-agent regret for the contextual bandit experiment. (a) Comparison between
our proposed algorithm, namely Algorithm 3, and a vanilla non-robust distributed contextual bandit
algorithm. (b) Performance of Algorithm 3 for varying number of agents M, with α = 0.1. (c)
Performance of Algorithm 3 for varying corruption fraction α, with M = 100. (d) Comparison
of Algorithm 3 to a non-robust contextual bandit algorithm where the agents do not collaborate;
here, α = 0.1 and M = 100. We also plotted theoretical upper bounds: g1(T) = 3

√
dT and

g2(T) = 17(α+
√

1
M)
√
dT .

69

CHAPTER 3

Distributed Min-Max Learning in the Presence of Byzantine Agents

3.1. Introduction

We consider a min-max learning problem of the form

min
x∈X

max
y∈Y

f(x, y) ≜ Eξ∼D[F (x, y; ξ)]. (3.1)

Here, X and Y are convex, compact sets in Rn and Rm, respectively; x ∈ X and y ∈ Y are model

parameters; ξ is a random variable representing a data point sampled from the distribution D; and

f(x, y) is the population function corresponding to the stochastic function F (x, y; ξ). Throughout

this paper, we assume that f(x, y) is continuously differentiable in x and y, and is convex-concave

over X × Y. Specifically, f(·, y) : X → R is convex for every y ∈ Y, and f(x, ·) : Y → R is concave

for every x ∈ X . Our goal is to find a saddle point (x∗, y∗) of f(x, y) over the set X × Y, where a

saddle point is defined as a vector pair (x∗, y∗) ∈ X × Y that satisfies

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗),∀x ∈ X , y ∈ Y. (3.2)

The min-max optimization problem described above features in a variety of applications: from

classical developments in game theory (Von Neumann and Morgenstern, 2007) and online learning

(Cesa-Bianchi and Lugosi, 2006), to robust optimization (Ben-Tal et al., 2009a) and reinforcement

learning (Dai et al., 2017). More recently, in the context of machine learning, min-max problems have

found important applications in training generative adversarial networks (GANs) (Goodfellow et al.,

2014a), and in robustifying deep neural networks against adversarial attacks (Madry et al., 2017a).

Motivated by this recent line of work, we consider a min-max learning problem of the form in Eq.

(3.1), where the data samples required for finding a saddle-point are distributed across multiple

devices (agents). Specifically, we focus on a large-scale distributed setup comprising of M agents,

each of which can access i.i.d. data samples from the distribution D. The agents collaborate under

70

the orchestration of a central server to compute an approximate saddle point of statistical accuracy

higher relative to the setting when they act alone. The intuition here is simple: since all agents

receive data samples from the same distribution, exchanging information via the server can help

reduce the randomness (variance) associated with these samples.9 An example of the above setup

that aligns with the modern federated learning paradigm is one where multiple devices (e.g., cell

phones or tablets) collaborate via a server to train a robust statistical model; see, for instance,

(Reisizadeh et al., 2020).

To reap the benefits of collaboration in modern distributed computing systems, one needs to

contend with the critical challenge of security. In particular, this challenge arises from the fact

that the individual agents in such systems are easily susceptible to adversarial attacks. In fact,

unless appropriately accounted for, even a single malicious agent can severely degrade the overall

performance of the system by sending corrupted messages to the central server.

Objective. Thus, given the emerging need for security in large-scale computing, our objective in

this paper is to design an algorithm that achieves near-optimal statistical performance in the context

of distributed min-max learning, while being robust to worst-case attacks. To that end, we consider a

setting where a fraction of the agents is Byzantine (Lamport et al., 2019). Each Byzantine agent is

assumed to have complete knowledge of the system and learning algorithms; moreover, leveraging

such knowledge, the Byzantine agents can send arbitrary messages to the server and collude with

each other.

Challenges. Even in the absence of noise or attacks, recent work (Daskalakis et al., 2017a) has

shown that algorithms such as gradient descent ascent (GDA) can diverge for simple convex-concave

functions. We have to contend with both noise (due to our statistical setup) and worst-case attacks -

this makes the analysis for our setting non-trivial. In particular, the adversarial agents can introduce

complex probabilistic dependencies across iterations that need to be carefully accounted for; we do

so in this work by making the following contributions.
9This intuition will be made precise in Section 3.4.

71

Contributions. Our contributions are summarized below.

• Problem. Given the importance and relevance of security, several recent works have studied

distributed optimization/learning in the face of adversarial agents. However, we are unaware of any

analogous paper for adverarially-robust distributed min-max learning. Our work closes this gap.

• Algorithm. In Section 3.3, we develop an algorithm for finding an approximate saddle point to the

min-max learning problem in Eq. (3.1), subject to the presence of Byzantine agents. Our proposed

algorithm - called Robust Distributed Extra-Gradient (RDEG) - brings together two separate algorith-

mic ideas: (i) the classical extra-gradient algorithm due to Korpelevich (Korpelevich, 1976a) that has

gained a lot of popularity due to its empirical performance in training GANs, and (ii) the recently

proposed univariate trimmed mean estimator due to Lugosi and Mendelson (Lugosi and Mendelson,

2021).

• Theoretical Results. Our main contribution is to provide a rigorous theoretical analysis of the

performance of RDEG for smooth convex-concave (Theorem 7), and smooth strongly convex-strongly

concave (Theorem 8) settings. In each case, we establish that as long as the fraction of corrupted

agents is “small", RDEG guarantees convergence to approximate saddle points at near-optimal statistical

rates with high probability. The rates that we derive precisely highlight the benefit of collaboration in

effectively reducing the variance of the noise model. At the same time, they indicate the (unavoidable)

additive bias introduced by adversarial corruption. Notably, our results in the context of min-max

learning complement those of a similar flavor in (Yin et al., 2018) for stochastic optimization under

attacks. However, our analysis differs significantly from that in (Yin et al., 2018): unlike the covering

argument employed in (Yin et al., 2018), our proofs rely on a simpler, and more direct probabilistic

analysis. An immediate benefit of such an analysis is that one can build on it for the more challenging

nonconvex-nonconcave setting as future work.

Related Work. In what follows, we discuss connections to relevant strands of literature.

• Min-Max Optimization. Convergence guarantees of first-order algorithms for saddle point problems

over compact sets were studied in (Nemirovski, 2004a) and (Nedić and Ozdaglar, 2009). More re-

72

cently, there has been a surge of interest in analyzing the performance of such algorithms from different

perspectives: a dynamical systems approach in (Liang and Stokes, 2019; Daskalakis and Panageas,

2018), and a proximal point perspective in (Mokhtari et al., 2020c). We refer to (Lin et al., 2020c)

for a detailed survey on this topic.

• Robust Distributed Optimization and Learning. Robustness to adversarial agents in distributed

optimization has been extensively studied in (Su and Vaidya, 2016; Sundaram and Gharesifard,

2018; Ravi et al., 2019). However, these works consider deterministic settings, and do not provide

statistical error rates like we do. In the context of statistical learning over a server-client computing

architecture, several works have proposed and analyzed robust algorithms (Blanchard et al., 2017;

Yin et al., 2018; Chen et al., 2018c, 2017b; Pillutla et al., 2022). Notably, none of the above works

consider the min-max learning problem studied in this paper.

• Robust Statistics. Robust mean estimation in the presence of outliers is a classical topic in statistics

pioneered by Huber (Huber, 1992), with follow-up work in (Cheng et al., 2019). In our work, we

exploit some recent results on this topic from (Lugosi and Mendelson, 2021).

3.2. Problem Formulation

In this section, we formally set up the problem of interest by first introducing some notation. Our

setting comprises of M agents, αM of whom are Byzantine; see Fig. 3.1. We denote the adversarial

agents by B ∈ [M].10 For any x̄ ∈ X and ȳ ∈ Y , let ∇xf(x̄, ȳ) and ∇yf(x̄, ȳ) denote the gradient of

f(x, y) with respect to x and y, respectively, at (x̄, ȳ). Upon drawing a sample ξ ∼ D at a point

(x̄, ȳ), each normal agent receives noisy estimates of ∇xf(x̄, ȳ) and ∇yf(x̄, ȳ) denoted by gx(x̄, ȳ; ξ)

and gy(x̄, ȳ; ξ), respectively. For each normal agent in [M] \ B, these noisy estimates satisfy the

following for all x̄ ∈ X and ȳ ∈ Y:

Eξ∼D[gx(x̄, ȳ; ξ)] = ∇xf(x̄, ȳ)

Eξ∼D[gy(x̄, ȳ; ξ)] = ∇yf(x̄, ȳ).
(3.3)

10Given a positive integer N , we use [N] to represent the set {1, . . . , N}.

73

Figure 3.1: A group of M agents collaborate to find a saddle point for the min-max learning problem
in Eq. (3.1). A fraction α of the agents is adversarial and upload arbitrarily corrupted messages
(denoted by ∗) to the server. All the remaining good agents upload noisy partial gradients of f(x, y).

Furthermore, ∀j ∈ [n] and ∀k ∈ [m], we have

Eξ∼D

[
∥[gx(x̄, ȳ; ξ)]j − [∇xf(x̄, ȳ)]j∥2

]
≤ σ2x(j)

Eξ∼D

[
∥[gy(x̄, ȳ; ξ)]k − [∇yf(x̄, ȳ)]k∥2

]
≤ σ2y(k),

(3.4)

where we used [a]j to represent the j-th component of a vector a.11 In words, each normal agent

receives unbiased estimates of the gradients of f(x, y) (w.r.t. x and y) with component-wise bounded

variance - essentially, a standard stochastic oracle model. With a slight abuse of notation, we will

continue to use {gx(x, y; ξ), gy(x, y; ξ)} to denote the gradients transmitted by an adversarial agent

as well; these could, however, be arbitrary corrupted vectors. Our problem of interest can now be

stated as follows.

Problem 5. Given access to the stochastic oracle model described by equations (3.3) and (3.4),
11We use ∥ · ∥ to represent the Euclidean norm.

74

Algorithm 6 Robust Distributed Extra-Gradient (RDEG)
Require: Initial vectors x1 ∈ X , y1 ∈ Y; algorithm parameters: step-size η > 0 and trimming

parameter ϵ.
1: for t = 1, . . . , T do
2: Server sends (xt, yt) to each agent.
3: Each normal agent i draws an i.i.d. sample ξ

(i)
1,t ∼ D, and transmits gx(xt, yt; ξ

(i)
1,t),

gy(xt, yt; ξ
(i)
1,t) to server.12

4: Server computes robust gradients:

g̃x(xt, yt)← Trimϵ{gx(xt, yt; ξ(i)1,t) : i ∈ [M]}

g̃y(xt, yt)← Trimϵ{gy(xt, yt; ξ(i)1,t) : i ∈ [M]}.
(3.5)

5: Server computes mid-points (x̂t, ŷt) as follows, and transmits them to each agent.

x̂t ← ΠX (xt − ηg̃x(xt, yt))
ŷt ← ΠY (yt + ηg̃y(xt, yt)) .

(3.6)

6: Each normal agent i draws an i.i.d. sample ξ
(i)
2,t ∼ D, and transmits gx(x̂t, ŷt; ξ

(i)
2,t),

gy(x̂t, ŷt; ξ
(i)
2,t) to server.

7: Server computes robust gradients:

g̃x(x̂t, ŷt)← Trimϵ{gx(x̂t, ŷt; ξ(i)2,t) : i ∈ [M]}

g̃y(x̂t, ŷt)← Trimϵ{gy(x̂t, ŷt; ξ(i)2,t) : i ∈ [M]}.
(3.7)

8: Server computes new updates xt+1 and yt+1:

xt+1 ← ΠX (xt − ηg̃x(x̂t, ŷt))
yt+1 ← ΠY (yt + ηg̃x(x̂t, ŷt)) .

(3.8)

9: end for

design a distributed algorithm that finds a saddle point (in the sense of Eq. (5.2)) for the function

f(x, y) in Eq. (3.1), despite the presence of the Byzantine adversarial set B.

In the next section, we will develop our proposed algorithm to address Problem 5.

3.3. Robust Distributed Extra-Gradient

In this section, we develop the Robust Distributed Extra-Gradient (RDEG) algorithm outlined in

Algorithm 6. Our algorithm evolves in discrete-time iterations t ∈ [T], where T is the total number

12Recall that {gx(xt, yt; ξ
(i)
1,t), gy(xt, yt; ξ

(i)
1,t)} could be arbitrary vectors for an adversarial agent i ∈ B.

75

of iterations. There are two main steps in RDEG. In the first step, the server computes robust gradient

estimates {g̃x(xt, yt), g̃y(xt, yt)} at the current iterate (xt, yt) by applying a Trim operator to the

gradients collected from all agents (line 4); we will describe this operator shortly. The robust gradient

estimates are then used to compute a mid-point (x̂t, ŷt) by performing a projected primal-dual

update (line 5). In the second step, the server now computes robust gradients at the mid-point (line

7), and performs a projected primal-dual update using these gradients to generate the next iterate

(xt+1, yt+1). We now describe the Trim operation.

The Trim operator in equations (3.5) and (3.7) takes as input M vectors, and applies the univariate

trimmed mean estimator in (Lugosi and Mendelson, 2021) - described in Algorithm 7 - to each

coordinate of these vectors separately. To describe the trimmed mean estimator, suppose the data

comprises of M independent copies of a scalar random variable Z with mean µZ and variance σ2Z .

An adversary corrupts at most αM of these copies; the corrupted data-set is then made available

to the estimator. The estimator splits the corrupted data set into two equal chunks, denoted by

Z1, . . . , ZM/2, Z̃1, . . . Z̃M/2. One of the chunks is used to compute appropriate quantile levels for

truncation (line 2 of Algo. 7). The robust estimate µ̂Z of µZ is an average of the data points in the

other chunk, with those data points falling outside the estimated quantile levels truncated prior to

averaging (line 3 of Algo. 7).

Algorithm 7 Univariate Trimmed-Mean Estimator (Lugosi and Mendelson, 2021)

Require: Corrupted data set Z1, . . . , ZM/2, Z̃1, . . . Z̃M/2, corruption fraction α, and confidence level
δ.

1: Set ϵ = 8α+ 24 log(4/δ)
M .

2: Let Z∗
1 ≤ Z∗

2 ≤ · · · ≤ Z∗
M/2 represent a non-decreasing arrangement of {Zi}i∈[M/2]. Compute

quantiles: γ = Z∗
ϵM/2 and β = Z∗

(1−ϵ)M/2.
3: Compute robust mean estimate µ̂Z as follows:

µ̂Z =
2

M

M/2∑
i=1

ϕγ,β(Z̃i);ϕγ,β(x) =

β x > β

x x ∈ [γ, β]

γ x < γ

The following result on the performance of Algorithm 7 will play a key role in our subsequent analysis

of RDEG.

76

Theorem 6. (Lugosi and Mendelson, 2021, Theorem 1) Consider the trimmed mean estimator in

Algorithm 7. Suppose α ∈ [0, 1/16), and let δ ∈ (0, 1) be such that δ ≥ 4e−M/2. Then, there exists

an universal constant c, such that with probability at least 1− δ,

|µ̂Z − µZ | ≤ cσZ

(
√
α+

√
log(1/δ)

M

)
.

In the next section, we will provide rigorous guarantees on the performance of our proposed algorithm

RDEG.

3.4. Performance Guarantees for RDEG

Before stating our main results, we first make a standard smoothness assumption on the function

f(x, y).

Assumption 2. There exists a constant L > 0 such that the following holds for all x1, x2 ∈ X , and

all y1, y2 ∈ Y:

∥∇xf(x1, y1)−∇xf(x2, y2)∥ ≤ L (∥x1 − x2∥+ ∥y1 − y2∥) ,

∥∇yf(x1, y1)−∇yf(x2, y2)∥ ≤ L (∥x1 − x2∥+ ∥y1 − y2∥) .

We now define a few key quantities that will show up in our main results. Let σx =
√∑

j∈[n] σ
2
x(j),

σy =
√∑

k∈[m] σ
2
y(k), and σ = max{σx, σy}. Moreover, let d = max{n,m}, and D = max{Dx, Dy},

where Dx and Dy are the diameters of the sets X and Y, respectively. With the above notations

in place, we state our first main result that provides a bound on the primal-dual gap ϕT ≜

maxy∈Y f(x̄T , y)−minx∈X f(x, ȳT), where

x̄T = (1/T)
∑
t∈[T]

x̂t, and ȳT = (1/T)
∑
t∈[T]

ŷt.

Theorem 7. Suppose Assumption 11 holds, the fraction α of corrupted devices satisfies α ∈ [0, 1/16),

and the number of agents M is sufficiently large: M ≥ 48 log(16dT 2). Then, with a step-size η

satisfying η ≤ 1/(2L), and the confidence parameter δ in Algorithm 7 set to δ = 1/(4dT 2), RDEG

77

guarantees the following with probability at least 1− 1/T :

ϕT ≤
D2

ηT
+ Õ

(
σD

(
√
α+

√
1

M

))
. (3.9)

Discussion. Theorem 7 tells us that with high probability, the primal-dual gap ϕT converges to a

ball of radius Õ
(
σD

(√
α+

√
1/M

))
at a O(1/T) rate.13 Notably, the primal-dual gap is zero if

and only if (x̄T , ȳT) is a saddle point of f(x, y) over the set X × Y. Thus, RDEG provably generates

approximate saddle points. The following result is one of the main implications of Theorem 7.

Corollary 2. Suppose the conditions in Theorem 7 hold. Then, RDEG guarantees the following with

probability at least 1− 1/T :

|f(x̄T , ȳT)− f(x∗, y∗)| ≤
D2

ηT
+ Õ

(
σD

(
√
α+

√
1

M

))
. (3.10)

Corollary 2 tells us that with high probability, the function values f(x̂t, ŷt) of the averaged it-

erates generated by RDEG converge to the saddle-point value f(x∗, y∗) up to an error-floor of

Õ
(
σD

(√
α+

√
1/M

))
, at a O(1/T) rate. There are several key messages from this result. First,

in the absence of adversaries (i.e., when α = 0), the classical extra-gradient algorithm with a constant

step-size would yield convergence to the saddle-point value with an error floor of Õ(σ(
√

1/M)) at

a O(1/T) rate. Thus, modulo the biasing effect of the adversaries, the statistical performance of

RDEG is near-optimal. Second, the additive biasing effect due to adversarial corruption shows up

even in the context of stochastic minimization (Yin et al., 2018). In fact, the authors in (Yin et al.,

2018) argue that an additive biasing effect of order Ω̃(α) is unavoidable, albeit for the minimization

setting. This is all to say that the dependence of our rate on the corruption level in Eq. (3.10)

is only to be expected. Third, when the corruption level is small, the benefit of collaboration is

evident from the second term in Eq. (3.10): the variance σ arising from the noise term is effectively

reduced by a factor of
√
M due to the averaging effect of the normal agents. This effect will be aptly

demonstrated by the simulations in Section 3.6.
13In the statement of our results, we will use the Õ(·) notation to hide terms that are logarithmic in n,m, and T .

78

We now turn to the goal of achieving faster convergence rates than those in Theorem 7. To that

end, we study the performance of the RDEG algorithm for strongly convex-strongly concave (SC-SC)

functions. Accordingly, we first make the following assumption on f(x, y).

Assumption 3. The function f(x, y) is µ-strongly convex-µ-strongly concave (SC-SC) over X × Y,

i.e., for all x1, x2 ∈ X and y1, y2 ∈ Y, the following holds:

f(x2, y1) ≥ f(x1, y1) + ⟨∇xf(x1, y1), x2 − x1⟩+
µ

2
∥x2 − x1∥2,

f(x1, y2) ≤ f(x1, y1) + ⟨∇yf(x1, y1), y2 − y1⟩ −
µ

2
∥y2 − y1∥2.

For x ∈ X and y ∈ Y, define z ≜ [x; y]. We have the following result for functions satisfying

Assumption 12.

Theorem 8. Suppose Assumptions 11 and 12 hold in conjunction with the assumptions on α and

M in Theorem 7. Then, with δ = 1/(4dT 2) and step-size η ≤ 1/(4L), RDEG guarantees the following

with probability at least 1− 1/T :

∥z∗ − zT+1∥2 ≤ 2e−
T
4κD2 + Õ

(
σDκ

L

(
√
α+

√
1

M

))
, (3.11)

where κ = µ/L.

Theorem 8 says that for smooth strongly convex-strongly concave functions, the iterates generated

by RDEG converge linearly to a ball around the saddle point (x∗, y∗) with high probability. The size

of the ball is dictated by the second term in Eq. (3.11).

Remark 4. (Comments on α) The requirement that the fraction of corruption α ∈ [0, 1/16) in

our results is inherited from the analysis of the trimmed mean estimator in (Lugosi and Mendelson,

2021). One can potentially tolerate a larger fraction of corruption (up to α < 1/2) by using the

robust estimators in (Yin et al., 2018). However, this would likely come at a price: the authors in

(Yin et al., 2018) impose additional statistical assumptions on the partial gradients; we do not make

such assumptions.

79

Remark 5. (Comments on M) In our results, we need the number of agents M to scale with

log(dT). We note that similar conditions show up in the context of adversarially-robust distributed

statistical learning; see, for instance, (Yin et al., 2018) and (Pillutla et al., 2022). In fact, the

covering argument in (Yin et al., 2018) requires M to scale linearly with the model dimension d. By

avoiding such an argument in our analysis, we can get by with a far milder logarithmic dependence

on d. As an example, for d = 100, and number of iterations T = 210 (which should suffice for all

practical purposes), log(dT) ≈ 12. This is a very reasonable requirement for large-scale computing

systems where the number of devices is of the order of thousands. Furthermore, with T = 210, our

guarantees in Theorems 7 and 8 hold with probability 1− 1/T ≈ 1.

3.5. Proof Sketch of Theorem 7

In this section, we provide a sketch of the proof of Theorem 7. Due to space constraints, detailed

proofs of our main results (including that of Theorem 8) are omitted here, but can be found in

(Adibi et al., 2022a). Essentially, our proofs comprise of a perturbation analysis of the extra-gradient

algorithm, where the perturbations arise due to adversarial corruption. As the starting point of such

an analysis, we establish some simple relations in the following lemma.

Lemma 16. For the RDEG algorithm, the following inequalities hold for all t ∈ [T], x ∈ X , and

y ∈ Y:

2η⟨g̃x(xt, yt), x̂t − x⟩ ≤ ∥x− xt∥2 − ∥x− x̂t∥2 − ∥x̂t − xt∥2

−2η⟨g̃y(xt, yt), ŷt − y⟩ ≤ ∥y − yt∥2 − ∥y − ŷt∥2 − ∥ŷt − yt∥2

2η⟨g̃x(x̂t, ŷt), xt+1 − x⟩ ≤ ∥x− xt∥2 − ∥x− xt+1∥2 − ∥xt+1 − xt∥2

−2η⟨g̃y(x̂t, ŷt), yt+1 − y⟩ ≤ ∥y − yt∥2 − ∥y − yt+1∥2 − ∥yt+1 − yt∥2.

(3.12)

Using the previous result, our next goal is to track the progress made by the mid-point vector (x̂t, ŷt)

in each iteration, as a function of the errors introduced by adversarial corruption. To that end, for

each x̄ ∈ X and ȳ ∈ Y, we define the following errors vectors:

ex(x̄, ȳ) ≜ g̃x(x̄, ȳ)−∇xf(x̄, ȳ); ey(x̄, ȳ) ≜ g̃y(x̄, ȳ)−∇yf(x̄, ȳ). (3.13)

80

We have the following key lemma.

Lemma 17. Suppose Assumption 11 holds and η ≤ 1/(2L). For the RDEG algorithm, the following

then holds for all t ∈ [T], x ∈ X , and y ∈ Y:

η⟨∇xf(x̂t, ŷt), x̂t − x⟩ − η⟨∇yf(x̂t, ŷt), ŷt − y⟩

≤ 1

2

(
∥x− xt∥2 − ∥x− xt+1∥2 + ∥y − yt∥2 − ∥y − yt+1∥2

)
+ ηD (∥ex(xt, yt)∥+ ∥ex(x̂t, ŷt)∥+ ∥ey(xt, yt)∥+ ∥ey(x̂t, ŷt)∥) .

(3.14)

In our next result, we establish high-probability bounds on the error vectors by leveraging Theorem

6.

Lemma 18. Consider the event Ht defined as follows:

Ht ≜ {max{∥ex(xt, yt)∥, ∥ex(x̂t, ŷt)∥, ∥ey(xt, yt)∥, ∥ey(x̂t, ŷt)∥} ≤ ∆},

where

∆ = cσ

(
√
α+

√
log(4dT 2)

M

)
. (3.15)

For the RDEG algorithm, we have:

P (Ht) ≥ 1− 1

T 2
, for each t ∈ [T]. (3.16)

Proof. We begin by defining certain “good" events:

Gx,t ≜ {∥ex(xt, yt)∥ ≤ ∆}, Gy,t ≜ {∥ey(xt, yt)∥ ≤ ∆},

Ḡx,t ≜ {∥ex(x̂t, ŷt)∥ ≤ ∆}, Ḡy,t ≜ {∥ey(x̂t, ŷt)∥ ≤ ∆}.

To analyze the probability of occurrence of the above events, we need to next define an appropriate

filtration. Accordingly, let Ft denote the sigma field generated by {xk, yk}k∈[t] and {x̂k, ŷk}k∈[t−1];

81

and F̄t denote the sigma field generated by {xk, yk}k∈[t] and {x̂k, ŷk}k∈[t]. From definition, we have

F1 ⊂ F̄1 ⊂ F2 ⊂ F̄2 ⊂ · · · ⊂ FT ⊂ F̄T .

Clearly, (xt, yt) is Ft-measurable. Thus, conditioned on Ft, for each coordinate j ∈ [n], the data set

{[gx(xt, yt; ξ(i)1,t)]j : i ∈ [M]} has the following properties: (i) at most αM of the samples are corrupted;

and (ii) the uncorrupted samples are i.i.d. scalar random variables with mean [∇xf(xt, yt)]j and

variance bounded above by σ2x(j). Invoking Theorem 6 for the trimmed mean estimator in Algorithm

7, we conclude that conditioned on Ft, with probability at least 1− 1/(4dT 2),

|[g̃x(xt, yt)]j − [∇xf(xt, yt)]j | ≤ cσx(j)

(
√
α+

√
log(4dT 2)

M

)
.

Now union-bounding over each of the n coordinates, we have that conditioned on Ft, with probability

at least 1− n
4dT 2 ≥ 1− 1

4T 2 ,

∥g̃x(xt, yt)−∇xf(xt, yt)∥ ≤ ∆.

Here, we used the fact that d = max{n,m} ≥ n, and
√∑

j∈[n] σ
2
x(j) = σx ≤ σ. We have thus shown

that P (Gx,t|Ft) ≥ 1− 1/(4T 2). Using an identical argument, we can establish an analogous result

for the event Gy,t. An union bound thus yields P (Gt|Ft) ≥ 1 − 1/(2T 2), where Gt = Gx,t ∩ Gy,t.

Noting that (x̂t, ŷt) is F̄t-measurable, we can similarly show that P
(
Ḡt|F̄t

)
≥ 1− 1/(2T 2), where

Ḡt = Ḡx,t ∩ Ḡy,t. Our next task is to analyze the probability of occurrence of the event Ht = Gt ∩ Ḡt

by exploiting the nested sigma-field structure: Ft ⊂ F̄t. To that end, observe:

P(Ḡt|Ft) = E[1Ḡt
|Ft]

(a)
= E[E[1Ḡt

|F̄t]|Ft]

= E[P(Ḡt|F̄t)|Ft]
(b)

≥ 1− 1

2T 2
.

(3.17)

Here, we used 1A to represent the indicator random variable for an event A. For (a), we used the

fact that given a random variable X and two sigma-fields B1 and B2 with B1 ⊂ B2, it holds that

82

E[E[X|B2]|B1] = E[X|B1], i.e., the smaller sigma-field “wins" (Durrett, 2019, Theorem 5.1.6). For

(b), we used the previously established fact that P
(
Ḡt|F̄t

)
≥ 1− 1/(2T 2). Using (3.17) and an union

bound, we conclude that P(Ht|Ft) = P(Gt ∩ Ḡt|Ft) ≥ 1− 1/T 2. To complete the proof, we note that

P(Ht) = E[1Ht] = E[E[1Ht |Ft]] = E[P(Ht|Ft)] ≥ 1− 1

T 2
.

The proof of Theorem 7 is a fairly simple consequence of Lemma’s 43, 44, and 18. In particular, it

follows by conditioning on the clean event H =
⋂
t∈[T]Ht, where Ht is as defined in Lemma 18, and

exploiting the convex-concave property of f(x, y) in a standard way. For details, see (Adibi et al.,

2022a).

3.6. Simulations

In this section, we study a specific instance of problem (3.1), namely, a bilinear game of the following

form:

min
∥x∥≤ρ

max
∥y∥≤ρ

f(x, y) ≜ E[xTAy + 2(b+ ζ)Tx− 2(c+ ζ)T y].

Here, x, y, b, c ∈ R10, A ∈ R10×10, and ρ = 100. The parameters A, b, c are fixed, and ζ ∼ N(0, σ2I).

As our measure of performance, we consider the instantaneous primal-dual gap ϕt =maxy∈Y f(x̄t, y)−

minx∈X f(x, ȳt). We simulate two algorithms: the vanilla extra-gradient algorithm that does not

account for adversaries, and the proposed RDEG algorithm. In Fig. 3.2(a), we plot the performance

of these algorithms with α = 0.06, M = 100, and σ2 = 10. We observe that even a small number

of Byzantine workers can cause the extra-gradient algorithm to diverge from the saddle point. In

Fig. 3.2(b), with M = 100 and σ2 = 10, we explore the impact of varying the corruption fraction α.

Complying with Theorem 7, the error floor of RDEG increases as a function of α. Next, in Fig. 3.2(c),

to demonstrate the benefit of collaboration, we fix α = 0.06 and σ2 = 10, and plot the performance

of RDEG as a function of the number of agents M . As expected, by increasing M , RDEG converges

to a smaller ball around the saddle point, highlighting the benefit of collaboration in reducing the

variance of the noise model. Finally, in Fig. 3.2(d), we fix M = 100 and α = 0.06, and change the

83

variance of the noise σ2. We observe that increasing σ2 leads to a higher error-floor. Importantly, all

of the above plots verify the bound in Theorem 7.

3.7. Conclusion

We studied the problem of distributed min-max learning under adversarial agents for the first time.

By exploiting recent ideas from robust statistics, we developed a novel robust distributed extra-

gradient algorithm. For both smooth convex-concave and smooth strongly convex-strongly concave

functions, we showed that with high probability, our proposed approach guarantees convergence to

approximate saddle points at near-optimal statistical rates.

84

Figure 3.2: Top Left (a). Comparison between vanilla extra-gradient and RDEG. Top Right (b).
Performance of RDEG vs. level of corruption fraction. Bottom Left (c). Performance of RDEG
vs. number of agents. Bottom Right (d). Performance of RDEG vs. level of noise variance.

85

CHAPTER 4

Stochastic Approximation under Delays

4.1. Summary

We study non-asymptotic convergence rates of general stochastic approximation (SA) under Marko-

vian sampling with delayed updates for the first time. In this setup , iterative updates of SA are

based on delayed versions of the SA operator evaluated at stale iterates and samples from the past.

We are interested in understanding the finite-time performance of this updating scheme with a focus

on characterizing the interplay between the properties of the underlying Markov process and the

delay sequence. Our first contribution is to show that, under standard assumptions, the delayed

SA update rule guarantees exponentially fast convergence to a ball around the desired fixed point

of the operator. In a constant delay setting, we prove that a carefully weighted average of iterates

achieves the optimal rate of convergence in which the exponent of convergence gets scaled down

by a factor of max{τ, τmix}, where τ represents the delay, and τmix denotes the mixing time of the

Markov process. In the case of time-varying delays, we show that the exponent of convergence for

the last iterate gets scaled down by a factor of (τmax + τmix)
2, where τmax represents the maximum

delay. To improve this bound, we propose a delay-adaptive SA scheme where updates are made only

when the staleness in iterates falls below a carefully chosen threshold. With this simple modification,

we prove that the new algorithm guarantees exponentially fast convergence with a rate that now

gets scaled down by τmixτavg for the last iterate, where τavg is the average of the delays over all

iterations. Remarkably, not only does our update rule significantly improve the convergence rate

relative to the vanilla scheme, but it also does so without the choice of the step size requiring any

knowledge about the delay sequence. Overall, our theoretical findings apply to various algorithms

where the finite-time effects of delays were previously unknown, such as TD learning and Q-learning

with function approximation, and stochastic gradient descent under Markovian sampling.

86

4.2. Introduction

Stochastic Approximation (SA) is an iterative technique used to solve root-finding problems in the

presence of noisy information. This method finds its application in various fields such as machine

learning and reinforcement learning. In this section, we will provide a brief summary of previous

works and then highlight our contributions.

4.2.1. Previous Works on Stochastic Approximation

The Stochastic Approximation (SA) framework, was originally introduced in 1951 (Robbins and Monro,

1951) and it has been extensively studied in the literature, with a focus on understanding its conver-

gence behavior and applications in various domains. Several notable works have contributed to the

finite-time analysis and other properties of SA algorithms.

(Bhandari et al., 2018b) conducted the first finite analysis of SA in the context of TD learning

with a bounded domain. Their work specifically addressed a special case of linear SA with a

bounded domain, providing insights into the convergence behavior of the algorithm. Building on

this, (Srikant and Ying, 2019) made significant strides by proving a finite-time rate of convergence

for linear SA, expanding the understanding of the algorithm’s performance in learning tasks.

The finite-time analysis of SA was further extended to a broader context (Chen et al., 2023b) who

provided the first finite-time analysis for general SA algorithms. Their study encompassed various

applications, including asynchronous Q-learning, off-policy actor-critic, average reward TD learning,

and Q-learning. This seminal work laid the groundwork for understanding the convergence guarantees

of SA in diverse reinforcement learning settings.

(Zeng et al., 2022) explored decentralized stochastic approximation, a data-driven approach for

finding the root of an operator under noisy measurements. Their work addressed a network of

agents working cooperatively to find the fixed point of the aggregate operator over a decentralized

communication graph. Notably, they provided a finite-time analysis of this decentralized approach,

considering data observed at each agent to be sampled from Markov processes. This novel analysis

accounted for the bias and potential unboundedness of iterates, providing valuable insights into the

87

convergence rate in decentralized multi-agent and multi-task learning scenarios.

Further developments in finite-time analysis were achieved by (Chen et al., 2021), who investigated

contractive stochastic approximation using smooth convex envelopes. They derived finite-sample

error bounds for the algorithm using different step sizes and introduced a smooth Lyapunov function

based on the generalized Moreau envelope. This construction resulted in a convergence bound with

only a logarithmic dependence on the state-space size, facilitating its application in reinforcement

learning settings, including the V-trace algorithm for off-policy TD-learning.

Collectively, the works mentioned above significantly contribute to the understanding of finite-time

convergence rates and other essential properties of SA algorithms.

Contributions:

In this chapter, we make significant contributions to the field of stochastic approximation (SA)

by studying the non-asymptotic convergence rates of SA under Markovian sampling with delayed

updates. Our investigation focuses on understanding the finite-time performance of this updating

scheme, considering the interplay between the properties of the underlying Markov process and the

delay sequence. These are our contributions:

1. Exploration of Finite-Time Analysis of Delayed Stochastic Approximation: The first major

contribution of this work is the exploration of finite-time analysis for delayed Stochastic

Approximation (SA). We delve into the effects of delayed updates on the convergence behavior

of SA algorithms, which is an area that has not been studied before.

2. Proof of Optimal Bound in the Constant Delay Case: In the setting of constant delay, we present

a rigorous proof that the delayed SA update rule guarantees exponentially fast convergence to

a ball around the desired fixed point of the operator. Notably, we establish that a carefully

weighted average of iterates achieves the optimal rate of convergence, with the exponent

of convergence scaled down by a factor of max{τ, τmix}, where τ represents the delay, and

τmix denotes the mixing time of the Markov process. This result sheds light on the trade-off

88

between the delay and mixing time, providing valuable insights into the impact of the delay on

convergence performance.

3. Investigation of Convergence Rate with Time-Varying Delay: We extend our analysis to

consider time-varying delays, which are common in practical scenarios. In this context, we

demonstrate that the exponent of convergence for the last iterate gets scaled down by a factor

of (τmax + τmix)
2, where τmax represents the maximum delay. This finding contributes to a

deeper understanding of the convergence behavior under more realistic conditions.

4. Introduction of a Delay-Adaptive Algorithm: To further improve the convergence rate, we

propose a novel delay-adaptive SA scheme. In this algorithm, updates are made only when

the staleness in iterates falls below a carefully chosen threshold. Remarkably, this simple

modification results in a significant improvement in the convergence rate relative to the vanilla

scheme. The new algorithm guarantees exponentially fast convergence, and its rate is now

scaled down by τmixτavg for the last iterate, where τavg represents the average of the delays over

all iterations. Importantly, our delay-adaptive scheme achieves this performance enhancement

without requiring any knowledge about the delay sequence, making it highly practical for

real-world implementations.

5. General Applicability of Theoretical Findings: Finally, our theoretical contributions have

broad applicability, extending to various algorithms where the finite-time effects of delays were

previously unknown. Notable examples include TD learning and Q-learning with function

approximation, as well as stochastic gradient descent under Markovian sampling. By shedding

light on the impact of delays in these contexts, our work opens new avenues for research and

optimization in these areas.

In summary, our paper provides a comprehensive analysis of the finite-time convergence behavior of

delayed Stochastic Approximation. The insights and results presented in this work pave the way for

the development of more efficient and adaptive algorithms that can handle delays effectively in a

wide range of applications.

89

4.3. Related Work

In this section, we review the existing literature on delays in optimization, bandits, and reinforcement

learning (RL). We categorize the papers into three groups: delays in optimization, delays in bandits

and RL, and specific models related to our work on delays in RL. Additionally, we discuss empirical

results on asynchronous RL.

4.3.1. Delays in Optimization

The study of delays and asynchrony in optimization has been a topic of interest since the seminal

work (Bertsekas and Tsitsiklis, 1989), which investigates convergence rates of asynchronous iterative

algorithms in parallel or distributed computing systems. Subsequently, many researchers have

explored the effects of delay and asynchrony on various learning and optimization methods. We

summarize some of the significant works in this area:

(Agarwal and Duchi, 2011) focuses on distributed delayed stochastic optimization, specifically

gradient-based optimization algorithms that rely on delayed stochastic gradient information. They

analyze the convergence of such algorithms and propose procedures to overcome communication bot-

tlenecks and synchronization requirements. Their work demonstrates that delays are asymptotically

negligible, achieving order-optimal convergence results for smooth stochastic problems in distributed

optimization settings.

(Stich and Karimireddy, 2020) introduced the error-feedback framework, which examines stochastic

gradient descent (SGD) with delayed updates on smooth quasi-convex and non-convex functions.

They derive non-asymptotic convergence rates and show that the delay only linearly slows down the

higher-order deterministic term, while the stochastic term remains unaffected. This result illustrates

the robustness of SGD to delayed stochastic gradient updates, improving upon previous rates for

different forms of delayed gradients. Notably, this work provides the best-known rate for SGD with

i.i.d. noise. It is worth mentioning that most existing literature has focused on bounds depending

only on the maximum delay. However, recent works (Cohen et al., 2021) and (Koloskova et al.,

2022b) have explored convergence rates that depend on the average delay sequence. Nevertheless,

90

there is still a gap in the literature regarding the finite-time rate of delayed stochastic approximation

under Markovian noise.

The aforementioned studies on delays in optimization contribute to understanding the impact of

delays and asynchrony in various optimization algorithms. They provide insights into the convergence

properties and shed light on the robustness of these methods to different forms of delay. However,

there is a need for further investigation into the specific case of delayed stochastic approximation

under Markovian noise.

4.3.2. Delays in Bandits

There has been a lot of research on the impact of delays in bandits. Some of the key papers in this

area include:

The nonstochastic multiarmed bandits with unrestricted delays were studied in (Thune et al., 2019).

The authors prove that the "delayed" Exp3 algorithm achieves the regret bound for variable but

bounded delays. They also introduce a new algorithm that handles delays without prior knowledge

of the total delay, achieving the same regret bound. The paper provides insights into the regret

bounds for bandit problems with delays.

The challenges of stochastic linear bandits with delayed feedback, where the feedback is randomly

delayed and delays are only partially observable, were addressed in (Vernade et al., 2020). The

authors propose computationally efficient algorithms, OTFLinUCB and OTFLinTS, capable of

integrating new information as it becomes available and handling permanently censored feedback.

The authors prove optimal regret bounds for the proposed algorithms and validate their findings

through experiments on simulated and real data.

Another paper investigates a variant of the stochastic K-armed bandit problem called "bandits

with delayed, aggregated anonymous feedback" (Pike-Burke et al., 2018). In this setting, the player

observes only the sum of a number of previously generated rewards that arrive in each round, and

the information of which arm led to a particular reward is lost. The authors provide an algorithm

that achieves the same worst-case regret as in the non-anonymous problem when the delays are

91

bounded.

These papers demonstrate that it is possible to design algorithms that can achieve good performance

in the presence of delays in bandits. However, the problem of delays is still a challenging one, and

there is still much research to be done in this area. It’s important to note that the previous papers’

findings don’t directly provide a rate for delayed stochastic approximation.

4.3.3. Delays in RL

Until recently, the field of reinforcement learning had not thoroughly explored the impact of delay.

In this summary, we will highlight some key research works in this area.

(Bouteiller et al., 2020) conducted a study on reinforcement learning with random delays, specifically

focusing on environments with delays in actions and observations. They introduced the Delay-

Correcting Actor-Critic (DCAC) algorithm, which incorporates off-policy multi-step value estimation

to accommodate delays. Through theoretical analysis and practical experiments using a delay-

augmented version of the MuJoCo continuous control benchmark, the authors demonstrated that

DCAC outperforms other algorithms in delayed environments.

(Mnih et al., 2016) introduced asynchronous methods for deep reinforcement learning. They presented

a lightweight framework that utilizes asynchronous gradient descent to optimize deep neural network

controllers. The authors showed that parallel actor-learners have a stabilizing effect on training and

achieve superior performance compared to state-of-the-art methods in domains such as Atari games

and continuous motor control problems.

(Chen et al., 2023a) studied the problem of policy learning in environments with delayed observation.

They showed that it is possible to learn a near-optimal policy in this setting, even though the agent

does not have access to the most recent state of the system. They established near-optimal regret

bounds for this case, which means that the agent’s performance is close to that of an agent with full

observability.

These selected papers lay the groundwork for understanding the challenges posed by delays in

92

optimization, bandits, and reinforcement learning. They provide valuable theoretical insights, novel

algorithms, and empirical evidence that serve as motivation for our own work on delays in Stochastic

approximation.

4.4. Stochastic Approximation with Delays: Problem Formulation

The objective of general SA is to solve a root finding problem of the following form:

Find θ∗ ∈ Rm such that ḡ(θ∗) = 0, (4.1)

where, for a given approximation parameter θ ∈ Rm, the deterministic function ḡ(θ) is the expectation

of a noisy operator g(θ, ot), and {ot} denotes a stochastic observation process. In this chapter, we

consider SA under Markovian sampling, i.e., the observations {ot} are temporally correlated and

form a Markov chain. We define

ḡ(θ) ≜ Eot∼π[g(θ, ot)], (4.2)

where π is the stationary distribution of the Markov chain {ot}.

SA consists in finding an approximate solution to (4.1) while having access only to noisy instances

g(θ, ot) of ḡ(θ). The typical iterative SA update rule with a constant step size α is as follows

(Srikant and Ying, 2019; Chen et al., 2022),

θt+1 = θt + αg(θt, ot). (4.3)

The asymptotic convergence of SA under Markov randomness method has been thoroughly in-

vestigated in prior work (Tsitsiklis and Vanroy, 1997). Recently, there is an increased interest in

finite-time convergence guarantees for SA. Finite-time analysis of SA is important because it provides

theoretical guarantees about the algorithm’s convergence rate. In particular, it allows us to determine

how quickly the algorithm will converge to the optimal solution in a finite amount of time, which is

crucial in many real-world applications where learning time is limited.

Finite-time analysis provides insights into how the algorithm behaves over a fixed number of

93

iterations or time steps. By analyzing the convergence rate and error bounds, we can make informed

decisions about the choice of learning rate, step size, and other hyperparameters that can affect the

performance of the algorithm. This analysis can help us optimize the learning process and improve

the performance of the agent in the given task.

Moreover, finite-time analysis of SA helps better understand the algorithm and identify its limitations

and strengths. It also provides a theoretical foundation for the algorithm, which can lead to the

development of more efficient and robust algorithms for solving RL problems.

Exemplar Applications. In this part, we provide some examples of stochastic approximation.

TD learning. TD learning with linear function approximation is a stochastic approximation

algorithm that can be used to learn the value function of a Markov decision process (MDP). The

algorithm works by iteratively updating a linear function approximator of the value function using

the following update rule:

θt+1 = θt + α(rt + γV̂ (st+1;θt)− V̂ (st;θt))ϕ(st)

V̂ (s;θ) = θ⊤ϕ(s)

(4.4)

where θt is the parameter vector of the linear function approximator at time t, α is the learning

rate, rt is the reward received at time t, s′ is the next state, V̂ (s;θt) is the estimated value of the

state s at time t, and ϕ(s) is a feature vector that maps the state to a vector in Rm.

The update rule for TD learning with linear function approximation can be viewed as a stochastic

approximation of the Bellman equation for the value function. The Bellman equation for the value

function is given by the following equation:

V ∗(s) = E[r + γV ∗(s′)]

where V ∗(s) is the optimal value of state s, r is the reward received, s′ is the next state, and E is

94

the expected value operator. The update rule for TD learning with linear function approximation

can be seen as a stochastic approximation because it is an approximation of the Bellman equation

that is driven by noise. The noise in the update rule is introduced by the random reward r and

the random next state st+1. More specifically, we can look at the update in (4.4) as a stochastic

approximation with

g(θt, o) = (rt + γV̂ (st+1;θt)− V̂ (st;θt))ϕ(s), (4.5)

where o is randomness caused by pair (rt, st, st+1).

Q-learning. Q-learning is a reinforcement learning algorithm that can be used to learn an optimal

policy for a Markov decision process (MDP). In Q-learning, the goal is to learn a Q-function, which

is a function that maps state-action pairs to their corresponding expected rewards.

Q-learning with linear function approximation can be viewed as a nonlinear stochastic approximation

algorithm (Chen et al., 2022). This is because Q-learning uses a linear function approximator to

approximate the Q-function, and the update rule for the Q-function is a stochastic approximation of

the Bellman equation.

SGD with Markovian noise. Stochastic gradient descent (SGD) is a method for minimizing

a noisy or stochastic function f(θ, o). It works by iteratively updating a parameter vector in the

direction of the negative gradient of the function. SGD can be viewed as a stochastic approximation

with g(θ, o) = −∇f(θ, o). All our results are applicable to the SGD framework with Markovian

noise, which was studied for example in (Doan, 2022; Even, 2023).

Several recent works have investigated linear (Srikant and Ying, 2019; Bhandari et al., 2018a) and

non-linear (Chen et al., 2022) SA, and provided finite-time convergence bounds under Markovian

sampling. Notably, Finite-time convergence analysis for SA under Markovian sampling are signifi-

cantly more challenging relative to i.i.d. sampling. Indeed, temporal correlation between samples of

{ot}, which is also inherited by the iterates {θt}, prevents the use of some techniques commonly used

for the finite-time rates study of SA under i.i.d. sampling, triggering the need for a more elaborate

analysis.

95

In many real-world applications, the SA operator g(·) is only available when computed with delayed

iterates and/or observations. The main objective of this chapter is to provide a unified framework

to analyse the finite-time convergence of SA under delay. We proceed by formally introducing the

setting.

SA with delays. We consider the following stochastic recursion with delayed updates:

θt+1 = θt + αg(θt−τt , ot−τt), τt ≤ t, (4.6)

where α is a constant step size and τt is the delay with which the operator g(·) is available to be

used at iteration t. This specific update rule is motivated by many scenarios of practical interest.

For instance, in distributed machine learning and reinforcement learning, it is often the case that

the agents’ updates are performed in an asynchronous manner, leading naturally to update rules of

the form (4.6).

Update rules of the form (4.6) have been recently studied in the context of SA but with i.i.d.

observations (see e.g. (Koloskova et al., 2022b; Nguyen et al., 2022) for SGD updates with delays).

However, to the best of our knowledge, nothing is known about the finite-time convergence behaviour

of such update rules under Markovian observations. Compared with i.i.d. setting, the Markovian

setting introduces major technical challenges, including deal with the joint effect of (i) the use of

a delayed operator g(θt−τt , ot−τt) and (ii) sequences of correlated observation samples {ot}. The

interplay of update rules based on delayed SA operator instances and the presence of time correlation

in the noise process requires a notably careful analysis, one which we provide as a main contribution

of this chapter. The key features and challenges of the analysis are provided with more details in

sections 4.6 and 4.7.

We proceed with describing a few assumptions needed for our analysis. First, we make the following

natural assumption on the underlying Markov chain {ot} (Bhandari et al., 2018a; Srikant and Ying,

2019; Chen et al., 2022).

96

Assumption 4. The Markov chain {ot} is aperiodic and irreducible.

Next, we state two further assumptions that are common in the analysis of SA algorithms.

Assumption 5. Problem (4.1) admits a solution θ∗, and ∃µ > 0 such that for all θ ∈ Rm, we have

⟨θ − θ∗, ḡ(θ)− ḡ(θ∗)⟩ ≤ −µ∥θ − θ∗∥2. (4.7)

Assumption 6. For every θ1,θ2 and o ∈ {ot}, we have

∥g(θ1, o)− g(θ2, o)∥ ≤ L∥θ1 − θ2∥. (4.8)

Assumption 7. For any θ ∈ Rm and o ∈ {ot}, we have

∥g(θ, o)∥ ≤ L∥θ∥+ 2σ. (4.9)

Finally, we introduce an assumption on the time-varying delay sequence {τt}.

Assumption 8. There exists an integer τmax ≥ 0 such that τt ≤ τmax, ∀t ≥ 0.

Assumption 5 is a strong monotone property of the map −ḡ(θ) that guarantees that the iterates

generated by a “mean-path” version of Eq. (4.1), θt+1 = θt + αḡ(θt), converge exponentially fast to

θ∗. Assumption 6 states that g(θ, ot) is globally uniformly (w.r.t. ot) Lipschitz in the parameter θ.

Without loss of generality, we have fixed the Lipschitz constant to be L = 2, which is the Lipschitz

constant value in the case of TD learning with linear function approximation.

Corollary 3. Assumption 5 holds for TD learning (Lemma 1 and Lemma 3 in (Bhandari et al.,

2018a)), Q-learning (Chen et al., 2022), and SGD for strongly convex functions. Similarly, Assump-

tion 6 holds for TD learning (Bhandari et al., 2018a), and for Q-learning and SGD analysis, it holds

up to some constant L (Chen et al., 2022; Doan, 2022). Our proof technique generalizes to this

97

Table 4.1: Summary of results.

Algorithm Variance Bound Bias Bound

Constant Delay (4.10) O(σ2) O
(
T exp

(
−µ2T

max{τ,τmix}

))

Time-Varying Delays (4.30) O(σ2) O
(
exp

(
−µ2T

(τmix+τmax)2

))

Time-Varying Delays
Delay-Adaptive update (4.189) O(σ2) O

(
exp

(
−µ2T

τmix.τavg

))

setting easily. Furthermore, Assumption 7 holds for TD learning (Bhandari et al., 2018a), and for

Q-learning, it holds up to some constant (Chen et al., 2022).

We now introduce the following notion of mixing time τα, that plays a crucial role in our analysis, as

in the analysis of all existing finite-time convergence studies on SA under Markovian sampling.

Definition 1. Let τα be such that

∥E [g(θ, ot)|o0]− ḡ(θ)∥ ≤ α (∥θ∥+ 1) , ∀t ≥ τα,∀θ ∈ Rm,∀o0.

Assumption 4 implies that the Markov chain {ot} mixes at a geometric rate. This, in turn, implies

the existence of some K ≥ 1 such that τα in Definition 1 satisfies τα ≤ K log(1α). In words, this

means that for a fixed θ, if we want the noisy operator g(θ, ot) to be α-close (relative to θ) to

the expected operator ḡ(θ), then the amount of time we need to wait for this to happen scales

logarithmically in the precision α.

4.5. Stochastic Approximation with Constant Delays

In this section, we present the first finite-time convergence analysis of SA with constant delay under

Markovian sampling. With respect to the SA with delayed updates introduced in (4.6), we fix τt = τ ,

with τ the constant delay, and define the following SA update rule accordingly:

98

SA with Constant Delay: θt+1 =

θ0 if 0 ≤ t < τ

θt + αg(θt−τ , ot−τ) if t ≥ τ
(4.10)

The following theorem provides a finite-time convergence bound for the update rule in (4.10) and it

is the first main contribution of this chapter.

Theorem 9. For T ≥ 0, α ≤ µ
C1L2τ̄

, wt := (1 − 0.5αµ)−(t+1), and WT =
∑T

t=0wt, the iterates

generated by the update rule in (4.10) are such that, if θout be a randomly chosen iterate from {θt}Tt=0

with probability wt
WT

and rout ≜ ∥θout − θ∗∥ and τ̄ = max{τ, τmix} then

E
[
r2out

]
≤ C2T exp (−0.5αµT) r20 + C3

αL2τ̄σ2

µ
. (4.11)

where C1, C2, C3 ≥ 2 are universal constants. Setting α = µ
C1L2τ̄

, we get

E
[
r2out

]
≤ C2T exp

(
−0.5 µ2

C1L2τ̄
T

)
r20 +

C3σ
2

C1
. (4.12)

Main Takeaways: We now outline the key takeaways of the above Theorem. First, we showed

exponential convergence of E
[
r2out

]
to a ball around the fixed point θ∗. This latter result represents

the first finite-time convergence bound for SA with delayed updates under Markovian sampling.

Second, the obtained convergence exponent scales inversely with τ̄ = max{τ, τmix}. Hence, if

τ ≥ τmix, we get a dependency on the constant delay τ , which is consistent with what is known for

SA with delayed updates in the i.i.d. sampling case, specifically in the case of SGD with constant

delay (Stich and Karimireddy, 2020). Note that this dependency has been shown to be tight for SGD

(Arjevani et al., 2020), and, consequently, our rate is optimal in terms of the obtained dependency

on the delay τ . If τmix ≥ τ , the obtained convergence exponent scales inversely with τmix, which

is consistent with the non-delayed case of SA with Markovian sampling (Srikant and Ying, 2019;

Bhandari et al., 2018a), and has been shown to be in fact minimax optimal (Nagaraj et al., 2020).

In summary, in the above Theorem we provide the first finite-time convergence bound for SA with

99

updates subject to constant delays under Markovian sampling, getting a convergence rate that has

optimal dependencies on both the delay τ and the mixing time τmix.

Outline of the Analysis and Challenges. We now provide the main steps of the analy-

sis and underline the key challenges that make each step necessary. First of all, similarly to

(Stich and Karimireddy, 2020), we define a sequence of virtual iterates, θ̃t, which, at each iteration

t, are updated with the actual SA update direction g(θt, ot):

θ̃t+1 = θ̃t + αg(θt, ot). (4.13)

Accordingly, we define an error term dt which is the gap between θt and θ̃t at each iteration t, i.e.,

θ̃t = θt + dt. A key step in the analysis that, as it was the case for (Stich and Karimireddy, 2020),

relies on the fact that the delay τ is constant, is that, for any t ≥ 0, we can write the error term as

follows,

dt = α
t−1∑
l=t−τ

g(θl, ol). (4.14)

In the first part of the proof of Theorem 9, we provide a convergence bound for the virtual iterates

sequence θ̃t, studying E
[
r̃2t
]
= E

[
∥θ̃t − θ∗∥2

]
and providing a bound that is a function of ∥dt∥2

and r̃2l , ∥dl∥2, with l = t− τ̄ , ..., t− 1. To get this bound, we analyze the following recursion

r̃2t+1 = r̃2t + 2α⟨g(θt, ot), θ̃t − θ∗⟩+ α2∥g(θt, ot)∥2

= r̃2t + 2α⟨ḡ(θ̃t), θ̃t − θ⋆⟩+ 2αht + 2αmt + α2∥g(θt, ot)∥2

≤ (1− 2αµ)r̃2t + 2αht + 2αmt + α2∥g(θt, ot)∥2,

(4.15)

where the last inequality follows from Assumption 5, and where we have

ht := ⟨g(θ̃t, ot)− ḡ(θ̃t), θ̃t − θ∗⟩,

mt := ⟨g(θt, ot)− g(θ̃t, ot), θ̃t − θ∗⟩.
(4.16)

The term ht is an error term related to the Markovian sampling. Indeed, if the process ot were

sampled in an i.i.d. fashion, it would be E [ht] = 0. However, due to the correlated nature of ot, this

100

does not hold true, and, consequently, ht requires careful care in the analysis. On the other hand,

the term mt is an error term related to the delayed nature of the SA algorithm under consideration.

In absence of delays, it would be mt = 0. To obtain the convergence bound for E
[
r̃2t
]
, we provide

bounds on E [ht], mt and ∥g(θt, ot)∥2. Obtaining bounds for these terms require some work, that

we present in the form of auxiliary Lemmas in the last part of this section. Providing the bound

on E [ht] is the most challenging part, which also requires mixing time arguments, and which we

provide in Lemma 24. In order to provide a bound that is a function of ∥dt∥2 and r̃2l , ∥dl∥2, with

l = t − τ̄ , ..., t − 1, indeed, we need to provide a novel analysis compared to the one used for the

non-delayed SA under Markovian sampling in (Srikant and Ying, 2019). Specifically, we need to

introduce a new way to bound the terms ∥θt−θt−τmix∥ and ∥θt−θt−τmix∥2 and use the corresponding

bounds accordingly when bounding E [ht]. The bound obtained thanks to the auxiliary Lemmas has

the following form:

E
[
r̃2t+1

]
≤ (1− 2αµ+ 48α2L2τ̄)E

[
r̃2t
]
+ 128α2L2τ̄σ2

+ 4α2L2E
[
∥dt∥2

]
+ 20α2L2

t−1∑
l=t−τ̄

E
[
∥dl∥2 + 2r̃2l

]
+ 2αB̄t,

(4.17)

with

B̄t =

48L2σ2 + 216αL2σ2τmix if 0 ≤ t < τmix

0 otherwise
. (4.18)

Starting from this bound, the use of the weighted average
∑T

t=0wtE
[
r̃2t
]

comes into play. Applying

the weighted average to both sides of the bounds, applying some manipulations and with the proper

choice of upper bound on the step size α, we are able to get the following inequality

T∑
t=0

wtE
[
r̃2t+1

]
≤ (1− 0.5αµ)

T∑
t=0

wtE
[
r̃2t
]
+ 150WTα

2L2τ̄σ2

+2Wτmix−1α(48L
2σ2 + 216αL2σ2τmix).

(4.19)

This last inequality is obtained thanks to Lemma 20, which we state in the next paragraph and

which establishes a bound on
∑T

t=0wtE
[
∥dt∥2

]
. With some further manipulations and using the

101

fact that E
[
r2t
]
≤ 2E

[
r̃2t
]
+ 2E

[
∥dt∥2

]
together with Lemma 26, we derive the final result.

Auxiliary Lemmas. Here, we present the main Lemmas needed to prove Theorem 9. We start

with two bounds on the norms ∥dt∥ and ∥dt∥2, as follows

Lemma 19. The two following inequalities hold:

(i) ∥dt∥ ≤ ατLσ + αL

t−1∑
l=t−τ

∥θl∥ (4.20)

(ii) ∥dt∥2 ≤ 2α2τ2L2σ2 + 2α2τL2
t−1∑
l=t−τ

∥θl∥2. (4.21)

Using this Lemma, we provide the following result, that is needed to obtain the bound in (4.19).

Lemma 20. For α ≤ 1
4τL , the following inequality holds:

T∑
t=0

wt∥dt∥2 ≤ 4WTα
2τ2L2σ2 + 16α2τ2L2

T∑
t=0

wt∥θ̃t∥2. (4.22)

In the next Lemma, we provide bounds on the terms ∥θt − θt−τmix∥ and ∥θt − θt−τmix∥2.

Lemma 21. For any t ≥ τmix, we have

(i) ∥θ̃t−τmix − θ̃t∥ ≤ Lαστmix + Lα

t−1∑
l=t−τmix

∥θl∥ (4.23)

(ii) ∥θ̃t−τmix − θ̃t∥2 ≤ 2L2α2τ2mixσ
2 + 2L2α2τmix

t−1∑
l=t−τmix

∥θl∥2 (4.24)

Note that this Lemma is a variation of Lemma 3 in (Srikant and Ying, 2019), which is key to invoke

mixing time arguments to get finite-time convergence bounds in existing non-delayed SA analysis.

To obtain a bound in the form (4.17), we need to bound E [ht] properly, for which, in turn, we need

102

Lemma 21. Furthermore, note that, in contrast to (Srikant and Ying, 2019), the bound is obtained

for the sequence of virtual iterates. In the next three Lemmas, we provide bounds for the key terms

of the bound in (4.15), i.e., ∥g(θt, ot)∥2, mt and E [ht], respectively.

Lemma 22. For all t ≥ 0, we have

∥g(θt, ot)∥2 ≤ 4L2∥dt∥2 + 8L2r̃2t + 10L2σ2. (4.25)

Lemma 23. For t ≥ 0, we have

mt ≤ 6ατL2σ2 + 3ατL2r̃2t + 2αL2
t−1∑
l=t−τ

∥dl∥2 + 2r̃2l . (4.26)

Note that the proof of this last Lemma relies on the bound on ∥dt∥ established in Lemma 19. The

next Lemma establishes a bound on E [ht] relying on the mixing properties of the Markov chain {ot}

and on the bounds on ∥θt − θt−τmix∥ and ∥θt − θt−τmix∥2 established in Lemma 21.

Lemma 24. For t ≥ τmix and α ≤ 1
8τmixL

, we have

E [ht] ≤ ατmixL2
(
32σ2 + 12E

[
r̃2t
])

+ 8αL2
t−1∑

l=t−τmix

E
[
∥dl∥2 + 2r̃2l

]
. (4.27)

Lemma 24 is the key and most challenging part of the proof, which allows us to get to the bound

in (4.17). Note that the above Lemma is only valid for t ≥ τmix, which is a necessary condition to

invoke mixing time arguments, an issue that does not exist in the i.i.d. analysis. However, to get the

desired result, we need to be able to bound E [ht] for any t ≥ 0. Hence, we also need the following

result.

Lemma 25. For 0 ≤ t < τmix, we get

ht ≤ 84L2σ2 + 216αL2σ2τmix (4.28)

103

Using these last four Lemmas, i.e., Lemma 22, 23, 24 and 25 in combination with Lemma 20 we

are able to get the bound in (4.19). At this point, the conclusion of the proof is enabled by using

E
[
r2t
]
≤ 2E

[
r̃2t
]
+ 2E

[
∥dt∥2

]
and by the following Lemma which is inspired by Lemma 12 in

(Stich and Karimireddy, 2020).

Lemma 26. For every non-negative sequence {ut}t≥0 and any parameters a > 0, c ≥ 0, T ≥ 0, for

a constant α > 0 and weights wt := (1− aα)−(t+1), it holds

ΨT :=
1

WT

T∑
t=0

(wt (1− aα)ut − wtut+1) + c =
w−1u0
WT

− wTuT+1

WT
+ c. (4.29)

The proofs of all the Lemmas in this section and the complete proof of Theorem 9 are available in

section 4.9.

4.6. Stochastic Approximation with Time-Varying Delays

In this section, we present the first finite-time convergence analysis of the delayed SA update rule

that was introduced in (4.6). Note that, by Assumption 8, we can re-write (4.6) as:

Delayed SA: θt+1 = θt + αg(θt−τt , ot−τt), τt ≤ min{t, τmax} (4.30)

The following theorem provides a finite-time convergence bound for the update in (4.30) and it is

the second main contribution of this chapter.

Theorem 10. Let rt ≜ ∥θt − θ∗∥. There exists an absolute constant C1 ≥ 1 such that for

α ≤ µ

C1L2(τmix + τmax)
and T ≥ 2τmix + τmax, (4.31)

we have

E
[
r2T
]
≤ O

(
exp

(
−αµT

(τmix + τmax)

))
+O

(
L2α(τmix + τmax)σ

2

µ

)
. (4.32)

104

In addition, setting α = µ
C1L2(τmix+τmax)

yields to

E
[
r2T
]
≤ O

(
exp

(
−µ2T

L2(τmix + τmax)2

))
+O(σ2). (4.33)

Main Takeaways:

There are many relevant takeaways from this theorem, which, as far as we are aware, is the first

ever finite-time convergence result for SA under Markovian sampling with time-varying delays.

We focus on the convergence bound in (4.33), i.e., the case in which the step size matches the

upper bound. We note that, (i) with a choice of step size inversely proportional to τmix + τmax

the Delayed SA update rule (4.30) converges in expectation to a ball around θ∗ whose radius

is proportional to the "variance" term σ2 exponentially fast; (ii) the exponent of convergence

gets scaled down by a factor of (τmax + τmix)
2. Remarkably, the dependence on τmax is precisely

consistent with what is known for stochastic optimization (i.i.d. sampling) with time-varying delays

(Assran et al., 2020; Feyzmahdavian et al., 2016; Gurbuzbalaban et al., 2017). In particular, for

gradient descent on a stronlgy convex smooth cost function, existing results for time-varying delay

(see, e.g., (Gurbuzbalaban et al., 2017, Theorem 3.3)), require a step size inversely proportional to

τmax and obtain an exponential convergence with convergence exponent that gets scaled down by a

factor proportional to τ2max. ... Existence of tight analysis for const step delay ... existence of better

dependence on taumax for delay adaptive algorithms ... and we can also get that with our adaptive

alg ...

Outline of the Analysis. We now provide insights on the key steps in the analysis. To analyze

the convergence of the update rule in (4.30), we consider the delay as a perturbation to the original

update. We define the error at iteration t as follows

et ≜ g(θt, ot)− g(θt−τt , ot−τt), (4.34)

105

which we use to rewrite the update rule in (4.30) as

θt+1 = θt + αg(θt, ot)− αet. (4.35)

We now examine ∥θt+1 − θ∗∥2 using (4.35), which leads us to

∥θt+1 − θ∗∥2 = Jt,1 + α2Jt,2 − 2αJt,3. (4.36)

with
Jt,1 ≜ ∥θt − θ∗ + αg(θt, ot)∥2,

Jt,2 ≜ ∥et∥2,

Jt,3 ≜ ⟨et,θt − θ∗⟩+ α⟨et,g(θt, ot)⟩.

(4.37)

Note that the presence of Jt,2 and Jt,3 in (4.138) is a consequence of the delay and it would not

occur in the case of non-delayed updates. The convergence analysis is built up providing bounds on

the three terms of (4.37).

Main challenges. We now comment on some of the main challenges of the analysis. First, the

term Jt,1 cannot be bounded with the methods used for non-delayed SA under Markovian sampling

analysis in (Srikant and Ying, 2019). Indeed, Lemma 3 in (Srikant and Ying, 2019), which is key

to prove the finite-time linear convergence rate invoking properties of the geometric mixing of the

Markov chain, is not valid when using the delayed operator g(θt−τt , ot−τt). To see why this is the

case, note that Lemma 3 in (Srikant and Ying, 2019) establishes a bound on ∥θt − θt−τ∥, for any

τ > 0, of the following form

∥θt − θt−τ∥ ≤ O(ατ)(∥θt∥+ σ), (4.38)

which, however, does not hold true when using the delayed operator g(θt−τt , ot−τt). Indeed, the

first key step in proving (4.38) is using the fact that ∥θt+1 − θt∥ ≤ O(α)(∥θt∥+ σ), which is not

true for the delayed case, where we can only get ∥θt+1 − θt∥ ≤ O(α)(∥θt−τt∥ + σ) by using the

bound ∥g(θt−τt , ot−τt)∥ ≤ O(α)(∥θt−τt∥ + σ) on the delayed operator. This fact, that prevents

106

us from applying the analysis of Lemma ?? in (Srikant and Ying, 2019), forces us to develop a

different strategy and to prove a more general result, the statement of which we provide in Lemma

??. This new Lemma enables us to deal with ∥θt − θt−τ∥ in an functional way with respect to the

proof of finite-time rates for the considered delayed SA algorithm. Second, note that bounding the

term ⟨et,θt − θ∗⟩ is much more challenging compared to the i.i.d. sampling setting considered in

the optimization literature with delays (Zhou et al., 2018; Koloskova et al., 2022b; Arjovsky et al.,

2017; Cohen et al., 2021). This difficulty arises due to the statistical correlation among the terms

in g(θt, ot)− g(θt−τt , ot−τt) and θt − θ∗, which calls for a more involved analysis. Indeed, the fact

that in general, for correlated Markovian samples, E [g(θt, ot)] ̸= ḡ(θt), forces us to invoke mixing

time arguments to bound this cross term in a way that is instrumental to get the desired finite-time

rate, as it is typically done for SA under Markovian sampling. However, the presence of the delay in

the operator g(θt−τt , ot−τt) introduces further statistically correlated iterates θt−τt and observations

ot−τt in the analysis, whose interplay needs to be carefully taken care of. To do so, we provide a

novel analysis, whose result is stated in Lemma 28. This analysis is enabled also thanks to the new

result stated in Lemma 27 which generalizes Lemma 3 in (Srikant and Ying, 2019) and which we

present next.

Auxiliary Lemmas. We now introduce three Lemmas that are fundamental to prove Theorem 10.

We start with a Lemma that provides bounds in expectation on quantities of the form ∥θt − θt−τ∥.

This result, as mentioned above, represents a generalization of Lemma 3 in (Srikant and Ying, 2019),

being suitable to be applied for the analysis of the delayed case. Define

rt,1 ≜ max
t−τmix−2τmax≤l≤t

E [rl] ,

rt,2 ≜ max
t−τmix−2τmax≤l≤t

E
[
r2l
]
.

(4.39)

107

Lemma 27. For any t ≥ τmix, we have

(i) E [∥θt − θt−τmix∥] ≤ ατmixL(rt,1 + 2σ),

(ii) E
[
∥θt − θt−τmix∥2

]
≤ 2α2τ2mixL

2(2rt,2 + 3σ2).

Similarly, for any t ≥ 0 and τt ≤ t,

(iii) E [∥θt − θt−τt∥] ≤ ατmaxL(rt,1 + 2σ),

(iv) E
[
∥θt − θt−τt∥2

]
≤ 2α2τ2maxL

2(2rt,2 + 3σ2).

The above Lemma plays a critical role in bounding the error caused by the delay in the convergence

analysis. Specifically, the Lemma establishes a bound that enables us to relate θt, θt−τt , and θt−τmix ,

which is key to establish the finite-time linear rate of Theorem 9. Accordingly, we can bound the

impact of delay on the terms Jt,1, Jt,2 and Jt,3 in terms of rt,1 and rt,2. Next, we state Lemma 28,

that provides explicit bounds for Jt,1, Jt,2, and Jt,3.

Lemma 28. Let t ≥ τmix + 2τmax, then

1. Bounding E [Jt,1]:

E [Jt,1] ≤ (1− 2αµ)E
[
r2t
]
+O(α2τmix)(rt,2 + σ2). (4.40)

2. Bounding E [Jt,2]:

E [Jt,2] ≤ O(rt,2 + σ2). (4.41)

3. Bounding E [Jt,3]:

E [Jt,3] ≤ O(α)(τmix + τmax)(rt,2 + σ2). (4.42)

108

Using the above lemma, we can rewrite equation (4.138) as

E
[
r2t+1

]
= E

[
∥θt+1 − θ∗∥2

]
= E [Jt,1] + α2E [Jt,2]− 2αE [Jt,3]

≤ (1− 2αµ)E
[
r2t
]
+O(α2τmix)(rt,2 + σ2)

+O(α2)(rt,2 + σ2) +O(α2)(τmix + τmax)(rt,2 + σ2)

≤ (1− 2αµ)E
[
r2t
]
+O(α2)(τmix + τmax)(rt,2 + σ2).

(4.43)

To employ the above recursion, we require a technique to deal with the maximum in rt,2. For this

purpose, we utilize the following lemma.

Lemma 29 ((Feyzmahdavian et al., 2014)). Let Vk be non-negative real numbers that satisfy

Vk+1 ≤ pVk + q max
k−d(k)≤ℓ≤k

Vℓ + β,

for some non-negative constants p and q. Here, k ≥ 0 and 0 ≤ d(k) ≤ dmax for some positive

constant dmax. If p+ q < 1, then we have

Vk ≤ rkV0 + ϵ,

where r = (p+ q)1/(1+dmax) and ϵ = β
1−p−q .

By applying Lemma 52 and substituting equation (4.54) into it, we can obtain the result stated in

Theorem 10.

The proofs of all the Lemmas in this section and the complete proof of Theorem 10 are available in

section 4.10.

4.7. Delay-Adaptive Stochastic Approximation

In the previous section, we discussed the vanilla delayed stochastic approximation and derived its

convergence rate. However, the convergence rate is dependent on the maximum delay, τmax, and

109

selecting the proper step size requires a priori knowledge of τmax. Oftentimes, the worst-case delay

τmax is too large, leading to slow convergence of (4.30); and also its exact value might be τmax

unknown. In this section, we introduce a new update rule whose convergence rate only depends on

the average delay, and does not require the knowledge of τmax. Specifically, we consider the following

update rule

Lazy adaptive SA: θt+1 =

θt + αg(θt−τt , ot−τt) if ∥θt − θt−τt∥ ≤ ϵ,

θt otherwise.
(4.44)

The rationale behind the Lazy adaptive SA is to utilize only the informative pseudo-gradients

g(θt−τt , ot−τt) that are in proximity to θt, instead of using all of them. By doing so, we can control

the impact of delay and achieve a convergence rate that solely relies on the average delay:

τavg =
1

T

T∑
t=1

τt.

The main result regarding the Lazy adaptive SA update rule is presented in the following theorem.

Theorem 11. Let rt ≜ ∥θt − θ∗∥. There exists an absolute constant C2 ≥ 1 such that for

α ≤ µ

C2L2τmix
, T ≥ max{τmixτavg, τmix + τmax}, (4.45)

and ϵ = α, the iterates of (4.189) satisfy

E
[
r2T
]
≤ O

(
exp

(
−αµT
τavg

))
+O

(
αL2τmixσ

2

µ

)
. (4.46)

Additionally, if we set α = µ
C2τmix

, we obtain

E
[
r2T
]
≤ O

(
exp

(
−µ2T

L2τmixτavg

))
+O(σ2). (4.47)

Outline of Analysis.

110

Let It = 1, if ∥θt − θt−τt∥ ≤ ϵ and It = 0 otherwise. Then, we can express ∥θt+1 − θ∗∥2 as

∥θt+1 − θ∗∥2 = It
(
Jt,1 + α2Jt,2 − 2αJt,3

)
+ (1− It)∥θt − θ∗∥2. (4.48)

with
Jt,1 ≜ ∥θt − θ∗ + αg(θt, ot)∥2,

Jt,2 ≜ ∥et∥2,

Jt,3 ≜ ⟨et,θt − θ∗ + αg(θt, ot)⟩.

(4.49)

In order to analyze the convergence of the Lazy adaptive SA update rule, we first derive bounds for

Jt,1, Jt,2, and Jt,3 for iterations in which It = 1. Then, we establish a lower bound on the number of

iterations where It = 1. By using these two results, we are able to obtain a finite-time convergence

rate, which we present in Theorem 11.

Comments on the analysis. Similarly to the previous section, in which we proved a result for the

vanilla delayed update rule introduced in (4.6), to provide a finite-time rate for Lazy adaptive SA

we need to provide a bound on ∥θt − θt−τ∥, which we do in Lemma 30, and which is essential for

analyzing the convergence of the update rule. Note that the bound presented in this Lemma, unlike

Lemma 27, only depends on θt and not on previous iterations. This is key to simplify the analysis and

to obtain a better convergence rate. We now comment on the main differences in the analysis with

respect to the previous section and on how the delay-adaptive update rule enables the theoretical

results of this section. One of the main challenges in the proof of the vanilla delayed SA algorithm,

for which we provided the first finite-time convergence analysis in the previous section, was related

to the interplay between the statistical correlation of iterates and observations of different time

steps, i.e., t, t− τt, t− τmix. While the interplay between θt and θt−τ is well understood for the SA

under Markovian sampling (Srikant and Ying, 2019), the presence of the delays makes the finite-time

analysis much more involved, as we have illustrated in the previous section. On the other hand,

the adaptive strategy considered in this section and presented in the update rule shown in (4.189)

introduces a fundamental property: the capacity to control the term ∥θt − θt−τt∥ via the careful

choice of the threshold term ϵ enables us to partially get rid of some of the statistically correlated

111

terms that were making the analysis complex in the previous analysis. Furthermore, thanks to the

adaptive strategy, we can derive a generalized version of Lemma 3 in (Srikant and Ying, 2019) that

preserves the dependency only to the current iterate θt. As a consequence of the above points, we

are able to derive the better convergence rate previously presented that, instead of depending on

τmax, only depends on τavg.

Main Intuition. We are able to derive a bound for the "Lazy adaptive SA" because it can be

interpreted as a stochastic approximation with minor errors. This is supported by the fact that

∥θt − θt−τt∥ ≤ ϵ implies ∥g(θt, o)− g(θt−τt , o)∥ ≤ 2ϵ. As a result, every time we update, we move

in the correct direction with only a small amount of error.

Auxiliary Lemmas. Similarly to Section 4.6, we provide three Lemmas that are fundamental to

prove the main result of this section, i.e., Theorem 11. As in the case of the vanilla delayed SA

update, we start by providing a result that provides a bound on the norm of θt − θt−τ .

Lemma 30. For any τ ≥ 1 and t ≥ τ , we have

∥θt − θt−τ∥ ≤ O(ατ(rt + β)), (4.50)

where β = ϵ+ σ.

Using Lemma 30, we can bound Jt,1, Jt,2, and Jt,3 in Lemma 31.

Lemma 31. For t ≥ τmix + τmax, if It = 1, we have

1. Bounding E [Jt,1]:

E [Jt,1] ≤
(
1− 2αµ+O(α2τmix)

)
E
[
r2t
]
+O(α2τmix)β

2 (4.51)

2. Bounding E [Jt,2]:

E [Jt,2] ≤ O(E
[
r2t
]
+ β2) (4.52)

112

3. Bounding E [Jt,3]:

E [Jt,3] ≤ O(ατmix(E
[
r2t
]
+ β2)) (4.53)

With the help of the previous lemma, we can rewrite Equation (4.48) as follows, when It = 1:

E
[
r2t+1

]
= E

[
∥θt+1 − θ∗∥2

]
= E [Jt,1] + α2E [Jt,2]− 2αE [Jt,3]

≤
(
1− 2αµ+O(α2τmix)

)
E
[
r2t
]
+O(α2τmix)β

2

+O(α2(E
[
r2t
]
+ β2)) +O(α2τmix(E

[
r2t
]
+ β2))

≤
(
1− 2αµ+O(α2τmix)

)
E
[
r2t
]
+O(α2τmix)β

2.

(4.54)

To finish the proof, we only need to determine the number of times we update the variable θ in

T iterations. This can be achieved through the following lemma, which has been borrowed from

(Cohen et al., 2021). By utilizing this lemma, we can complete the proof and obtain the bound

presented in Theorem 11.

Lemma 32. Let τavg be the average of delay, τavg = 1
T

T∑
t=1

τt. Then the number of updates that Lazy

adaptive SA makes is at least Ω
(

T
τavg

)
.

The proofs of all the Lemmas in this section and the complete proof of Theorem 11 are available in

section 4.11.

4.8. Proofs of Lemmas and Theorems

In the following appendices, we provide the proofs for the theoretical results stated in the paper.

In particular, we provide the proofs for all the Theorems and Lemmas. We start by recalling the

implications of Section 4.4 in the following.

4.8.1. Preliminaries of Proofs

First, recall that from Assumption 5 we have, ∀θ ∈ Rd:

⟨θ∗ − θ, ḡ(θ)⟩ ≥ µ∥θ∗ − θ∥2. (4.55)

113

We will also use the fact that the SA update directions and their steady-state versions are L-Lipschitz,

i.e., ∀o ∈ {ot}t∈N, and ∀θ,θ′ ∈ Rd, we have:

∥ḡ(θ)− ḡ(θ′)∥ ≤ L∥θ − θ′∥, and

∥g(θ, ot)− g(θ′, ot)∥ ≤ L∥θ − θ′∥.
(4.56)

We further have

∥g(θ, ot)∥ ≤ L(∥θ∥+ σ), ∀o ∈ {ot}t∈N, ∀θ ∈ Rd. (4.57)

Given that (x+ y)2 ≤ 2(x2 + y2), ∀x, y ∈ R, we will often use the following inequality:

∥g(θ, ot)∥2 ≤ L2(∥θ∥+ σ)2 ≤ 2L2(∥θ∥2 + σ2). (4.58)

Without loss of generality, we assume that

L ≥ 1, σ ≥ max{∥θ0∥, ∥θ∗∥}, µ < 1. (4.59)

We will often use the fact that, for any x, y ∈ R, we have

xy ≤ 1

2
(x2 + y2). (4.60)

In addition, we will often use the fact that, for t ≥ 2, ai ∈ R, i = 0, ..., t− 1, it holds

(
t−1∑
i=0

ai

)2

≤ t
t−1∑
i=0

a2i (4.61)

114

4.9. Appendix A: Proof of Theorem 9

First, we recall the definition of the SA recursion with constant delay:

θt+1 = θt + αg(θt−τ , ot−τ) for t ≥ 0. (4.62)

For analysis purposes, we define a virtual iterate, θ̃t. This virtual iterate is updated with the SA

update direction without delays. We also introduce the related error term dt, which is the gap

between the virtual iterate and the actual iterate.

θ̃t = θt + dt, with d0 = 0. (4.63)

For both θ̃t and dt, we can write the following recursions, for t ≥ 0:

θ̃t+1 = θ̃t + αg(θt, ot) (4.64)

dt+1 = dt + α(g(θt, ot)− g(θt−τ , ot−τ)). (4.65)

We define g(θl, ol) = θl = dl = 0 for l < 0. Also, we define θ̃l = θ∗ for l < 0.

4.9.1. Proofs of Auxiliary Lemmas of Section 4.5

We first state and prove the following Lemma, which we will use in the proof of Theorem 9.

Lemma 33. For wt := (1 − 0.5µα)−(t+1) with α ≤ µ
Cτ̄ , C ≥ 2, the following inequality holds for

0 ≤ i ≤ 2τ̄ , and for any t,

wt ≤ 2wt−i. (4.66)

115

Proof.

wt = wt−i

(
1− µα

2

)−i
(a)

≤ wt−i

(
1− µ2

2Cτ̄

)−i

(b)

≤ wt−i

(
1− µ2

2Cτ̄

)−τ̄

(c)

≤ wt−i

(
1− 1

4τ̄

)−τ̄

(d)

≤ wt−i

(
1 +

1

2τ̄

)τ̄
(e)

≤ wt−i exp

(
1

2

)
≤ 2wt−i,

(4.67)

in (a), we used the bound on α, in (b), we used the bound on i, in (c), we used µ < 1 and C ≥ 2, in

(d), we used

(1− x)−1 ≤ (1 + 2x) for 0 ≤ x ≤ 1

2
, (4.68)

and for (e) we used (1 + x)k ≤ exp(xk) for k ≥ 0.

We defined g(θi, oi) = 0 for i < 0, θt = θ0 for t ≤ 0, and dt = 0 for t ≤ 0. First, note that, starting

from the definition of dt in (4.65),

dt+1 = dt+ α (g(θt, ot)− g(θt−τ , ot−τ)

= dt−1 + α (g(θt−1, ot−1)− g(θt−1−τ , ot−1−τ))

+ α (g(θt, ot)− g(θt−τ , ot−τ))

= dτ + α
t∑
l=τ

(g(θl, ol)− g(θl−τ , ol−τ))

(∗)
= d0 + α

t∑
l=0

(g(θl, ol)− g(θl−τ , ol−τ))

(∗∗)
= 0 + α

t∑
l=t−τ+1

g(θl, ol),

(4.69)

where (∗) follows by iteratively unfolding the definition of dt and noting that dτ = θ̃τ − θ0 =

116

d0 + α
∑τ−1

l=0 g(θl, ol), and (∗∗) follows because the overlapping terms in the sum cancel out. So, we

obtain, for all t ≥ 0,

dt = α
t−1∑
l=t−τ

g(θl, ol). (4.70)

We can now prove Lemma 19, which is key to prove Theorem 9.

Proof of Lemma 19. From (4.70), using the triangle inequality and the bound on the update

direction (4.57), we get, recalling that σ ≥ ∥θ0∥,

∥dt∥ = ∥α
t−1∑
l=t−τ

g(θl, ol)∥

≤ +α
t−1∑
l=t−τ

∥g(θl, ol)∥

≤ αL
t−1∑
l=t−τ

(∥θl∥+ σ)

≤ ατLσ + αL
t−1∑
l=t−τ

∥θl∥,

(4.71)

which proves (i). We now prove (ii). Using the triangle inequality and (4.61),

∥dt∥2 = ∥α
t−1∑
l=t−τ

g(θl, ol)∥2

≤ (α∥
t−1∑
l=t−τ

g(θl, ol)∥)2

≤ α2∥
t−1∑
l=t−τ

g(θl, ol)∥2

(4.61)
≤ α2τ

t−1∑
l=t−τ

∥g(θl, ol)∥2.

(4.72)

117

Now, using the upper bound on the squared gradient norm (4.58),

∥dt∥2 ≤ α2τ
t−1∑
l=t−τ

∥g(θl, ol)∥2

≤ 2α2τL2
t−1∑
l=t−τ

(∥θl∥2 + σ2)

≤ 2α2τ2L2σ2 + 2α2τL2
t−1∑
l=t−τ

∥θl∥2.

(4.73)

which concludes the proof. □

Using the above Lemma, we can now prove Lemma 20.

Proof of Lemma 20. First, recall that, from Lemma 19, we have

∥dt∥2 ≤ 2α2τ2L2σ2 + 2α2τL2
t−1∑
l=t−τ

∥θl∥2. (4.74)

Based on Lemma 33, for 0 ≤ i ≤ 2τ̄ , wt ≤ 2wt−i (see (4.67)). Using (4.74),

T∑
t=0

wt∥dt∥2 ≤
T∑
t=0

wt

(
2α2τ2L2σ2 + 2α2τL2

t−1∑
l=t−τ

∥θl∥2
)

≤ 2WTα
2τ2L2σ2 + 2α2τL2

T∑
t=0

wt

t−1∑
l=t−τ

∥θl∥2

(∗)
≤ 2WTα

2τ2L2σ2 + 4α2τL2
T∑
t=0

t−1∑
l=t−τ

wl∥θl∥2

(∗∗)
≤ 2WTα

2τ2L2σ2 + 4α2τ2L2
T∑
t=0

wt∥θt∥2

≤ 2WTα
2τ2L2σ2 + 8α2τ2L2

T∑
t=0

wt

(
∥θ̃t∥2 + ∥dt∥2

)
≤ 2WTα

2τ2L2σ2 + 8α2τ2L2
T∑
t=0

wt∥θ̃t∥2 +
1

2

T∑
t=0

wt∥dt∥2,

(4.75)

where for (∗) we used the fact that wt ≤ 2wl for t− 2τ̄ ≤ l ≤ t− 1, and for (∗∗) we used the fact

118

that each element wl∥θl∥2 appears at most τ times in the sum, for l = 0, ..., T − 1 (note that, by

definition, θl = 0 for l < 0). In the last inequality, we used α ≤ 1
4τL . We can conclude getting

T∑
t=0

wt∥dt∥2 ≤ 4WTα
2τ2L2σ2 + 16α2τ2L2

T∑
t=0

wt∥θ̃t∥2. (4.76)

□

We now prove Lemma 21, that provides a bound on the norm of the gap ∥θ̃t−τmix − θ̃t∥ and its

squared version ∥θ̃t−τmix − θ̃t∥2.

Proof of Lemma 21. Inequality (i) of the Lemma can be easily proved by applying the definition

of the recursion (4.64),

∥θ̃t−τmix − θ̃t∥ ≤
t−1∑

l=t−τmix

∥θ̃l+1 − θ̃l∥

≤ α
t−1∑

l=t−τmix

∥g(θl, ol)∥

≤ Lα
t−1∑

l=t−τmix

(∥θl∥+ σ)

= Lαστmix + Lα
t−1∑

l=t−τmix

∥θl∥.

(4.77)

119

Similarly, for inequality (ii), note that

∥θ̃t−τmix − θ̃t∥2 ≤

 t−1∑
l=t−τmix

∥θ̃l+1 − θ̃l∥

2

(4.61)
≤ τmix

t−1∑
l=t−τmix

∥θ̃l+1 − θ̃l∥2

≤ α2τmix

t−1∑
l=t−τmix

∥g(θl, ol)∥2

≤ 2L2α2τmix

t−1∑
l=t−τmix

(∥θl∥2 + σ2)

≤ 2L2α2τ2mixσ
2 + 2L2α2τmix

t−1∑
l=t−τmix

∥θl∥2.

(4.78)

□

We now prove Lemmas 22, 23 and 24, which provide bounds for ∥g(θt, ot)∥2, mt and E [ht], respec-

tively.

Proof of Lemma 22. From (4.58), we have ∥g(θt, ot)∥2 ≤ 2L2(∥θt∥2 + σ2), and so

∥g(θt, ot)∥2 ≤ 2L2(∥θt∥2 + σ2)

≤ 2L2∥θt − θ̃t + θ̃t∥2 + 2L2σ2

≤ 4L2∥dt∥2 + 4L2∥θ̃t∥2 + 2L2σ2

≤ 4L2∥dt∥2 + 4L2∥θ̃t − θ∗ + θ∗∥2 + 2L2σ2

≤ 4L2∥dt∥2 + 8L2r̃2t + 8L2∥θ∗∥2 + 2L2σ2

≤ 4L2∥dt∥2 + 8L2r̃2t + 10L2σ2

(4.79)

where we used ∥θ∗∥ ≤ σ and from which we can conclude. □

Proof of Lemma 23. By Cauchy-Schwarz inequality, Lipschitz continuity of g(θ, ot) in θ (see

120

(4.56)), and from the definition of dt, we get

mt = ⟨g(θt, ot)− g(θ̃t, ot), θ̃t − θ⋆⟩

≤ ∥g(θt, ot)− g(θ̃t, ot)∥∥θ̃t − θ∗∥

≤ L∥θ̃t − θt∥∥θ̃t − θ∗∥

= L∥dt∥r̃t.

(4.80)

Applying Lemma 19 to bound ∥dt∥, we get

mt ≤ L(3ατLσ + αL
t−1∑
l=t−τ

∥θl∥)r̃t

= 3ατL2σr̃t + αL2
t−1∑
l=t−τ

∥θl∥r̃t

(4.60)
≤ 2ατL2σ2 + 2ατL2r̃2t + αL2

t−1∑
l=t−τ

∥θl∥2 + r̃2t

= 2ατL2σ2 + 3ατL2r̃2t + αL2
t−1∑
l=t−τ

∥θl∥2

(4.61)
≤ 2ατL2σ2 + 3ατL2r̃2t + 2αL2

t−1∑
l=t−τ

∥dl∥2 + ∥θ̃l∥2

≤ 6ατL2σ2 + 3ατL2r̃2t + 2αL2
t−1∑
l=t−τ

∥dl∥2 + 4αL2
t−1∑
l=t−τ

r̃2l .

(4.81)

□

Next, we provide the proof of Lemma 24, which provides a bound for E [ht], which is the term related

to the Markovian sampling and whose analysis requires special care and mixing time arguments.

Proof of Lemma 24. Adding and subtracting θ̃t−τmix in the left hand side of the inner product,

we have
ht = ⟨θ̃t − θ∗,g(θ̃t, ot)− ḡ(θ̃t)⟩

= ⟨θ̃t − θ̃t−τmix ,g(θ̃t, ot)− ḡ(θ̃t)⟩︸ ︷︷ ︸
T1

+ ⟨θ̃t−τmix − θ∗,g(θ̃t, ot)− ḡ(θ̃t)⟩︸ ︷︷ ︸
T2

,
(4.82)

121

where, using (4.57), Cauchy-Schwarz inequality and Lemma 21,

T1 ≤ ∥θ̃t − θ̃t−τmix∥(∥g(θ̃t, ot)∥+ ∥ḡ(θ̃t)∥)
(4.57)
≤ ∥θ̃t − θ̃t−τmix∥2L(∥θ̃t∥+ σ)

≤ 2αL2

στmix + t−1∑
l=t−τmix

∥θl∥

 (∥θ̃t∥+ σ)

≤ 2αL2στmix(∥θ̃t∥+ σ) + 2αL2
t−1∑

l=t−τmix

∥θl∥(∥θ̃t∥+ σ)

(4.60)
≤ 2αL2σ2τmix + 2αL2τmixσ∥θ̃t∥

+ 2αL2
t−1∑

l=t−τmix

1

2
∥θl∥2 +

1

2
(∥θ̃t∥+ σ)2

(4.61)
≤ 2αL2σ2τmix + αL2τmixσ

2 + αL2τmix∥θ̃t∥2

+ 2αL2
t−1∑

l=t−τmix

(
1

2
∥θl∥2 + ∥θ̃t∥2 + σ2

)

≤ 11αL2σ2τmix + 6αL2τmixr̃
2
t + αL2

t−1∑
l=t−τmix

∥θl∥2.

(4.83)

So, taking the expectation,

E [T1] ≤ 11αL2σ2τmix + 6αL2τmixE
[
r̃2t
]
+ αL2

t−1∑
l=t−τmix

E
[
∥θl∥2

]
. (4.84)

Now, we focus on T2. Note that, adding and subtracting g(θ̃t−τmix , ot) and ḡ(θ̃t−τmix) to the right

hand side of the inner product, we can write

T2 = ⟨θ̃t−τmix − θ∗,g(θ̃t, ot)− ḡ(θ̃t)⟩

= T̄1 + T̄2 + T̄3

(4.85)

122

with
T̄1 = ⟨θ̃t−τmix − θ∗,g(θ̃t−τmix , ot)− ḡ(θ̃t−τmix)⟩

T̄2 = ⟨θ̃t−τmix − θ∗,g(θ̃t, ot)− g(θ̃t−τmix , ot)⟩

T̄3 = ⟨θ̃t−τmix − θ∗, ḡ(θ̃t−τmix)− ḡ(θ̃t)⟩.

(4.86)

We first bound T̄2 and T̄3. Note that, using the Lipschitz property of the TD update direction (4.56)

and Lemma 21,

T̄2 ≤ ∥θ̃t−τmix − θ∗∥∥g(θ̃t, ot)− g(θ̃t−τmix , ot)∥

≤ ∥θ̃t−τmix − θ∗∥L∥θ̃t−τmix − θ̃t∥

≤ L∥θ̃t−τmix − θ̃t + θ̃t − θ∗∥∥θ̃t−τmix − θ̃t∥

≤ Lr̃t∥θ̃t−τmix − θ̃t∥+ L∥θ̃t−τmix − θ̃t∥2

≤ L2α

στmix + t−1∑
l=t−τmix

∥θl∥

 r̃t + L

2L2α2τ2mixσ
2 + 2L2α2τmix

t−1∑
l=t−τmix

∥θl∥2

= L2ατmix
1

2

(
σ2 + r̃2t

)
+

1

2
L2α

t−1∑
l=t−τmix

∥θl∥2 + r̃2t

+ 2L3α2τ2mixσ
2 + 2L3α2τmix

t−1∑
l=t−τmix

∥θl∥2

≤ ατmixL2σ2 + ατmixL
2r̃2t + αL2

t−1∑
l=t−τmix

∥θl∥2,

(4.87)

where in the last inequality we used α ≤ 1
8τmixL

. Taking the expectation,

E
[
T̄2
]
≤ ατmixL2σ2 + ατmixL

2E
[
r̃2t
]
+ αL2

t−1∑
l=t−τmix

E
[
∥θl∥2

]
. (4.88)

With the same calculations, we can get

E
[
T̄3
]
≤ ατmixL2σ2 + ατmixL

2E
[
r̃2t
]
+ αL2

t−1∑
l=t−τmix

E
[
∥θl∥2

]
. (4.89)

123

We now proceed to bound T̄1.

E
[
T̄1
]
= E

[
⟨θ̃t−τmix − θ∗,g(θ̃t−τmix , ot)− ḡ(θ̃t−τmix)⟩

]
= E

[
⟨θ̃t−τmix − θ∗,E

[
g(θ̃t−τmix , ot)|ot−τ , θ̃t−τmix

]
− ḡ(θ̃t−τmix)⟩

]
≤ E

[
∥θ̃t−τmix − θ∗∥∥E

[
g(θ̃t−τmix , ot)|ot−τmix , θ̃t−τmix

]
− ḡ(θ̃t−τmix)∥

]
≤ αE

[
∥θ̃t−τmix − θ∗∥(∥θ̃t−τmix∥+ σ)

]
≤ αE

[
∥θ̃t−τmix − θ∗∥(∥θ̃t−τmix − θ∗∥+ 2σ)

]
≤ αE

[
1

2
∥θ̃t−τmix − θ∗∥2 + 1

2
(∥θ̃t−τmix − θ∗∥+ 2σ)2

]
≤ αE

[
1

2
∥θ̃t−τmix − θ∗∥2 + ∥θ̃t−τmix − θ∗∥2 + 2σ2

]
≤ 2αE

[
∥θ̃t−τmix − θ∗∥2 + σ2

]
≤ 2αE

[
2∥θ̃t − θ∗∥2 + 2∥θ̃t − θ̃t−τmix∥2 + σ2

]
≤ 2αE

2r̃2t + 2(2L2α2τ2mixσ
2 + 2L2α2τmix

t−1∑
l=t−τmix

∥θl∥2) + σ2

≤ 4αE

[
r̃2t
]
+ 3ασ2 + α

t−1∑
l=t−τmix

E
[
∥θl∥2

]
.

(4.90)

So, we get

E [T2] = E
[
T̄1
]
+ E

[
T̄2
]
+ E

[
T̄3
]

≤ 6ατmixL
2E
[
r̃2t
]
+ 5ατmixL

2σ2 + 3αL2
t−1∑

l=t−τmix

E
[
∥θl∥2

]
.

(4.91)

124

Finally, we get

E [ht] = E [T1] + E [T2]

≤ 16ατmixL
2σ2 + 12ατmixL

2σ2E
[
r̃2t
]
+ 4αL2

t−1∑
l=t−τmix

E
[
∥θl∥2

]
≤ 16ατmixL

2σ2 + 12ατmixL
2E
[
r̃2t
]

+ 8αL2
t−1∑

l=t−τmix

E
[
∥dl∥2

]
+ E

[
∥θ̃l∥2

]

≤ 32ατmixL
2σ2 + 12ατmixL

2E
[
r̃2t
]
+ 8αL2

t−1∑
l=t−τmix

E
[
∥dl∥2 + 2r̃2l

]
.

(4.92)

□

Proof of Lemma 25. Note that, using (4.58),

ht = ⟨θ̃t − θ∗,g(θ̃t, ot)− ḡ(θ̃t)⟩

≤ ∥θ̃t − θ∗∥∥g(θ̃t, ot)− ḡ(θ̃t)∥
(4.60)
≤ 1

2
r̃2t +

1

2
∥g(θ̃t, ot)− ḡ(θ̃t)∥2

(4.61)
≤ 1

2
r̃2t + ∥g(θ̃t, ot)∥2 + ∥ḡ(θ̃t)∥2

(4.58)
≤ r̃2t

2
+ 2L2∥θ̃t∥2 + 2L2σ2 + 2L2∥θ̃t∥2 + 2L2σ2

≤ r̃2t
2

+ 8L2r̃2t + 12L2σ2

≤ 9L2r̃2t + 12L2σ2.

(4.93)

Now note that
r̃2t+1 = r̃2t + 2α⟨θ̃t − θ∗,g(θ̃t, ot)⟩+ α2∥g(θ̃t, ot)∥2

(4.60)
≤ r̃2t + αr̃2t + α∥g(θ̃t, ot)∥2 + α2∥g(θ̃t, ot)∥2

α<1
≤ (1 + α)r̃2t + 2α∥g(θ̃t, ot)∥2

(4.58)
≤ (1 + α)r̃2t + 2α(4L2r̃2t + 6L2σ2).

(4.94)

125

From the last inequality, we can then get, iterating the inequality,

r̃2t+1 ≤ (1 + 9αL2)r̃2t + 12αL2σ2

≤ (1 + 9αL2)2r̃2t−1 + (1 + 9αL2)12αL2σ2 + 12αL2σ2

≤ (1 + 9αL2)t+1r̃20 + 12αL2σ2
t∑

j=0

(1 + 9αL2)j .

(4.95)

So, for 0 ≤ t < τmix,

r̃2t+1 ≤ (1 + 9αL2)τmix r̃20 + 12αL2σ2
τmix∑
j=0

(1 + 9αL2)j . (4.96)

Now, given that L ≥ 1, note that, for ατ ≤ 1
8L and j = 0, ..., τ − 1, we have (1 + α)j ≤ (1 + α)τ ≤

eατ ≤ e0.25 ≤ 2. Thus, for 9αL2 ≤ 1
4τmix

, we get (1 + 9αL2)τmix ≤ (1 + 18αL2τmix) ≤ 2. Hence,

r̃2t+1 ≤ (1 + 18αL2τmix)r̃
2
0 + 12αL2σ2

τmix∑
j=0

2

≤ 2r̃20 + 24αL2σ2τmix.

(4.97)

Using the last inequality, and noting that r̃20 ≤ 2∥θ0∥2 + 2∥θ∗∥2 ≤ 4σ2.

E [ht] ≤ 9L2r̃2t + 12L2σ2

≤ 9L2(8σ2 + 24αL2σ2τmix) + 12L2σ2

≤ 84L2σ2 + 216αL2σ2τmix.

(4.98)

□

Now, we provide the proof of the last auxiliary Lemma needed to prove Theorem 9, i.e., Lemma 26.

126

Proof of Lemma 26. Plugging wt = (1− aα)−(t+1) in ΨT , we have

ΨT =
1

WT

T∑
t=0

(wt (1− aα)ut − wtut+1) + c

=
1

WT

T∑
t=0

(wt−1ut − wtut+1) + c

=
w−1u0
WT

− wTuT+1

WT
+ c

(4.99)

□

4.9.2. Proof of Theorem 9

First, we have

r̃2t+1 = r̃2t + 2α⟨g(θt, ot), θ̃t − θ⋆⟩+ α2∥g(θt, ot)∥2 (4.100)

Then, using (4.55), i.e., ⟨ḡ(θ̃t), θ̃t − θ⋆⟩ ≤ −µr̃2t ,

r̃2t+1 = r̃2t + 2α⟨g(θt, ot), θ̃t − θ∗⟩+ α2∥g(θt, ot)∥2

= r̃2t + 2α⟨ḡ(θ̃t), θ̃t − θ⋆⟩+ 2αht + 2αmt + α2∥g(θt, ot)∥2

≤ (1− 2αµ)r̃2t + 2αht + 2αmt + α2∥g(θt, ot)∥2.

(4.101)

We now apply the inequalities obtained in the auxiliary lemmas of the previous section to bound

E [ht], mt and ∥g(θt, ot)∥2. Recall that τ̄ = max{τ, τmix}. Note that from Lemma 24 and 25 we can

write E [ht] ≤ h̄t, defining

h̄t =

B if 0 ≤ t < τmix

qt if t ≥ τmix
, (4.102)

with B = 48L2σ2 + 216αL2σ2τmix, and

qt = ατmixL
2
(
32σ2 + 12E

[
r̃2t
])

+ 8αL2
t−1∑

l=t−τmix

E
[
∥dl∥2 + 2r̃2l

]
. (4.103)

127

As a consequence, we can write, for every t ≥ 0,

E [ht] ≤ qt + B̄t (4.104)

where, in turn,

B̄t =

B if 0 ≤ t < τmix

0 otherwise
. (4.105)

Also, recall that, from Lemma 22 and 23, we have

∥g(θt, ot)∥2 ≤ 4L2∥dt∥2 + 8L2r̃2t + 10L2σ2,

mt ≤ 6ατL2σ2 + 3ατL2r̃2t + 2αL2
t−1∑
l=t−τ

∥dl∥2 + 2r̃2l

(4.106)

Combining these inequalities together, we have, for t ≥ 0,

E
[
r̃2t+1

]
≤ (1− 2αµ)E

[
r̃2t
]
+ 2αE [ht] + 2αE [mt] + α2E

[
∥g(θt, ot)∥2

]
≤ (1− 2αµ)E

[
r̃2t
]
+ 2α2τmixL

2
(
32σ2 + 12E

[
r̃2t
])

+ 16α2L2
t−1∑

l=t−τmix

E
[
∥dl∥2 + 2r̃2l

]
+ 12α2τL2σ2 + 6α2τL2E

[
r̃2t
]
+ 4α2L2

t−1∑
l=t−τ

E
[
∥dl∥2 + 2r̃2l

]
+ 4α2L2E

[
∥dt∥2 + 2r̃2t

]
+ 10α2L2σ2 + 2αB̄t.

(4.107)

Combining terms, we can get

E
[
r̃2t+1

]
≤ (1− 2αµ+ 48α2L2τ̄)E

[
r̃2t
]
+ 128α2L2τ̄σ2

+ 4α2L2E
[
∥dt∥2

]
+ 20α2L2

t−1∑
l=t−τ̄

E
[
∥dl∥2 + 2r̃2l

]
+ 2αB̄t,

(4.108)

128

where we have used τ + τmix ≤ 2τ̄ . Multiplying both sides by wt, we have

wtE
[
r̃2t+1

]
≤ (1− 2αµ+ 48α2L2τ̄)wtE

[
r̃2t
]
+ 128wtα

2L2τ̄σ2

+ 4wtα
2L2E

[
∥dt∥2

]
+ 20wtα

2L2
t−1∑
l=t−τ̄

E
[
∥dl∥2 + 2r̃2l

]
+ 2wtαB̄t,

(4.109)

by summing over t = 0, ..., T , we get, with WT =
∑T

t=0wt,

T∑
t=0

wtE
[
r̃2t+1

]
≤ (1− 2αµ+ 48α2L2τ̄)

T∑
t=0

wtE
[
r̃2t
]

+ 128WTα
2L2τ̄σ2 + 4α2L2

T∑
t=0

wtE
[
∥dt∥2

]
︸ ︷︷ ︸

p1

+ 20α2L2
T∑
t=0

wt

t−1∑
l=t−τ̄

E
[
∥dl∥2 + 2r̃2l

]
︸ ︷︷ ︸

p2

+2Wτmix−1αB

(4.110)

Note that, from Lemma 20, we have, picking α ≤ 1
9τL ,

p1 =
T∑
t=0

wtE
[
∥dt∥2

]
≤ 4WTα

2τ2L2σ2 + 16α2τ2L2
T∑
t=0

wtE
[
∥θ̃t∥2

]
≤ 36WTα

2τ2L2σ2 + 32α2τ2L2
T∑
t=0

wtE
[
r̃2t
]

≤ WTσ
2

2
+

1

2

T∑
t=0

wtE
[
r̃2t
]
.

(4.111)

129

Furthermore, using the fact that wt ≤ 2wl for l = t− τ̄ , ..., t− 1, we can bound p2 as follows, using

also the above bound on p1, and picking α ≤ 1
9τL ,

p2 =

T∑
t=0

wt

t−1∑
l=t−τ̄

E
[
∥dl∥2 + 2r̃2l

]
(a)

≤ 2
T∑
t=0

t−1∑
l=t−τ̄

wlE
[
∥dl∥2 + 2r̃2l

]
(b)

≤ 2τ̄
T∑
t=0

wtE
[
∥dt∥2 + 2r̃2t

]
.

≤ 2τ̄
T∑
t=0

wtE
[
∥dt∥2

]
+ 4τ̄

T∑
t=0

wtE
[
r̃2t
]

(c)

≤ 2τ̄

(
36WTα

2τ2L2σ2 + 32α2τ2L2
T∑
t=0

wtE
[
r̃2t
])

+ 4τ̄
T∑
t=0

wtE
[
r̃2t
]

≤ 5τ̄
T∑
t=0

wtE
[
r̃2t
]
+WTσ

2τ̄ ,

(4.112)

where for (a) we used Lemma 33, for (b) we used the fact that each element wl∥θl∥2 appears at most

τ times in the sum, for l = 0, ..., T − 1 (note that, by definition, dl = r̃l = 0 for l < 0) and for (c) we

used the bound on p1. In the last inequality we used α ≤ 1
9τL . Plugging the two bounds on p1 and

p2 in (4.110), we get

T∑
t=0

wtE
[
r̃2t+1

]
≤ (1− 2αµ+ 150α2L2τ̄)

T∑
t=0

wtE
[
r̃2t
]

+ 150WTα
2L2τ̄σ2 + 2Wτmix−1αB.

(4.113)

130

Now, note that for α ≤ µ
100L2τ̄

, which is such that (1 − 2αµ + 150α2L2τ̄) ≤ (1 − 0.5αµ), we can

re-write (4.113) as

T∑
t=0

wtE
[
r̃2t+1

]
≤ (1− 0.5αµ)

T∑
t=0

wtE
[
r̃2t
]
+ 150WTα

2L2τ̄σ2

+2Wτmix−1αB.

(4.114)

Now, dividing by WT both sides of (4.114) and bringing
∑T

t=0wtE
[
r̃2t+1

]
to the right hand side of

the inequality, we get

0 ≤ 1

WT

T∑
t=0

(
wt(1− 0.5αµ)E

[
r̃2t
]
− wtE

[
r̃2t+1

])
+150α2L2τ̄σ2 +

2Wτmix−1αB

WT
,

(4.115)

and, recalling that wt = (1− 0.5αµ)−(t+1), we can apply Lemma 26, and get, noting that w−1 = 1,

0 ≤
E
[
r̃20
]

WT
− wT
WT

E
[
r̃2T+1

]
+ 150α2L2τ̄σ2 +

2Wτmix−1αB

WT
, (4.116)

from which we can further obtain

wT
WT

E
[
r̃2T+1

]
≤

E
[
r̃20
]

WT
+ 150α2L2τ̄σ2 +

2Wτmix−1αB

WT
. (4.117)

Note that we can re-write the above inequality as follows

E
[
r̃2T+1

]
≤ 1

wT
E
[
r̃20
]
+ 150

WT

wT
α2L2τ̄σ2 +

2Wτmix−1αB

wT

≤ (1− 0.5αµ)T+1E
[
r̃20
]
+ 300

αL2τ̄σ2

µ
+

2Wτmix−1αB

wT
,

(4.118)

where we used the fact that WT
wT

=
∑T

t=0(1− 0.5αµ)−(t+1)(1− 0.5αµ)T+1 =
∑T

t=0(1− 0.5αµ)t ≤ 2
αµ .

131

Now note that
Wτmix−1

wT
≤ Wτmix−1

w0

=
1

(1− 0.5αµ)−1

τmix−1∑
t=0

(1− 0.5αµ)−(t+1)

=

τmix−1∑
t=0

(1− 0.5αµ)−t

≤
τmix−1∑
t=0

(1− 0.5αµ)−τmix

= τmix(1− 0.5αµ)−τmix ,

(4.119)

and note that, using (4.68), (1 − 0.5αµ)−τmix ≤ (1 + αµ)τmix ≤ eαµτmix ≤ e0.25 ≤ 2, because

α ≤ 1
4τmix

≤ 1
4µτmix

. Hence, we get
Wτmix−1

wT
≤ 2τmix. (4.120)

Consequently, we can write, for all T ≥ 0,

E
[
r̃2T+1

]
≤ (1− 0.5αµ)T+1E

[
r̃20
]
+ 300

αL2τ̄σ2

µ
+ 4ατmixB (4.121)

Also, we have

E
[
r2t
]
≤ 2E

[
r̃2t
]
+ 2E

[
∥dt∥2

]
, (4.122)

from which we can derive, using the bound on p1 derived in (4.111),

T∑
t=0

wtE
[
r2t
]
≤ 2

T∑
t=0

wtE
[
r̃2t
]
+ 2

T∑
t=0

wtE
[
∥dt∥2

]
≤ 2

T∑
t=0

wtE
[
r̃2t
]
+ 2

(
36WTα

2τ2L2σ2 + 32α2τ2L2
T∑
t=0

wtE
[
r̃2t
])

≤ 3
T∑
t=0

wtE
[
r̃2t
]
+ 72WTα

2τ2L2σ2

(4.123)

132

Now, we can get, plugging (4.121) into (4.123),

T∑
t=0

wtE
[
r2t
]
≤ 3

T∑
t=0

wtE
[
r̃2t
]
+ 72WTα

2τ2L2σ2

≤ 3
T∑
t=0

(1− 0.5αµ)−1E
[
r̃20
]
+ 3WT 300

αL2τ̄σ2

µ

+ 3WT 4ατmixB + 72WTα
2τ2L2σ2

= 3T (1− 0.5αµ)−1E
[
r̃20
]
+WT 900

αL2τ̄σ2

µ

+ 12WTατmix(84L
2σ2 + 216αL2σ2τmix) + 72WTα

2τ2L2σ2

≤ 3T (1− 0.5αµ)−1E
[
r̃20
]
+ 1945WT

αL2τ̄σ2

µ

(4.124)

where for the last inequality we used the fact that α ≤ µ
100L2τ̄

. Dividing both sides by WT ,

1

WT

T∑
t=0

wtE
[
r2t
]
≤ 3T

WT
(1− 0.5αµ)−1E

[
r̃20
]
+ 1945

αL2τ̄σ2

µ

(∗)
≤ 3T

wT
(1− 0.5αµ)−1r20 + 1945

αL2τ̄σ2

µ

≤ 3T (1− 0.5αµ)T r20 + 1945
αL2τ̄σ2

µ

≤ 3T exp (−0.5αµT) r20 + 1945
αL2τ̄σ2

µ
,

(4.125)

where for (∗) we used the fact that WT ≥ wT and thus 1
WT
≤ 1

wT
. Choosing the maximum step size

α = µ
100L2τ̄

, we get

1

WT

T∑
t=0

wtE
[
r2t
]
≤ 3T exp

(
−0.5 µ2

100L2τ̄
T

)
r20 + 20σ2. (4.126)

Finally,by definition of θout in Theorem 9, we have

E
[
∥θout − θ∗∥2

]
=

1

WT

T∑
t=0

wtE
[
r2t
]
≤ 3T exp

(
−0.5 µ2

100L2τ̄
T

)
r20 + 20σ2. (4.127)

□

133

4.10. Appendix B: Proof of Theorem 10

Let rt ≜ ∥θt − θ∗∥. Define τ ′ = 2τmax + τmix, and recall

rt,1 ≜ max
t−τ ′≤l≤t

E [rl]

rt,2 ≜ max
t−τ ′≤l≤t

E
[
r2l
] (4.128)

We start by proving the following bounds on terms of the form ∥θt − θt−τ∥ and ∥θt − θt−τ∥2, for

some τ ≥ 0, t ≥ τ .

Proof of Lemma 27. Using (4.57), we start by proving (i).

∥θt − θt−τmix∥ ≤
t−1∑

l=t−τmix

∥θl+1 − θl∥ = α
t−1∑

l=t−τmix

∥g(θl−τl , ol−τl)∥

(4.57)
≤ αL

t−1∑
l=t−τmix

(∥θl−τl∥+ σ)

≤ αL
t−1∑

l=t−τmix

(∥θl−τl − θ∗∥+ 2σ).

(4.129)

Taking the expectation on both sides of the inequality, we get

E [∥θt − θt−τmix∥] ≤ αL
t−1∑

l=t−τmix

(E [rl−τt] + 2σ)

≤ αL
t−1∑

l=t−τmix

max
t−τmix−τmax≤j≤t

E [rj] + 2ατmixLσ

≤ ατmixL(rt,1 + 2σ).

(4.130)

134

Now, to prove (ii), note that, using (4.61), we can get

∥θt − θt−τmix∥2 ≤

 t−1∑
l=t−τmix

∥θl+1 − θl∥

2

≤ τmix
t−1∑

l=t−τmix

∥θl+1 − θl∥2

= τmixα
2

t−1∑
l=t−τmix

∥g(θl−τl , ol−τl)∥
2

(4.58)
≤ 2α2τmixL

2
t−1∑

l=t−τmix

(∥θl−τl∥
2 + σ2)

≤ 2α2τmixL
2

t−1∑
l=t−τmix

(2r2l−τl + 3σ2).

(4.131)

Taking the expectation on both sides of the inequality, we get

E
[
∥θt − θt−τmix∥2

]
≤ 2α2τmixL

2
t−1∑

l=t−τmix

(2E
[
r2l−τl

]
+ 3σ2)

≤ 2α2τmixL
2

t−1∑
l=t−τmix

(2 max
t−τmix−τmax≤j≤t

E
[
r2j
]
+ 3σ2)

≤ 4τ2mixα
2L2rt,2 + 6α2τ2mixL

2σ2

= 2α2τ2mixL
2(2rt,2 + 3σ2).

(4.132)

For (iii), note that

∥θt − θt−τt∥ ≤
t−1∑

l=t−τt

∥θl+1 − θl∥

= α

t−1∑
l=t−τt

∥g(θl−τl , ol−τl)∥

(4.57)
≤ αL

t−1∑
l=t−τt

(∥θl−τl∥+ σ)

≤ αL
t−1∑

l=t−τt

(rl−τl + 2σ).

(4.133)

135

Taking the expectation on both sides of the inequality, we get

E [∥θt − θt−τt∥] ≤ αL
t−1∑

l=t−τt

(E [rl−τl] + 2σ)

≤ αL
t−1∑

l=t−τt

(
max

t−2τmax≤j≤t
E [rj] + 2σ

)
≤ ατtL(rt,1 + 2σ)

≤ ατmaxL(rt,1 + 2σ).

(4.134)

With computations analogous to the above ones use to get the bounds on ∥θt − θt−τmix∥ and

∥θt − θt−τt∥, we can conclude getting part (iv) of Lemma 27, i.e.,

∥θt − θt−τt∥2 ≤ 2α2τ2maxL
2(2rt,2 + 3σ2). (4.135)

□

Now, recall the definition of et,

et ≜ g(θt, ot)− g(θt−τ , ot−τ). (4.136)

As illustrated in the outline of the analysis in Section 4.6, for the purpose of the analysis, we write

the update rule as follows,

θt+1 = θt + αg(θt, ot)− αet, (4.137)

from which we can write

∥θt+1 − θ∗∥2 = Jt,1 + α2Jt,2 − 2αJt,3, (4.138)

with
Jt,1 ≜ ∥θt − θ∗ + αg(θt, ot)∥2

Jt,2 ≜ ∥et∥2

Jt,3 ≜ ⟨et,θt − θ∗ + αg(θt, ot)⟩

(4.139)

136

Lemma 34 (bounding E [Jt,1]). Let t ≥ τmix + 2τmax.

E [Jt,1] ≤ (1− 2αµ)E
[
r2t
]
+ 28α2τmixL

2rt,2 + 34α2τmixL
2σ2 (4.140)

Proof.

Jt,1 = ∥θt − θ∗ + αg(θt, ot)∥2 = r2t + 2α ⟨θt − θ∗,g(θt, ot)⟩︸ ︷︷ ︸
Jt,11

+ α2 ∥g(θt, ot)∥2︸ ︷︷ ︸
Jt,12

.

(4.141)

Note that
E [Jt,12] = E

[
∥g(θt, ot)∥2

]
≤ E

[
2L2

(
∥θt∥2 + σ2

)]
≤ 2L2

(
2E
[
r2t
]
+ 3σ2

)
≤ 2L2

(
2rt,2 + 3σ2

)
(4.142)

Now note that, using (4.55),

Jt,11 = ⟨θt − θ∗,g(θt, ot)⟩ = −⟨θ∗ − θt, ḡ(θt)⟩

+ ⟨θt − θ∗,g(θt, ot)− ḡ(θt)⟩

≤ −µr2t + ⟨θt − θ∗,g(θt, ot)− ḡ(θt)⟩︸ ︷︷ ︸
T ′
1

,

(4.143)

where we now omit the dependence on the iterate t in the terms we bound, for notation convenience.

Now, note that

T ′
1 = ⟨θt − θt−τmix ,g(θt, ot)− ḡ(θt)⟩︸ ︷︷ ︸

T ′
11

+ ⟨θt−τmix − θ∗,g(θt, ot)− ḡ(θt)⟩︸ ︷︷ ︸
T ′
12

, (4.144)

137

where, using Cauchy-Schwarz inequality and triangle inequality,

T ′
11 ≤ ∥θt − θt−τmix∥(∥g(θt, ot)∥+ ∥ḡ(θt)∥)

(4.57)
≤ 2L(∥θt − θt−τmix∥(∥θt∥+ σ))

(∗)
≤ L

(
1

ατmixL
∥θt − θt−τmix∥2 + ατmixL(∥θt∥+ σ)2

)
(4.61)
≤ L

(
1

ατmixL
∥θt − θt−τmix∥2 + 2ατmixL(∥θt∥2 + σ2)

)
,

(4.145)

where for (∗) we used the fact that, from (4.60), we have

ab = (
1√
c
a)(
√
cb) ≤ 1

2c
a2 +

cb2

2
, (4.146)

specifically with c = ατmixL. Taking the expectation on both sides and applying (ii) of Lemma 27,

we get

E
[
T ′
11

]
≤ L

(
1

2ατmixL
E
[
∥θt − θt−τmix∥2

]
+ ατmixL(2E

[
r2t
]
+ 3σ2)

)
≤ L

(
2α2τ2mixL

2

2ατmixL
(2rt,2 + 3σ2) + ατmixL(2rt,2 + 3σ2)

)
= 4ατmixL

2rt,2 + 6ατmixL
2σ2.

(4.147)

Now, we proceed to bound E [T ′
12]. Note that

T ′
12 = ⟨θt−τmix − θ∗,g(θt, ot)− ḡ(θt)⟩

= T̄1 + T̄2 + T̄3

(4.148)

with
T̄1 = ⟨θt−τmix − θ∗,g(θt−τmix , ot)− ḡ(θt−τ)⟩

T̄2 = ⟨θt−τmix − θ∗,g(θt, ot)− g(θt−τmix , ot)⟩

T̄3 = ⟨θt−τmix − θ∗, ḡ(θt−τmix)− ḡ(θt)⟩.

(4.149)

We first bound T̄2 and T̄3. Note that, using Lipschitz property of the TD update direction (4.56),

138

and calculations similar to the ones used to bound E [T ′
11], we get

T̄2 ≤ ∥θt−τmix − θ∗∥∥g(θt, ot)− g(θt−τmix , ot)∥

≤ L∥θt−τmix − θ∗∥∥θt−τmix − θt∥
(4.146)
≤ L2ατmix

2
r2t−τmix

+
∥θt − θt−τmix∥2

2ατmix
.

(4.150)

Taking the expectation and applying (ii) of Lemma 27, we can get

E
[
T̄2
]
≤ ατmixL

2rt,2
2

+ 2ατmixL
2rt,2 + 3ατmixL

2σ2

≤ 3ατmixL
2(rt,2 + σ2)

(4.151)

With the same calculations, we can get

E
[
T̄3
]
≤ 3ατmixL

2(r2t,2 + σ2). (4.152)

We now proceed to bound T̄1.

E
[
T̄1
]
= E [⟨θt−τmix − θ∗,g(θt−τmix , ot)− ḡ(θt−τmix)⟩]

= E [⟨θt−τmix − θ∗,E [g(θt−τmix , ot)|ot−τ ,θt−τmix]− ḡ(θt−τmix)⟩]

≤ E [∥θt−τmix − θ∗∥∥E [g(θt−τmix , ot)|ot−τmix ,θt−τmix]− ḡ(θt−τmix)∥]
(∗)
≤ αE [∥θt−τmix − θ∗∥(∥θt−τmix∥+ σ)]

≤ αE [∥θt−τmix − θ∗∥(∥θt−τmix − θ∗∥+ 2σ)]

≤ αE
[
1

2

(
r2t−τmix

+ 2r2t−τmix
+ 4σ2

)]
≤ 2α(rt,2 + σ2),

(4.153)

where for (∗) we used Definition 1 of mixing time and the fact that σ ≥ 1. So, putting the above

bounds together, we get

E
[
T ′
12

]
= E

[
T̄1
]
+ E

[
T̄2
]
+ E

[
T̄3
]
≤ 8ατmixL

2(r2t,2 + σ2). (4.154)

139

So, we get

E
[
T ′
1

]
= E

[
T ′
11

]
+ E

[
T ′
12

]
≤ 4ατmixL

2rt,2 + 6ατmixL
2σ2 + 8ατmixL

2(rt,2 + σ2)

≤ 12ατmixL
2rt,2 + 14ατmixL

2σ2

(4.155)

so,

E [Jt,11] ≤ −µE
[
r2t
]
+ E

[
T ′
1

]
. (4.156)

Hence,

E [Jt,1] = E
[
r2t
]
+ 2αE [Jt,11] + α2E [Jt,12]

≤ (1− 2αµ)E
[
r2t
]
+ 28α2τmixL

2rt,2 + 34α2τmixL
2σ2,

(4.157)

which concludes the proof of the Lemma.

Lemma 35 (bounding E [Jt,2]). Let t ≥ τmix + 2τmax.

E [Jt,2] ≤ 8L2(2rt,2 + 3σ2) (4.158)

Proof.

Jt,2 = ∥et∥2 = ∥g(θt, ot)− g(θt−τt , ot−τt)∥2

(4.61)
≤ 2

(
∥g(θt, ot)∥2 + ∥g(θt−τt , ot−τt)∥2

)
(4.58)
≤ 2

(
2L2(∥θt∥2 + σ2) + 2L2(∥θt−τt∥2 + σ2)

)
≤ 4L2(2r2t + 3σ2 + 2rt−τt + 3σ2).

(4.159)

Taking the expectation, we conclude getting

E [Jt,2] = E
[
∥et∥2

]
≤ 8L2(2rt,2 + 3σ2) (4.160)

140

Lemma 36 (bounding E [Jt,3]). Let t ≥ τmix + 2τmax.

E [Jt,3] ≤ O(α)(τmix + τmax)(r
2
t,3 + σ2) (4.161)

Proof. In the following, we drop the dependence on the iteration t in the terms we bound. We write

Jt,3 = ⟨et,θt − θ∗ + αg(θt, ot)⟩

= ⟨et,θt − θ∗⟩︸ ︷︷ ︸
∆

+α⟨et,g(θt, ot)⟩︸ ︷︷ ︸
∆̄

.
(4.162)

Note that
∆̄ = α⟨et,g(θt, ot)⟩ ≤ α∥et∥∥g(θt, ot)∥

≤ O(α)(∥θt∥+ ∥θt−τ∥+ σ)(∥θt∥+ σ)

≤ O(α)(∥θt∥2 + ∥θt−τ∥2 + σ2)

(4.163)

so we get

E
[
∆̄
]
≤ O(α)(r2t,3 + σ2). (4.164)

We now proceed to bound ∆.

∆ = ⟨et,θt − θ∗⟩ = ⟨g(θt, ot)− g(θt−τt , ot−τt),θt − θ∗⟩

= ⟨g(θt, ot)− g(θt, ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆1

+ ⟨g(θt, ot−τt)− g(θt−τt , ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆2

(4.165)

Note that, thanks to the Lipschitz property of the TD direction and with calculations analogous to

the ones performed to obtain (4.224), we get

E [∆2] ≤ E [O(∥θt − θt−τt∥)rt] ≤ O(ατmax)(r
2
t,3 + σ2). (4.166)

141

We now bound ∆1.

∆1 = ⟨g(θt, ot)− g(θt−τmix , ot),θt,−θ∗⟩︸ ︷︷ ︸
∆11

+ ⟨g(θt−τmix , ot)− g(θt, ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆12

(4.167)

Thanks to Lipschitz property of the TD direction and with calculations analogous to the ones

performed to obtain (4.224), we get

E [∆11] ≤ O(ατmix)(r
2
t,3 + σ2). (4.168)

We now proceed to bound ∆12.

∆12 = ⟨g(θt−τmix , ot)− ḡ(θt−τmix),θt − θ∗⟩︸ ︷︷ ︸
∆′

1

+ ⟨ḡ(θt−τmix)− g(θt, ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆′

2

(4.169)

We have
∆′

1 = ⟨g(θt−τmix , ot)− ḡ(θt−τmix),θt−τmix − θ∗⟩︸ ︷︷ ︸
∆′

11

+ ⟨g(θt−τmix , ot)− ḡ(θt−τmix),θt − θt−τmix⟩︸ ︷︷ ︸
∆′

12

(4.170)

Note that, thanks to the Lipschitz property of the TD direction and with calculations analogous to

the ones performed to obtain (4.224), we get

E
[
∆′

12

]
≤ O(ατmix)(r

2
t,3 + σ2). (4.171)

142

Also note that

E
[
∆′

11

]
≤ E [⟨E [g(θt−τmix , ot)|θt−τmix , ot]− ḡ(θt−τmix),θt−τmix − θ∗⟩]

≤ E [∥E [g(θt−τmix , ot)|θt−τmix , ot]− ḡ(θt−τmix)∥∥θt−τmix − θ∗∥]

≤ E [O(α)(1 + ∥θt−τmix∥)∥θt−τmix − θ∗∥]

≤ E
[
O(α)(∥θt−τmix − θ∗∥2 + σ2)

]
≤ E

[
O(α)(r2t,3 + σ2)

]
.

(4.172)

Now note that
∆′

2 = ⟨ḡ(θt−τmix)− g(θt, ot−τt),θt − θ∗⟩

= ⟨ḡ(θt−τmix)− g(θt−τmix , ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆′

21

+ ⟨g(θt−τmix , ot−τt)− g(θt, ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆′

22

(4.173)

Thanks to the Lipschitz property of the TD direction and with calculations analogous to the ones

performed to obtain (4.224), we get

E
[
∆′

22

]
≤ O(∥θt−τmix − θt∥∥θt − θ∗∥) ≤ O(ατmix)(r

2
t,3 + σ2). (4.174)

Now, we write

∆′
21 = ⟨ḡ(θt−τmix)− ḡ(θt−τmix−τt),θt − θ∗⟩︸ ︷︷ ︸

∆̄1

+ ⟨ḡ(θt−τmix−τt)− g(θt−τmix , ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆̄2

.

(4.175)

We see that, as before, we can bound ∆̄1 using the Lipschitz property of the TD direction:

E
[
∆̄1

]
≤ E [O(∥θt−τmix − θt−τmix−τt∥∥θt − θ∗∥)] ≤ O(ατmax)(r

2
t,3 + σ2). (4.176)

143

We write
∆̄2 = ⟨ḡ(θt−τmix−τt)− g(θt−τmix−τt , ot−τt),θt − θ∗⟩︸ ︷︷ ︸

∆̄21

+ ⟨g(θt−τmix−τt , ot−τt)− g(θt−τmix , ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆̄22

.

(4.177)

Now note that, with calculations analogous to the ones performed to obtain (4.224),

E
[
∆̄22

]
≤ E [O(∥θt−τmix−τt − θt−τmix∥∥θt − θ∗∥)]

≤ E
[
O(ατmax)(r

2
t,3 + σ2)

] (4.178)

Now note that

∆̄21 = ⟨ḡ(θt−τmix−τt)− g(θt−τmix−τt , ot−τt),θt−τmix−τt − θ∗⟩︸ ︷︷ ︸
∆̄211

+ ⟨ḡ(θt−τmix−τt)− g(θt−τmix−τt , ot−τt),θt − θt−τmix−τt⟩︸ ︷︷ ︸
∆̄212

.

(4.179)

With calculations analogous to the ones performed to obtain (4.224), we get

E
[
∆̄212

]
≤ E [∥θt − θt−τmix−τt∥O (∥ḡ(θt−τmix−τt)∥+ ∥g(θt−τmix−τt , ot−τt)∥)]

≤ O(α)(τmix + τmax)(r
2
t,3 + σ2).

(4.180)

Now,

E
[
∆̄211

]
= E [⟨ḡ(θt−τmix−τt)− E [g(θt−τmix−τt , ot−τt)] ,θt−τmix−τt − θ∗⟩]

≤ E [∥E [g(θt−τmix−τt , ot−τt)|θt−τmix−τt , ot−τt−τmix]− ḡ(θt−τmix−τt)∥

∥θt−τmix−τt − θ∗∥]

≤ O(α)E [O(∥θt−τmix−τt∥+ σ)∥θt−τmix−τt − θ∗∥]

≤ O(α)(r2t,3 + σ2).

(4.181)

So, E [T3] can be upper bounded by a sum of terms that are upper bounded by either O(α)(r2t,3+σ
2),

144

O(ατmax)(r
2
t,3 + σ2), O(ατmix)(r

2
t,3 + σ2) or O(α)(τmix + τmax)(r

2
t,3 + σ2). So, we can conclude that

E [T3] ≤ O(α)(τmix + τmax)(r
2
t,3 + σ2) (4.182)

We can now prove the following convergence result for asynchronous TD learning:

Theorem 12. For α > 0 small enough and T ≥ 2τmix + τmax,

E
[
r2T
]
≤ ρT + ϵ, (4.183)

with
ρ = (1− 2α(1− γ)ω + C1α

2(τmix + τmax))
1

1+τmix+τmax

ϵ =
C2α

2(τmix + τmax)σ
2

2α(1− γ)ω − C1α2(τmix + τmax)

(4.184)

Proof. Putting together Lemma 40, 41 and 42, we get

E
[
r2t+1

]
= ∥θt − θ∗ + αg(θt, ot)∥2︸ ︷︷ ︸

T1

+α2 ∥et∥2︸ ︷︷ ︸
T2

− 2α ⟨et,θt − θ∗ + αg(θt, ot)⟩︸ ︷︷ ︸
T3

≤ (1− 2α(1− γ)ω)E
[
r2t
]

+O(α2)(τmix + τmax)r
2
t,3 +O(α2)(τmix + τmax)σ

2

≤ (1− 2α(1− γ)ω)︸ ︷︷ ︸
p

E
[
r2t
]

+O(α2)(τmix + τmax)︸ ︷︷ ︸
q

max
t−2τmax−τmix≤l≤t

E
[
r2l
]

+O(α2)(τmix + τmax)σ
2︸ ︷︷ ︸

r

.

(4.185)

For α sufficiently small, we have that p+ q < 1 and for T ≥ τmix + 2τmax we get, for C1, C2 > 0

145

absolute constants,

E
[
r2T
]
≤ ρT r20 + ϵ, (4.186)

with

ρ = (1− 2α(1− γ)ω + C1α
2(τmix + τmax))

1
1+τmix+τmax (4.187)

and

ϵ =
C2α

2(τmix + τmax)σ
2

2α(1− γ)ω − C1α2(τmix + τmax)
(4.188)

4.11. Appendix C: Proof of Theorem 11

In this section, we consider following update rule

θt+1 =

θt + α (g(θt−τt , ot−τt)) if∥θt − θt−τt∥ ≤ ϵ

4

θt otherwise
(4.189)

Assumption 9. For all θ,θ
′ ∈ θ and o, o′ ∈ O

∥g(θ, o)∥ ≤ L∥θ∥+ σ, (4.190)

and

∥g(θ, o)− g(θ, o′)∥ ≤ L∥θ∥+ σ, (4.191)

and

∥g(θ, o)− ḡ(θ)∥ ≤ L∥θ∥+ σ, (4.192)

and

∥g(θ, o)− g(θ
′
, o)∥ ≤ L∥θ − θ

′∥. (4.193)

We also define β = Lϵ+ σ and assume ∥θ∗∥ ≤ σ.

146

Lemma 37. Let τavg be the average of delay. Then if the algorithm fails, then the number of updates

that it makes is at least T
4(τavg+1) .

Proof. Consider U2τavg , the number of steps t for which the delay τt is at least 2τavg. We must have

U2τavg ≤ T
2 (otherwise the total sum of delays exceeds τavgT , contradicting the definition of τavg).

On the other hand, let k be the number of updates that the algorithm makes. Let t1 < t2 < . . . < tk

be the steps in which an update is made. Denote t0 = 0 and tk+1 = T . Now, fix i and consider the

steps at times sn = ti + n for n ∈ [1, 2, . . . , ti+1 − ti − 1]. In all those steps no update takes place

and θsn = θti . We must have τsn > n for all n (otherwise θt = θt−tτt for t = sn and an update

occurs). In particular we have that τsn ≥ 2τavg in at least ti+1 − ti − 1− 2τavg steps

of steps in [ti, ti+1] with delay bigger or equal to 2τavg (4.194)

≥ max{0, ti+1 − ti − 1− 2τavg} (4.195)

≥ ti+1 − ti − 1− 2τavg. (4.196)

Hence,

U2τavg ≥
k−1∑
i=0

(ti+1 − ti − 1− 2τavg)

= T − k(1 + 2τavg).

Finally, it follows that T − k(1 + 2τavg) ≤ T
2 which implies k ≥ T

4(τavg+1) .

Lemma 38. Suppose τt ≤ τmax and for all t ≥ 0. Then, for any τ ≥ 1 and t ≥ τ , we have

∥θt − θt−τ∥ ≤ 4ατ∥θt∥+ ατc, (4.197)

where c = (4L+ 2)β = (4L+ 2)(Lϵ+ σ).

147

Proof. Let t′ = t− τt and It = 1, then

∥θt+1 − θt∥ ≤ αIt∥g(θt′ , ot′)∥

≤ αIt(L∥θt′∥+ σ)

≤ αIt(L∥θt∥+ L∥θt − θt′∥+ σ)

≤ αIt(L∥θt∥+ Lϵ+ σ)

≤ αL∥θt∥+ αβ,

(4.198)

from which we get

∥θt+1∥ ≤ (1 + αL)∥θt∥+ αβ (4.199)

By recursively using the above inequality, we have for all t ≥ τ

∥θt∥ ≤ (1 + αL)∥θt−1∥+ αβ (4.200)

≤ (1 + αL)2∥θt−2∥+ αβ(1 + αL) + αβ (4.201)

≤ (1 + αL)τ∥θt−τ∥+ αβ

τ−1∑
j=0

(1 + αL)j (4.202)

= (1 + 2ατL)∥θt−τ∥+ αβ

(
1 + 2αLτ − 1

α

)
(4.203)

≤ 2∥θt−τ∥+ 2αLβτ (4.204)

where we used ατL ≤ 1
4 and the fact that (1 + x)τ ≤ 1 + 2xτ for xτ ≤ 1

4 .

Now,

∥θt − θt−τ∥ ≤
t−1∑
j=t−τ

∥θj+1 − θj∥ (4.205)

≤
t−1∑
j=t−τ

αL∥θj∥+ αβ (4.206)

≤ ατ(2∥θt−τ∥+ 2Lαβτ) + αβτ (4.207)

≤ 2ατ∥θt−τ∥+ (2L+ 1)αβτ, (4.208)

148

where in the last ineq. we used the fact that ατ ≤ 1
4 . Moreover,

∥θt − θt−τ∥ ≤ 2ατ∥θt−τ∥+ (2L+ 1)αβτ (4.209)

≤ 2ατ∥θt∥+ (2L+ 1)αβτ + 2ατ∥θt − θt−τ∥ (4.210)

≤ 2ατ∥θτ∥+ (2L+ 1)αβτ +
1

2
∥θt − θt−τ∥, (4.211)

which results in

∥θt − θt−τ∥ ≤ 4ατ∥θt∥+ (4L+ 2)αβτ, (4.212)

then, let c = (4L+ 2)β, then

∥θt − θt−τ∥ ≤ 4ατ∥θt∥+ αcτ. (4.213)

Lemma 39. Let et = g(θt, ot)− g(θt−τt , ot−τt). Then if It = 1,

∥et∥ ≤ Lϵ+ L∥θt∥+ σ ≤ L∥θt∥+ β. (4.214)

Proof. First, we can write

∥et∥ = ≤ ∥g(θt′ , ot′)− g(θt, ot′)∥+ ∥g(θt, ot′)− g(θt, ot)∥ (4.215)

≤ L∥θt − θt′∥+ L∥θt∥+ σ (4.216)

≤ Lϵ+ L∥θt∥+ σ (4.217)

149

4.11.1. Main Analysis

If It = 1, we have:

∥θt+1 − θ∗∥2 = ∥θt + αg(θt, ot)− θ∗∥2︸ ︷︷ ︸
T1

+α2∥et∥2︸ ︷︷ ︸
T2

−2α⟨et,θt − θ∗ + αg(θt, ot)⟩︸ ︷︷ ︸
T3

(4.218)

Lemma 40 (bounding E [T1]). Let t ≥ τmix.

E [T1] ≤ (1− 2α(1− γ)ω)E
[
r2t
]
+O(α2τmix)(r

2
t + β2) (4.219)

Proof.

T1 = ∥θt − θ∗ + αg(θt, ot)∥2 = r2t + 2α ⟨θt − θ∗,g(θt, ot)⟩︸ ︷︷ ︸
I1

+ α2 ∥g(θt, ot)∥2︸ ︷︷ ︸
I2

.

(4.220)

Note that

E [I2] = E
[
∥g(θt, ot)∥2

]
≤ 2M2E

[
∥θt∥2

]
+ 2σ2. (4.221)

Now note that
I1 = ⟨θt − θ∗,g(θt, ot)⟩ = −⟨θ∗ − θt, ḡ(θt)⟩

+ ⟨θt − θ∗,g(θt, ot)− ḡ(θt)⟩

≤ −ω(1− γ)r2t + ⟨θt − θ∗,g(θt, ot)− ḡ(θt)⟩︸ ︷︷ ︸
T ′
1

.

(4.222)

Now,

T ′
1 = ⟨θt − θt−τmix ,g(θt, ot)− ḡ(θt)⟩︸ ︷︷ ︸

T ′
11

+ ⟨θt−τmix − θ∗,g(θt, ot)− ḡ(θt)⟩︸ ︷︷ ︸
T ′
12

, (4.223)

150

where
T ′
11 ≤ ∥θt − θt−τmix∥∥g(θt, ot)− ḡ(θt)∥

≤ ∥θt − θt−τmix∥(2∥θt∥+ 2σ)

≤ (4ατmix∥θt∥+ 4ατmixβ)(2∥θt∥+ 2σ)

≤ 8ατmix∥θt∥2 + 8αβτmixσ + (8ατmixσ + 8ατmixβ)∥θt∥,

(4.224)

so, taking the expectation,

E
[
T ′
11

]
≤ O(ατmix)(E

[
r2t
]
+ β2). (4.225)

Now,

T ′
12 = ⟨θt−τmix − θ∗,g(θt, ot)− ḡ(θt)⟩

= T̄1 + T̄2 + T̄3

(4.226)

with
T̄1 = ⟨θt−τmix − θ∗,g(θt−τmix , ot)− ḡ(θt−τmix)⟩

T̄2 = ⟨θt−τmix − θ∗,g(θt, ot)− g(θt−τmix , ot)⟩

T̄3 = ⟨θt−τmix − θ∗, ḡ(θt−τmix)− ḡ(θt)⟩.

(4.227)

We first bound T̄2 and T̄3. Note that, using Lipschitz property of the TD update direction,

T̄2 ≤ ∥θt−τmix − θ∗∥∥g(θt, ot)− g(θt−τmix , ot)∥

≤ ∥θt−τmix − θ∗∥O(∥θt−τmix − θt∥).
(4.228)

Taking the expectation and applying manipulations analogous to the ones performed to obtain

(4.225), we get

E
[
T̄2
]
≤ O(ατmix)(E

[
r2t
]
+ β2). (4.229)

With the same calculations, we can get

E
[
T̄3
]
≤ O(ατmix)(E

[
r2t
]
+ β2). (4.230)

151

We now proceed to bound T̄1.

E
[
T̄1
]
= E [⟨θt−τmix − θ∗,g(θt−τmix , ot)− ḡ(θt−τmix)⟩]

= E [⟨θt−τmix − θ∗,E [g(θt−τmix , ot)|ot−τmix ,θt−τmix]− ḡ(θt−τmix)⟩]

≤ E [∥θt−τmix − θ∗∥∥E [g(θt−τmix , ot)|ot−τmix ,θt−τmix]− ḡ(θt−τmix)∥]

≤ O(α)E [∥θt−τmix − θ∗∥(∥θt−τmix∥+ σ)]

≤ O(α)E [∥θt−τmix − θ∗∥(∥θt−τmix − θ∗∥+ σ)]

≤ O(α)E
[
∥θt−τmix − θ∗∥2 + σ2

]
≤ O(α)(E

[
r2t
]
+ β2).

(4.231)

So, we get

E
[
T ′
12

]
= E

[
T̄1
]
+ E

[
T̄2
]
+ E

[
T̄3
]
≤ O(ατmix)(E

[
r2t
]
+ β2). (4.232)

So, we get

E
[
T ′
1

]
≤ O(ατmix)(E

[
r2t
]
+ β2), (4.233)

so,

E [I1] ≤ −ω(1− γ)E
[
r2t
]
+ E

[
T ′
1

]
. (4.234)

Hence,

E [T1] = E
[
r2t
]
+ 2αE [I1] + α2E [I2]

≤ (1− 2α(1− γ)ω)E
[
r2t
]
+O(α2τmix)(E

[
r2t
]
+ β2)

(4.235)

Lemma 41 (bounding E [T2]). Let t ≥ τmix.

E [T2] ≤ O(α2(E
[
r2t
]
+ β2)) (4.236)

Proof. The lemma follows directly from lemma 3.

152

Lemma 42 (bounding E [T3]). Let t ≥ τmix + τmax.

E [T3] ≤ O(2α(ατmix(E
[
r2t
]
+ β2)) (4.237)

Proof. We write

T3 = ⟨et,θt − θ∗ + αg(θt, ot)⟩

= ⟨et,θt − θ∗⟩︸ ︷︷ ︸
∆

+α⟨et,g(θt, ot)⟩︸ ︷︷ ︸
∆̄

.
(4.238)

Note that
∆̄ = α⟨et,g(θt, ot)⟩ ≤ α∥et∥∥g(θt, ot)∥

≤ O(α)(2∥θk∥+ β)(∥θt∥+ σ)

≤ O(α)(∥θt∥2 + β2)

(4.239)

so we get

E
[
∆̄
]
≤ O(α)(E

[
r2t
]
+ β2). (4.240)

We now proceed to bound ∆.

∆ = ⟨et,θt − θ∗⟩ = ⟨g(θt, ot)− g(θt−τt , ot−τt),θt − θ∗⟩

= ⟨g(θt, ot)− ḡ(θt) + ḡ(θt)− g(θt, ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆1

+ ⟨g(θt, ot−τt)− g(θt−τt , ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆2

(4.241)

We have

∆2 ≤ O(ϵrt) ≤ O(α(r2t + (
ϵ

α
)2)) (4.242)

if ϵ ≤ α, we have

153

∆2 ≤ O(α(r2t + 1)) (4.243)

and

∆1 ≤ ⟨g(θt, ot)− ḡ(θt),θt − θ∗⟩︸ ︷︷ ︸
∆11

+ ⟨ḡ(θt)− g(θt, ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆12

. (4.244)

Note that ∆11 = T ′
1 above, and therefore

E [∆11] ≤ O(ατmix)(E
[
r2t
]
+ β2). (4.245)

We now bound E [∆12].

∆12 = ⟨ḡ(θt)− g(θt, ot−τt),θt − θ∗⟩

= ⟨ḡ(θt−τt)− g(θt, ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆′

1

+ ⟨ḡ(θt)− ḡ(θt−τt),θt − θ∗⟩︸ ︷︷ ︸
∆′

2

.

(4.246)

Note that, using Lemma 38 and the fact that ϵ ≤ α,

∆′
2 ≤ O(∥θt − θt−τt∥)∥θt − θ∗∥

≤ O(ϵrt)

≤ O
(
ϵ2

α
+ αr2t

)
≤ O(α)(1 + r2t)

≤ O(α)(r2t + β2).

(4.247)

154

We now bound E [∆′
1],

∆′
1 = ⟨ḡ(θt−τt)− g(θt, ot−τt),θt − θ∗⟩

= ⟨ḡ(θt−τt)− g(θt−τt , ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆′

11

+ ⟨g(θt−τt , ot−τt)− g(θt, ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆′

12

.

(4.248)

Note that, using Lemma 38 and the same calculations used to get (4.247),

∆′
12 ≤ ∥g(θt−τt , ot−τt)− g(θt, ot−τt)∥∥θt − θ∗∥

≤ O(∥θt−τt − θt∥)∥θt − θ∗∥

≤ O(α)(r2t + β2).

(4.249)

Note that
∆′

11 = ⟨ḡ(θt−τt)− g(θt−τt , ot−τt),θt − θ∗⟩

= ⟨ḡ(θt−τt)− ḡ(θt−τt−τmix),θt − θ∗⟩︸ ︷︷ ︸
∆̄1

+ ⟨ḡ(θt−τt−τmix)− g(θt−τt , ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆̄2

.

(4.250)

Now, using Lemma 38,

∆̄1 ≤ O (∥θt−τt − θt−τt−τmix∥) ∥θt − θ∗∥

≤ O(ατmix)(∥θt−τt∥+ β)rt

≤ O(ατmix)(∥θt∥+ ϵ+ β)rt

≤ O(ατmix)(rt + β)rt

≤ O(ατmix)(r
2
t + β2).

(4.251)

Now, note that

∆̄2 = ⟨ḡ(θt−τt−τmix)− g(θt−τt−τmix , ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆̄21

+ ⟨g(θt−τt−τmix , ot−τt)− g(θt−τt , ot−τt),θt − θ∗⟩︸ ︷︷ ︸
∆̄22

.

(4.252)

Note that, using the Lipschitz property of the TD update direction and Lemma 38, with calculations

155

analogous to the ones done to get (4.251),

E
[
∆̄22

]
≤ O(ατmix)(r

2
t + β2). (4.253)

Now, we write

∆̄21 = ⟨ḡ(θt−τt−τmix)− g(θt−τt−τmix , ot−τt),θt−τt−τmix − θ∗⟩︸ ︷︷ ︸
∆̄211

+ ⟨ḡ(θt−τt−τmix)− g(θt−τt−τmix , ot−τt),θt − θt−τt−τmix⟩︸ ︷︷ ︸
∆̄212

.

(4.254)

Now, we first bound ∆̄212, using Lemma 38

∆̄212 ≤ ∥ḡ(θt−τt−τmix)− g(θt−τt−τmix , ot−τt)∥∥θt − θt−τt−τmix∥

≤ O(∥θt−τt−τmix∥+ σ)∥θt − θt−τt−τmix∥

≤ O(∥θt∥+ ∥θt−τt−τmix − θt∥+ σ)∥θt − θt−τt−τmix∥
(4.255)

and note that, from (4.189), Lemma 38 and the fact that ϵ ≤ α

∥θt − θt−τt−τmix∥ ≤ ∥θt − θt−τt∥+ ∥θt−τt − θt−τt−τmix∥

≤ ϵ+O(ατmix)(∥θt−τt∥+ β)

≤ ϵ+O(ατmix)(∥θt∥+ ϵ+ β)

≤ ϵ+O(ατmix)(rt + β)

≤ O(ατmix)(rt + β).

(4.256)

Hence, given that σ ≤ β and ατmix ≤ 1,

∆̄212 ≤ O(rt +O(ατmix)(rt + β) + σ)O(ατmix)(rt + β)

= O(α2τ2mix)(rt + β)2 +O(ατmix)(rt + β)2

≤ O(ατmix)(r
2
t + β2).

(4.257)

156

To conclude, we bound E
[
∆̄211

]
. We use (mixing time), the fact that ατmix ≤ 1 and (4.256). For

notation convenience, define t′ ≜ t− τt − τmix,

E
[
∆̄211

]
= E [⟨ḡ(θt′)− g(θt′ , ot−τt),θt′ − θ∗⟩]

= E [⟨ḡ(θt′)− E [g(θt′ , ot−τt)|θt′ , ot′] ,θt′ − θ∗⟩]

≤ E [∥ḡ(θt′)− E [g(θt′ , ot−τt)∥] ∥θt′ − θ∗∥]

≤ E [O(α)(∥θt′∥+ σ)(∥θt′ − θt∥+ ∥θt − θ∗∥)]

≤ O(α)E [(rt + ∥θt′ − θt∥+ σ)(rt + β)]

≤ O(α)(E
[
r2t
]
+ β2).

(4.258)

Putting together the above bounds, we can conclude.

We can now prove the following convergence result for TD learning with the delay adaptive update

rule introduced in (4.189):

Theorem 13. For α > 0 small enough and T ≥ max{τmixτavg, τmix + τmax}, the iterates generated

following the update rule described in (4.189) are such that

E
[
r2T
]
≤ ρ

T
τavg

−τmix + γ, (4.259)

with ρ = (1− 2α(1− γ)ω +O(α2)(τmix)) and γ = ρ
T

τavg
−τmix−1
ρ (O(α2)(τmix)β

2).

Proof. Assume t′1, t
′
2, . . . t

′
k ∈ [T] are iterations that the updates happen. Then, we have rj = r

t
′
i

for

all j ∈ [t
′
i, t

′
i+1). Let E

t
′
1,t

′
2,...t

′
k

be the event that update happens only in t′1, t
′
2, . . . t

′
k. Then we can

157

write using Lemma 40, 41 and 42, we get for all j ∈ [t
′
i+1, t

′
i+2),

E
[
r2j |Et′1,t′2,...t′k

]
= E

[
r2
t
′
i+1

|E
t
′
1,t

′
2,...t

′
k

]
= E

[
∥θ

t
′
i+1−1

− θ + αg(θ
t
′
i+1−1

, o
t
′
i+1−1

)∥2|E
t
′
1,t

′
2,...t

′
k

]
+ α2E

[
∥e

t
′
i+1−1

∥2|E
t
′
1,t

′
2,...t

′
k

]
− 2αE

[
⟨e
t
′
i+1−1

θ
t
′
i+1−1

− θ∗ + αg(θ
t
′
i+1−1

, o
t
′
i+1−1

)⟩|E
t
′
1,t

′
2,...t

′
k

]
= E

[
∥θ

t
′
i
− θ + αg(θ

t
′
i
, o
t
′
i
)∥2|E

t
′
1,t

′
2,...t

′
k

]
︸ ︷︷ ︸

T1

+α2 E
[
∥e

t
′
i
∥2|E

t
′
1,t

′
2,...t

′
k

]
︸ ︷︷ ︸

T2

− 2αE
[
⟨e
t
′
i
θ
t
′
i
− θ∗ + αg(θ

t
′
i
, o
t
′
i
)⟩|E

t
′
1,t

′
2,...t

′
k

]
︸ ︷︷ ︸

T3

≤ (1− 2α(1− γ)ω +O(α2)(τmix))︸ ︷︷ ︸
ρ

E
[
r2
t
′
i

|E
t
′
1,t

′
2,...t

′
k

]
+O(α2)(τmix)β

2.

(4.260)

by recursively using the above equation, we have

E
[
r2T |Et′1,t′2,...t′k

]
≤ ρkr20 + γ, (4.261)

with ρ = (1− 2α(1− γ)ω +O(α2)(τmix)) and γ = O(α2)τmixβ
2

1−ρ . Getting expectation over E
t
′
1,t

′
2,...t

′
k
,

we have

E
[
r2T
]
= E

[
E
[
r2T |Et′1,t′2,...t′k

]]
≤ ρkr20 + γ, (4.262)

and k, number of updates are at least T
τavg
− τmix, which means

E
[
r2T
]
≤ ρkr20 + γ ≤ ρ

T
τavg

−τmixr20 + γ. (4.263)

158

159

CHAPTER 5

Min-Max Optimization under Delays

5.1. Introduction

Min-max optimization is a fundamental problem with applications in various fields, including game

theory (Von Neumann and Morgenstern, 2007), machine learning (Goodfellow et al., 2020), robust

optimization (Ben-Tal et al., 2009b), and more recently, adversarial robustness (Madry et al., 2017b).

As such, the convergence analysis of various min-max optimization algorithms has received consider-

able attention over the years (Korpelevich, 1976a; Nedić and Ozdaglar, 2009; Daskalakis et al., 2017a;

Mokhtari et al., 2020b). While this has resulted in a rich literature that provides non-asymptotic

guarantees for the vanilla versions of these algorithms, not much is known about their robustness

to different types of perturbations that show up in practice. In particular, for large-scale machine

learning problems involving communication between multiple servers and agents, such perturbations

get manifested in the form of (unavoidable) delays and asynchrony. Consequently, several works

have extensively studied stochastic optimization with delayed gradients; since the literature on

this topic is vast, we refer the reader to (Duchi et al., 2015; Doan et al., 2017; Arjevani et al., 2020;

Stich and Karimireddy, 2019; Koloskova et al., 2022a) and the references therein. However, to our

knowledge, there is no analogous theory for min-max optimization. Motivated by this gap, the goal

of our paper is to build an understanding of the effect of delays on the convergence of common

min-max optimization algorithms like Gradient Descent-Ascent (GDA) and Extra-Gradient (EG). Our

main contributions in this regard are as follows.

5.1.1. Summary of Main Results

• We start with a result that is perhaps surprising. In Section 5.2.1, we empirically examine the

effect of delays on the behavior of the Extra-Gradient algorithm due to Korpelevich (Korpelevich,

1976a). We observe that even with the smallest possible delay, i.e., a unit delay, EG diverges on

a simple convex-concave function; see Fig. 5.1.14 Notably, in the absence of delays, EG provably
14The Gradient Descent-Ascent (GDA) algorithm diverges on this instance even in the absence of delays

(Daskalakis et al., 2017a).

160

guarantees convergence to a saddle-point for this function. This observation, although empirical,

suggests that delays can have non-trivial effects on the convergence of popular min-max optimization

algorithms.

• Our empirical study conveys the message that technical assumptions that are typically not required

to study vanilla EG might, in fact, turn out to be needed to ensure convergence under delays.

Accordingly, in Section 5.3, we study DEG - a version of EG with updates based on delayed gradients

- for smooth, convex-concave functions over a bounded domain. In Theorem 14, we show that

DEG guarantees convergence to a saddle-point at a rate O(
√
τmax/

√
T), where T is the number

of iterations, and τmax is a uniform bound on the delays. Our proof of this result is based on

a connection to adversarial perturbations on statistical min-max learning problems in the recent

work (Adibi et al., 2022b).

In the absence of delays, the convergence rates of EG and Gradient Descent-Ascent (GDA) are O(1/T)

(Mokhtari et al., 2020c) and O(1/
√
T) (Nedić and Ozdaglar, 2009), respectively. Our empirical

divergence result (see Footnote 14) and Theorem 14 collectively suggest that under delays, the

behavior of EG is similar to that of GDA.

• To further investigate the above point, we turn our attention to the behavior of GDA under delays

in Section 5.4; we refer to this delayed version as DGDA. For smooth, convex-concave functions with

bounded gradients, we prove that DGDA exhibits a convergence rate of O(
√
τmax/

√
T) - exactly like

DEG; see Theorem 15. However, unlike the analysis for DEG, we do not assume a bounded domain.

Instead, we provide a careful analysis to argue that with suitable step-sizes, the iterates of DGDA

remain bounded.

• All our results above pertain to scenarios where there is some underlying assumption of boundedness

(either on the gradients or on the domain). Thus, one may ask: Can min-max optimization algorithms

under delays converge in the absence of such boundedness assumptions? In Section 5.5, we answer this

question in the affirmative by studying DGDA for smooth, strongly convex-strongly concave functions.

We prove that DGDA guarantees linear convergence to the saddle point at a rate of O(exp(−T/τ3max));

161

Table 5.1: The table below presents a summary of our findings, outlining the conditions required for
each algorithm to achieve the specified convergence rate. In the smooth convex-concave case, the
convergence rate corresponds to the number of iterations needed for the duality gap to be less than ϵ.
For the smooth strongly convex-strongly concave case (SC-SC), the rate corresponds to the number
of iterations needed for the distance to saddle points to be less than ϵ. It is worth noting that in
this table, we hide the dependence on G, L, and the strong-convexity parameter in the O notation.

Algorithm Bounded Gradient Bounded Domain SC-SC Convex-Concave Rate

DEG ✓ ✓ ✗ ✓ O(τmax
ϵ2

)

DGDA ✓ ✗ ✗ ✓ O(τmax
ϵ2

)

DGDA ✗ ✗ ✓ ✗ O(τ3max log(
1
ϵ))

see Theorem 16.

As far as we are aware, our results above are novel and provide the first steps toward theoretically

understanding the robustness of min-max optimization algorithms to delay-induced perturbations.

Our results are summarized in Table 6.1.

5.2. Problem Setting

In this section, we start by describing the basic setup of a min-max optimization problem. Next, we

show empirically how EG can diverge with even one-step delays. Finally, we conclude the section

by outlining some technical assumptions that will be made for the majority of the paper to ensure

boundedness and convergence of iterates.

The basic min-max optimization setup. Let X and Y be nonempty, convex subsets of Rm and

Rn, respectively.15 Given a mapping of the form f : X × Y → R, we are interested in solving the

following optimization problem:

min
x∈X

max
y∈Y

f(x, y). (5.1)

15While we will assume that X and Y are bounded sets in Section 5.3, this assumption will be later relaxed in
Sections 5.4 and 5.5.

162

Throughout the paper, we will assume that f(x, y) is continuously differentiable in x and y, and

convex-concave over X×Y . Specifically, f(·, y) : X → R is convex for every y ∈ Y , and f(x, ·) : Y → R

is concave for every x ∈ X . Our goal is to find a saddle point (x∗, y∗) of f(x, y) over the set X × Y ,

where a saddle point is defined as a vector pair (x∗, y∗) ∈ X × Y that satisfies

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗),∀x ∈ X , y ∈ Y. (5.2)

For any x̄ ∈ X and ȳ ∈ Y, let ∇xf(x̄, ȳ) and ∇yf(x̄, ȳ) denote the partial gradients of f(x, y)

with respect to x and y, respectively, at (x̄, ȳ). Typical first-order iterative min-max optimization

algorithms such as GDA, EG, and Optimistic Gradient Descent-Ascent (OGDA) aim to solve for (x∗, y∗)

based on an oracle that provides partial gradients of f(x, y) evaluated at the most recent iterates of

the algorithm.

The delay model. Not much, however, is known about scenarios where the oracle is imperfect. To

that end, we studied the effect of adversarial perturbations on the partial gradients of f(x, y) in our

recent work (Adibi et al., 2022b). In this work, we take a different stance. Instead of considering

arbitrary adversarial perturbations, we will focus on structured perturbations induced by delays. As

mentioned earlier in the Introduction, the source of such delays could be communication latencies or

system-level computational challenges such as stragglers, both of which are prevalent in distributed

systems. In this work, given an iterative min-max optimization algorithm that generates a sequence

of iterates {(xk, yk)}, we assume that at iteration k, we only have access to partial gradients of

f(x, y) computed at a stale iterate (xk−τk , yk−τk), i.e., we have access to ∇xf(xk−τk , yk−τk) and

∇yf(xk−τk , yk−τk), where τk is the delay at iteration k. While we allow the delays to be time-varying,

throughout the paper, we will work under the running assumption that all delays are uniformly

bounded, i.e., there exists some positive integer τmax such that τk ≤ τmax,∀k.

Our goal is to understand what happens, when for computing the next iterate (xk+1, yk+1), one uses

these delayed gradients as opposed to ∇xf(xk, yk) and ∇yf(xk, yk). Specifically, we ask:

• Can we hope for convergence to saddle points using delayed versions of algorithms like GDA

163

and EG?

• If so, for different classes of functions, how do the convergence rates get affected by τmax?

In the next subsection, we demonstrate (empirically) that the answers to such questions are more

nuanced than what one might initially expect.

5.2.1. Divergence of Extra-Gradient Algorithm under Delay

Let us start by quickly reviewing how the Extra-gradient (EG) algorithm for finding saddle-points

operates in an unconstrained setting. EG first computes a set of mid-points (x̂k, ŷk) by using partial

gradients evaluated at the current iterate (xk, yk):

x̂k ← xk − α∇xf(xk, yk)

ŷk ← yk + α∇yf(xk, yk),
(5.3)

where α is a suitable step-size. Next, using gradients evaluated at the mid-points, EG computes the

next iterates as
xk+1 ← xk − α∇xf(x̂k, ŷk)

yk+1 ← yk + α∇xf(x̂k, ŷk).
(5.4)

For smooth, convex-concave functions, the above EG procedure guarantees convergence to a saddle-

point at a rate of O(1/T), where T is the number of iterations (Mokhtari et al., 2020c). Moreover,

to achieve this convergence, one does not need to make any assumption of a bounded domain or

bounded gradients.

Now to illustrate the challenges posed by delays, let us consider solving the following problem

min
x

max
y
⟨x, y⟩, (5.5)

using a version of EG where all partial gradients are evaluated at iterates that are delayed by just

one time-step.16 Whereas one might have expected a slow-down in convergence due to delays, Figure
16Formally, the delayed EG algorithm we study is outlined in Algorithm 8.

164

Figure 5.1: The Extra-gradient algorithm fails to converge, even with just one step delay, for the
optimization problem minxmaxy⟨x, y⟩. In this plot, we used a step size of α = 0.2. However, with
the same step size and no delay, the Extra-gradient algorithm converges to the origin, which is the
saddle-point for this problem.

5.1 shows that in this specific setting, a unit delay causes EG to diverge! This demonstrates that

delays can lead to non-trivial phenomena for standard min-max algorithms, thereby justifying our

current study.

A rough explanation for the above phenomenon is as follows. In (Mokhtari et al., 2020b), the authors

argued that EG can be studied as an approximate version of the Proximal Point (PP) algorithm,

which, in turn, operates as follows:

xk+1 ← xk − α∇xf(xk+1, yk+1)

yk+1 ← yk − α∇yf(xk+1, yk+1).

(5.6)

When the gradients on the right-hand side of the above equations are evaluated at one-step-delayed

iterates, the above algorithm reduces to the GDA algorithm. Unlike EG, however, GDA can diverge

for smooth, convex-concave problems like the one in Eq. (5.5), even in the absence of delays. In

particular, some assumption on the boundedness of domain or gradients is needed to ensure the

convergence of GDA for convex-concave problems. From the above discussion, we conclude that since

EG with delays tends to behave like GDA, we need to impose additional technical assumptions to

165

ensure convergence to saddle points. As such, we will impose the following assumption of bounded

gradients at various points in the paper.

Assumption 10. There exists a constant G > 1 such that the following holds for all x ∈ X , and all

y ∈ Y: ∥∇xf(x, y)∥ ≤ G, and ∥∇yf(x, y)∥ ≤ G.17

We will also make the following standard assumption that the partial gradients of f(x, y) are Lipschitz

continuous.

Assumption 11. There exists a constant L > 1 such that the following holds for all x1, x2 ∈ X ,

and all y1, y2 ∈ Y:

∥∇xf(x1, y1)−∇xf(x2, y2)∥ ≤ L (∥x1 − x2∥+ ∥y1 − y2∥) ,

∥∇yf(x1, y1)−∇yf(x2, y2)∥ ≤ L (∥x1 − x2∥+ ∥y1 − y2∥) .

5.3. Analysis of Delayed Extra-gradient for Convex-Concave functions

In Section 5.2.1, we saw that in the absence of a projection step to ensure the boundedness of

iterates, the EG algorithm diverges on very simple functions, even with a one-step delay. Based

on this empirical observation, in this section, we study delayed extra-gradient (DEG) - outlined in

Algorithm 8 - under additional assumptions. In particular, throughout this section, we will work

under assumptions 10 and 11, i.e., we will assume that the partial gradients of f(x, y) are Lipschitz

continuous and uniformly bounded. It is important to note here that the divergence of DEG, as

illustrated in Figure 5.1, occurs when we do not impose assumption 10. Thus, this assumption will

play a crucial role in our analysis.

The update rule for DEG (Algorithm 8) involves two steps. In the first step, DEG computes a midpoint

(x̂k, ŷk) based on partial gradients evaluated at a stale iterate (xk−τk , yk−τk); see Eq. (5.7). In the

second step, DEG computes the next iterate (xk+1, yk+1) based on partial gradients evaluated at a

stale mid-point (x̂k−τ̂k , ŷk−τ̂k); see Eq. (5.8). There are two important things to take note of here.
17We will use ∥ · ∥ to represent the Euclidean norm.

166

Algorithm 8 Delayed Extra-Gradient (DEG)
Require: Initial vectors x1 ∈ X , y1 ∈ Y; algorithm parameters: step-size α > 0.
1: for k = 1, . . . , T do
2:

x̂k ← ΠX (xk − α∇xf(xk−τk , yk−τk))
ŷk ← ΠY (yk + α∇yf(xk−τk , yk−τk)) .

(5.7)

3:

xk+1 ← ΠX (xk − α∇xf(x̂k−τ̂k , ŷk−τ̂k))
yk+1 ← ΠY (yk + α∇xf(x̂k−τ̂k , ŷk−τ̂k)) .

(5.8)

4: end for

First, in each of the above updates, we project onto X × Y to ensure the boundedness of iterates.

Second, our analysis is general enough to accommodate time-varying delays; furthermore, we allow

τk and τ̂k to also be different. That said, as mentioned before, we will work under the running

assumption that all delays are bounded uniformly by τmax, i.e., max{τk, τ̂k} ≤ τmax, ∀k.

Key Insight and Outline of Analysis. The starting point of our analysis for DEG is the observation

that the errors induced by delays can be interpreted as bounded perturbations. As we shall see in

Lemma 45, the boundedness of the delay-induced errors follows as a direct consequence of assumptions

10 and 11, and the uniform boundedness assumption on the delays. This key observation allows

us to immediately make a connection to our prior work in (Adibi et al., 2022b), where we studied

min-max optimization under adversarial perturbations. Building on this connection, we start with

the following result that establishes some basic inequalities for our subsequent analysis; the proof of

this result follows the same steps as that of (Adibi et al., 2022b, Lemma 1).

Lemma 43. For the DEG algorithm, the following inequalities hold for all k ∈ [T], x ∈ X , and

167

y ∈ Y:18

2α⟨∇xf(xk−τk , yk−τk), x̂k − x⟩ ≤ ∥x− xk∥
2 − ∥x− x̂k∥2 − ∥x̂k − xk∥2

−2α⟨∇yf(xk−τk , yk−τk), ŷk − y⟩ ≤ ∥y − yk∥
2 − ∥y − ŷk∥2 − ∥ŷk − yk∥2

2α⟨∇xf(x̂k−τ̂k , ŷk−τ̂k), xk+1 − x⟩ ≤ ∥x− xk∥2 − ∥x− xk+1∥2 − ∥xk+1 − xk∥2

−2α⟨∇yf(x̂k−τ̂k , ŷk−τ̂k), yk+1 − y⟩ ≤ ∥y − yk∥2 − ∥y − yk+1∥2 − ∥yk+1 − yk∥2.

Next, to bound the impact of delays, we introduce the following error vectors:

ex(xk, yk) ≜ ∇xf(xk−τk , yk−τk)−∇xf(xk, yk),

ey(xk, yk) ≜ ∇yf(xk−τk , yk−τk)−∇yf(xk, yk),

and

ex(x̂k, ŷk) ≜ ∇xf(x̂k−τ̂k , ŷk−τ̂k)−∇xf(x̂k, ŷk),

ey(x̂k, ŷk) ≜ ∇yf(x̂k−τ̂k , ŷk−τ̂k)−∇yf(x̂k, ŷk).

Let D = max{Dx, Dy}, where Dx and Dy are the diameters of the sets X and Y, respectively.

Leveraging Lemma 43, our next result tracks the progress made by the mid-point sequence {(x̂k, ŷk)}

generated by DEG. The proof of this result mirrors that of (Adibi et al., 2022b, Lemma 2).

Lemma 44. Suppose assumptions 10 and 11 hold. Furthermore, suppose α ≤ 1/(2L). Then, for the
18Given a positive integer N , we use [N] to represent the set {1, . . . , N}.

168

DEG algorithm, the following holds for all k ∈ [T], x ∈ X , and y ∈ Y:

α⟨∇xf(x̂k, ŷk), x̂k − x⟩ − α⟨∇yf(x̂k, ŷk), ŷk − y⟩

≤ 1

2

(
∥x− xk∥2 − ∥x− xk+1∥2 + ∥y − yk∥2 − ∥y − yk+1∥2

)
+ αD (∥ex(xk, yk)∥+ ∥ex(x̂k, ŷk)∥+ ∥ey(xk, yk)∥+ ∥ey(x̂k, ŷk)∥) .

The above result sets things up nicely for a telescoping-sum analysis. However, the missing piece

right now is to provide bounds on the delay-induced errors. We derive such bounds in the following

result.

Lemma 45. Suppose assumptions 10 and 11 hold. For the DEG algorithm, the following error-bounds

then apply ∀k ∈ [T]:

max{∥ex(xk, yk)∥, ∥ex(x̂k, ŷk)∥, ∥ey(xk, yk)∥, ∥ey(x̂k, ŷk)∥} ≤ ∆T ,

where ∆T = 6αGLτmax.

Proof. In what follows, we only show how to bound ∥ex(xk, yk)∥ and ∥ex(x̂k, ŷk)∥; bounds for the

other two error terms can be derived in an identical manner. We start by bounding ∥ex(xk, yk)∥.

From equation (5.8), we have

∥xk − xk−τk∥ ≤
k−1∑

j=k−τk

∥xj+1 − xj∥

(a)

≤ α

 k−1∑
j=k−τk

∥∇xf(x̂j−τ̂j , ŷj−τ̂j)∥

(b)

≤ αGτmax,

(5.9)

where (a) follows from the non-expansive property of the projection operator, and (b) follows from

169

assumption 10 and the fact that τk ≤ τmax. Using the exact same steps, one can establish the same

bound for ∥yk − yk−τk∥. Thus, we have

∥ex(xk, yk)∥ = ∥∇xf(xk, yk)−∇xf(xk−τ , yk−τ)∥
(a)

≤ L(∥xk − xk−τk∥+ ∥yk − yk−τk∥)
(b)

≤ 2αGLτmax,

(5.10)

where (a) follows from smoothness, i.e., assumption 11, and (b) follows from Eq. (5.9). Now to

bound ex(x̂k, ŷk), observe

∥ex(x̂k, ŷk)∥ = ∥∇xf(x̂k−τ̂k , ŷk−τ̂k)−∇xf(x̂k, ŷk)∥
(a)

≤ L(∥x̂k − x̂k−τ̂k∥+ ∥ŷk − ŷk−τ̂k∥)

≤ L(∥x̂k − xk∥+ ∥xk − xk−τ̂k∥+ ∥xk−τ̂k − x̂k−τ̂k∥

+ ∥ŷk − yk∥+ ∥yk − yk−τ̂k∥) + ∥yk−τ̂k − ŷk−τ̂k∥)
(b)

≤ 2αGLτmax + 4αGL

(c)

≤ 6αGLτmax.

In the above steps, (a) follows from assumption 11, (b) follows from (5.9) and the fact that for any

j ∈ [T], ∥x̂j − xj∥ ≤ α∥∇xf(xj−τj , yj−τj)∥ ≤ αG, and (c) follows from noting that τmax ≥ 1. This

concludes the proof.

We are now in a position to prove our first main result which establishes complexity bounds for DEG

for smooth convex-concave functions with bounded gradients.

Theorem 14. Suppose assumptions 10 and 11 hold. Moreover, suppose the number of iterations T

170

is large enough such that T ≥ L. Then, with

α =

√
1

24GLτmaxT
,

the iterates generated by DEG satisfy:

max
y∈Y

f(x̄T , y)−min
x∈X

f(x, ȳT) ≤ 10D2

√
GLτmax

T
, (5.11)

where x̄T = (1/T)
∑

k∈[T] x̂k and ȳT = (1/T)
∑

k∈[T] ŷk.

Proof. Let us start by noting that when T ≥ L, the choice of step-size above satisfies α ≤ 1/(2L).

Thus, we can invoke Lemma 44. From the convex-concave property of f(x, y), the following

inequalities hold ∀k ∈ [T], x ∈ X , and y ∈ Y:

α (f(x̂k, ŷk)− f(x, ŷk)) ≤ α⟨∇xf(x̂k, ŷk), x̂k − x⟩

−α (f(x̂k, ŷk)− f(x̂k, y)) ≤ −α⟨∇yf(x̂k, ŷk), ŷk − y⟩.

Summing the two inequalities above, and using Lemmas 44 and 45, we obtain:

α (f(x̂k, y)− f(x, ŷk)) ≤
1

2

(
∥x− xk∥2 − ∥x− xk+1∥2

)
+
1

2

(
∥y − yk∥2 − ∥y − yk+1∥2

)
+ 4αD∆T ,

(5.12)

where ∆T is as defined in Lemma 45. From the convexity of f(x, y) w.r.t. x and concavity

w.r.t. y, note that we have f(x̄T , y) ≤ (1/T)
∑

k∈[T] f(x̂k, y) and f(x, ȳT) ≥ (1/T)
∑

k∈[T] f(x, ŷk),

respectively. Combining this with Eq. (5.12), we obtain

f(x̄T , y)− f(x, ȳT) ≤
D2

αT
+ 4D∆T . (5.13)

The result follows by plugging into the above inequality the choice of α in the statement of the

theorem, and by noting that the resulting bound holds for all x ∈ X and for all y ∈ Y. This

completes the proof.

171

Algorithm 9 Delayed Gradient Descent-Ascent (DGDA)

Require: Initial vector z1 = [x1; y1] ∈ Rm+n; algorithm parameters: step-size α > 0.
1: for k = 1, . . . , T do
2:

zk+1 = zk − αΦ(zk−τk). (5.14)

3: end for

Discussion. From Theorem 14, we conclude that for smooth convex-concave functions, DEG

guarantees that the primal-dual gap converges to zero at a rate O(
√
τmax/

√
T). The primal-dual

gap is zero if and only if (x̄T , ȳT) is a saddle point of f(x, y) over the set X × Y. Thus, DEG also

guarantees convergence to a saddle-point under delays. The important thing to note here is that

the O(1/T) convergence rate of EG gets significantly slackened in the presence of delays; whether

this is an artifact of our analysis or fundamental is an open question. The O(1/
√
T) rate of DEG

mirrors the rate of GDA in the absence of delays. In the following sections, we will further explore

this connection.

5.4. Analysis of Delayed Gradient Descent-Ascent for Convex-Concave functions

In this section, we will examine the convergence of a delayed version of the gradient descent ascent

algorithm that we refer to as DGDA. As before, we will continue to work under assumptions 10 and

11. However, we will set X = Rm and Y = Rn, i.e., as a departure from the previous section, the

domains of the variables x and y are no longer assumed to be bounded. As we shall soon see, this

makes the analysis more challenging relative to that in Section 5.3.

To proceed, given any x ∈ Rm and y ∈ Rn, we will find it convenient to define a new variable

z = [x; y] that resides in Rm+n. Next, corresponding to any z = [x; y], let us define the function

Φ : Rm+n → Rm+n as follows:

Φ(z) =

 ∇xf(x, y)
−∇yf(x, y)

 , (5.15)

With these notations in place, we outline the steps of DGDA in Algorithm 9; the steps are self-

explanatory.

Analysis of DGDA. In our analysis, we will make use of the following result from (Nemirovski, 2004a),

172

stated for our purpose.

Lemma 46. Let Φ(z) be as defined in Eq. (5.15), and suppose assumption 11 holds for all z ∈ Rm+n.

Then, the following statements are true for any z1, z2 ∈ Rm+n:

1. ⟨Φ(z1)− Φ(z2), z1 − z2⟩ ≥ 0,

2. For any saddle-point z∗ = [x∗; y∗] of f(x, y), we have Φ(z∗) = 0.

We start with a simple result that bounds the error ek ≜ Φ(zk)− Φ(zk−τk) induced by delays as a

function of the smoothness parameter L, the uniform bound on the gradients G, and the maximum

delay τmax.

Lemma 47. Suppose assumptions 10 and 11 hold ∀z ∈ Rm+n. Then, for any k ∈ [T], the delay-

induced error ek ≜ Φ(zk)− Φ(zk−τk) for DGDA satisfies

∥ek∥ ≤ 2αLGτmax. (5.16)

Proof. For any two points z = [x; y] and ẑ = [x̂; ŷ], we have

∥Φ(z)− Φ(ẑ)∥2 ≤
(a)

2 (L(∥x− x̂∥+ ∥y − ŷ∥))2

≤ 4L2∥z − ẑ∥2,
(5.17)

where we used assumption 11 for the first inequality. Based on the above inequality, we have

∥ek∥ = ∥Φ(zk−τk)− Φ(zk)∥

≤ 2L∥zk−τk − zk∥

≤ 2L
k−1∑

j=k−τk

∥zj+1 − zj∥

≤ 2αL

k−1∑
j=k−τk

∥Φ(zj−τj)∥ ≤ 2αLGτmax,

(5.18)

where the final step follows from assumption 10.

173

Unlike the analysis in Section 5.3 where the boundedness of the domain implied bounded iterates, we

need to do more work to establish that the iterates generated by DGDA remain bounded. Leveraging

Lemma 47, the following result establishes this key fact.

Lemma 48. Suppose assumptions 10 and 11 hold ∀z ∈ Rm+n. Let z∗ = [x∗; y∗], and suppose the

step-size α satisfies

α ≤ 1

2
√
LGτmaxT

.

Then, for the DGDA algorithm, the following holds ∀k ∈ [T]:

∥zk − z∗∥2 ≤ 10B, where B = max{∥z1 − z∗∥2, G}. (5.19)

Proof. From Eq. (5.14) and the definition of ek, we have

∥zk+1 − z∥2 =∥zk − αΦ(zk)− z∥2

+ α2∥ek∥2 + 2α⟨ek, zk − z − αΦ(zk)⟩

=∥zk − z∥2 + α2∥Φ(zk)∥2 − 2α⟨Φ(zk), zk − z⟩

+ α2∥ek∥2 + 2α⟨ek, zk − z − αΦ(zk)⟩

≤∥zk − z∥2 + 2α2G2 − 2α⟨Φ(zk), zk − z⟩

+ 4α4G2L2τ2max+2α⟨ek, zk − z⟩︸ ︷︷ ︸
T1

−2α2⟨ek,Φ(zk)⟩︸ ︷︷ ︸
T2

.

(5.20)

We now proceed to bound T1 and T2. For T2, we have:

T2
(a)

≤α2∥ek∥2 + α2∥Φ(zk)∥2

(b)

≤4α4G2L2τ2max + 2α2G2,

174

where (a) follows from the elementary fact that for any two scalars c, d ∈ R, it holds that

cd ≤ 1

2
c2 +

1

2
d2. (5.21)

Moreover, for (b), we used Lemma 47 and assumption 10. For bounding T1, observe that

T1 = 2α⟨ek, zk − z⟩

≤ 2α∥ek∥∥zk − z∥
(a)

≤ 4α2GLτmax∥zk − z∥

=
(
2α
√
GLτmax

)(
2α
√
GLτmax∥zk − z∥

)
(b)

≤ 2α2GLτmax + 2α2GLτmax∥zk − z∥2,

(5.22)

where we again appealed to Lemma 47 for (a). For (b), we used Eq. (5.21). Plugging in the above

bounds on T1 and T2 into Eq. (5.20), simplifying using L,G ≥ 1, and rearranging terms, we arrive

at the following inequality:

2α⟨Φ(zk), zk − z⟩ ≤
(
1 + 2α2LGτmax

)
∥zk − z∥2

− ∥zk+1 − z∥2 +A,

(5.23)

where A = 2α2GLτmax(1 + 2G + 4α2GLτmax). Now setting z = z∗ in the above inequality, and

noting that ⟨Φ(zk), zk − z∗⟩ ≥ 0 based on Lemma 46, we obtain the following recursive inequality

that holds for all k ∈ [T]:

∥zk+1 − z∗∥2 ≤
(
1 + 2α2LGτmax

)
∥zk − z∗∥2 +A. (5.24)

175

Defining rk ≜ ∥zk − z∗∥, β ≜
(
1 + 2α2LGτmax

)
, and iterating the above inequality, we obtain:

r2k ≤ βk−1r21 +

k−2∑
j=0

βj

A

≤ βk−1r21 +
βk

β − 1
A

≤ βT r21 +
βT

β − 1
A.

(5.25)

We will now bound each of the terms above by using the elementary fact that for any c ∈ R, it holds

that (1 + c) ≤ ec. When the step-size α satisfies

α ≤ 1

2
√
LGτmaxT

,

we have

βT ≤
(
1 +

1

2T

)T
≤ e0.5 ≤ 2. (5.26)

Furthermore, it is easy to see that

A

β − 1
≤
(
1 + 2G+

1

T

)
≤ 4G.

Combining the above bounds leads to the claim of the lemma. This concludes the proof.

Based on the above result, let us introduce a set H as follows:

H ≜ {z|∥z − z∗∥2 ≤ 10B}, (5.27)

where B = max{∥z1 − z∗∥2, G}. From Lemma 48, we note that as long as the step-size α is chosen

appropriately, the iterate sequence {zk} generated by DGDA belongs to H. Moreover, z∗ ∈ H trivially.

With these observations in place, we now prove our main convergence result for DGDA for smooth

convex-concave functions with bounded gradients.

Theorem 15. Suppose assumptions 10 and 11 hold ∀x ∈ Rm and ∀y ∈ Rn. Let the step-size be

176

chosen to satisfy

α =
1

2
√
LGτmaxT

.

Then, the iterates generated by DGDA satisfy:

max
y:(x̄T ,y)∈H

f(x̄T , y)− min
x:(x,ȳT)∈H

f(x, ȳT) ≤ 44B

√
GLτmax

T
,

where x̄T = (1/T)
∑

k∈[T] x̂k, ȳT = (1/T)
∑

k∈[T] ŷk, and the set H is as defined in Eq. (5.27).

Proof. Recall the following notation from Lemma 48: rk = ∥zk − z∗∥ and B = max{r21, G}. Let us

start by noting that the choice of step-size in the statement of the theorem complies with that used

to establish Lemma 48. Thus, we can invoke Lemma 48 to conclude that for any z ∈ H, the following

is true:

∥zk − z∥2 ≤ 2r2k + 2∥z − z∗∥2 ≤ 40B, (5.28)

where the last inequality follows from the definition of the set H. Using Eq. (5.23) from Lemma 48,

we then have for any z ∈ H:

2α⟨Φ(zk), zk − z⟩ ≤ ∥zk − z∥2 − ∥zk+1 − z∥2 +A

+ 2α2LGτmax∥zk − z∥2

≤ ∥zk − z∥2 − ∥zk+1 − z∥2 + Ā,

where Ā = A + 80α2LGBτmax, A = 2α2GLτmax(1 + 2G + 4α2GLτmax), and we used Eq. (5.28).

Now summing the above inequality from k = 1 to T , we obtain

T∑
k=1

2α⟨Φ(zk), zk − z⟩ ≤∥z1 − z∥2 + ĀT. (5.29)

Moreover, from Proposition 1 in (Mokhtari et al., 2020c), we have

T∑
k=1

2α⟨Φ(zk), zk − z⟩ ≥ 2αT (f(x̄T , y)− f(x, ȳT)). (5.30)

177

Combining the above display with Eq. (5.29) then yields the following bound ∀z = [x; y] ∈ H:

f(x̄T , y)− f(x, ȳT) ≤
∥z1 − z∥2

2αT
+

Ā

2α
. (5.31)

Let us simplify the bound by first noting that for α chosen as in the statement of the theorem, it

holds that Ā ≤ 88α2GBLτmax. Moreover, since z ∈ H, we have

∥z1 − z∥2 ≤ 2r21 + 2∥z − z∗∥2 ≤ 22B.

Plugging in the above bounds in Eq. (5.31) then gives us:

f(x̄T , y)− f(x, ȳT) ≤
11B

αT
+ 44αGBLτmax. (5.32)

The result follows from simply substituting the choice of α in the statement of the theorem.

Discussion. The main message conveyed by Theorem 15 is that for smooth convex-concave

functions with bounded gradients, the convergence rates of DGDA and DEG are identical in terms of

their dependence on τmax and T . This complies with the intuition developed earlier in the paper

that EG under delays behaves like GDA.

5.5. Analysis of Delayed Gradient Descent-Ascent for Strongly Convex-Strongly Concave

functions

For smooth strongly convex-strongly concave functions, it is known that GDA guarantees linear

convergence to the saddle point in the absence of delays (Fallah et al., 2020c). In this section, we

ask: Does DGDA (Algorithm 9) also guarantee linear convergence to the saddle point for smooth

strongly convex-strongly concave functions? Our analysis in this section will provide an answer to

this question in the affirmative. Moreover, we will precisely quantify how the maximum delay τmax

slackens the exponent of linear convergence relative to when there is no delay. To get started, we

now provide a formal definition of strongly convex-strongly concave functions.

Assumption 12. The function f(x, y) is µ-strongly convex-µ-strongly concave (SC-SC) over X ×Y,

178

i.e., for all x1, x2 ∈ X and y1, y2 ∈ Y, the following holds:

f(x2, y1) ≥ f(x1, y1) + ⟨∇xf(x1, y1), x2 − x1⟩+
µ

2
∥x2 − x1∥2,

f(x1, y2) ≤ f(x1, y1) + ⟨∇yf(x1, y1), y2 − y1⟩ −
µ

2
∥y2 − y1∥2.

Throughout this section, we will set X = Rm and Y = Rn, i.e., we will make no assumption of

bounded domains. Furthermore, unlike prior sections, we will drop the assumption of bounded

gradients, i.e., we will no longer work under assumption 10.

Analysis of DGDA. To proceed, we start by recalling two results from (Fallah et al., 2020c) that will

play a crucial role in our subsequent analysis; at this point, we remind the reader of the definition of

Φ(·) in Eq. (5.15).

Lemma 49 ((Fallah et al., 2020c)). Suppose assumptions 11 and 12 hold. Then, ∀z, ẑ ∈ Rm+n, we

have

L∥z − ẑ∥2 ≥ ⟨Φ(z)− Φ(ẑ), z − ẑ⟩ ≥ µ∥z − ẑ∥2. (5.33)

Lemma 50 ((Fallah et al., 2020c)). Suppose assumptions 11 and 12 hold. Then, ∀z, ẑ ∈ Rm+n, we

have

⟨Φ(z)− Φ(ẑ), z − ẑ⟩ ≥ µ

4L2
∥Φ(z)− Φ(ẑ)∥2. (5.34)

Recall the definitions of iterate-suboptimality and delay-induced error: rk = ∥zk − z∗∥ and ek =

Φ(zk)− Φ(zk−τk). As before, our starting point will be to establish a bound on ∥ek∥. However, to

establish a linear convergence rate, we need to provide a finer analysis relative to that in Lemmas 45

and 47. In particular, unlike these results which established uniform convergence bounds on ∥ek∥,

we will instead seek to bound ∥ek∥ as a function of a suitably defined iterate-suboptimality-metric.

Our next result formalizes this idea.

179

Lemma 51. Suppose assumptions 11 and 12 hold ∀z ∈ Rm+n. Then, for any k ∈ [T], the delay-

induced error ek = Φ(zk)− Φ(zk−τk) for DGDA satisfies

∥ek∥ ≤ 2αMk, (5.35)

where Mk = Lτmax(
4L2

µ + 4L)maxk−2τmax≤t≤k rt.

Proof. For bounding ek, observe that

∥ek∥ =∥Φ(zk−τk)− Φ(zk)∥
(a)

≤ 2L∥zk−τk − zk∥

≤ 2L

k−1∑
j=k−τk

∥zj+1 − zj∥

≤ 2αL

k−1∑
j=k−τk

∥Φ(zj−τj)∥

≤ 2αL

k−1∑
j=k−τk

(
∥Φ(zj)∥+ ∥Φ(zj−τj)− Φ(zj)∥

)
(b)

≤ 2αL
k−1∑

j=k−τk

(
∥Φ(zj)∥+ 2L∥zj−τj − zj∥

)
≤ 2αL

k−1∑
j=k−τk

(
∥Φ(zj)∥+ 2Lrj−τj + 2Lrj

)
.

(5.36)

From Lemma 46, we know that Φ(z∗) = 0. Furthermore, from Lemma 50 and the Cauchy–Schwarz

inequality, we obtain

∥Φ(zk)∥∥zk − z∗∥ ≥ ⟨Φ(zk), zk − z∗⟩ ≥
µ

4L2
∥Φ(zk)∥2,

which means

∥Φ(zk)∥ ≤
4L2

µ
∥zk − z∗∥ =

4L2

µ
rk,

180

Combining the above display with Eq. (5.36), we obtain

∥ek∥ ≤ 2αL
k−1∑

j=k−τmax

(
4L2

µ
rj + 2Lrj−τj + 2Lrj

)

≤ 2αLτmax

(
4L2

µ
+ 4L

)
max

k−2τmax≤t≤k−1
rt

≤ 2αMk.

(5.37)

We will also make use of the following key result.

Lemma 52 ((Gurbuzbalaban et al., 2017)). Suppose we have a sequence of non-negative real numbers,

Vk, satisfying the inequality

Vk+1 ≤ pVk + q max
k−d(k)≤ℓ≤k

Vℓ,

for some non-negative constants p and q, where k ≥ 0 and 0 ≤ d(k) ≤ dmax for some positive

constant dmax. If p+ q < 1, then we have

Vk ≤ rkV0, where r = (p+ q)1/(1+dmax).

We now prove our main result for DGDA for the class of smooth strongly convex-strongly concave

(SC-SC) functions.

Theorem 16. Suppose assumptions 11 and 12 hold ∀z ∈ Rm+n. Let the step-size be chosen to

satisfy

α =
µ3

1536L6τ2max
.

181

Then, the iterates generated by DGDA satisfy:

rk ≤
(
1− µ4

3072L6τ2max

) k−1
6τmax

r1, (5.38)

where rk = ∥zk − z∗∥.

Proof. From the update rule of the DGDA algorithm and Lemma 51, we have

∥zk+1 − z∗∥2 − (1− αµ)∥zk − z∗∥2 =

αµ∥zk − z∗∥2 − 2α⟨Φ(zk−τk), zk − z
∗⟩+ α2∥Φ(zk−τk)∥

2

≤ αµ∥zk − z∗∥2 − 2α⟨Φ(zk), zk − z∗⟩+ 2α2∥Φ(zk)∥2

+ 2α⟨ek, zk − z∗⟩+ 2α2∥ek∥2

≤ αµ∥zk − z∗∥2 − 2α⟨Φ(zk), zk − z∗⟩+ 2α2∥Φ(zk)∥2︸ ︷︷ ︸
fk

+ 4α2Mkrk + 8α4M2
k︸ ︷︷ ︸

pk

.

(5.39)

From Lemmas 49 and 50, we further know that

⟨Φ(zk), zk − z∗⟩ ≥ µ∥zk − z∗∥2, and

⟨Φ(zk), zk − z∗⟩ ≥
µ

4L2
∥Φ(zk)∥2.

When α ≤ µ
8L2 - a requirement met by the choice of step-size in the statement of the theorem - it is

easy to verify that the above equations imply fk ≤ 0, where fk is as in Eq. (5.39). We also have

pk ≤ 12α2M2
k ≤ α2C

(
max

k−2τmax≤t≤k
r2t

)
,

where C = 768L
6

µ2
τ2max, and we used L ≥ µ for simplifications. From the above discussion, we

conclude that

r2k+1 ≤ (1− αµ)r2k + α2C

(
max

k−2τmax≤t≤k
r2t

)
.

182

From the choice of step-size in the statement of the theorem, it is easy to verify that 1−αµ+α2C =

1− 0.5αµ < 1. Thus, we can immediately apply Lemma 52 to arrive at the desired conclusion. This

concludes the proof.

Discussion. Theorem 16 reveals that for smooth SC-SC functions, DGDA guarantees linear conver-

gence of the iterates to the saddle-point. The result also clearly demonstrates how the exponent of

convergence gets affected by τmax.

183

CHAPTER 6

Minimax Optimization: The Case of Convex-Submodular

6.1. INTRODUCTION

The problem of solving a minimax optimization problem, also known as the saddle point prob-

lem, appears in many domains such as robust optimization (Ben-Tal et al., 2009b), game the-

ory (Osborne and Rubinstein, 1994), and robust control (Zhou and Doyle, 1998; Hast et al., 2013).

It has also recently attracted a lot of attention in the machine learning community due to

the rise of generative adversarial networks (GANs) (Goodfellow et al., 2014b) and robust learn-

ing (Bertsimas et al., 2011; Lanckriet et al., 2002; Li et al., 2019b). There has been an exten-

sive literature on the design of convergent methods for solving minimax problems for the case

that both minimization and maximization variables belong to continuous domains (Tseng, 1995;

Nesterov, 2007; Li and Lin, 2015; Ouyang and Xu, 2019; Thekumparampil et al., 2019; Zhao, 2019;

Hamedani and Aybat, 2018; Alkousa et al., 2019; Daskalakis et al., 2017b; Ibrahim et al., 2020;

Nouiehed et al., 2019; Mokhtari et al., 2020b; Lin et al., 2020a; Murty and Kabadi, 1985). In par-

ticular, for the case that the loss function is (strongly) convex with respect to the minimization

variable and (strongly) concave with respect to maximization variable several efficient algorithms

have been studied (Nesterov, 2007; Li and Lin, 2015; Mokhtari et al., 2020d), including the extra-

gradient method (Korpelevich, 1976b; Nemirovski, 2004b) that is known to be optimal for this setting.

However, all these methods suffer from two major limitations: (i) they are provably convergent

only in convex-concave settings; (ii) they are designed for the settings that both minimization and

maximization variables belong to continuous domains.

There has been some effort to address the first limitation by finding a first-order stationary point or lo-

cally stable point for the problems that are not convex-concave (Lin et al., 2020b; Diakonikolas et al.,

2021; Yang et al., 2020; Sanjabi et al., 2018). However, these approaches fail to guarantee any global

optimality as it is known that finding a saddle point in a general nonconvex-nonconcave setting is NP-

hard (Jin et al., 2020). Nonetheless, it might be possible to achieve global approximation guarantees

184

Table 6.1: Algorithms performance guarantee. Here cf is the cost of single computation of f , cPx

and cPy are cost of projection in X and Y , c∇xf is the cost of computing gradient of f with respect
to x, and c∇xF and c∇yF are the cost of computing gradient of multilinear extension F with respect
to x and y, respectively. k is the cardinality constraint (|S| ≤ k) and n is size of the ground set
|V | = n.

Alg. Number of
iterations

Approx.
ratio

Cost per iteration Cardinality
const.

Matroid
const.

Unbounded
gradient

GG O(1/ϵ2) 1− 1/e nk.cf + c∇xf+cPx
✓ ✗ ✗

GG O(1/ϵ2) 1/2 nk.cf + c∇xf+cPx
✗ ✓ ✗

GRG O(1/ϵ2) 1/2 (n+ k)cf + c∇xf+cPx
✓ ✗ ✗

EGG O(1/ϵ2) 1− 1/e 2nk.cf + 2c∇xf+2cPx
✓ ✗ ✓

EGG O(1/ϵ2) 1/2 2nk.cf + 2c∇xf+2cPx
✓ ✓ ✓

EGRG O(1/ϵ2) 1/2 2(n+k)cf+2c∇xf+2cPx
✓ ✗ ✗

EGCE O(1/ϵ) 1/2 2c∇xF +
2c∇yF+2cPx+2cPy

✓ ✓ ✓

for structured saddle minimax problems. Addressing the second limitations and developing methods

for discrete-continuous domains or fully discrete domains requires exploiting tools from discrete

optimization. Several recent works have considered applications involving specific discrete-continuous

minimax problems and proposed structure-informed algorithms (Zhou and Bilmes, 2018). However,

to our knowledge, there is no work that provides a principled algorithmic or theoretical framework

to study minimax problems with mixed discrete-continuous components and it is not even clear if

such problems allow for tractable solutions with global guarantees.

In this paper, we tackle these two issues and present iterative methods with theoretical guarantees

to solve structured non convex-concave minimax problems, where the minimization variable is from

a continuous domain and the maximization variable belongs to a discrete domain. Concretely, for a

non-negative function f : Rd × 2V → R+, consider the minimax problem

OPT ≜ min
x∈X

max
S∈I

f(x, S), (6.1)

where x belongs to a convex set X ⊂ Rd and S is a subset of the ground set V with n elements

that is constrained to be inside a matroid I. Given a fixed S, the function f(·, S) is convex with

respect to the continuous (minimization) variable. Further, given a fixed x, the function f(x, ·)

185

is submodular with respect to the discrete (maximization) variable. We refer to this problem as

convex-submodular minimax problem.

The convex-submodular minimax problem in (7.3) encompasses various applications. In Section 6.4,

we describe specific optimization problems, such as convex-facility-location, as well as applications

such as designing adversarial attacks on recommender systems. There are various other applications

that can be cast into Problem (7.3), in particular, when convex models have to be learned while

data points are selected or changed according to notions of summarization, diversity, and deletion.

Examples include learning under data deletion (Ginart et al., 2019; Neel et al., 2020; Wu et al.,

2020), robust text classification (Lei et al., 2018), minimax curriculum learning (Zhou and Bilmes,

2018; Zhou et al., 2021, 2020b; Soviany et al., 2021), minimax supervised learning (Farnia and Tse,

2016), and minimax active learning (Ebrahimi et al., 2020).

6.1.1. Our Contributions

In this paper, we provide a principled study of the problem defined in (7.3), from both theoretical

and algorithmic perspectives, when f is convex in the minimization variable and submodular as well

as monotone in the maximization variable19. We introduce efficient iterative algorithms for solving

this problem and develop a theoretical framework for analyzing such algorithms with guarantees on

the quality of the resulting solutions according to the notions of optimality that we define.

Notions of (near-)optimality and hardness results. For minimax problems, the strongest

notion of optimality is defined through saddle points or their approximate versions. We first provide

a negative result that shows finding a saddle point or any approximate version of it (which we

term as an (α, ϵ)-saddle point) is NP-hard for general convex-submodular problems (Theorem 17).

We thus introduce a slightly weaker notion of optimality that we call (α, ϵ)-approximate minimax

solutions for Problem (7.3). Roughly speaking, the quality of the minimax objective at such solutions

is at most 1
α(OPT + ϵ), and hence they are near-optimal when α < 1. We show in Theorem 18

that obtaining such solutions for α > 1− 1/e is NP-hard. This is a non-trivial result that does not

readily follow from known hardness results in submodular maximization. Consequently, we focus
19For completeness, a function g : 2V → R is called submodular if for any two subsets S, T ⊆ V we have:

g(S ∩ T) + g(S ∪ T) ≤ g(S) + g(T). Moreover, g is called monotone if for any S ⊆ T we have g(S) ≤ g(T).

186

on efficiently finding solutions in the regime of α ≤ (1− 1/e). We present several algorithms that

achieve this goal and theoretically analyze their complexity and quality of their solution.

Algorithms with guarantees on convergence rate, complexity, and solution quality.

Our proposed algorithms are as follows (see also Table 6.1): (i) Greedy-based methods. We first

present Gradient-Greedy (GG), a method alternating between gradient descent for minimization

and greedy for maximization. We further introduce Extra-Gradient-Greedy (EGG) that uses an

extra-gradient step instead of gradient step for the minimization variable. We prove that both

algorithms achieve a ((1− 1/e), ϵ)-approximate minimax solution after O(1/ϵ2) iterations when I is

a cardinality constraint. Importantly, EGG does not require the bounded gradient norm condition as

opposed to GG. Our results for the case that I is a matroid constraint (see Table 6.1) are provided

in the supplementary material. (ii) Replacement greedy-based methods. The greedy-based methods

require O(nk) function computations at each iteration. To improve this complexity, we present

alternating methods that use replacement greedy for the maximization part to reduce the cost of

each iteration to O(n). The Gradient Replacement-Greedy (GRG) algorithm achieves a (1/2, ϵ)-

approximate minimax solution after O(1/ϵ2) iterations and Extra-Gradient Replacement-Greedy

(EGRG) achieves a (1/2, ϵ)-approximate minimax solution after O(1/ϵ2), when I is a cardinality

constraint. (iii) Continuous extension-based methods. Note that all mentioned methods achieve

a convergence rate of O(1/ϵ2). To improve this convergence rate, we further introduce the extra-

gradient on continuous extension (EGCE) method that runs extra-gradient update on the continuous

extension of the submodular function. We show that EGCE is able to achieve an (1/2, ϵ)-approximate

minimax solution after at most O(1/ϵ) iterations, when I is a general matroid constraint.

6.1.2. Related Work

Several recent works have considered specific applications that require solving Problem (7.3) when

f is nonconvex-submodular (Zhou and Bilmes, 2018; Lei et al., 2018; Mirzasoleiman et al., 2020).

Zhou and Bilmes (2018) consider the problem of minimax curriculum learning which is a special

case of minimax strongly convex-submodular optimization, and propose an algorithm similar to

gradient-greedy (GG). They provide an upper bound on the distance between their obtained solution

and the optimal solution when f is strongly convex in x and monotone-submodular in S with non-zero

187

curvature. Moreover, Lei et al. (2018) study designing an adversarial attack in text classification and

show that for some specific neural network structures, the task of designing an adversarial attack can

be formulated as submodular maximization, leading to a minimax nonconvex-submodular problem.

An algorithm similar to gradient-greedy is then proposed by Lei et al. (2018) for designing attacks

and it has led to successful experimental results. In contrast, this paper is the first to introduce a

principled study of Problem (7.3) for general functions f with newly developed notions of optimality,

algorithmic frameworks, and theoretical guarantees.

Another line of work is the literature on differentiable submodular maximization (Tschiatschek et al.,

2018; Wilder et al., 2019; Sakaue, 2021) in which the goal is to find a smooth maximization oracle

for submodular maximization to compute the gradient of the objective function. Another related

work is "Submodular+ Concave"(Mitra et al., 2021b) in which authors studied the problems that

can be written as a summation of submodular and concave function. Both of these works consider

fundamentally different problems from our setting.

Another relevant line of work is the literature on robust submodular optimization (Krause et al.,

2008a; Bogunovic et al., 2017b; Mirzasoleiman et al., 2017; Kazemi et al., 2018; Bogunovic et al.,

2018; Iyer, 2021; Orlin et al., 2018; Chen et al., 2017a; Anari et al., 2019; Wilder, 2018; Bogunovic et al.,

2017a; Mitrović et al., 2017). This setting corresponds to solving a max-min optimization problem

which involves only discrete variables, and hence, it is different from our setting with fundamentally

different methods. For such problems, finding discrete solutions with any approximation factor is

NP-hard; and consequently, the literature has mostly focused on obtaining solutions that satisfy a

bi-criteria approximation guarantee. Another related work is distributionally robust submodular

maximization in (Staib et al., 2019) which is a special case of max-min version of Problem (7.3). In

this setting, the inner minimization has a special structure that allows for a closed form solution,

and hence, the problem can be solved by using appropriate techniques from continuous submodular

optimization. We will derive the implication of our results on the max-min version of Problem (7.3)

in the supplementary material.

188

6.2. CONVEX-SUBMODULAR MINIMAX OPTIMIZATION

For the minimax problem in (7.3), a natural goal is to find a so-called saddle point. Next, we formally

define the notion of saddle point for Problem (7.3).

Definition 1. A pair (x∗, S∗) is a saddle point of the function f if the following condition holds:

∀x ∈ X , S ∈ I : f(x∗, S) ≤ f(x∗, S∗) ≤ f(x, S∗) (6.2)

Based on this definition, (x∗, S∗) is a saddle point of Problem (7.3), if there is no incentive to

modify the minimization variable x∗ when the maximization variable is fixed and equal to S∗, and,

conversely, there is no incentive to change the maximization variable from S∗ when the minimization

variable is x∗. In other words, a saddle point can be interpreted as an equilibrium.

There is a rich literature on efficient approaches for finding an ϵ-saddle point for convex-concave

minimax optimization, where ϵ is an arbitrary positive constant (Thekumparampil et al., 2019).

To define an ϵ-saddle point, we first need to define the duality gap, which is given by D(x, S) :=

ϕ̄(x)− ϕ(S), where

ϕ̄(x):= max
S∈I

f(x, S), ϕ(S) := min
x∈X

f(x, S).

Considering these definitions, we call a pair of solution ϵ-saddle point if their duality gap is at most

ϵ.

Definition 2. A pair (x̄, S̄) is called an ϵ−saddle point of f if it satisfies

D(x̄, S̄) = ϕ̄(x̄)− ϕ(S̄) ≤ ϵ (6.3)

One can verify that if we set ϵ = 0, then Definitions 1 and 2 coincide, i.e., (x∗, S∗) satisfies (6.3)

for ϵ = 0 if and only if (x∗, S∗) satisfies (6.2). Hence, to derive a finite time analysis we often aim

for finding an ϵ-saddle point. For instance, for smooth and convex-concave problems extra-gradient

obtains an ϵ-saddle point after O(1/ϵ) iterations (which is the optimal complexity).

189

However, for our convex-submodular setting, one cannot expect to find an ϵ-saddle point efficiently, as

the special case of finding an ϵ-accurate solution for submodular maximization is in general NP-hard

(Nemhauser and Wolsey, 1978; Wolsey, 1982; Krause and Golovin, 2014). Although solving the

problem of maximizing a monotone submodular function subject to a matroid constraint is hard, one

can find α-approximate solution of that in polynomial time, i.e., finding a solution that its function

value is at least αOPT, where α ∈ (0, 1). Inspired by this observation, we introduce the notion of

(α, ϵ)-saddle point for our convex-submodular setting.

Definition 3. A pair (x̂, Ŝ) is called an (α, ϵ)−saddle point of f if it satisfies

αϕ̄(x̂)− ϕ(Ŝ) ≤ ϵ. (6.4)

Our first result is a negative result that shows even finding an (α, ϵ)-saddle point is not tractable.

Theorem 17. Finding (α, ϵ)-saddle point for Problem (7.3) is NP-hard for any α > 0.

While this result shows intractability of finding (approximate) saddle-points for Problem (7.3), one

avenue to provide solutions with guaranteed quality is to see whether we can find solutions that

achieve a fraction of OPT. We thus proceed to introduce the notion of approximate minimax solution.

Definition 4. We call a point x̂ an (α, ϵ)-approximate minimax solution of Problem (7.3) if it

satisfies

αϕ̄(x̂) ≤ OPT+ ϵ, (6.5)

where OPT = minx∈X ϕ̄(x) = minx∈X maxS∈I f(x, S).

Next, we describe the notion of an (α, ϵ)-approximate minimax solution for Problem (7.3). The

minimax problem in (7.3) can be interpreted as a sequential game, where we first select an action

x and then an adversary chooses a set S to maximize our loss f(x, S). In this case, our goal is to

find x that minimizes the loss obtained by the worst possible action by the adversary, i.e., we aim

to minimize the function ϕ̄(x̂) := maxS∈I f(x̂, S) over the choice of x̂. Indeed, finding the exact

minimizer is also hard and we should seek approximate solutions. Hence, our goal is to find solutions

190

x̂ whose worst-case loss ϕ̄(x̂) is only a factor larger than the best possible loss OPT = minx∈X ϕ̄(x).

That said, by finding an (α, ϵ)-approximate minimax solution for Problem (7.3) we obtain a solution

whose loss is at most (OPT + ϵ)/α, where 0<α≤1 and ϵ > 0.

The task of finding an x̂ that is (α, ϵ)-approximate minimax solution is easier than finding a pair

(x̃, S̃) that is an (α, ϵ)-saddle point, since if the pair (x̃, S̃) satisfies (6.4), then x̃ satisfies (6.5):

αϕ̄(x̃)− ϕ(S̃) ≤ ϵ ⇒ αϕ̄(x̃)−max
S∈I

ϕ(S) ≤ ϵ

⇒ αϕ̄(x̃)−min
x∈X

ϕ̄(x) ≤ ϵ

Hence, the condition in (6.4) is more strict compared to (6.5). In fact, in the next section, we

show that unlike the task of finding an (α, ϵ)-saddle point of Problem (7.3) that is NP-hard for any

α ∈ (0, 1], one can find an (α, ϵ)-approximate minimax solution of Problem (7.3) in poly-time for

α ∈ (0, 1− 1/e]. Alas, the problem is still NP-hard for α ∈ (1− 1/e, 1] as we show in Theorem 18.

Theorem 18. Let α = 1− 1/e+ γ for a positive constant γ > 0. If there exists a polynomial time

algorithm and a polynomial time oracle that can achieve an (α, ϵ)-approximate solution for any choice

of the function f(x, S) in problem (7.3), then P = NP.

We emphasize that Theorem 18 does not follow directly from that fact that submodular maximization

beyond (1− 1/e)-approximation is hard, and hence it is non-trivial. Indeed, one naive way to argue

for the proof of this theorem (which is incorrect) is to consider functions f(x, S) whose output does

not depend on the variable x, i.e. f(x, S) = f(S), and use the hardness results for submodular

optimization. But for such functions any point x is an optimal solution (with α = 1). Hence, the

proof of the theorem (provided in the appendix) requires a novel idea beyond trivial consequences of

known results for submodularity.

So far we have shown two results: (i) Finding an approximate (α, ϵ)-saddle point is hard for α>0.

(ii) We introduced the notion of (α, ϵ)-approximate solution and showed that for α>1−1/e finding an

(α, ϵ)-approximate solution is hard. The only missing piece is showing whether or not it is possible

191

to efficiently find an (α, ϵ)-approximate minimax solution when α≤1−1/e. In the rest of the paper,

we provide an affirmative answer to this question and present methods achieving this goal.

6.3. ALGORITHMS

In this section, we present a set of algorithms that are able to find an (α, ϵ)-approximate minimax

solution of Problem (7.3). To present these algorithms, we first present two subroutines that we use

in the implementation of our algorithms20: (i) greedy update and (ii) replacement greedy update.

Greedy subroutine. In the greedy update, for a fixed minimization variable x, we select a subset S

with k elements in a greedy fashion, i.e., we sequentially pick k elements that maximize the marginal

gain. Specifically, if we define ∆ef(x, S) = f(x, S ∪ {e})− f(x, S) as the marginal gain of element e,

in the greedy update, for a given variable x we perform the update

Si+1 = Si ∪ {argmax∆ef(x, S)}, (6.6)

for i = 0, . . . , k − 1, where S0 is the empty set. The output of this process is Sk with k elements.

We use the notation Greedy(f, k,x) for the greedy subroutine, which takes function f , cardinality

constraint parameter k, and variable x as inputs, and returns a set S by performing (6.6) for k steps.

Replacement greedy subroutine. In the replacement greedy update (Mitrovic et al., 2018;

Schrijver, 2003; Stan et al., 2017a), for a given variable x and set S, the output is an updated set

S+ whose function value at x is larger than the one for S, i.e., f(x, S) ≤ f(x, S+). The procedure

for finding the new set S+ is relatively simple. If the size of the input set S is less than k, we add

one more element to the set S that maximizes the marginal gain and the resulted set would be S+.

In other words, if |S| < k,

S+ = S ∪ {argmax∆ef(x, S)}. (6.7)

If the size of the input set S is k, we first remove one element of the set S that leads to minimum

decrease in the function value (denoted by e∗) and then replace it with another element of the ground
20For better exposition, we consider the case that I is k-carnality constraint and refer to Appendix for matroids.

192

set that maximizes the marginal gain. Hence, if |S| = k, we have

S+ = (S \ {e∗}) ∪ {argmax∆ef(x, S \ {e∗})}, (6.8)

where e∗ = argmaxe∈S{f(x, S \ e)}.

We use the notation RepGreedy(f, k,x, S) for the replacement greedy subroutine. Note that

replacement greedy is computationally cheaper than greedy, as it requires only one pass over the

ground set, while greedy requires k passes.

6.3.1. Greedy-based Algorithms

Next, we present greedy-based methods to find (α, ϵ)-approximate minimax solutions for Prob-

lem (7.3).

Gradient Greedy. The first algorithm that we present is Gradient Greedy (GG), which uses

a projected gradient descent step to update the minimization iterate xt at each iteration, i.e.,

xt+1 = πX (xt−γt∇f(xt, St)), and then uses a greedy procedure to update the maximization variable

St. This update is performed in an alternating fashion, where we first use xt and St to find xt+1

and then we use the updated variable xt+1 to compute St+1. Note that the final output of this

process is a weighted average of all variables xt that are observed from time t = 1 to t = T , defined

as xsol = (
∑T

t=1 γt)
−1
∑T

t=1 γtxt. The steps of GG are summarized in Algorithm 10 option I.

Next, we show that GG is able to find a (1− 1/e, ϵ)-approximate minimax solution after O(1/ϵ2)

iterations. To prove this claim we require the following assumptions on the objective function f .

Assumption 13. The function f is L-smooth with respect to x, i.e., for any x,x
′ ∈ Rd, S ∈ I, we

have ∥∇xf(x, S)−∇xf(x
′
, S)∥ ≤ L∥x− x

′∥.

Assumption 14. The gradient of function f with respect to x is uniformly bounded by a constant

M , i.e., for any x ∈ Rd, S ∈ 2V , we have ∥∇xf(x, S)∥ ≤M .

Theorem 19. Consider Gradient Greedy (GG) in Algorithm 10 option I. If f is convex-submodular

193

Algorithm 10
Option I: Gradient Greedy (GG)
Option II: Extra-Gradient Greedy (EGG)

Initialize the set S1 to ∅ and variable x1 to zero.
for t = 1 to T do

Option I: xt+1 = πX (xt − γt∇f(xt, St))
St+1 = Greedy(f, k,xt+1)

Option II: x̂t = πX (xt − γt∇f(xt, St))
Ŝt = Greedy(f, k, x̂t)
xt+1 = πX (xt − γt∇f(x̂t, Ŝt))
St+1 = Greedy(f, k,xt+1)

end for
Option I: xsol = (

∑T
t=1 γt)

−1
∑T

t=1 γtxt
Option II: xsol = (

∑T
t=1 γt)

−1
∑T

t=1 γtx̂t

and Assumptions 13-14 hold, then the output of this algorithm after O(1/ϵ2) iterations with step size

O(ϵ), is a ((1− 1/e), ϵ)-approximate minimax solution of Problem (7.3) .

The smoothness assumption (Assumption 13) is required to guarantee convergence of gradient-based

methods at the rate of 1/ϵ2. The bounded gradient assumption (Assumption 14), however, comes

from the fact that even in convex-concave problems gradient descent-ascent algorithms only converge

when the gradient norm is uniformly bounded. This issue has been addressed in the convex-concave

setting by the update of extra-gradient method which converges to a saddle point only under

smoothness assumption. However, this improvement is not for free and it requires two gradient

computations per update, instead of one. Next, we leverage this technique to present an alternating

method that obtains the approximation factor and iteration complexity of GG without requiring

Assumption 14.

Extra-gradient greedy. We now present the Extra-Gradient Greedy (EGG) algorithm, which

consists of two gradient updates as suggested by extra-gradient and two greedy steps to find the

auxiliary set Ŝt and the updated set St+1. In the extra-gradient method, we take a preliminary step

to find a middle/auxiliary point and then compute the next iterate using the gradient information

of the middle point. If we consider xt and St as the current iterates, we first run a gradient step

to find the auxiliary minimization variable according to the update x̂t = πX (xt − γt∇f(xt, St))

194

Algorithm 11
Option I:Gradient Replacement-greedy (GRG)
Option II:Extra-gradient Replacement-greedy (EGRG)

Initialize the set S1 to ∅ and variable x1 to zero.
for t = 1 to T do

Option I: xt+1 = πX (xt − γt∇f(xt, St))
St+1 = RepGreedy(f, k,xt+1, St)

Option II: x̂t = πX (xt − γt∇f(xt, St))
Ŝt = RepGreedy(f, k,xt, St)
xt+1 = πX (xt − γt∇f(x̂t, Ŝt))
St+1 = RepGreedy(f, k, x̂t, Ŝt)

end for
Option I: xsol = (

∑T
t=1 γt)

−1
∑T

t=1 γtxt
Option II: xsol = (

∑T
t=1 γt)

−1
∑T

t=1 γtx̂t

then we compute the auxiliary set Ŝt by performing a greedy step based on the auxiliary iterate

x̂t, i.e., Ŝt = Greedy(f, k, x̂t). Once x̂t and Ŝt are computed, we update the minimization variable

xt+1 by descending towards a gradient evaluated at (x̂t, Ŝt), i.e., xt+1 = πX (xt − γt∇f(x̂t, Ŝt)).

Lastly, we compute the new set St+1 by running a greedy update based on the new iterate xt+1, i.e.,

St+1 = Greedy(f, k,xt+1). Steps of EGG are outlined in Algorithm 10 (option II).

Next we establish our theoretical result for Extra-gradient Greedy and show that only under

smoothness assumption it finds an (1−1/e, ϵ)-approximate minimax solution after O(1/ϵ2) iterations.

Theorem 20. Consider Extra-Gradient Greedy (EGG) outlined in Algorithm 10 option II. If f

is convex-submodular and Assumption 13 holds, then the output of this algorithm after O(1/ϵ2)

iterations with step size O(ϵ), is a ((1− 1/e), ϵ)-approximate minimax solution of Problem (7.3).

Remark 6. Note that as both GG and EGG are greedy based methods, they can also be used for the

case of general matroid constraint. However, the approximation guarantee would be 1/2 instead of

1− 1/e. The details are provided in the supplementary material.

6.3.2. Replacement Greedy-based Methods

As we showed earlier, for the cardinality constraint problem GG and EGG achieve the optimal

approximation guarantee of 1− 1/e for the minimax problem in (7.3). However, they both require

195

running greedy updates at each iteration which makes their per iteration complexity O(nk). To

resolve this issue, we propose the use of replacement-greedy in lieu of greedy update. This modification

reduces the complexity of each iteration to O(n+ k) at the cost of lowering the approximation factor.

Gradient replacement-greedy. We first present the Gradient Replacement-Greedy (GRG)

algorithm which alternates between a gradient update and a replacement greedy update. As shown

in Algorithm 11 option I, the only difference between GRG and GG algorithms is the substitution of

greedy update with replacement greedy. Next, we establish the theoretical guarantee of GRG.

Theorem 21. Consider the Gradient Replacement-Greedy (GRG) algorithm in Algorithm 11 option

I. If f is convex-submodular and Assumptions 13-14 hold, then the output of this algorithm after

O(1/ϵ2) iterations with step size O(ϵ), is a (1/2, ϵ)-approximate minimax solution of Problem (7.3).

Extra-gradient replacement-greedy. The GRG algorithm requires the bounded gradient as-

sumption similar to GG. To address this issue, a natural idea is to exploiting the extra-gradient

approach for updating x and introducing the Extra-gradient Replacement-greedy (EGRG) algorithm,

outlined in Algorithm 11 option II. However, unlike the case of Greedy-based methods, here we can

not drop the bounded gradient assumption by exploiting the idea of extra-gradient update. Next,

we elaborate on this issue.

Note that to prove that EGRG finds a (1/2, ϵ)-approximate minimax solution we need to find an

upper bound on f(x̂t, S) − 2f(x̂t, Ŝt) for every S. To establish such a bound, we need to relate

f(x̂t, Ŝt) to f(xt, Ŝt) which requires the function f to be Lipschitz with respect to x, which is

equivalent to the bounded gradient condition in Assumption 14; see proof of Theorem 2 in the

appendix for more details. Note that such argument is not required for the EGG method, as in

greedy based method we always have the following inequality f(x̂t, S)− (1− 1/e)−1f(x̂t, Ŝt) ≤ 0 for

every S. As a result, the required conditions for the convergence of GRG and EGRG are similar and

we only state EGRG results for completeness.

Theorem 22. Consider Extra-Gradient Replacement Greedy(EGRG) in Algorithm 11 option II. If f

is convex-submodular and Assumptions 13-14 hold, then the output of EGRG after O(1/ϵ2) iterations

196

with step size O(ϵ), is a (1/2, ϵ)-approximate minimax solution of (7.3).

6.3.3. Extra-gradient on Continuous Extension

So far all proposed algorithms achieve (α, ϵ)-approximate minimax solutions in O(1/ϵ2) iterations.

In this section, we investigate the possibility of achieving a faster rate of O(1/ϵ). Note that, in the

discussed algorithms, the update for the discrete variable is not smooth and the iterates jump from

one set to another in consecutive iterations, which results in slowing down the convergence. To

overcome this limitation, we introduce the continuous multi-linear extension of Problem (7.3); for

introduction to multi-linear extension of submodular maximization problems see (Vondrák, 2007;

Calinescu et al., 2011; Badanidiyuru and Vondrák, 2014; Feldman et al., 2011; Hassani et al., 2017;

Sadeghi and Fazel, 2020). As we will show, the continuous extension of Problem (7.3) is equivalent

to its original version, and by extending the extra-gradient methodology to this setting we achieve

a convergence rate of O(1/ϵ) for the case that I is a matroid.

Definition 5. The continuous extension of a function f : Rd × 2V → R+ is the function F :

Rd × [0, 1]n → R+ defined as F (x,y) = ES∼y[f(x, S)], where S ∼ y is a random set wherein each

element i is included with probability yi independently.

We show that for convex-submodular problems we have (see Proposition 1 in Appendix 6.6.8):

min
x∈X

max
S∈I

f(x, S) = min
x∈X

max
y∈K

F (x,y), (6.9)

where I is assumed to be a matroid constraint and K is the corresponding base polytope(K =

conv{1S : S ∈ I}). We present Extra-Gradient on Continuous Extension (EGCE) in Algorithm 12

which applies the updates of extra-gradient on the continuous extension function F (x,y).

Theorem 23. Consider the Extra-Gradient On Continuous Extension (EGCE) algorithm outlined

in Algorithm 12. If f is convex-submodular and Assumptions 13-14 hold, then the output of this

algorithm after O(1/ϵ) iterations with constant step size is a (1/2, ϵ)-approximate minimax solution

of Problem (7.3).

197

Algorithm 12 Extra-gradient on Continuous Extension
Initialize the variables y1 and x1 to zero.
for t = 1 to T do

x̂t = πX (xt − γt∇xF (xt,yt))
ŷt = πK(yt + γt∇yF (xt,yt))
xt+1 = πX (xt − γt∇xF (x̂t, ŷt))
yt+1 = πK(yt + γt∇yF (x̂t, ŷt))

end for
Return solution xsol = (

∑T
t=1 γt)

−1
∑T

t=1 γtx̂t

6.4. EXPERIMENTS

In this section, we study two specific instances of Problem (7.3): (i) convex-facility location func-

tions along with a synthetic experimental setup, and (ii) designing adversarial attacks for item

recommendation which is a real world application of our framework.

Convex-facility location functions. Consider the function f : Rd × 2V → R+ defined as

f(x, S) =
∑n

i=1maxj∈S fi,j(x) + g(x), where g : Rd → R and fi,j : Rd → R are convex. Indeed,

f(x, S) is convex with respect to x. Also, for a fixed x, we recover the objective of the facility location

problem, which is submodular and monotone. To introduce our setup, suppose x ∈ Rd+ can be written

as the concatenation of n = d/m vectors xi ∈ Rm+ of size m, i.e., x = [x1; . . . ;xn]. In our experiments,

we assume that the function fi,j(x) is defined as fi,j(x) = xTi Qi,jxj , where Qi,j ∈ Sm++ is a positive

definite matrix and all of its elements are also positive, i.e., Qi,j > 0. Moreover, we consider the

case that the regularization function g is defined as g(x) := λ(
∑n

i=1 ∥xi∥2)−1, and the constraint

set for the minimization variable x is defined as C := {x = [x1; . . . ;xn]|∥xi∥ ≤ 1, for i = 1, . . . , n}.

Considering these definitions the convex-submodular minimax optimization problem that we aim to

solve can be written as

min
xi∈C

max
|S|≤k

n∑
i=1

max
j∈S

xTi Qi,jxj + λ
(n∑
i=1

∥xi∥2
)−1

(6.10)

where the constraint on the maximization variable S is a cardinality constraint of size k. For our

numerical experiments, we tested two cases, in the first case we set the problem parameters as

198

Figure 6.1: Comparison of our proposed methods for convex-facility location functions(case I and
Case II)

m = 10, n = 30, k = 5, and λ = 1 and in the second case we set the problem parameters as m = 10,

n = 50, k = 10, and λ = 1.

Case I (m = 10, n = 30, k = 5, λ = 1). In this case, we choose m,n to be small so that we can solve

the inner max in problem (6.10) and compute ϕ̄(x) = max|S|≤k f(x, S) exactly using search over

all the subsets of size k. We report ϕ̄(xt) as well as optimal value of problem (6.10). Results in

Figure 6.1. (first plot) show that the algorithms converge to the optimal minimax value. We also

demonstrate the relative error of these algorithms errort := ϕ(xt) − OPT in second plot. As we

observe in Figure 6.1 (second plot), greedy based methods converge faster than replacement greedy

based algorithms in terms of iteration complexity.

Case II (m = 10, n = 50, k = 10, λ = 1). We now investigate the behavior of our proposed methods

199

for solving (6.10) in the second case when k, n are relatively larger. Note that exact computation of

ϕ̄(x) = max|S|≤k f(x, S) is not computationally tractable for this case, since it requires solving a

submodular maximization problem. Hence, in third plot in figure 6.1, we report the value of the

function ϕ(x) := f(x,Greedy(f, k,x)) which is an approximation for ϕ̄(x). In other words, instead

of computing ϕ̄(x) which is the maximum of f(x, S) over the choice of S, we report ϕ(x) which is

the value of f(x, S) when S is obtained via the greedy method. The convergence paths of ϕ(xt) for

our proposed methods are reported in the third plot of Figure 6.1. We further show the relative

error of these algorithms defined as errort := ϕ(xt) − ϕ(xT) in the fourth plot to better compare

their convergence rates.

Adversarial Attack for Item Recommendation. In this section, we study the application of

designing an adversarial attack for a movie recommendation task. Consider a (completed) rating

matrix X whose entries Xi,j correspond to the estimated rating that user i has given to movie j.

Given a rating matrix X, the recommender system chooses k movies via maximizing the utility

function max|S|≤k h(X,S) :=
1
|U|
∑

u∈U maxj∈S Xu,j where U is the set of all users. The attacker’s

goal is to slightly perturb the rating matrix X to a matrix X ′ such that the utility max|S|≤l h(X
′, S)

is minimized. Therefore, the attacker aims at solving the minimax problem

min
∥X′−X∥F≤ϵ
0≤X′

i,j≤5

max
|S|≤k

h(X ′, S), (6.11)

where ∥.∥F is the Frobenius norm. Note that h(X,S) is convex-submodular (convexity in x is clear,

and the function h(x, S) is a facility location function in S). Hence, this problem is an instance of

Problem (7.3). To evaluate the performance of our methods, we consider movie recommendation on

the Movielens dataset (Harper and Konstan, 2015). We pick 2000 most rated movies with 200 users

with highest number of rates for these movies (similar to (Stan et al., 2017b; Adibi et al., 2020)) and

we set k = 10. The adversary has a power to manipulate up to 0.5% of movies ratings on average

(i.e. ϵ = 0.5× 0.01× 200× 2000). We plot ϕ(Xalg) in each iteration as a measure of effectiveness of

our algorithms and compare it to the case that there is no attack. Figure 6.2 shows the comparison

of our algorithms. As we can see in Figure 6.2, the facility location based recommendation systems

200

Figure 6.2: Comparison of our proposed methods for for Problem (6.11) (the green line is the
performance of the recommender system when there is no adversary)

are extremely vulnerable to adversarial attacks and the performance drops from 90 (when there is

no adversary) to around 12 when we have attacks.

6.5. CONCLUSION

In this paper, we introduced and studied the convex-submodular minimax problem in (7.3). We

defined multiple notions of (near-) optimality and provided hardness results regarding these notions

in various regimes. In particular, one of the notions was (α, ϵ)-approximate minimax solution. We

showed that for α > 1−1/e finding an (α, ϵ)-approximate minimax solution is hard. For α ≤ 1−1/e,

we proposed five algorithms and characterized their theoretical guarantees in different settings. The

main take-away message from our algorithmic procedures is that, if the function f has bounded

gradient, then one can use the GG Algorithm, or the GRG algorithm which has a better complexity

albeit it has a worse approximation factor. If the gradient of f is not uniformly bounded, then one

has to resort to the proposed EGG algorithm.

An interesting future direction is to find more computationally efficient algorithms for harder

constraints such as matroid constraint with 1− 1/e factor. We believe gradient continuous-greedy

will achieve the 1−1/e factor on matroid constraints; However, it needs to run the continuous greedy

algorithm each iteration which is computationally costly.

201

6.6. Appendix

6.6.1. Proof of Theorem 17

Consider the function f : Rd × 2V → R+, where f(x, .) is submodular for every x and f(., S) is

convex for every S. Then, the maxmin convex-submodular problem is an optimization problem

where the maximization is over continuous variable and minimization is over a discrete variable as

OPTmaxmin ≜ max
S∈I

min
x∈X

f(x, S), (6.12)

Let us define the notion of approximate solution for maxmin problem as follows:

Definition 6. We call a point Ŝ an (α, ϵ)-approximate maxmin solution of Problem (6.12) if it

satisfies

αϕ(Ŝ) ≥ OPTmaxmin − αϵ, (6.13)

We know any (α, ϵ)−saddle point, denoted by (x̄, S̄), has the following properties:

1. ϕ(S̄) > α.OPTmaxmin − ϵ

2. ϕ̄(x̄) < 1
α .OPTminmax +

ϵ
α

This is due to the fact that we have:

1. min
x∈X

f(x, S̄) ≤ min
x∈X

max
S∈I

f(x, S) = OPTminmax

2. OPTmaxmin = max
S∈I

min
x∈X

f(x, S) ≤ max
S∈I

f(x̄, S)

these two conditions imply that by finding an (α, ϵ)−saddle point we find an α−approximate solution

for the minimax problem (7.3) and a 1
α−approximate solution for the max-min problem (6.12). In

order to prove finding (α, ϵ)− saddle point is NP-hard, we will prove that finding approximate

solution for maxmin convex-submodular is NP-hard. We do this establishing a connection between

this problem and the problem of robust submodular maximization through following result stated

202

and proved in (Krause et al., 2008a).

Consider monotone-submodular functions f1, f2, . . . fn and the following robust submodular maxi-

mization problem:

OPT1 = max
|S|≤k

min
i∈[n]

fi(S). (6.14)

Solving this problem up to approximation factor is NP-hard, i.e. finding a solution S such that

maxi fi(S) ≥ αOPT1 is an NP-hard task for any α > 0.

Now, consider the following problem:

OPT2 = max
|S|≤k

min
x∈Rn,x≥0
xT⊮=1

n∑
i=1

xi.fi(S) (6.15)

where ⊮ is vector of all ones and x = [x1, x2, x3 . . . xn]
T . For this problem, it is easy to verify that

OPT1 = OPT2 since for every set S ∈ V we have mini∈[n] fi(S) = min
x∈Rn,x≥0
xT⊮=1

∑n
i=1 xi.fi(S). Therefore,

finding a α−approximate solution for problem in (6.15) is NP-hard. Problem (6.15) is max-min

convex-submodular optimization which means max-min convex-submodular optimization is NP-hard

in general. We show that by finding (α, ϵ)−saddle point we can provide 1
α−approximate solution for

max-min problem; therefore, since we proved finding 1
α−approximate solution for max-min problem

is NP-hard, finding (α, ϵ)−saddle point is NP-hard too.

6.6.2. Proof of Theorem 18

Before stating this proof, let us explain what we mean by "NP-hard" for the considered setting. We

note that an algorithm for Problem (7.3) is supposed to search for an approximate solution only in

X (i.e., in terms of the variable x), and for this, it will require some information about the values

f(x, S). However, for every fixed x, there may be restrictions on obtaining some specific values of

f(x, S). For example, finding the exact value of ϕ̄(x) can in general be NP-hard (as maximizing a

monotone-submodular function beyond (1− 1/e) approximation is hard). In order to appropriately

address these restrictions, we will view our setting as a procedure between the algorithm and an

oracle that we now describe below.

203

Upon receiving an input point xin ∈ X , the oracle chooses based on this input a set Sout such that

|Sout| ≤ k, and returns all the following information: the set Sout, the value f(xin, Sout), and the

gradient of f(xin, Sout) with respect to x at the point (xin, Sout). The only restriction on the oracle is

that it is a polynomial-time oracle, i.e. the oracle’s procedure to find the set Sout requires poly-time

complexity in terms of the size of the ground-set |V |. More precisely, there exists an integer q > 0

such that for any ground set V , the oracle uses at most O(|V |q) operations to find the output set

Sout corresponding to an input xin. Note that we do not put any restriction on what the oracle does

apart from having poly-time complexity; e.g. it could output a greedy solution, or it could output a

random set Sout, or it could do any other procedure. We call such an oracle a polynomial-time oracle.

Given this choice of the oracle, the algorithm proceeds in m rounds, and in each round r ∈ [m], it

chooses an input point xr ∈ X to query from the oracle. Importantly, we consider algorithms that

require a polynomial number of rounds in terms of the size of the ground set V . More precisely, for

any ground set V and α, ϵ, the number of rounds of the algorithm is at most c(α, ϵ)|V |q where q > 0

is an absolute constant and c(α, ϵ) is another constant that only depends on α and ϵ. We call such

an algorithm a polynomial-time algorithm. Next, we show that no polynomial-time algorithm is

capable of finding an (α, ϵ)-approximate of (7.3) for α > 1− 1/e.

In the following, we assume for simplicity that ϵ = 0. The proof can be trivially extended to any

value of ϵ, as we will explain at the end of the proof. Recall from the statement of the theorem that

α = 1− 1/e+ γ for a fixed constant γ > 0.

We know for a fact that monotone-submodular maximization beyond the (1− 1/e)-approximation

in NP-hard (Krause and Golovin, 2014). I.e. unless P = NP, for any integer q > 0 there exists a

monotone submodular function g1 : 2V → R+ and an integer k ≤ |V | such that finding a set S

with cardinally k where g1(S) ≥ (1− 1/e+ γ/3)max|S|≤k g1(S) requires computing more than |V |q

function values (i.e. complexity is larger than |V |q). Consider such a function g1 and the choice of

k, and define OPTg1 = max|S|≤k g1(S). We also define another function g2 : 2V → R+ as follows:

g2(S) = min{g1(S), (1− 1/e+ γ/3)OPTg1}. It is important to note that finding a set |S| ≤ k such

that g1(S) ̸= g2(S) requires complexity larger than |V |q (also note that the choice of q is arbitrary

204

here, i.e. for every q there exists a g1, etc.).

Consider the integer n = ⌈4/γ + 1⌉ and let X be the n-dimensional simplex, i.e.

X = {x = (x1, · · · , xn) s.t.
n∑
i=1

xi = 1&xi ≥ 0 ∀i = 1, · · · , n}.

For j ∈ {1, · · · , n} we define fj(x, S) : X × 2V → R+ as

fj(x, S) =
∑

i∈[n],i ̸=j

xig1(S) + xjg2(S)

We note a few facts about each of the functions fj(x, S):

(i) Any (α, 0) approximate solution for the function fj has the property that xj > 1/n + γ/4.

This is simply because for any (α, 0)-approximate solution x = (x1, · · · , xn) we have αϕ̄(x) ≤

minx∈X max|S|≤k fj(x, S), and hence

α (xj(1− 1/e+ γ/3) + (1− xj))OPTg1 ≤ (1− 1/e+ γ/3)OPTg1

From the above inequality (and by noting that γ ∈ (0, 1]) we can always deduce that xj > γ/2, and

thus xj > 1/n+ γ/4.

(ii) Given a polynomial-time oracle, we can not distinguish between the functions f1, . . . , fn using

a query from the oracle. This is because the oracle can not find a set S with carnality at most k

for which g1(S) ̸= g2(S) (as finding that set by the oracle is intractable), and thus, for the set Sout

that the oracle finds, the outcome of the oracle will be the function value f(xin, Sout) = g1(Sout)

and ∇xf(xin, Sout) = g1(Sout)1n where 1n is the all-ones vector of dimension n. These outputs bear

absolutely no information about the index j.

Given the above facts, we are now ready to finalize the proof. Consider the scenario where the index

205

j is chosen uniformly at random inside the set [n], and the algorithm aims at finding an approximate

solution of the function fj . Note that the choice of j is hidden to the algorithm. Now, given fact (ii)

above, if both the algorithm and oracle are polynomial-time, then in all the rounds and queries, there

will be absolutely no information revealed about the index j. As a result, the mutual information

between the outcome of the queries and the index j will be zero.

On the other hand, from fact (i) above, if an algorithm can find an (α, 0)-approximate solution, we

claim that the solution is informative about the index j. More precisely, given the solution that the

algorithm has found, we can infer the hidden index j using the following procedure: the algorithm’s

solution x = (x1, · · · , xn) can be viewed as a probability distribution over the set {1, · · · , n}. As

a result, if we use this probability distribution to draw an integer ĵ from the set {1, · · · , n}, then

we have Pr{ĵ = j} = xj >= 1/n+ γ/4. Thus, we can decode the index j with a probability that

is strictly larger than a random guess. This means that the mutual information of the solution

found by the algorithm and the index j is strictly lower-bounded by a positive constant (which only

depends on γ). This contradicts the result of the previous paragraph.

Note that in the above we have assumed that ϵ = 0. For general ϵ, we note that we can always

choose the function g1 such that OPTg1 is sufficiently large. As a result, we can write ϵ = ϵ′×OPTg1

where ϵ′ can be made arbitrarily small. Hence, proving hardness for obtaining an (α, ϵ)-approximate

becomes equivalent to proving harness for obtaining an (α/(1 + ϵ′), 0) approximate solution. The

conclusion is now immediate since out proof above works for any α = 1 − 1/e + γ and ϵ′ can be

made arbitrarily small by making OPTg1 sufficiently large.

206

6.6.3. Proof of Theorem 19: Gradient Greedy(GG) Convergence

Proof. Let us pick γt = α.Then, we can write the following based on update xt+1 = πX (xt −

γt∇f(xt, St)) in algorithm 10 and assumption 14.

∥xt+1 − x∥2 ≤ ∥xt − α∇f(xt, St)− x∥2 = ∥xt − x∥2 + ∥α∇f(xt, St)∥2 − 2⟨α∇f(xt, St),xt − x⟩

(6.16)

≤ ∥xt − x∥2 + α2M2 − 2⟨α∇f(xt, St),xt − x⟩

(6.17)

which results in

2α(f(xt, St)− f(x, St)) ≤ 2⟨α∇f(xt, St),xt − x⟩ ≤ ∥xt − x∥2 − ∥xt+1 − x∥2 + α2M2 (6.18)

and finally

f(xt, St)− f(x̃, St) ≤
1

2α
(−∥xt − x̃∥2 + ∥xt−1 − x̃∥2) + 1

2
αM2 (6.19)

summing up over t we have:

T∑
t=1

f(xt, St)− f(x̃, St) ≤
1

2α
(∥x0 − x̃∥2) + 1

2
αTM2 (6.20)

our set of continuous variable is bounded which means ∥x∥2 ≤ H; this results:

T∑
t=1

f(xt, St)− f(x̃, St) ≤
H

2α
+

1

2
αTM2 (6.21)

207

Also, from greedy update we have for every S(check (Krause and Golovin, 2014)):

f(xt−1, S)−
f(xt−1, St)

1− 1
e

≤ 0 (6.22)

Now, using the Lipschitz condition (consequence of Assumption 14):

|f(xt, St)− f(xt−1, St)| ≤M∥xt − xt−1∥ ≤Mα∥∇f(xt−1, St)∥ ≤M2α (6.23)

Putting (6.22) and (6.23) together:

(1− 1

e
)f(xt, S)− f(xt, St) ≤ 2M2α (6.24)

and summing over t we have:

T∑
t=1

(1− 1

e
)f(xt, S)− f(xt, St) ≤ 2M2αT (6.25)

From (6.21) and (6.25) we can then obtain the following:

T∑
t=1

(1− 1

e
)f(xt, S)− f(x̃, St) ≤ 2M2αT +

H

2α
+

1

2
αTM2 (6.26)

and finally:

∑T
t=1 α((1−

1
e)f(xt, S)− f(x̃, St))∑T

t=1 α
≤

3M2αT + H
2α

T
(6.27)

From convexity we have:

f(
1

T

T∑
t=1

xt, S) ≤
∑T

t=1 f(xt−1, S)

T
(6.28)

208

which results in:

(1− 1

e
)f(

1

T

T∑
t=1

xt, S)−
∑T

t=1 α(f(x̃, St))∑T
t=1 α

≤
3M2αT + H

2α

T
(6.29)

Defining x∗ = argminmax f(x, S), we know that minxmaxS f(x, S) = max f(x∗, S) ≥ f(x∗, St).

Now in (6.29) we let x̃ = x∗ and write:

(1− 1

e
)max

S
f(

1

T

T∑
t=1

xt, S)−min
x

max
S

f(x, S) ≤
3M2αT + H

2α

T
(6.30)

Letting α = 1√
T

we obtain:

(1− 1

e
)max

S
f(

1

T

T∑
t=1

xt, S)−min
x

max
S

f(x, S) ≤
3M2 + H

2√
T

(6.31)

Finally, if we define K = 3M2 + H
2 and let T = K2

ϵ2
; then xsol =

1
T

∑T
t=1 xt is a (1 − 1/e, ϵ)-

approximate minimax solution.

6.6.4. Proof of Theorem 21: Gradient Replacement-greedy(GRG) Convergence

Proof. Let g be a monotone-submodular function, and consider sets B,S ⊆ V with size k. Define

e∗ = argmaxe∈S g(S \ e)− g(S), and v∗ = argmaxv∈V g(S ∪ v \ e∗)− g(S ∪ v \ e∗). We have:

g(S ∪ v∗ \ e∗)− g(S) ≥ 1

k

∑
v∈B

g(S ∪ v \ e∗)− g(S)

=
1

k

∑
v∈B

(g(S ∪ v \ e∗)− g(S ∪ v) + g(S ∪ v)− g(S)) (6.32)

where the first inequality comes from the definition of v∗. We know that for a monotone-submodular

function g we have g(B ∪ S) − g(S) ≤
∑

v∈B(g(S ∪ v) − g(S)) for any choice of B,S (Stan et al.,

2017b); which results in:

209

1

k

∑
v∈B

(g(S ∪ v)− g(S)) ≥ 1

k
(g(B ∪ S)− g(S)) ≥ 1

k
(g(B)− g(S)) (6.33)

Here, the first inequality is due to submodularity and the second inequalities is due to monotonicity.

Also, we have:

1

k

∑
v∈B

(g(S ∪ v)− g(S ∪ v \ e∗)) ≤ 1

k

∑
v∈B

(g(S)− g(S \ e∗)) = g(S)− g(S \ e∗)

≤ 1

k

∑
e∈S

(g(S)− g(S \ e)) ≤ 1

k
g(S) (6.34)

where the first and second inequality comes from submodularity. Combining (6.32),(6.33), and (6.34)

we have that for every set B of size k:

g(S ∪ v∗ \ e∗)− g(S) ≥ 1

k
(g(B)− 2g(S)) (6.35)

If we apply (6.35) for the replacement greedy update in Gradient Replacement-greedy(GRG) algo-

rithm, we obtain:

f(xt, St)− f(xt, St−1) ≥
1

k
(f(xt, S)− 2f(xt, St−1)) (6.36)

and hence

f(xt, S)− 2f(xt, St) ≤ (1− 2

k
)(f(xt, S)− 2f(xt, St−1)) (6.37)

Note that as f is M -Lipschitz we have for every S (consequence of Assumption 14):

|f(xt, S)− f(xt−1, S)| ≤M∥xt − xt−1∥ ≤Mα∥∇f(xt−1, St)∥ ≤M2α (6.38)

210

Combining (6.37) and (6.38) we obtain that

f(xt, S)− 2f(xt, St) ≤ (1− 2

k
)(f(xt−1, S)− 2f(xt−1, St−1) + 3M2α) (6.39)

Using a recursive argument we can show that

f(xt, S)− 2f(xt, St) ≤ (1− 2

k
)t(f(x0, S)− 2f(x0, S0)) +

t∑
m=1

(1− 2

k
)m3M2α (6.40)

Now since f(x0, S0) is non-negative, we can eliminate −f(x0, S0) from the right hand side. Using

this observation and by simplifying the geometric sum we obtain that

f(xt, S)− 2f(xt, St) ≤ (1− 2

k
)tf(x0, S) + 3M2α

k

2
(6.41)

Now, note that (1− 2
k)
t is bounded above by e−

2t
k and therefore we have

f(xt, S)− 2f(xt, St) ≤ Ae−
2t
k + 3M2α

k

2
, (6.42)

where A is an upper bound for function value at point zero, f(0, S) ≤ A. Now, from the analysis of

gradient descent similar to (6.21), we have:

T∑
t=1

f(xt, St)− f(x̃, St) ≤
H

2α
+

1

2
αTM2 (6.43)

Combining this inequality with (6.42) we have:

T∑
t=1

1

2
f(xt, S)− f(x̃, St) ≤

H

2α
+

∑T
t=1Ae

− 2t
k

2
+

5TM2αk

4
≤ K

2α
+

Ae−
2
k

2(1− e−
2
k)

+
5TM2αk

4
(6.44)

Thus, choosing the parameters α = 1√
T

will lead to

1

T

T∑
t=1

1

2
f(xt, S)− f(x̃, St) ≤

H

2
√
T

+
Ae−

2
k

2T (1− e−
2
k)

+
5M2k

4
√
T
≤ K√

T
(6.45)

211

where K is some constant.

In summary, we have obtained the following relation that will be used to drive the guarantee for the

minimax problem:

1

T

T∑
t=1

1

2
f(xt, S)− f(x̃, St) ≤

K√
T

(6.46)

We know because of convexity we have:

f

(
1

T

T∑
t=1

xt−1, S

)
≤
∑T

t=1 f(xt−1, S)

T
(6.47)

Now combining (6.46) and (6.47) we have:

1

2
f

(
1

T

T∑
t=1

xt, S

)
− 1

T

T∑
t=1

f(x̃, St) ≤
K√
T

(6.48)

Also for x∗ = argminxmaxS f(x, S) we have minxmaxS f(x, S) = maxS f(x
∗, S) ≥ f(x∗, St). By

using x̃ = x∗ we can write:

1

2
f

(
1

T

T∑
t=1

xt, S

)
−min

x
max
S

f(x, S) ≤ 1

2
f

(
1

T

T∑
t=1

xt, S

)
− 1

T

T∑
t=1

f(x∗, St) ≤
K√
T

(6.49)

Let T = K2

ϵ2
; then xsol =

1
T

∑T
t=1 xt is a (1/2, ϵ)- approximate minimax solution.

212

6.6.5. Proof of Theorem 20: Extra-gradient Greedy(EGG) Convergence

Consider the Extra-gradient Greedy method, we can write the following equations to find the bound

on convergence of x:

∥x̂t − x∥2

≤ ∥xt − x− γt∇xf(xt, St)∥2

= ∥xt − x∥2 − 2γt∇xf(xt, St)
⊤(xt − x) + ∥x̂t − xt∥2

= ∥xt − x∥2 − 2γt∇xf(xt, St)
⊤(x̂t − x) + ∥x̂t − xt∥2 + 2γt∇xf(xt, St)

⊤(x̂t − xt)

= ∥xt − x∥2 − 2γt∇xf(xt, St)
⊤(x̂t − x) + ∥x̂t − xt∥2 + 2(xt − x̂t)

⊤(x̂t − xt)

= ∥xt − x∥2 − 2γt∇xf(xt, St)
⊤(x̂t − x) + ∥x̂t − xt∥2 − 2∥x̂t − xt∥2 (6.50)

Hence, we have

2γt∇xf(xt, St)
⊤(x̂t − x) ≤ ∥xt − x∥2 − ∥x̂t − x∥2 − ∥x̂t − xt∥2 (6.51)

Similarly we can show that

∥xt+1 − x∥2

≤ ∥xt − x− γt∇xf(x̂t, Ŝt)∥2

= ∥xt − x∥2 − 2γt∇xf(x̂t, Ŝt)
⊤(xt − x) + ∥xt+1 − xt∥2

= ∥xt − x∥2 − 2γt∇xf(x̂t, Ŝt)
⊤(xt+1 − x) + ∥xt+1 − xt∥2 + 2γt∇xf(x̂t, Ŝt)

⊤(xt+1 − xt)

= ∥xt − x∥2 − 2γt∇xf(x̂t, Ŝt)
⊤(x̂t − x) + ∥xt+1 − xt∥2 + 2(xt − xt+1)

⊤(xt+1 − xt)

= ∥xt − x∥2 − 2γt∇xf(x̂t, Ŝt)
⊤(xt+1 − x) + ∥xt+1 − xt∥2 − 2∥xt+1 − xt∥2 (6.52)

213

Hence, we have

2γt∇xf(x̂t, Ŝt)
⊤(xt+1 − x) ≤ ∥xt − x∥2 − ∥xt+1 − x∥2 − ∥xt+1 − xt∥2 (6.53)

Now note that we can write 2γt∇xf(x̂t, Ŝt)
⊤(x̂t − x) as

2γt∇xf(x̂t, Ŝt)
⊤(x̂t − x) (6.54)

= 2γt∇xf(x̂t, Ŝt)
⊤(x̂t − xt+1) + 2γt∇xf(x̂t, Ŝt)

⊤(xt+1 − x) (6.55)

= 2γt∇xf(x̂t, Ŝt)
⊤(x̂t − xt+1) + 2γt∇xf(x̂t, Ŝt)

⊤(xt+1 − x) (6.56)

+ 2γt∇xf(xt, St)
⊤(x̂t − xt+1)− 2γt∇xf(xt, St)

⊤(x̂t − xt+1) (6.57)

= 2γt∇xf(xt, St)
⊤(x̂t − xt+1) + 2γt∇xf(x̂t, Ŝt)

⊤(xt+1 − x) (6.58)

+ 2γt

(
∇xf(x̂t, Ŝt)−∇xf(xt, St)

)⊤
(x̂t − xt+1) (6.59)

≤ ∥xt − xt+1∥2 − ∥x̂t − xt+1∥2 − ∥x̂t − xt∥2 (6.60)

+ ∥xt − x∥2 − ∥xt+1 − x∥2 − ∥xt+1 − xt∥2 (6.61)

+ 2γt

(
∇xf(x̂t, Ŝt)−∇xf(xt, St)

⊤(x̂t − xt+1)
)

(6.62)

= −∥x̂t − xt+1∥2 − ∥x̂t − xt∥2 + ∥xt − x∥2 − ∥xt+1 − x∥2 (6.63)

+ 2γt

(
∇xf(x̂t, Ŝt)−∇xf(xt, St)

)⊤
(x̂t − xt+1), (6.64)

where the inequality follows from the results in (6.51) and (6.53).

Next we derive an upper bound for the inner product
(
∇xf(x̂t, Ŝt)−∇xf(xt, St)

)⊤
(x̂t − xt+1)

214

using the smoothness of the function f , i.e.,

(
∇xf(x̂t, Ŝt)−∇xf(xt, St)

)⊤
(x̂t − xt+1)

≤ ∥∇xf(x̂t, Ŝt)−∇xf(xt, St)∥∥x̂t − xt+1∥

≤
(
∥∇xf(x̂t, Ŝt)−∇xf(x̂t, St)∥+ ∥∇xf(x̂t, St)−∇xf(xt, St)∥

)
∥x̂t − xt+1∥

≤
(
Lx,S∥Ŝt − St∥+ Lx,x∥x̂t − xt∥

)
∥x̂t − xt+1∥

Now to complete our upper bound we need to bound ∥Ŝt − St∥ which can be done as

∥Ŝt − St∥ ≤ ϕ∥x̂t − xt∥+ σ (6.65)

The above relation holds because for every two feasible set we have ∥A−B∥ ≤ 2k ;therefore, if we

let σ = 2k and ϕ = 1 the above condition is always true. Considering this result we obtain that

(
∇xf(x̂t, Ŝt)−∇xf(xt, St)

)⊤
(x̂t − xt+1) ≤ (Lx,Sϕ+ Lx,x) ∥x̂t − xt∥∥x̂t − xt+1∥

+ Lx,Sσ∥x̂t − xt+1∥

215

Applying this upper bound into (6.54) implies that

2γt∇xf(x̂t, Ŝt)
⊤(x̂t − x)

≤ −∥x̂t − xt+1∥2 − ∥x̂t − xt∥2 + ∥xt − x∥2 − ∥xt+1 − x∥2

+ 2γt (Lx,Sϕ+ Lx,x) ∥x̂t − xt∥∥x̂t − xt+1∥+ 2γtLx,Sσ∥x̂t − xt+1∥

≤ ∥xt − x∥2 − ∥xt+1 − x∥2

+
[
−∥x̂t − xt+1∥2 − ∥x̂t − xt∥2 + 2γt (Lx,Sϕ+ Lx,x) ∥x̂t − xt∥∥x̂t − xt+1∥

]
+ 2γtLx,Sσ∥x̂t − xt+1∥

≤ ∥xt − x∥2 − ∥xt+1 − x∥2 − ∥x̂t − xt+1∥2 − ∥x̂t − xt∥2

+ γt (Lx,Sϕ+ Lx,x) ∥x̂t − xt∥2 + γt (Lx,Sϕ+ Lx,x) ∥x̂t − xt+1∥2 + 4γ2t L
2
x,Sσ

2

+
1

4
∥x̂t − xt+1∥2

≤ ∥xt − x∥2 − ∥xt+1 − x∥2 + 4γ2t L
2
x,Sσ

2

where the third inequality holds because of the fact that 2ab ≤ a2 + b2, and the last inequality holds

since we assume γt(Lx,Sϕ+ Lx,x) ≤ 3/4.

Using this result we have that

2γt∇xf(x̂t, Ŝt)
⊤(x̂t − x) ≤ ∥xt − x∥2 − ∥xt+1 − x∥2 + 4γ2t L

2
x,Sσ

2

Now by convexity of f with respect to x we have

∇xf(x̂t, Ŝt)
⊤(x̂t − x) ≥ f(x̂t, Ŝt)− f(x, Ŝt)

and therefore

f(x̂t, Ŝt)− f(x, Ŝt) ≤
1

2γt

(
∥xt − x∥2 − ∥xt+1 − x∥2

)
+ 2γtL

2
x,Sσ

2

216

Moreover we know that

f(x̂t, S)−
1

1− 1/e
f(x̂t, Ŝt) ≤ 0

Hence,

f(x̂t, Ŝt)− f(x, Ŝt) + (1− 1/e)f(x̂t, S)− f(x̂t, Ŝt)

≤ 1

2γt

(
∥xt − x∥2 − ∥xt+1 − x∥2

)
+ 2γtL

2
x,Sσ

2 (6.66)

Let γt = 1√
T

. Then, since ∥x∥2 ≤ H, we have

1

T

T∑
t=1

−f(x, Ŝt) + (1− 1/e)f(x̂t, S) ≤
H

2
√
T

+
2L2

x,Sσ
2

√
T

(6.67)

Let K = 2L2
x,Sσ

2 +K/2 then we have

1

T

T∑
t=1

−f(x, Ŝt) + (1− 1/e)f(x̂t, S) ≤
K√
T

(6.68)

We know because of convexity

f(
1

T

T∑
t=1

x̂t−1, S) ≤
∑T

t=1 f(x̂t−1, S)

T
(6.69)

Now combining (6.68) and (6.69) we have

(1− 1/e)f(
1

T

T∑
t=1

x̂t, S)−
1

T

T∑
t=1

f(x̃, Ŝt) ≤
K√
T

(6.70)

Also for x∗ = argminxmaxS f(x, S), we have minxmaxS f(x, S) = maxS f(x
∗, S) ≥ f(x∗, St). We

217

let x̃ = x∗ and write

(1− 1/e)f(
1

T

T∑
t=1

x̂t, S)−min
x

max
S

f(x, S) (6.71)

≤ (1− 1/e)f(
1

T

T∑
t=1

x̂t, S)−
1

T

T∑
t=1

f(x∗, Ŝt) ≤
K√
T

(6.72)

Let T = K2

ϵ2
; then, xsol = 1

T

∑T
t=1 x̂t is an ((1− 1/e), ϵ) approximate minimax solution.

6.6.6. Extra-gradient Replacement-greedy(EGRG) Convergence

For the analysis with respect to x, we can show that

f(x̂t, Ŝt)− f(x, Ŝt) ≤
1

2γt

(
∥xt − x∥2 − ∥xt+1 − x∥2

)
+ 2γtL

2
x,Sσ

2

therefore:

∑T
t=1 γt

[
f(x̂t, Ŝt)− f(x, Ŝt)

]
∑T

t=1 γt
≤ ∥x− x1∥2

2
∑T

t=1 γt
+

∑T
t=1 2γ

2
t L

2
x,Sσ

2∑T
t=1 γt

≤ K1√
T

(6.73)

It remains to derive an upper bound for f(x̂t, S)−2f(x̂t, Ŝt) . According to the update of replacement-

greedy method, we can write the following inequalities:

f(xt, Ŝt)− f(xt, St) ≥
1

k
(f(xt, S)− 2f(xt, St)) (6.74)

and

f(x̂t, St+1)− f(x̂t, Ŝt) ≥
1

k

(
f(x̂t, S)− 2f(x̂t, Ŝt)

)
(6.75)

218

Using the second expression, we can write

1

k

(
f(x̂t−1, S)− 2f(x̂t−1, Ŝt−1)

)
≤ f(x̂t−1, St)− f(x̂t−1, Ŝt−1) (6.76)

Let ϕ̄(xt) = max|S|≤k f(xt, S); if we assume for every x, S, ∥∇xf(x, S)∥ ≤ G then we have:

|ϕ̄(x)− ϕ̄(y)| ≤ G||x− y|| (6.77)

hence

ϕ̄(x̂t−1)− 2f(x̂t−1, St) ≤ (1− 2

k
)(ϕ̄(x̂t−1)− 2f(x̂t−1, Ŝt−1)) (6.78)

Note that

f(x̂t−1, St) ≤ f(xt, St) + Lx||xt − x̂t−1||

≤ f(xt, Ŝt) + γtG
2 (6.79)

≤ f(x̂t, Ŝt) + 2γtG
2, (6.80)

therefore,

ϕ̄(x̂t−1)− 2f(x̂t, Ŝt) ≤ (1− 2

k
)(ϕ̄(x̂t−1)− 2f(x̂t−1, Ŝt−1)) + 4γtG

2 (6.81)

Also, note that

|ϕ̄(x̂t)− ϕ̄(x̂t−1)| ≤ G2γt. (6.82)

Putting (6.81), (6.80) and (6.82) together, we obtain:

ϕ̄(x̂t)− 2f(x̂t, Ŝt) ≤ (1− 2

k
)(ϕ̄(x̂t−1)− 2f(x̂t−1, Ŝt−1)) + 5γtG

2 (6.83)

let γt = 1√
T

and ϕ̄(x̂0)− 2f(x̂0, Ŝ0) = A0, then

219

T∑
t=1

γt(ϕ̄(x̂t)− 2f(x̂t, Ŝt)) ≤
T∑
t=1

1√
T
(
t−1∑
t=0

5G2

√
T
(1− 2

k
)t + (1− 2

k
)tA0)

≤
T∑
t=1

1√
T
(
5kG2

2
√
T

+ (1− 2

k
)tA0) (6.84)

≤ kβ (6.85)

where β = 5kG2

2 + kA0

2
√
T

and finally for update of S we get:

∑T
t=1 γt(ϕ̄(x̂t)− 2f(x̂t, Ŝt))∑T

t=1 γt
≤ kβ√

T
(6.86)

Adding up (6.86) and (6.73) we have:

∑T
t=1 γt

[
0.5ϕ̄(x̂t)− f(x, Ŝt)

]
∑T

t=1 γt
≤ K1√

T
+

kβ√
T
≤ K√

T
(6.87)

from this for every S

∑T
t=1 γt

[
0.5f(x̂t, S)− f(x, Ŝt)

]
∑T

t=1 γt
≤ K√

T
(6.88)

Similar to (6.69) and (6.70), (6.87) results xsol =
1
T

∑T
t=1 x̂t, to be (1/2, ϵ)-approximate minimax

solution.

6.6.7. Maxmin Result

In this section, we introduce maxmin convex-submodular problem and discuss how we can exploit

the algorithms described in the previous sections for the maxmin problem. Formally, consider the

function f : Rd× 2V → R+, where f(x, .) is submodular for every x and f(., S) is convex for every S.

220

Then, the maxmin convex-submodular problem is an optimization problem where the maximization

is over continuous variable and minimization is over a discrete variable as

OPTmaxmin ≜ max
S∈I

min
x∈X

f(x, S), (6.89)

Due to hardness of the max-min problem as we stated in Theorem 17 and Appendix 6.6.1, we cannot

drive the same result for the maxmin problem as we did for minimax problem. In general, finding

an approximation solution for problem (6.89) is NP-hard. Our result as stated in theorem 24 proves

that ∪Tt=1St is an approximate solution for (6.89) which has a larger cardinality than our cardinality

constraint (at most Tk elements). Although, the set ∪Tt=1St is not feasible solution, our algorithm

converges quickly, and we can use the small number of steps to solve such a problem which means

even for small T the set ∪Tt=1St can solve maxmin problem approximately. This result is similar

to the bi-criterion solutions for robust submodular maximization studied in (Krause et al., 2008a),

where the authors propose an approach that finds a set that violates the cardinality constraint, but

it is within logarithmic factor of the constraint.

Theorem 24. Consider all algorithms stated in Algorithms section, if the functions f is convex

monotone submodular, and Assumption 13 holds (and Assumption 14 holds for Gradient Greedy(GG),

and Gradient Replacement-greedy(GRG)), then the set ∪Tt=1St is (α, ϵ)−approximate solution for

maxmin convex-submodular problem with cardinality constraint after O(1/ϵ2) iterations. Note that

parameter α is α = (1− 1/e)−1 for Gradient and Extra-gradient Greedy, α = 2 for Gradient

Replacement-greedy, α = 2 + k
k−1 for Extra-gradient Replacement-greedy.

Proof of Theorem 24 for Gradient Greedy(GG)

If we let S∗ = argmaxS minx f(x, S) we know that for every t we have f(xt−1, S
∗) ≥ minx f(x, S

∗) =

maxS minx f(x, S). Therefore, if we let S = S∗ in (6.26) we have:

221

(1− 1

e
)max

S
min
x
f(x, S)−

∑T
t=1 α(f(x̃, St))∑T

t=1 α
≤

3M2αT + H
2α

T
(6.90)

Also, if we let x̂ = argminx f(x,∪tSt) and put x̃ = x̂ in (6.90) then because f(x̂, St) ≤ f(x̂,∪tSt)

we have:

(1− 1

e
)max

S
min
x
f(x, S)−min

x
f(x,∪tSt) ≤

3M2αT + H
2α

T
(6.91)

and by using α = 1√
T

:

(1− 1

e
)max

S
min
x
f(x, S)−min

x
f(x,∪tSt) ≤

3M2αT + H
2α√

T
(6.92)

Now, using specific choices K = 2M2 + H
2 and let T = K2

ϵ2
; we obtain that Ssol = ∪tSt is a

((1− 1/e)−1, ϵ)-approximate maxmin solution.

Proof of Theorem 24 for Gradient Replacement-greedy(GRG)

If we let S∗ = argmaxS minx f(x, S) we know that for every t we have f(xt−1, S
∗) ≥ minxf(x, S∗) =

maxS minx f(x, S). Therefore, if we let S = S∗ in (6.45) we have :

1

2
max
S

min
x
f(x, S)− 1

T

T∑
t=1

f(x̃, St) ≤
K√
T

(6.93)

Let x̂ = argminx f(x,∪tSt) and put x̃ = x̂ in (6.93) then because f(x̂, St) ≤ f(x̂,∪tSt) we have:

1

2
max
S

min
x
f(x, S)−min

x
f(x,∪tSt) ≤

1

2
max
S

min
x
f(x, S)− 1

T

T∑
t=1

f(x̂, St) ≤
K√
T

(6.94)

222

let T = K2

ϵ2
; then Ssol = ∪tSt is a (2, ϵ)-approximate maxmin solution.

Proof of Theorem 24 for Extra-gradient Greedy(EGG)

If we let S∗ = argmaxS minx f(x, S) we know that for every t we have f(x̂t−1, S
∗) ≥ minxf(x, S∗) =

maxS minx f(x, S). Therefore, if we let S = S∗ in (6.66) we have :

(1− 1/e)max
S

min
x
f(x, S)− 1

T

T∑
t=1

f(x̃, St) ≤
K√
T

(6.95)

Let x̂ = argminx f(x,∪tSt) and put x̃ = x̂ in (6.93) then because f(x̂, St) ≤ f(x̂,∪tSt) we have:

(1− 1/e)max
S

min
x
f(x, S)−min

x
f(x,∪tSt) (6.96)

≤ (1− 1/e)max
S

min
x
f(x, S)− 1

T

T∑
t=1

f(x̂, St) ≤
K√
T

(6.97)

Let T = H2

ϵ2
; then, Ssol = ∪tSt is ((1− 1/e)−1, ϵ) approximate maxmin solution.

Proof of Theorem 24 for Extra-gradient Replacement-greedy(EGRG)

Similar to (6.95), and (6.96), (6.87) results Ssol = ∪tSt to be ((2 + k
k−1), ϵ)-approximate maxmin

solution.

6.6.8. Proof of Theorem 23: Extra Gradient on Continuous Extension Convergence

In this section, we will focus on convergence analysis of Extra Gradient on continuous extension. We

first provide two propositions and matroid definition that will help us in the proof.

Definition 7. Let I be a nonempty family of allowable subsets of the ground set V , then the tuple

(V, I) is a matroid if and only if the following conditions hold:

1. For any A ⊂ B ⊂ V , if B ∈ I, then A ∈ I

2. For all A,B ∈ I, if |A| < |B|, then there is an e ∈ B\A such that A ∪ {e} ∈ I.

223

Proposition 1. we have that

OPT ≜ min
x∈C

max
S∈I

f(x, S) = min
x∈C

max
y∈K

F (x,y). (6.98)

Furthermore, the function F has the following properties (assuming differentibility):

Proposition 2. we have for function F ((Hassani et al., 2017)):

∀x1,x2 ∈ Rd : F (x1,y)− F (x2,y) ≤ ⟨∇xF (x1,y),x1 − x2⟩,

∀y1,y2 ∈ Rd : F (x,y2)− 2F (x,y1) ≤ ⟨∇yF (x,y1),y2 − y1⟩.

using same procedure as Extra-gradient Greedy we drive following equations similar to (6.53):

∥x̂t − x∥2

≤ ∥xt − x− γt∇xf(xt,yt)∥2

= ∥xt − x∥2 − 2γt∇xf(xt, yt)
⊤(xt − x) + ∥x̂t − xt∥2

= ∥xt − x∥2 − 2γt∇xf(xt,yt)
⊤(x̂t − x) + ∥x̂t − xt∥2 + 2γt∇xf(xt,yt)

⊤(x̂t − xt)

≤ ∥xt − x∥2 − 2γt∇xf(xt,yt)
⊤(x̂t − x) + ∥x̂t − xt∥2 + 2(xt − x̂t)

⊤(x̂t − xt)

= ∥xt − x∥2 − 2γt∇xf(xt,yt)
⊤(x̂t − x) + ∥x̂t − xt∥2 − 2∥x̂t − xt∥2

and similarly we have:

224

2⟨−γt∇yF (xt,yt), ŷt − y⟩ ≤ ∥y − yt∥2 − ∥y − ŷt∥2 − ∥ŷt − yt∥2

2⟨γt∇xF (xt,yt), x̂t − x⟩ ≤ ∥x− xt∥2 − ∥x− x̂t∥2 − ∥x̂t − xt∥2

2⟨−γt∇yF (x̂t, ŷt),yt+1 − y⟩ ≤ ∥y − yt∥2 − ∥y − yt+1∥2 − ∥yt+1 − yt∥2

2⟨γt∇xF (x̂t, ŷt),xt+1 − x⟩ ≤ ∥x− xt∥2 − ∥x− xt+1∥2 − ∥xt+1 − xt∥2

2⟨−γt∇yF (xt,yt), ŷt − yt+1⟩ ≤ ∥yt+1 − yt∥2 − ∥yt+1 − ŷt∥2 − ∥yt − ŷt∥2

2⟨γt∇xF (xt,yt), x̂t − xt+1⟩ ≤ ∥xt+1 − xt∥2 − ∥x̂t − xt+1∥2 − ∥xt − x̂t∥2

combing the above equations we have:

⟨−γt∇yF (x̂t, ŷt), ŷt − y⟩ = ⟨−γt∇yF (x̂t, ŷt), ŷt − yt+1⟩+ ⟨−γt∇yF (x̂t, ŷt),yt+1 − y⟩

= ⟨−γt∇yF (x̂t, ŷt) + γt∇yF (xt,yt), ŷt − yt+1⟩

+ ⟨−γt∇yF (xt,yt), ŷt − yt+1⟩

+ ⟨−γt∇yF (x̂t, ŷt),yt+1 − y⟩

≤ ⟨−γt∇yF (x̂t, ŷt) + γt∇yF (xt,yt), ŷt − yt+1⟩

+ 0.5(−∥ŷt − yt+1∥2 − ∥yt − ŷt∥2

+ ∥y − yt∥2 − ∥y − yt+1∥2)

and

⟨γt∇xF (x̂t, ŷt), x̂t − x⟩ = ⟨γt∇xF (x̂t, ŷt), x̂t − xt+1⟩+ ⟨γt∇xF (x̂t, ŷt),xt+1 − x⟩

= ⟨γt∇xF (x̂t, ŷt)− γt∇xF (xt,yt), x̂t − xt+1⟩

+ ⟨γt∇xF (xt,yt), x̂t − xt+1⟩+ ⟨γt∇xF (x̂t, ŷt),xt+1 − x⟩

≤ ⟨γt∇xF (x̂t, ŷt)− γt∇xF (xt,yt), x̂t − xt+1⟩+ 0.5(−∥x̂t − xt+1∥2 − ∥xt − x̂t∥2

+ ∥x− xt∥2 − ∥x− xt+1∥2)

225

let

σxt = ⟨γt∇xF (x̂t, ŷt)− γt∇xF (xt,yt), x̂t − xt+1⟩+ 0.5(−∥x̂t − xt+1∥2 − ∥xt − x̂t∥2)

and

σyt = ⟨−γt∇yF (x̂t, ŷt) + γt∇yF (xt,yt), ŷt − yt+1⟩+ 0.5(−∥ŷt − yt+1∥2 − ∥yt − ŷt∥2)

then 2σxt + σyt ≤ 0 if γt ≤ 1
3max{Lx,Ly}(check (Nemirovski, 2004b) for more details) ; which results

in:

2⟨−γt∇yF (ŷt, ŷt), ŷt − y⟩ ≤ ∥y − yt∥2 − ∥y − yt+1∥2 (6.99)

2⟨γt∇xF (x̂t, ŷt), x̂t − x⟩ ≤ ∥x− xt∥2 − ∥x− xt+1∥2 (6.100)

combing above equations with proposition 2 we have:

2γtF (x̂t, ŷt)− 2γtF (x, ŷt) ≤ 2⟨γt∇xF (x̂t, ŷt), x̂t − x⟩ ≤ ∥x− xt∥2 − ∥x− xt+1∥2 (6.101)

−2γtF (x̂t, ŷt) + γtF (x̂t,y) ≤ ⟨−γt∇yF (x̂t, ŷt), ŷt − y⟩ ≤ 0.5∥y − yt∥2 − 0.5∥y − yt+1∥2 (6.102)

−2γtF (x, ŷt) + γtF (x̂t,y) ≤ 0.5∥y − yt∥2 − 0.5∥y − yt+1∥2 + ∥x− xt∥2 − ∥x− xt+1∥2 (6.103)

summing over t in (6.103) and divide both side by
∑T

t=1 γt (set of variable x and y is bounded i.e.

226

∥y∥2 ≤ H, ∥x∥2 ≤ H):

∑T
t=1 γt [−2F (x, ŷt) + F (x̂t,y)]∑T

t=1 γt
≤ 0.5∥y − y1∥2 + ∥x− x1∥2∑T

t=1 γt
≤ 1.5H

γT
(6.104)

which means same as before let T =
√
1.5H
γϵ and constant step size γt = γ, and x∗ = argminmax f(x,y)

we have:

1

2
f(

1

T

T∑
t=1

x̂t,y)−min
x

max
y

F (x,y) ≤ 1

2
F (

1

T

T∑
t=1

xt,y)−
1

T

T∑
t=1

f(x∗,yt) ≤ ϵ (6.105)

then using proposition 1, xsol = 1
T

∑T
t=1 x̂t is (0.5, ϵ)-approximate minimax solution.

227

CHAPTER 7

Submodular Maximization with Distributed Constraints

7.1. Introduction

Recently, the need has arisen to design algorithms that distribute decision making among a collection

of agents or computing devices. This need has been motivated by problems from statistics, machine

learning and robotics. More specifically, these problems include:

• (Density estimation) What is the best way to estimate a non-parametric density function from

a distributed dataset? (Hu et al., 2007)

• (Non-parametric models) How should we summarize very large datasets in a distributed manner

to facilitate Gaussian process regression? (Mirzasoleiman et al., 2016a)

• (Information acquisition) How should a team of mobile robots acquire information about an

environmental process or reduce uncertainty in a mapping task? (Schlotfeldt et al., 2018)

Research toward solving the problems posed in these applications has resulted in a large body

of work on topics such as sensing and coverage (Zhong and Cassandras, 2011; Singh et al., 2009),

natural language processing (Wei et al., 2013), and learning and statistics (Golovin and Krause, 2011;

Djolonga et al., 2016). Indeed, inherent to each of these applications is an underlying optimization

problem that can be expressed as

maximize f(S) (7.1a)

subject to S ⊆ Y, S ∈ I (7.1b)

where f is a submodular set function (i.e. it has a diminishing-returns property), Y is a finite set

of all decision variables, and I is a family of allowable subsets of Y. In words, the goal of (7.1) is

to pick a set S from the family of allowable subsets I that maximizes the submodular set function

f . A wide class of relevant objective functions such as mutual information and weighted coverage

are submodular; this has motivated a growing body of work surrounding submodular optimization

228

problems (Mokhtari et al., 2018; Mirzasoleiman et al., 2013; Zhou et al., 2020a; Du et al., 2020;

Adibi et al., 2020; Chen et al., 2020; Xie et al., 2019).

Intuitively, it is useful to think of the problem in (7.1) as a distributed n-player game. In this game,

each player or agent has a distinct local strategy set of actions. The goal of the game is for each

agent to choose at most one action from its own strategy set to maximize a problem-specific notion

of reward. Therefore, the problem is distributed in the sense that agents can only form a control

policy with the actions from their local, distinct strategy sets. To maximize reward, agents are

allowed to communicate with their direct neighbors in a bidirectional communication graph. In

this way, we might think of these agents as robots that collectively aim to solve a coverage problem

in an unknown environment by communicating their sensing actions to their nearest neighbors.

Throughout this work, we will refer to this multi-agent game example to elucidate our results.

In this paper, our aim is to study problem (1) in a distributed setting, which we will formally

introduce in Section 8.2; this setting differs considerably from the centralized setting, which has

been studied thoroughly in past work (see Calinescu et al. (2011)). Notably, the distributed setting

admits a more challenging problem because agents can only communicate locally with respect to a

communication graph. Therefore designing an efficient communication scheme among agents is a

concomitant requirement for the distributed setting, whereas in the centralized setting, there is no

such desideratum.

Contributions. In this paper, we formulate the general case of maximizing a submodular set

function subject to a distributed partition matroid constraint in Problem 25. We then formulate

the continuous relaxation of this problem via the multilinear extension in Problem 26. Both of

these problems are formally defined in Section 8.2. To this end, we study the special case of this

optimization problem in which each agent can compute the global objective function and the gradient

of the objective function; however we assume that each agent only has access to a local, distinct set of

actions. Considering these constraints, we develop Constraint-Distributed Continuous Greedy (CDCG),

a novel algorithm for solving the continuous relaxation of the distributed submodular optimization

problem that achieves a tight (1− 1/e) approximation of the optimal solution, which is known to be

229

the best possible approximation unless P = NP. We offer an analysis of the proposed algorithm

and prove that it achieves the tight (1− 1/e) approximation and that its error term vanishes at a

linear rate.

Previous work on the distributed version of this problem can approximate the optimal solution

to within a multiplicative factor of 1/2 via sequential greedy algorithms (Gharesifard and Smith,

2017; Corah and Michael, 2018; Calinescu et al., 2011). Algorithms for different settings, such as the

setting of (Mokhtari et al., 2018) in which each node has access to a local objective function which is

averaged to form a global objective function, can also achieve the (1− 1/e) approximation. Similarly,

(Calinescu et al., 2011) shows that it is possible to achieve the optimal (1− 1/e) approximation in

the centralized setting. However, to the best of our knowledge the CDCG algorithm presented in this

paper is the first algorithm that is guaranteed to achieve the (1− 1/e) approximation of the optimal

solution in this distributed setting.

7.2. Related work

The optimization problem in (7.1) has previously been studied in settings that differ significantly

from the setting studied in this paper. In particular, (Calinescu et al., 2011) addresses this problem

in a centralized setting and shows that a centralized algorithm can obtain the tight (1 − 1/e)

approximation of the optimal solution. In this way, (Calinescu et al., 2011) is perhaps the closest to

this paper in that both manuscripts introduce algorithms that obtain the tight (1− 1/e) guarantee

for solving the optimization problem in (7.1) with respect to a particular setting. However, the

setting of (Calinescu et al., 2011) is inherently centralized, whereas our setting is distributed.

Another similar line of work concerns the so-called “master-worker” model. In this framework,

agents solve a distributed optimization problem such as (7.1) by exchanging local information with

a centralized master node. However, this setting also differs from the setting studied in this work in

that our results assume an entirely distributed setting with no centralized node (Mirzasoleiman et al.,

2013; Barbosa et al., 2015).

Fundamentally, the optimization problem posed in (7.1) is NP-hard. However, near-optimal solutions

230

to (7.1) can be approximated by greedy algorithms (Nemhauser et al., 1978; Nemhauser and Wolsey,

1978). In the distributed context, the sequential greedy algorithm (SGA) has been rigorously studied

in (Gharesifard and Smith, 2017). This work poses (7.1) as a communication problem among agents

distributed in an directed acyclic graph (DAG) working to optimize a global objective function. The

authors of (Gharesifard and Smith, 2017) offer upper and lower bounds on the performance of SGA

based on the clique number of the underlying DAG. Building on this, (Corah and Michael, 2018)

analyzes the communication redundancy in such an approach and proposes a distributed planning

technique that randomly partitions the agents in the DAG. On the other hand, (Grimsman et al.,

2018) extends the work of (Gharesifard and Smith, 2017) to a sequential setting in which agents

have limited access to the prior decisions of other agents. Extensions of SGA such as the distributed

SGA (DSGA) have also been proposed. In particular, (Corah and Michael, 2017, 2019) pose (7.1)

as a multi-robot exploration problem and uses DSGA to quantify the suboptimality incurred by

redundant sensing information.

Others have proposed novel algorithms with the goal of avoiding the communication overhead

incurred by deploying SGA for a large number of agents. Instead of explicitly solving (7.1), many

of these algorithms seek to solve a continuous relaxation of this problem (Hassani et al., 2017;

Mokhtari et al., 2020a). This continualization of the problem in (7.1) was originally introduced in

(Calinescu et al., 2011). In particular, (Mokhtari et al., 2018) proposes several gradient ascent-style

algorithms for solving a problem akin to (7.1) in which each agent has access to a local objective

function. Similarly, novel algorithms have been developed for solving problems such as unconstrained

submodular maximization (Buchbinder et al., 2015) and submodular maximization with matroid

constraints (Calinescu et al., 2011; Buchbinder et al., 2014) by first lifting these problems to the

continuous domain.

Another notable direction in solving problem (7.1) has been to define an auxiliary or surrogate

function in place of the original submodular objective. For instance, (Clark et al., 2015) introduces a

distributed algorithm for maximizing a submodular auxiliary function subject to matroid constraints

that obtains the (1− 1/e) optimal approximation. This approach of defining surrogate functions in

231

place of the submodular objective differs significantly from our approach.

7.3. Preliminaries

In this section, we review the notation used throughout this paper and state definitions that are

necessary for the problem formulations in Section 8.2.

Notation. Throughout this paper, lowercase bold-face (e.g. v) will denote a vector, while uppercase

bold-face (e.g. W) will denote a matrix. The ith component of a vector v will be denoted vi; the

element in the ith row of the jth column of a matrix W will be denoted by wij . The inner product

between two vectors x and y will be denoted by ⟨x,y⟩ and the Euclidean norm of a vector v will be

denoted by ||v||. Given two vectors x and y, we define x ∨ y = max(x,y) as the (vector-valued)

component-wise maximum between x and y; similarly, x∧ y = min(x,y) will denote the component-

wise minimum between x and y. We will use the notation 0n to denote an n-dimensional vector

in which each component is zero; similarly 1n will denote an n-dimensional vector in which each

component is one. Calligraphic fonts will denote sets (e.g. Y). Given a set Y, |Y| will denote the

cardinality of Y , while 2Y will denote the power set of Y . 1Y : Y 7→ {0, 1} will represent the indicator

function for the set Y . That is, 1Y is the function that takes value one if its argument is an element

of Y and takes value zero otherwise. Finally, ∅ will denote the null set.

Background and relevant definitions. Let Y be a finite set and let f : 2Y 7→ R+ be a set

function mapping subsets of Y to the nonnegative real line. In this setting, Y is commonly referred

to as the ground set. The function f is called submodular if for every A,B ⊆ Y,

f(A ∩ B) + f(A ∪ B) ≤ f(A) + f(B).

In essence, submodularity amounts to f having a so-called diminishing-returns property, meaning

that the incremental value of adding a single element to the argument of f is no less than that of

adding the same element to a superset of the argument. To illustrate this, we will slightly overburden

our notation by defining

f(x|A) := f(A ∪ {x})− f(A)

232

as the marginal reward of x given A. This gives rise to an equivalent definition of submodularity. In

particular, f is said to be submodular if for every A ⊆ B ⊆ Y and ∀x ∈ Y\B,

f(x|B) ≤ f(x|A).

Throughout this paper, we will consider submodular functions that are also monotone, meaning that

for every A ⊆ B ⊆ Y, f(A) ≤ f(B), and normalized, meaning that f(∅) = 0.

In practice, one often encounters a constraint on the allowable subsets of the ground set Y when

maximizing a submodular objective function. Concretely, if I is a nonempty family of allowable

subsets of the ground set Y, then the tuple (Y, I) is a matroid if the following criteria are satisfied:

(1) (Heredity) For any A ⊂ B ⊂ Y, if B ∈ I, then A ∈ I.

(2) (Augmentation) For any A,B ∈ I, if |A| < |B|, then ∃ x ∈ B\A such that A ∪ {x} ∈ I.

Furthermore, if Y is partitioned into n disjoint sets Y1, . . . ,Yn, then the tuple (Y, I) is a partition

matroid if there exists positive integers α1, . . . , αn such that

I ≡ {A : A ⊆ Y, |A ∩ Yi| ≤ αi for each i = 1, . . . , n}.

Partition matroids are particularly useful when defining the constraints of a distributed optimization

problem because they can be used to describe a setting in which a ground set Y of all possible

actions is written as the product of disjoint local action spaces Yi.

The notion of submodularity can be extended to the continuous domain (Wolsey, 1982). Consider

a set X =
∏n
i=1Xi, where Xi is a compact subset of R+ for each index i ∈ {1, . . . , n}. We call a

continuous function F : X → R+ submodular if for all x,y ∈ X ,

F (x ∨ y) + F (x ∧ y) ≤ F (x) + F (y).

As in the discrete case, we say that a continuous function F is monotone if ∀x,y ∈ X , x ⪯ y

233

implies that F (x) ≤ F (y). Furthermore, if F is differentiable, we say that F is DR-submodular,

where DR stands for “diminishing-returns,” if the gradients are antitone. That is, ∀x,y ∈ X , F is

DR-submodular if x ⪯ y implies that ∇F (x) ⪰ F (y).

7.4. Problem Statement

In this section, we formulate the main problem of this paper: maximizing submodular set functions

subject to distributed partition matroid constraints.

Problem 25 (Submodular Maximization Subject to a Distributed Partition Matroid

Constraint). Consider a collection of n agents that form the set N = {1, . . . , n}. Let f : 2Y 7→ R+

be a normalized and monotone submodular set function and let Y1, . . . ,Yn be a pairwise disjoint

partition of a finite ground set Y, wherein each agent i ∈ N can only choose actions from its local

strategy set Yi. Furthermore, consider the partition matroid (Y, I), where

I := {S ⊆ Y : |Yi ∩ S| ≤ 1 for i = 1, . . . , n}. (7.2)

The problem of submodular maximization subject to a distributed partition matroid constraint is to

maximize f by selecting a set S ⊆ Y from the family of allowable subsets so that S ∈ I. Formally:

maximize f(S) (7.3a)

subject to S ∈ I (7.3b)

In effect, the distributed partition matroid constraint in Problem 25 enforces that each agent i ∈ N

can choose at most one action from its local strategy set Yi. Note that in this setting, each agent

can only choose actions from its own local strategy set. Therefore, this problem is distributed in the

sense that agents can only determine the actions taken by other agents by directly communicating

with one another.

234

7.4.1. Sequential greedy algorithm

It is well known that the sequential greedy algorithm (SGA), in which each agent i ∈ N chooses an

action sequentially based on

yi = argmax
y∈Yi

f(y|Si−1) (7.4)

where Si−1 = {y1, . . . ,yi−1}, approximates the optimal solution to within a multiplicative factor of

1/2 (Gharesifard and Smith, 2017). The drawbacks of this algorithm are twofold. Firstly, as we will

show, our algorithm achieves the tight (1− 1/e) approximation of the optimal solution, which is

known to be the best possible approximation unless P = NP. Secondly, as its name suggests, SGA

is sequential in nature and therefore it scales very poorly in the number of agents. That is, each

agent must wait for each of the previous agents to compute their contribution to the optimal set S∗.

Notably, our algorithm does not suffer from this sequential dependence.

7.4.2. Continuous Extension of Problem 25

Sequential algorithms such as SGA can only achieve a 1/2 approximation of the optimal solution. To

achieve the best possible (1− 1/e) approximation of the optimal solution, it is necessary to extend

Problem 25 to the continuous domain via the so-called multilinear extension of the submodular

objective function f (Nemhauser et al., 1978). Thus, the method we use in this work to achieve

the tight (1− 1/e) approximation relies on the continualization of Problem 25. Importantly, it has

been shown that Problem 25 and the optimization problem engendered by lifting Problem 1 to the

continuous domain via this multilinear extension yield the same solution (Calinescu et al., 2011).

Furthermore, by applying proper rounding techniques, such as those described in Section 5.1 of

(Mokhtari et al., 2018) and in (Calinescu et al., 2011) and (Chekuri et al., 2014) to the continuous

relaxation of Problem 25, one can obtain the tight (1−1/e) approximation for Problem 25. Therefore,

our approach in this paper will be to lift Problem 25 to the continuous domain. We formulate this

problem in the following way:

Problem 26 (Continuous Extension of Problem 25). Consider the conditions of Problem 25.

235

Define the DR-submodular continuous multilinear extension F : X 7→ R+ of the objective function f

in Problem 25 by

F (y) :=
∑
S⊆Y

f(S)
∏
i∈S

yi
∏
j ̸∈S

(1− yj) (7.5)

and let P ⊆ X be the matroid polytope P := conv{1S : S ∈ I} where I is the family of sets defined

in (7.2). The continuous relaxation of Problem 25 is formally defined by

maximize F (y) (7.6a)

subject to y ∈ P (7.6b)

Observe that Problem 26 is distributed in the sense that each agent i ∈ N is associated with its own

distinct continuous strategy space Pi. Formally, the set Pi is defined as

Pi := conv{1S : S ⊆ Ii} (7.7)

where Ii := {S ⊆ Y : |Yi ∩ S| ≤ 1}. In this way, P = ∩ni=1Pi. In this way, the sets Pi play similar

roles in Problem 26 as the sets Yi do in Problem 25.

Note that Problem 26 is nonconvex, and therefore cannot be solved by classical convex solvers or

algorithms. Further, we assume that each agent i ∈ N can compute the multilinear extension F of

the submodular objective function f in (7.3a) and the gradient of F .

7.5. Constraint-Distributed Continuous Greedy

In this section, we present Constraint-Distributed Continuous Greedy (CDCG), a decentralized

algorithm for solving Problem 26. The pseudo-code of CDCG is described in Algorithm 13. At a high

level, this algorithm involves updating each agent’s local decision variable based on the aggregated

belief of a small group of other agents about the best control policy. In essence, inter-agent

communication within small groups of agents facilitates local decision making.

236

For clarity, we introduce a simple framework for the inter-agent communication structure. In CDCG,

agents i ∈ N = {1, . . . , n} share their decision variables yi with a small subset of local agents in

N . To encode the notion of locality, suppose that each agent i ∈ N is a node in a bidirectional

communication graph G = (N ,E) in which E denotes the set of edges. Given this structure, we

assume that each agent i ∈ N can only communicate its decision variable yi with its direct neighbors

in G. Let us denote the neighbor set of agent i ∈ N by Ni. Then the set of edges E can be written

{(i, j) : j ∈ Ni}. We adopt this notation for the remainder of this paper.

7.5.1. Intuition for the CDCG algorithm

The goal of CDCG at a given node i ∈ N is to learn the local decision variable yi. CDCG is run at

each node in i ∈ N to assemble the collection {yT1 , . . . ,yTn } where T is a given positive integer;

this collection represents an approximate solution to Problem 26 and guarantees that each agent

contributes at most one element to the solution. Then, by applying proper rounding techniques

to each element of the collection such as those discussed in (Mokhtari et al., 2018; Calinescu et al.,

2011; Chekuri et al., 2014), we obtain a solution to Problem 25. In the proceeding sections, we show

that this solution achieves the tight (1− 1/e) approximation of the optimal solution.

In the analysis of CDCG, we add the superscript t to the vectors vti and yti defined in Algorithm 13.

This superscript denotes the iteration number so that yti and vti represent the values of the local

variables yi and vi at iteration t ∈ {1, . . . , T} respectively.

7.5.2. Description of the steps for CDCG (Algorithm 13)

From the perspective of node i ∈ N , CDCG takes two arguments: nonnegative weights wij for each

j ∈ Ni∪{i} and a positive integer T . The weights wij correspond to the ith row in a doubly-stochastic

weight matrix W and T is the number of iterations for which the algorithm will run. The weight

matrix W is a design parameter of the problem and must fulfill a number of technical requirements

that are fully described in Appendix A. Before any computation, the local decision variable yi is

initialized to the zero vector.

Computation proceeds in T rounds. In each round, the first step is to calculate the gradient of the

237

multilinear extension function F evaluated at the local decision variable yt−1
i from the previous

iteration. Thus, in line 3 of Algorithm 13, we calculate the ascent direction vti at iteration t in the

following way:

vti = argmax
x∈Pi∩Ci

〈
∇F (yt−1

i),x
〉
.

Intuitively, one can think of vti as the vector from the set Pi ∩Ci that is most aligned with ∇F (yt−1
i).

To define the set Ci, first define the set Ji as the set of indices of the elements in Y that correspond

to elements in Yi. Then

Ci :=
{
x ∈ R|Y|

+ : xj = 0 ∀j ̸∈ Ji
}
. (7.8)

Using this notation, we can equivalently define Pi = {x ∈ R|Y|
+ :

∑
j∈Ji

xj ≤ 1}. Next, in line 4 of

Algorithm 13, yi is updated by setting

yti =
∑

j∈Ni∪{i}

wijy
t−1
j +

n

T
vti.

In this way, the governing principle is to collaboratively accumulate the local belief about the optimal

decision yt−1
i and to then move in the approximate direction of steepest ascent from this point.

After T rounds of computation at each node i ∈ N , we obtain a local decision variable yTi at each

node. By applying proper rounding techniques, we obtain a decision variable for each agent i ∈ N .

Rounding in a decentralized manner is discussed in Section 5.1 of (Mokhtari et al., 2018). The

rounding techniques of (Mokhtari et al., 2018) build on “pipage rounding” (Calinescu et al., 2011)

and “swap rounding” (Chekuri et al., 2014), which are both centralized rounding techniques. The

collection of these decision variables form the set S∗, which represents our solution to Problem 25.

7.6. Convergence Analysis

The main result in this paper is to show that in the distributed setting of Problem 26, CDCG achieves

a tight (1 − 1/e) multiplicative approximation of the optimal solution. The following theorem

238

Algorithm 13 Constraint-Distributed Continuous Greedy (CDCG) at node i
Require: Weights wij for each neighbor j ∈ Ni ∪ {i} and number of rounds T ∈ Z++

Returns: Local solution y⋆i for node i ∈ N to Problem 25
1: Initialize local vectors y0

i = 0|Y|
2: for t = 1, 2, . . . , T do
3: • Calculate an ascent direction for the multilinear extension function F via:

vti ← argmax
x∈Pi∩Ci

〈
∇F

(
yt−1
i

)
,x
〉

4: • Update the local variable yti using the ascent direction vti via:

yti ←
∑

j∈Ni∪{i}

wijy
t−1
j +

n

T
vti

5: end for
6: y⋆i ← Round

(
yTi
)

summarizes this result.

Theorem 27. Consider the CDCG algorithm described in Algorithm 13. Let y∗ denote the global

maximizer of the optimization problem defined in Problem 26, and assume that a positive integer T

and a doubly-stochastic weight matrix W are given. Then provided that the assumptions outlined in

Appendix A hold, for all nodes i ∈ N , the local variables yTi obtained after T iterations satisfy

F (yTi) ≥
(
1− 1

e

)
F (y∗)−

[
LD2

2T
+
LD2(n2 + n5/2) + n5/2DG

T (1− β)

]
(7.9)

where D, G, L, and β are problem-dependent constants that are formally defined in Appendices A

and B.

Succinctly, Theorem 27 means that the sequence of local iterates generated by CDCG achieves the

optimal approximation ratio (1− 1/e) and that the error term vanishes at a linear rate of O(1/T).

That is,

F (yTi) ≥
(
1− 1

e

)
F (y∗)−O

(
1

T

)
,

which implies that each agent reaches an objective value larger than (1− 1/e− ϵ)y∗ after O(1/ϵ)

239

Figure 7.1: Area coverage simulation results for CDCG and SGA. (Top left) Random initialization
of n = 10 agents in a 10×10 grid. (Top middle & right) Coverage achieved by CDCG (top middle) and
SGA (top right) from the random initialization shown in the top left panel. (Bottom left) Comparison
of the mean coverage achieved by CDCG and SGA averaged over 10 random initializations. (Bottom
right) Comparison of the coverage achieved by CDCG and SGA for a setting in which each agent’s
starting point is the center of the grid.

rounds of communication. Previous work can only guarantee an objective value of (1/2)y∗

(Gharesifard and Smith, 2017). We provide the proof of this theorem and supporting lemmas

in Appendices B and C.

7.7. Simulation Results

To evaluate the proposed algorithm, we consider a multi-agent area coverage problem. In this setting,

each agent i ∈ N is constrained to move in a two-dimensional grid. We assume that each agent

has a finite radius r so that it can observe those grid points that lie with a square with sidelength

2r + 1. The objective is for the agents to collectively maximize the cardinality of the union of their

observation sets of grid points. In other words, given an initial configuration, the problem is to

choose an action for each agent that maximizes the overall coverage of the grid. The top three panels

240

of Figure 7.1 show various configurations of agents in this two-dimensional grid.

Consider an initial configuration of n agents in states yi ∈ Z2 for i ∈ {1, . . . , n} with the dynamic

constraint yt+1
i = yti + uti, where uti is a control input from a discrete set

U = {(0, 1), (0,−1), (−1, 0), (1, 0), (0, 0)}.

Elements from this set represent the admissible actions for each agent in the two-dimensional grid.

In our simulation, we compared the performance of SGA against CDCG on the coverage task posed

above for a variable number of agents. For simplicity, we assumed that the underlying communication

graph G used in CDCG was fully connected and that each value in the weight matrix W was 1/n. A

random initialization for each agent’s position and the coverage achieved by CDCG and SGA are shown

in the top three panels of Figure 7.1 respectively. We compared the performance of these algorithms

across ten random initializations of starting locations for the agents; the mean performance of each

algorithm and the respective standard deviations are shown in the bottom left panel of Figure 7.1.

In each trial, we ran both algorithms 50 times, each of which produced a control input ui for each

agent. For each initialization, we ran CDCG for T = 100 iterations. Note that as the number of agents

increases, CDCG is optimal or near optimal in each case; however for larger than eight agents, the

performance of SGA begins to fall away from the optimal.

We also compared the coverages achieved by CDCG and SGA for a setting in which each agent’s starting

position is the center of the grid. The results of this experiment are shown in the bottom right panel

of Figure 7.1. In this plot, we averaged the performance over 15 independent trials; in each trial, we

ran CDCG for T = 100 iterations. Interestingly, SGA converges to a local maximum in this problem,

whereas CDCG achieves the optimal value.

7.8. Conclusion

In this work, we described an approach for achieving the optimal approximation to a class of

submodular optimization problems subject to a distributed partition matroid constraint. The

algorithm we proposed outperforms the sequential greedy algorithm in two senses: (1) CDCG achieves

241

the tight (1 − 1/e) approximation for the optimal solution whereas SGA can only achieve a 1/2

approximation; and (2) CDCG imposes a limited communication structure on this problem, which

allows for significant gains via parallelization. We showed empirically via an area coverage simulation

with multiple agents that CDCG outperforms the greedy algorithm.

7.9. Appendix A: Assumptions for Theorem 27

Consider the continuous relaxation of Problem 25 that was described in Section 7.4.2. We assume

that the Euclidean distance between elements of the convex set P are uniformly bounded, i.e. that

||x− y|| ≤ D ∀x,y ∈ P. (7.10)

This is a trivial consequence of the multilinear extension F , since P is contained in the unit cube.

Furthermore, we assume that the gradient of the multilinear extension F of the objective function f

in Problem 25 is L-Lipschitz continuous, i.e. that

||∇F (x)−∇F (y)|| ≤ L ||x− y|| ∀x,y ∈ P (7.11)

so that ||∇F (x)−∇F (y)|| ≤ LD ∀x,y ∈ P by (7.10). Again, this is not a limiting assumption,

because the domain of F is compact, which implies the Lipschitzness of F . Also, we assume that

the norm of the gradient of F is bounded over P, i.e. that

||∇F (x)|| ≤ G ∀x ∈ P, (7.12)

which again follows from the compactness of the domain of F . It is then easy to show that (7.12)

and the multivariable mean value theorem imply that F is G-Lipschitz continuous over P. Note

that in this case, since F is the multilinear extension of f , assumptions (7.10), (7.11), and (7.12) all

hold. Moreover, the constants L, D, and G all depend on the maximum singleton value of f . For

further justification, see (Hassani et al., 2017; Mokhtari et al., 2018). Finally, it will be prudent to

mention that for the multilinear extension F of any monotone and submodular function f , it holds

242

that F (0) ≥ 0 and

〈
∇F (ȳt),y∗〉 ≥ F (y∗)− F (ȳt) (7.13)

For justification, see (Calinescu et al., 2011).

Now consider the communication framework described in Section 7.5 and the weight matrix W.

This matrix is a parameter that is designed to match the criteria and setting of a given application.

We assume that the weights used in CDCG are nonnegative so that wij ≥ 0 ∀i, j ∈ N ; furthermore, if

node j ̸∈ Ni, then wij = 0. Also, we assume that the weight matrix W is doubly stochastic and

symmetric, and that (I −W) = span(1n). The assumptions made about W are similar to those

described in (Mokhtari et al., 2018).

Lastly, consider that past work has studied the case in which the objective function is distributed

(Mokhtari et al., 2018). However, our setting is one in which the problem is distributed in the

constraints rather than the objective. Therefore, we assume that each agent has access to an oracle

for computing the objective submodular function f .

7.10. Appendix B: Preliminary Lemmas

In this appendix, we offer proofs of lemmas that support the proof of Theorem 27. We note that the

proofs for Lemmas 7.10 and 7.10 are similar to those that originally appeared in (Mokhtari et al.,

2018), and where relevant, pieces of these arguments have been reproduced for completeness.

In general, the goal of Lemma 7.10 is to show that the local decision variable yi for each agent

i ∈ N converges to the mean ȳ = 1
n

∑
i∈N yi. Then, in Lemma 7.10, we show that these means

are Cauchy, meaning that for a sufficiently large number of iterations T , the distance between ȳt

and ȳt+1 becomes arbitrarily small. Together, Lemma 7.10 and Lemma 7.10 establish that for a

sufficiently large number of iterations, the set of nodes come to a consensus for the optimal decision.

Lemmas 7.10 and Lemma 7.10 are technical results used in the proof of Theorem 27.

Lemma 53. For any iteration t ≤ T where T ∈ Z++, it follows that the Euclidean distance between

243

the local variable yti at node i ∈ N and the mean of the local variables ȳt can be bounded by

∣∣∣∣yti − ȳt
∣∣∣∣ ≤ n3/2D

T (1− β)

where β is the magnitude of the eigenvalue of W that among all eigenvalues in σ(W) has the second

largest magnitude.

Proof. Define ycon :=

[
y1; . . . ;yn

]
∈ Rnp and vcon :=

[
v1; . . . ;vn

]
∈ Rnp as the concatenations of

the local variables yti and descent directions vi in CDCG. The update rule in step 2 in Algorithm 13

leads to the expression

ytcon =
n

T

t−1∑
s=0

(W ⊗ I)t−1−s vscon (7.14)

Next, if we premultiply both sides of (7.14) by the matrix (1n1
†
n

n ⊗ I), which is the Kronecker product

of the matrices 1n1
†
n

n ∈ Rn×n and I ∈ Rp×p, we obtain

(
1n1

†
n

n
⊗ I

)
ytcon =

n

T

t−1∑
s=0

[(
1n1

†
n

n
Wt−1−s

)
⊗ I

]
vscon. (7.15)

The left hand side of (7.15) can be simplified to

(
1n1

†
n

n
⊗ I

)
ytcon = ȳtcon (7.16)

where ytcon =

[
ȳt; . . . ; ȳt

]
. Combining (7.16) and the equality 1n1

†
nW = 1n1

†
n, we can write (7.15)

as

ȳtcon =
n

T

t−1∑
s=0

(
1n1

†
n

n
⊗ I

)
vscon. (7.17)

Using the expressions in (7.14) and (7.17), we can derive an upper bound on the difference

244

∣∣∣∣ytcon − ȳtcon
∣∣∣∣ by

∣∣∣∣ytcon − ȳtcon
∣∣∣∣ = n

T

∣∣∣∣∣
∣∣∣∣∣
t−1∑
s=0

[(
Wt−1−s − 1n1

†
n

n

)
⊗ I

]
vscon

∣∣∣∣∣
∣∣∣∣∣

≤ n

T

t−1∑
s=0

∣∣∣∣∣
∣∣∣∣∣Wt−1−s − 1n1

†
n

n

∣∣∣∣∣
∣∣∣∣∣ · ||vscon||

≤ nD

T

∣∣∣∣∣
∣∣∣∣∣Wt−1−s − 1n1

†
n

n

∣∣∣∣∣
∣∣∣∣∣ , (7.18)

where the first inequality follows from the Cauchy-Schwartz inequality and the fact that the norm of

a matrix does not change if we Kronecker it by the identity matrix. The second inequality holds

because
∣∣∣∣vtcon

∣∣∣∣ ≤ D. Note that the eigenvectors of the matrices W and Wt−1−s are the same for

all s = 0, . . . , t− 1. Therefore, the largest eigenvalue of Wt−1−s is 1 with eigenvector 1n and the

second largest magnitude of the eigenvalues is βt−1−s, where β is the second largest magnitude of

the eigenvalues of W. Also note that because 1n is an eigenvector of Wt−1−s, it follows that all of

the other eigenvectors of Wt−1−s are orthogonal to 1n since W is symmetric. Hence we can bound

the norm
∣∣∣∣∣∣Wt−1−s − (1n1

†
n)/n

∣∣∣∣∣∣ by βt−1−s. Applying this substitution to the right hand side of

(7.18) yields

∣∣∣∣ytcon − ȳtcon
∣∣∣∣ ≤ nD

T

t−1∑
s=0

βt−1−s ≤ nD

T (1− β)
. (7.19)

Since
∣∣∣∣ytcon − ȳtcon

∣∣∣∣2 =∑n
i=1

∣∣∣∣yti − ȳt
∣∣∣∣2, we find that

∣∣∣∣ytj − ȳt
∣∣∣∣ ≤ n∑

i=1

∣∣∣∣yti − ȳt
∣∣∣∣ ≤ √n(n∑

i=1

∣∣∣∣yti − ȳt
∣∣∣∣2)1/2

≤ n3/2D

T (1− β)
(7.20)

where inequality (7.20) follows from (7.19).

Lemma 54. For any iteration t ≤ T for T ∈ Z++, the Euclidean distance between the means ȳt and

ȳt−1 of the local variables yti and yt−1
i respectively for i ∈ N at consecutive iterations t and t− 1

245

can be bounded by

∣∣∣∣ȳt − ȳt−1
∣∣∣∣
2
≤ D

T
. (7.21)

Proof. Averaging both sides of the update rule for yti of Algorithm 13 across the set of agents i ∈ N

yields the following expression for ȳt:

ȳt =
1

n

n∑
i=1

∑
j∈Ni∪{i}

wijy
t−1
j +

1

T

n∑
i=1

vti. (7.22)

Since wij = 0 if j ̸∈ Ni ∪ {i}, we can rewrite the RHS of (7.22) in the following way:

ȳt =
1

n

n∑
i=1

n∑
j=1

wijy
t−1
j +

1

T

n∑
i=1

vti

=
1

n

n∑
j=1

yt−1
j

n∑
i=1

wij +
1

T

n∑
i=1

vti

=
1

n

n∑
j=1

yt−1
j +

1

T

n∑
i=1

vti (7.23)

where (7.23) follows since WT1 = 1. Rearranging (7.23), it follows that

∣∣∣∣ȳt − ȳt−1
∣∣∣∣ = 1

T

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

vti

∣∣∣∣∣
∣∣∣∣∣ ≤ D

T

Note that because the Euclidean distance between points of the polytope P are assumed to be

bounded,
∣∣∣∣∑n

i=1 v
t
i

∣∣∣∣ ≤ D. The expression in (7.21) follows.

Corollary 28. Let T ∈ Z++. Then the vector ȳ = 1
n

∑n
i=1 yi is in the constraint set P ∀t ≤ T .

Proof. In Lemma 1 we proved that yti converges to ȳt. We show that ȳt ∈ P by induction. Because

we assign y0
i = 0, it is clear that ȳ0 ∈ P . Now as inductive hypothesis, we assume that ȳt−1 is in P .

Observe that we can write ȳt = ȳt−1 + (1/T)
∑n

i=1 v
t
i. Thus by the inductive hypothesis and the

246

fact that
∑n

i=1 v
t
i ∈ P ∀t ≤ T , it follows that ȳt is a convex combination of elements of P. That is,

we can write ȳt = (1/T)
∑t

k=1

∑n
i=1 v

k
i + (1− t/T)0. Therefore ȳt ∈ P, and so yti converges to a

point in P.

Lemma 55. Let F be the multilinear extension of a monotone submodular function f : 2Y 7→ R

where Y is a discrete ground set. Then

max
v∈Pi∩Ci

⟨∇F (yi),v⟩ = max
x∈Pi

⟨[∇F (yi)]ci ,x⟩ (7.24)

where [∇F (ȳi)]ci denotes the projection of ∇F (yi) onto the set Ci.

Proof. Consider the definitions of Pi and Ci in (7.7) and (7.8) respectively. Maximizing ⟨∇F (yi),v⟩

over v ∈ Pi ∩ Ci results in the same value as maximizing the inner product of the projection of

∇F (yt−1
i) onto the set Ci over x ∈ Pi.

Lemma 56. Let F be the multilinear extension of a monotone submodular function f : 2Y 7→ R

where Y is a discrete ground set. Then

∣∣∣∣∣
∣∣∣∣∣∇F (ȳt)−

n∑
i=1

[
∇F (yti)

]
Ci

∣∣∣∣∣
∣∣∣∣∣ ≤ n3/2DL

T (1− β)
(7.25)

Proof. Observe that

∣∣∣∣∣
∣∣∣∣∣∇F (ȳt)−

n∑
i=1

[
∇F (yti)

]
Ci

∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

([
∇F (ȳt)

]
Ci
−
[
∇F (yti)

]
Ci

)∣∣∣∣∣
∣∣∣∣∣

≤
n∑
i=1

∣∣∣∣∣∣[∇F (ȳt)]Ci
−
[
∇F (yti)

]
Ci

∣∣∣∣∣∣ (7.26)

≤
n∑
i=1

∣∣∣∣∇F (ȳt)−∇F (yti)∣∣∣∣ (7.27)

≤ n3/2DL

T (1− β)
(7.28)

247

where (7.26) follows from the triangle inequality, (7.27) follows by the definition of the set Ci, and

(7.28) follows from the assumption that ∇F is L-Lipschitz continuous and from Lemma 7.10.

7.11. Appendix C: Proof of Theorem 27

This Appendix establishes the main result of this paper, which is restated here for convenience.

Theorem 29. Consider the CDCG algorithm described in Algorithm 13. Let y∗ denote the global

maximizer of the optimization problem defined in Problem 26, and assume that a positive integer T

and a doubly-stochastic weight matrix W are given. Then provided that the assumptions outlined in

Appendix A hold, for all nodes i ∈ N , the local variables yTi obtained after T iterations satisfy

F (yTi) ≥
(
1− 1

e

)
F (y∗)−

[
LD2

2T
+
LD2(n2 + n5/2) + n5/2DG

T (1− β)

]
(7.29)

where D, G, L, and β are problem-dependent constants that are formally defined in Appendices A

and B.

Proof. Due to the assumption that ∇F is L-Lipschitz,

F
(
ȳt+1

)
− F

(
ȳt
)

≥
〈
∇F

(
ȳt
)
, ȳt+1 − ȳt

〉
− L

2

∣∣∣∣ȳt+1 − ȳt
∣∣∣∣2

≥
〈
∇F

(
ȳt
)
, ȳt+1 − ȳt

〉
− LD2

2T 2
(7.30)

where (7.30) follows from Lemma 7.10. Now consider that the inner-product term on the RHS of

(7.30) can be written in the following way:

〈
∇F

(
ȳt
)
, ȳt+1 − ȳt

〉
=

〈
∇F

(
ȳt
)
,
1

T

n∑
i=1

vt+1
i

〉

=
1

T

n∑
i=1

[〈
∇F (ȳt)−∇F (yti),vt+1

i

〉
+
〈
∇F (yti),vt+1

i

〉]
. (7.31)

Here (7.31) follows from the linearity of inner products and then from adding and subtracting ∇F (yti).

248

Our immediate goal is to bound (7.31) from below. To do so, consider that by the Cauchy-Schwartz

inequality,

〈
∇F

(
ȳt
)
−∇F (yti),vt+1

i

〉
≤
∣∣∣∣∇F (ȳt)−∇F (yti)∣∣∣∣ · ∣∣∣∣vt+1

i

∣∣∣∣
≤ LD

∣∣∣∣ȳt − yti
∣∣∣∣ (7.32)

≤ n3/2LD2

T (1− β)
(7.33)

where (7.32) is due to the assumption that ∇F is L-Lipschitz continuous and (7.33) follows from

Lemma 7.10. Next, because vt+1
i is defined as the argmax between ∇F (yti) and vectors x ∈ Pi ∩ Ci

in the Step 3 of Algorithm 13 and by Lemma 7.10 we have

⟨∇F (yti),vt+1
i ⟩ ≥ ⟨[∇F (y

t
i)]Ci ,y

∗⟩. (7.34)

By Lemma 7.10, if we let ϵ = n3/2DL
T (1−β) , we can conclude that

−ϵ1+∇F (ȳt) ≤
n∑
i=1

[
∇F (yti)

]
Ci
≤ ∇F (ȳt) + ϵ1. (7.35)

By construction, y∗ ⪰ 0 since y∗ ∈ P. Then we can infer from (7.35) that

〈
n∑
i=1

[
∇F (yti)

]
Ci
,y∗

〉
≥ ⟨−ϵ1,y∗⟩+

〈
∇F (ȳt),y∗〉 . (7.36)

Our goal is to bound (7.36). To do this, consider that ||y∗|| ≤ D by (7.10) and ⟨1,y∗⟩ = ||y∗||1

since y∗ ⪰ 0. Since ||y∗||1 ≤
√
n ||y∗||2, we have ⟨ϵ1,y∗⟩ ≤ Dϵ

√
n. Thus by replacing ϵ = n3/2DL

T (1−β) ,

we conclude that

〈
n∑
i=1

[
∇F (yti)

]
Ci
,y∗

〉
≥ ⟨∇F (ȳt),y∗⟩ − n2LD2

T (1− β)

≥ F (y∗)− F (ȳt)− n2LD2

T (1− β)
. (7.37)

249

Altogether, we have shown via (7.33), (7.34), and (7.37) that (7.31) can be bounded by

⟨∇F (ȳt), ȳt+1 − ȳt⟩ ≥ 1

T

[
F (y∗)− F (ȳt)− LD2(n2 + n5/2)

T (1− β)

]
. (7.38)

Furthermore, (7.38) and (7.30) imply that

F
(
ȳt+1

)
− F

(
ȳt
)
≥ 1

T

[
F (y∗)− F (ȳt)

]
− LD2(n2 + n5/2)

T 2(1− β)
− LD2

2T 2
(7.39)

Rearranging (7.39), we obtain

F (y∗)− F (ȳt+1) ≤
(
1− 1

T

)[
F (y∗)− F (ȳt)

]
+
LD2(n2 + n5/2)

T 2(1− β)
+
LD2

2T 2
. (7.40)

By applying the inequality in (7.40) for t = 0, 1, . . . , T − 1, we find

F (y∗)− F (ȳT)

≤
(
1− 1

T

)T [
F (y∗)− F (ȳ0)

]
+
T−1∑
i=0

(
1− 1

T

)i [LD2(n2 + n5/2)

T 2(1− β)
+
LD2

2T 2

]

=

(
1− 1

T

)T [
F (y∗)− F (ȳ0)

]
+

(
T − T

(
1− 1

T

)T)[LD2(n2 + n5/2)

T 2(1− β)
+
LD2

2T 2

]

≤ 1

e

[
F (y∗)− F (ȳ0)

]
+

(
1− 1

e

)[
LD2(n2 + n5/2)

T (1− β)
+
LD2

2T

]

≤ 1

e

[
F (y∗)− F (ȳ0)

]
+

[
LD2(n2 + n5/2)

T (1− β)
+
LD2

2T

]
(7.41)

where to derive (7.41) we used (1−1/T)T ≤ 1/e. Now recall that we set y0
i = 0. Then from equation

(7.5), we have F (0) ≥ 0 ∀i ∈ N . Thus follows that

F (ȳT) ≥
(
1− 1

e

)
F (y∗)−

[
LD2(n2 + n5/2)

T (1− β)
+
LD2

2T

]
. (7.42)

250

Now by the assumption made in (7.12), F is G-Lipschitz continuous and therefore

∣∣F (ȳT)− F (yTi)∣∣ ≤ G ∣∣∣∣ȳT − yTi
∣∣∣∣ ≤ n3/2DG

T (1− β)
(7.43)

where (7.43) follows from Lemma 7.10. Thus by combining the results in (7.42) and (7.43) we find

that ∀i ∈ N ,

F (yTi) ≥
(
1− 1

e

)
F (y∗)−

[
LD2

2T
+
LD2(n2 + n5/2) + n5/2DG

T (1− β)

]

and the claim in (7.9) follows.

251

CHAPTER 8

Submodular Meta-Learning

8.1. Introduction

Many applications in artificial intelligence necessitate exploiting prior data and experience to enhance

quality and efficiency on new tasks. This is often manifested through a set of tasks given in the

training phase from which we can learn a model or representation that can be later used for new

unseen tasks in the test phase. In this regard, meta-learning aims at exploiting the data from the

available tasks to learn model parameters or representation that can be later used to perform well on

new unseen tasks, in particular, when we have access to limited data and computational power at the

test time (Thrun and Pratt, 2012; Schmidhuber, 1992; Bengio et al.; Vilalta and Drissi, 2002). By

now, there are several formulations for meta-learning, but perhaps one of the most successful ones is

the Model-Agnostic Meta-Learning (MAML) framework proposed in (Finn et al., 2017). In MAML,

we aim to train the model parameters such that applying a few steps of gradient-based updates with

a small number of samples from a new task would perform well on that task. MAML can also be

viewed as a way to provide a proper initialization, from which performance on a new task can be

optimized after a few gradient-based updates. Alas, this scheme only applies to settings in which the

decision variable belongs to a continuous domain and can be adjusted using gradient-based methods

at the test time.

Our goal is to extend the methodology of MAML to the discrete setting. We consider a setting in

which our decision variable is a discrete set, and our goal is to come up with a good initial set that

can be quickly adjusted to perform well over a wide range of new tasks. In particular, we focus on

submodular maximization to represent the tasks which is an essential class of discrete optimization.

There are numerous applications where the submodular meta-learning framework can be applied

to find a personalized solution for each task while significantly reducing the computation load. In

general, most recommendation tasks can be cast as an instance of this setting(Gabillon et al., 2013;

252

El-Arini et al., 2009; Yue and Guestrin, 2011). Consider the task of recommending a set of items,

e.g., products, locations, ads, to a set of users. One approach for solving such a problem is to find

the subset of items that have the highest score over all the previously-visited users and recommend

that subset to a new user. Indeed, this approach leads to a reasonable performance at test time;

however, it does not provide a user-specific solution for a new user. Another approach is to find

the whole subset at the test time when the new user arrives. In contrast to the previous approach,

this scheme leads to a user-specific solution, but at the cost of running a computationally expensive

algorithm to select all the elements at the test time.

In our meta-learning framework, the process of selecting set items to be recommended to a new user

is done in two parts: In the first part, a set of items is selected offline according to prior experience.

These items are the most popular items to the previously-visited users (depending on the context).

In the second part, which happens at the test time, a set of items that is personalized to the coming

user is selected. These are items that are computed specifically according to the features of the

coming user. In this manner, the computation for each coming user would be reduced to the selection

of the second part, which typically constitutes a small portion of the final set of recommended items.

The first part can be done offline with a lower frequency. For instance, in a real recommender system,

the first part can be computed once every hour, and the second part can be computed specifically

for each coming user (or for a class of similar users). While we have mentioned recommendation (or

more generally facility location) as a specific example, it is easy to see that this framework can be

easily used to reduce computation in other notable applications of submodular optimization.

Contributions. Our contributions are threefold:

• We propose a novel discrete meta-learning framework where each task is equivalent to maxi-

mizing a set function under some cardinality constraint. Our framework aims at using prior

data, i.e., previously visited tasks, to train a proper initial solution set that can be quickly

adapted to a new task at a low computational cost to obtain a task-specific solution.

• We present computationally efficient deterministic and randomized meta-greedy algorithms to

253

solve the resulting meta-learning problem. When the tasks are monotone and submodular, we

prove that the solution obtained by the deterministic algorithm is at least 0.53-optimal, and

the solution of the randomized algorithm is (1− 1/e− o(1))-optimal in expectation, where the

o(1) term vanishes by the size of the solution. These guarantees are obtained by introducing

new techniques, despite that the meta-learning objective is not submodular.

• We study the performance of our proposed meta-learning framework and algorithms for movie

recommendation and ride-sharing problems. Our experiments illustrate that the solution of our

proposed meta-learning scheme, which chooses a large portion of the solution in the training

phase and a small portion adaptively at test time, is very close to the solution obtained by

choosing the entire solution at the test time when a new task is revealed.

8.1.1. Related work

Continuous Meta-Learning. Meta-learning has gained considerable attention recently mainly

due to its success in few shot learning (Vinyals et al., 2016; Ravi and Larochelle, 2017; Snell et al.,

2017; Wang and Yao, 2019) as well as reinforcement learning (Duan et al., 2016; Wang et al., 2016;

Song et al., 2020; Fallah et al., 2020b). One of the most successful forms of meta-learning is the

gradient-based Model Agnostic Meta-learning (MAML) approach(Finn et al., 2017). MAML aims

at learning an initialization that can be adapted to a new task after performing one (or a few)

gradient-based update(s); see, e.g., (Fallah et al., 2020a). This problem can be written as

min
w∈W

Ea∼P [fa(w −∇fa(w))], (8.1)

where W ⊆ Rd is the feasible set and P is the probability distribution over tasks. The previous works

on MAML including (Nichol et al., 2018; Finn et al., 2018; Grant et al., 2018; Yoon et al., 2018;

Antoniou et al., 2019; Rajeswaran et al., 2019; Fallah et al., 2020a; Collins et al., 2020) consider the

case where W is a continuous space. In fact none of these works can be applied to the case where

the feasible parameter space is discrete. In this paper, we aim to close this gap and extend the

terminology of MAML to discrete settings.

254

Submodular Maximization. Submodular functions have become key concepts in numerous ap-

plications such as data summarization (Lin and Bilmes, 2011; Wei et al., 2013; Kirchhoff and Bilmes,

2014; Mirzasoleiman et al., 2016a), viral marketing (Kempe et al., 2003), sensor placement (Krause et al.,

2008b), dictionary learning (Das and Kempe, 2011), and influence maximization (Kempe et al., 2003).

It is well-known that for maximizing a monotone and submodular function under the cardinality

constraint, the greedy algorithm provides a (1− 1/e)-optimal solution (Krause and Golovin, 2014;

Nemhauser and Wolsey, 1978; Wolsey, 1982). There has been significant effort to improve the

scalability and efficiency of the greedy algorithm using lazy, stochastic, and distributed methods

(Mirzasoleiman et al., 2015; Karimi et al., 2017; Barbosa et al., 2015; Mirrokni and Zadimoghaddam,

2015; Kumar et al., 2015; Hassani et al., 2017; Mokhtari et al., 2020a; Hassani et al., 2019; Balkanski et al.,

2019). However, our framework is fundamentally different and complementary to these approaches as

it proposes a new approach to use data at training time to improve performance at new tasks. Indeed,

all the aforementioned techniques can be readily used to further speed-up our algorithms. Optimiza-

tion of related submodular tasks has been a well-studied problem with works on structured prediction

(Lin and Bilmes, 2012), submodular bandits (Yue and Guestrin, 2011; Zhang et al., 2019), online sub-

modular optimization (Jegelka and Bilmes, 2011; Streeter and Golovin, 2009; Golovin et al., 2014;

Chen et al., 2018a), and public-private data summarization (Mirzasoleiman et al., 2016b). However,

unlike our work, these approaches are not concerned with train-test phases for optimization. Another

recently-developed methodology to reduce computation is the two-stage submodular optimization

framework (Balkanski et al., 2016; Mitrovic et al., 2018; Stan et al., 2017b), which aims at summa-

rizing the ground set to a reasonably small set that can be used at test time. The main difference of

our framework with the two-stage approaches is that we allow for personalization: A small subset of

items that can be found at test time specific to the task at hand. This leads to a completely new

problem formulation, and consequently, new algorithms.

8.2. Problem Statement: Discrete Meta-Learning

Setup. We consider a family of tasks T = {Ti}i∈I , where the set I could be of infinite size. Each

task Ti is represented via a set function fi : 2
V → R+ that measures the reward of a set S ⊆ V

for the i-th task, and performing the task Ti would mean to maximize the function fi subject to

255

a given constraint. For instance, in a recommender system where we aim to recommend a subset

of the items to the users, the set I denotes the set of all the possible users and selecting which

items to recommend to a user i ∈ I is viewed as the task Ti. Moreover, the function fi encodes

the users satisfaction, i.e., fi(S) quantifies how suitable the set of items S is for user i. Taking a

statistical perspective, we assume that the tasks Ti occur according to a possibly unknown probability

distribution i ∼ p.

In this paper, we focus on the case where the functions fi are monotone and submodular set functions

and each task Ti amounts to maximizing fi under the k-cardinality constraint. That is, the task Ti

is to select a subset S ⊆ V of size k such that the value of fi(S) is maximized. Submodularity of fi

means that for any A,B ⊆ V the following inequality holds fi(A) + fi(B) ≥ fi(A ∪B) + fi(A ∩B).

Furthermore, fi is called monotone if for any A ⊆ B we have fi(A) ≤ fi(B).

Training and test tasks. We assume access to a collection of training tasks {Ti}mi=1. These are

the tasks that we have already experienced, i.e., they correspond to the users that we have already

seen. Formally, this means that for each training task Ti, we assume knowledge of the corresponding

function fi. In our formulation, each of the training tasks is assumed to be generated i.i.d. according

to the distribution p. Indeed, eventually we aim to optimize performance at test time, i.e., obtain

the best performance for new and unseen tasks generated independently from the distribution p. For

instance, in our recommendation setting, test tasks correspond to new users that will arrive in the

future. Our goal is to use the training tasks to reduce the computation load at test time.

Two extremes of computation. Let us use Ttest (and ftest) to denote the task (and its corre-

sponding set function) that we aim to learn at test time. Ideally, if we have sufficient computational

power, then we should directly optimize ftest by solving the following problem

max
S∈V,|S|≤k

ftest(S). (8.2)

We denote the optimal solution of (8.2) by S∗
test. For instance, we can use the greedy procedure to

256

solve (8.2) which leads to a (1− 1/e)-optimal solution using O(kn) evaluations of ftest, and through

k passes over the ground set. However, the available computational power and time in the test phase

is often limited, either because we need to make quick decisions to respond to new users or since we

need to save energy. For instance, in real-world advertising or recommendation systems, both these

requirements are crucial: many users arrive within each hour which means fast optimization is crucial

(especially if n, k are large), and also, reducing computation load would lead to huge energy savings

in the long run. In such cases, Problem (8.2) should be solved approximately with less computation.

An alternative to reduce computation at test time is to solve the problem associated with the

expected reward over all possible tasks in the training phase (when we have sufficient computation

time), i.e.,

max
S∈V,|S|≤k

Ei∼p [fi(S)]. (8.3)

We denote the optimal solution of (8.3) by S∗
exp. The rationale behind this approach is that the

optimal solution to this problem would generalize well over an unseen task if the new task is also

drawn according to the probability distribution p. In other words, the solution of (8.3) should

perform well for the problem in (8.2) that we aim to solve at the test time, assuming that ftest

is sampled according to p. In this way, we do not need any extra computation at the test time.

However, in this case, the solution that we obtain would not be the best possible solution for the task

that we observe at the test time, i.e., S∗
test is not equal to S∗

exp. Note that we often do not have access

to the underlying probability distribution p, and we only have access to a large set of realizations of

tasks in the training phase. As a result, instead of solving (8.3), we settle for maximizing the sample

average function

max
S∈V,|S|≤k

1

m

m∑
i=1

fi(S), (8.4)

where m is the number of available tasks in the training phase.

Problems (8.2) and (8.4) can be considered as two different extreme cases. In the first option, by

solving (8.2), we avoid any pre-processing in the training phase, and we obtain the best possible

guarantee for the new task, but at the cost of performing computationally expensive operations

257

Task 1

Task 3

Task 2

Task 4

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(b)

New Task
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(c)

Str

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(d)

Figure 8.1: (a) Optimal sets for each of the training tasks (k = 6); (b) the set obtained by solving
the average problem in (8.4); (c) the optimal set for a new task revealed at test time, i.e. solving the
problem in (8.2); (d) the optimal set for the new task is also obtained by solving the meta-learning
problem in (8.7) with l = 4 (brown set) and adding the task-specific elements at test time (red set).

(e.g., full greedy) at the test time. In the second approach, by solving (8.4) in the training phase,

we obtain a solution that possibly performs reasonably without any computation at the test phase,

but the quality of the solution may not be as good as the first option. In summary, there exists a

trade-off between the required computational cost at the test time and the performance guarantee

on the unseen task. Hence, a fundamental question that arises is what would be the best scheme

at the training phase assuming that at test time we have some limited computational power. For

instance, in the monotone submodular case, assume that instead of running the greedy algorithm for

k rounds, which has a complexity of O(kn), we can only afford to run αk rounds of greedy at test

time, which has a complexity of O(αnk), where α ∈ (0, 1) is small. In this case, a natural solution

would be to find an appropriate set of (1−α)k elements in the training phase, and add the remaining

αk elements at test time when a new task arrives. This discussion also applies to any other greedy

method (e.g., lazy or stochastic greedy). We now formally state this problem.

Discrete Meta-Learning. As we discussed so far, when computational power is limited at test

time, it makes sense to divide the process of choosing the best decision between training and test

phases. To be more specific, in the training phase, we choose a subset of elements from the ground

set that would perform over the training tasks, and then select (or optimize) the remaining elements

at the test time specifically with respect to the task at hand. To state this problem, consider Str ⊆ V

with cardinality |Str| = l, where l < k, as the initial set that we aim to find at the training phase,

258

and the set Si that we add to the initial set Str at test time (See Figure 8.1 for an illustration).

Hence, the problem of interest can be written as

max
Str∈V,|Str|≤l

Ei∼p
[

max
Si∈V,|Si|≤k−l

fi(Str ∪ Si)
]
, (8.5)

Note that the critical decision variable that we need to find is Str which is the best initial subset of

size l overall all possible choices of task when a best subset of size k − l is added to that. In fact, if

we define f ′i(Str) := maxSi∈V,|Si|≤k−l fi(Str ∪ Si), then we can rewrite the problem in (8.5) as

max
Str∈V,|Str|≤l

Ei∼p
[
f ′i(Str)

]
. (8.6)

As described previously, we often do not have access to the underlying probability distribution p of the

tasks, and we instead have access to a large number of sampled tasked that are drawn independently

according to p. Hence, instead of solving (8.5), we solve its sample average approximation given by

max
Str∈V,|Str|≤l

1

m

m∑
i=1

[
max

Si∈V,|Si|≤k−l
fi(Str ∪ Si)

]
= max

Str∈V,|Str|≤l

1

m

m∑
i=1

[
f ′i(Str)

]
, (8.7)

where m is the number of tasks in the training set which are sampled according to p. Even though

the functions fi are submodular, f ′i is not submodular or k-submodular (Ohsaka and Yoshida, 2015)

(see Appendix 8.11 for specific counter examples). Hence, Problem (8.7) is not a submodular

maximization problem. In the next section, we present algorithms for solving Problem (8.7) with

provable guarantees.

We finally note that Problem (8.7) will be solved at training time to find the solution Str of size l.

This solution is then completed at test time, by, e.g., running k − l further rounds of greedy on the

new task, to obtain a task-specific solution of size k.

259

8.3. Algorithms for Discrete Submodular Meta-Learning

Solving Problem (8.7) requires finding a set Str for the outer maximization and sets {Si}mi=1 for the

inner maximization. In this section, we describe our proposed greedy-type algorithms to select the

elements Str and {Si}mi=1. As we deal with m+ 1 sets, the order in which the sets Str and {Si}mi=1

are updated becomes crucial, i.e., it is not clear which of the sets Str or Si’s should be preferably

updated in each round and how can the functions fi be incorporated in finding the right order, which

is the main challenge in designing greedy methods to solve (8.7). We design greedy procedures with

both deterministic and randomized orders and provide strong guarantees for their solutions.

8.3.1. Deterministic Algorithms

In this section, we first describe Algorithms 14 and 15 which use specific orderings to solve Prob-

lem (8.7). Based on these two, we then design Algorithm 16 as our main deterministic algorithm.

Throughout this section, we use ∆i(e|S) = fi(S ∪{e})− fi(S) to denote the marginal gain of adding

an element e to set S for function fi. In brief, Algorithm 14 first fills Str greedily up to completion

and then it constructs each of the Si’s greedily on the top of Str. Specifically, starting from the

empty set initialization for Str and Si’s, Algorithm 14 constructs in its first phase the set Str in l

rounds, by adding one element per round, where the next element in each round is chosen according

to e∗ = argmaxe∈V
∑m

i=1 fi(Str ∪ {e})− fi(Str). Once Str is completed, in the second phase, each

of the sets Si is constructed in parallel by running the greedy algorithm on fi. That is, each Si is

updated in k − l rounds where in each round an element with maximum marginal on fi is added to

Si based on e∗i = argmaxe∈V fi(Str ∪ Si ∪ {e})− fi(Str ∪ Si).

Algorithm 15 uses the opposite ordering of Algorithm 14. Initializing with all sets to be empty, in

the first phase it constructs the sets Si using the greedy procedure on fi, i.e., each Si is updated in

parallel in k− l rounds, where in each round the element e∗i defined as e∗i = argmaxe∈V fi(Str ∪ Si ∪

{e})− fi(Str ∪ Si) is added to Si. In the second phase, the set Str is formed greedily in l rounds,

and in each round the element e∗ defined as e∗ = argmaxe∈V
∑m

i=1 fi(Str ∪ {e} ∪ Si)− fi(Str ∪ Si)

is added.

260

Algorithm 14
1: Initialize Str = {Si}mi=1 = ∅

/* Phase 1: */
2: for t = 1, 2, . . . , l do
3: Find e∗ = argmaxe∈V

m∑
i=1

∆i(e|Str)
4: Str ←− Str ∪ {e∗}
5: end for
6: end for

/* Phase 2: */
7: for t = 1, 2, . . . , k − l do
8: for i = 1, 2, . . . , m do
9: Find e∗i =argmaxe∈V ∆i(e|Str∪Si)

10: Si ←− Si ∪ {e∗i }
11: end for
12: end for
13: end for
14: end for
15: Return Str and Si

Algorithm 15
1: Initialize Str = {Si}mi=1 = ∅

/* Phase 1: */
2: for i = 1, 2, . . . , m do
3: for t = 1, 2, . . . , k − l do
4: Find e∗i = argmaxe∈V ∆i(e|Si)
5: Si ←− Si ∪ {e∗i }
6: end for
7: end for
8: end for
9: end for

/* Phase 2: */
10: for t = 1, 2, . . . , l do

11: Find e∗ =argmaxe∈V
m∑
i=1

∆i(e|Str ∪ Si)

12: Str ←− Str ∪ {e∗}
13: end for
14: end for
15: Return Str and Si

While the solutions obtained by Algorithms 14 and 15 are guaranteed to be near-optimal, it turns

out that they can be complementary with respect to each other. Our main deterministic algorithm,

called Meta-Greedy, runs both Algorithms 14 and 15 and chooses as output the solution, among the

two, that leads to a higher objective value in (8.7). To be more specific, if we consider S(1)
tr , {S

(1)
i }mi=1

as the outputs of Algorithm 14 and S(2)
tr , {S

(2)
i }mi=1 as the outputs of Algorithm 15, then Meta-Greedy

compares the values of
∑m

i=1 fi(S
(1)
tr ∪ S

(1)
i) and

∑m
i=1 fi(S

(2)
tr ∪ S

(2)
i) and chooses the solution set

that has the higher objective function value. Note that as we described earlier, the main output of

this procedure should be the set Str of size l. Hence, the output of Meta-Greedy is either S(1)
tr or

S
(2)
tr and the sets {S(1)

i }mi=1 and {S(2)
i }mi=1 are only evaluated for the purpose of comparing objective

function values.

Next, we explain why our Meta-Greedy method can outperform both Algorithms 14 and 15. This

will be done by providing the theoretical guarantees for these methods and consequently explaining

why Algorithms 14 and 15 are complementary.

261

Algorithm 16 Meta-Greedy

1: Run Algorithms 14 and 15 and obtain respective solution sets S(1)
tr , {S

(1)
i }mi=1 and S(2)

tr , {S
(2)
i }mi=1.

2: Compute the objective value
∑m

i=1 fi(Str ∪ Si) for both solution sets.
3: Return Str and Si of the solution set that has a higher objective value.

Theoretical guarantees. We begin with the analysis of Algorithm 14. The following proposition

relates the overall performance of Algorithm 14 to its performance after phase 1 and shows that the

output of the algorithm is at least 1/2-optimal. We use OPT for the optimal value of Problem (8.7).

Proposition 3. Let S(1)
tr , {S

(1)
i }mi=1 be the output of Algorithm 14, and define β as β := 1

m

∑m
i=1 fi(S

(1)
tr).

If the set functions fi are monotone and submodular, then

1

m

m∑
i=1

fi(S
(1)
tr ∪ S

(1)
i) ≥ max

{
β , (1− 1/e)(OPT− 2β) + β

}
.

Consequently, the solution obtained by Algorithm 14 is at least 1/2-optimal for any value of β.

Proof. Check Appendix 8.7.

The proof of this proposition is relegated to the appendix. The key step in the proof is to relate the

progress made in phase 1 to the gap to OPT. This is indeed challenging as phase 1 only involves

updates on the outer maximization of (8.7). In this regard, we prove a novel technical lemma

that can be generally applicable to any mini-max submodular problem. The guarantee given in

Proposition 3 is minimized when β = OPT/2. If β is small (e.g., β = 0) or if β is large (e.g. if

β = (1− 1/e)OPT) then the guarantee becomes tight (e.g. (1− 1/e)OPT). This is indeed expected

from the greedy nature of the two phases of Algorithm 14. What is non-trivial about the result of

Proposition 3 is that it provides a strong guarantee for any value of β, and not just cases that β is

small or large. Similarly, we can provide near-optimality guarantees for Algorithm 15.

Proposition 4. Let S(2)
tr , {S

(2)
i }mi=1 be the output of Algorithm 15, and define γ as γ := 1

m

∑m
i=1 fi(S

(2)
i).

262

If the set functions fi are monotone and submodular, then

1

m

m∑
i=1

fi(S
(2)
tr ∪ S

(2)
i) ≥ max

{
γ , (1− 1/e)(OPT− 2γ) + γ

}
.

Consequently, the solution obtained by Algorithm 15 is at least 1/2-optimal for any value of γ.

Proof. Check Appendix 8.8.

Similarly, we can show that γ = OPT/2 leads to (the worst) guarantee 1/2-OPT, while for large and

small values of γ the bound in Proposition 4 approaches the optimal approximation (1− 1/e)OPT.

We note that the values β in Proposition 3 (Algorithm 14) and γ in Proposition 4 (Algorithm 15)

represent two different extremes. The value β represents the significance of the role of Str in solving

Problem (8.7), and γ represents how significant the role of the sets {Si}mi=1 can be. Even though the

worst-case guarantees of Propositions 3 and 4 are obtained when β, γ = OPT/2, a coupled analysis

of the algorithms show that in this case at least one of the algorithms should output a solution

which is strictly better than 1/2-optimal. In other words, the outcomes of Algorithms 14 and 15 are

dependent to one another, and the best performance is achieved when the maximum of the two is

considered. This justifies why our main algorithm Meta-Greedy can perform strictly better than

each of the Algorithms 14 and 15. Using a coupled analysis of the outcome of Algorithms 14 and

15, we can bound the performance of Meta-Greedy for different values of β and γ (see the proof of

Theorem 30 in the appendix). In particular, we can show that the output of Meta-Greedy is at least

0.53-optimal. The proof of the following theorem carefully analyzes the interplay between the role of

the inner and outer maximization problems in (8.7). We emphasize that the proof introduces new

techniques applicable to other types of minimax submodular problems.

Theorem 30. Consider the Meta-Greedy algorithm outlined in Algorithm 16. If the functions fi

263

are monotone and submodular, then we have

max
{ 1

m

m∑
i=1

fi(S
(1)
tr ∪ S

(1)
i) ,

1

m

m∑
i=1

fi(S
(2)
tr ∪ S

(2)
i)
}
≥ 0.53×OPT. (8.8)

Proof. Check Appendix 8.9.

Remark 7. Note that for all the results in Propositions 3 and 4 as well as Theorem 30, for given

output sets Str or {Si}mi=1, the value of 1
m

∑m
i=1 fi(Str∪Si) is a lower bound for the objective function

value of Problem (8.7) evaluated at the output set Str. To be more precise, the accurate measure for

evaluating the quality of the output set Str is 1
m

∑m
i=1

[
maxSi∈V,|Si|≤k−l fi(Str ∪ Si)

]
which is indeed

larger than 1
m

∑m
i=1 fi(Str ∪Si). Hence, all the guarantees that have obtained in the statements above

(as well as Theorem 31 below) would directly translate into the same guarantees when we evaluate

the objective in (8.7) on the set Str.

8.3.2. Randomized Algorithm

In this section, we consider greedy procedures in which the decision to alternate between the set

Str (the outer maximization) and the sets {Si}mi=1 (the inner maximization) is done based on a

randomized scheme. The Randomized meta-Greedy procedure, outlined in Algorithm 17, provides

a specific randomized order. In each round, with probability l/k we choose to perform a greedy

update on Str, and with probability 1− l/k we choose to perform a greedy update on all the Si’s,

i = 1, · · · ,m. This procedure continues until either Str or {Si}mi=1 hit their corresponding carnality

constraint, in which case we continue to update the other set(s) greedily until they also become full.

The randomized update of Algorithm 17 is designed to optimally connect the expected increase the

objective value at each round with the gap to OPT (as shown in the proof of Theorem 31). Hence,

the Randomized meta-Greedy procedure is able to achieve in expectation a guarantee close to the

tight value (1− 1/e)OPT. However, due to the randomized nature of the algorithm, the sets Str or

Si might hit their carnality constraint earlier than expected. Analyzing the function value at this

“stopping time” is another technical challenge that we resolve in the following theorem to obtain a

guarantee that becomes slightly worse than (1− 1/e)OPT depending on the values of k − l and l.

264

Algorithm 17 Randomized meta-Greedy

1: Initialize the sets Str and {Si}mi=1 to the empty set.
2: while | Si |< k − l and | Str |< l do
3: e∗i ←− argmaxe∈V fi(Str ∪ Si ∪ {e})− fi(Str ∪ Si)
4: e∗tr ←− argmaxe∈V

∑m
i=1 fi(Str ∪ Si ∪ {e})− fi(Str ∪ Si)

5: w.p. l
k : Str = Str ∪ {e∗tr}

6: w.p. k−l
k : Si = Si ∪ {e∗i }, ∀i = 1, · · · ,m

7: end while
8: end
9: If Str or Si’s have not yet reached their cardinality limit then fill them greedily until their limit

is reached
10: Return Str and Si

Theorem 31. Let the (random) sets Str, {Si}mi=1 be the output of Algorithm 17. If the functions fi

are monotone and submodular, then

E
[1
m

m∑
i=1

fi(Str ∪ Si)
]
≥
(
1− 1

e
− b
)
OPT,

where b → 0 as k − l and l grow. More precisely, letting c = max{ 1
k−l ,

1
l }, we have b = c +

(exp(3
√
c log 1/c)− 1)/e = O(

√
c log 1/c).

Proof. Check Appendix 8.10.

Remark 8. All presented algorithms are designed for the training phase and their output is the set

Str with size l. The sets {Si}mi=1 are only computed for algorithmic purposes. Given a new task at

the test phase, the remaining k− l task-specific elements will be added to Str using for instance greedy

updates that require a total complexity of O((k − l)n) in function evaluations. Also, the training

complexity of the proposed algorithms is O(kmn), however, certain phases can be implemented in

parallel.

8.4. Simulation Results

We provide two experimental setups to evaluate the performance of our proposed algorithms and

compare with other baselines. Each setup involves a different set of tasks which are represented as

submodular maximization problems subject to the k-cardinality constraint. In our experiments, we

265

6 8 10 12 14 16 18l

0.85

0.9

0.95

1
O

b
je

ct
iv

e
V

al
u

e
Ride Share Optimization

(a)

5 10 15 20 25 30k

0.8

0.85

0.9

0.95

1

O
b

je
ct

iv
e

V
al

u
e

Ride Share Optimization

(b)

Figure 8.2: Performance for Ride Share Optimization.

consider the following algorithms: Meta-Greedy (Algorithm 16), Randomized Meta-Greedy

(Algorithm 17), Greedy-Train (which chooses all the k elements during the training phase–see (8.4)

and the discussion therein), Greedy-Test (which chooses all the k elements during the test phase–see

(8.2) and the discussion therein), and Random (which chooses a random set of k elements). In the

following, we briefly explain the data and tasks and refer the reader to the supplementary materials

for more details.

Ride Share Optimization. We will formalize and solve a facility location problem on the Uber

dataset (UberDataset). Our experiments were run on the portion of data corresponding to Uber

pick-ups in Manhattan in the period of September 2014. This portion consists of ∼ 106 data points

each represented as a triplet (latitude, longitude,DateT ime). A customer and a driver are specified

through their locations on the map. We use u = (xu, yu) for a customer a and r = (xr, yr) for a

driver. We define the “convenience score” of a (customer, driver) pair as c(u, r) = 2− 2
1+e−200d(u,r) ,

where d(u, r) denotes the Manhattan distance (Mitrovic et al., 2018). Given a specific time a, we

define a time slot Ta and picking inside the data set 10 points in half an hour prior to time a, and

for each point we further pick 10 points in its 1 km neighborhood, which makes a total of 100

points (locations) on the map. A task Ti takes place at a corresponding time ai, and by defining

266

6 8 10 12 14 16 18l

0.8

0.85

0.9

0.95

O
b
je

ct
iv

e
V

al
u
e

Movie Recommendation

(a)

5 10 15 20 25 30k
0.8

0.85

0.9

0.95

1

O
b

je
ct

iv
e

V
al

u
e

Movie Recommendation

(b)

Figure 8.3: Performance for Movie Recommendation.

the set of locations Tai as above, we let fi be a monotone submodular function defined over a set

S of driver locations as fi(S) =
∑

u∈Tai
maxr∈S c(u, r). We pick 100,000 locations at random from

the September 2014 Uber pick-up locations as a ground set. For training we form m = 50 tasks

by picking for each task a random time in the first week of Sept. 2014. We test on m = 50 new

tasks formed similarly from the second week of Sept. 2014 and report in the figures the average

performance obtained at test tasks.

Figures 8.2a and 8.2b show the performance of our proposed algorithms against the baselines

mentioned above. Figure (8.2a) shows the performance of all algorithms when we fix k = 20, and

vary l from 5 to 18. Larger l means less computation at test time (since we need to further choose

k− l elements at test). However, we see that even for large values of l (e.g. l = 16), the performance

of Meta-Greedy is still quite close to the ideal performance of Greedy-Test. Putting this together

with the fact that the performance of Greedy-Train is not so good, we can conclude that adding

a few personalized elements at test time significantly boosts performance to be even close to the

ideal. In Figure (8.2b), we compare the performance of all the algorithms when k changes from

5 to 30, and l is 80% of k (l = ⌊0.8k⌋). As we can see, even when we just learn 20% of the set

in test time, the performance of Meta-greedy is close to Test-Greedy. Also, when k − l increases,

Random-Meta-Greedy performs better than Meta-Greedy. This is in compliance with the results of

267

5 10 15 20 25 30
k

0.7

0.75

0.8

0.85

0.9

0.95

1

F
u
n
c
ti

o
n
 V

a
lu

e

Ride Share Optimization

Figure 8.4: Comparison of two-stage framework and submodular meta-learning framework

Theorems 30, 31.

Movie Recommendation. In this application, we use the Movielens dataset (Harper and Konstan,

2015) which consists of 106 ratings (from 1 to 5) by 6041 users for 4000 movies. We pick the 2000

most rated movies, and 200 users who rated the highest number of movies (similar to (Stan et al.,

2017b)). We partitioned the 200 users into 100 users for the training phase and 100 other users for

the test phase. Each movie can belong to one of 18 genres. For each genre t we let Gt be the set

of all movies with in genre t. For each user i, we let Ri be the set of all movie rated by the user,

and for each movie v ∈ Ri the corresponding rating is denoted by ri(v). Furthermore, for user i we

define fi(S) =
∑18

t=1wi,t.maxv∈Ri∩Gt∩S ri(v) which is the weighted average over maximum rate that

user i gives to movies from each genre and wi,t is proportion of movies in genre t which is rated

by user i out of all the rating he provides. A task Ti involves 5 users i1, · · · , i5 and the function

assigned to the task is the average of fi1 , · · · , fi5 . We formed m = 50 training tasks from the users

in the training phase, and m = 50 test tasks from the users in the test phase. Figure (8.3a) (resp.

8.3b) has been obtained in a similar format as Figure 8.2a (resp. Figure 8.2b). We observe a very

similar pattern as in the ride share experiments.

268

8.5. Comparison with Two-stage Submodular Optimization

Two-stage submodular optimization is another way to deal with limited computational power in test

time. In this framework, at training time, a reduced ground set is learned which will be used as

a ground set at test time. This procedure will reduce the computational time in test time. More

formally, the two-stage submodular optimization framework aims to solve the following problem.

Let fi : 2X −→ R+ for i ∈ [m], be a monotone submodular function over ground set V . The goal is to

find S with size at most q whose subests of size k maximize the sum of fi for i ∈ [m]:

max
S⊆X ,|S|≤q

1

m

m∑
i=1

max
Si⊆S,|Si|≤k

fi(Si) (8.9)

Once the set S is found, it will be used in the test phase (e.g., by running full greedy on S as

the reduced ground set) to find k elements for a new task. This framework uses O(qk) function

evaluations for each new test task; however, it poorly personalizes to a test task because the set

S has been optimized only for the tasks at the training time. This intuition is indeed consistent

with our experimental findings reported below. We further remark that the two-stage framework

requires very high computational power in training. For example, the Replacement-Greedy algorithm

(Stan et al., 2017b) requires computational complexity O(qkmn) (which is a factor q larger than the

complexity of the algorithms in this paper). As a result of this issue, we were not able to run the

state-of-the-art two-stage algorithms to solve (8.9) in the setting considered in our main simulation

results (presented in Section 8.4). e.g., for ground set of size n = 105 our two-stage implementation

would take a very long time.

We have considered the ride-sharing application discussed in Section 8.4 and let n = 500 (ground

set size), m = 50 (number of tasks), and k changing from 5 to 30 (cardinality constraint) while

l = 80%k (portion that will fill in the submodular meta-learning during training), and q = 100

(size of reduced ground set for two-stage framework). For solving the two-stage problem (8.9) we

have used the Replacement-Greedy algorithm introduced in (Stan et al., 2017b). We choose these

parameters based on the following two facts:

269

1. Because of the high computational cost of the Replacement Greedy algorithm in training for

the ride-sharing application, we chose n to be 500.

2. We provide a fair comparison in terms of computational power at test time, which means both

Meta-Greedy (our algorithm) and Replacement-Greedy have exactly the same computational

cost at test time. Formally, n(k − l) = qk.

we report the result for the above setting in the Figure 8.4. A few comments are in order: (i) The

two stage implementation reduces the ground set of size n = 500 to q = 100. When k is small, some

of the popular elements found at training time would be good enough to warrant a good performance

at test time. However, when k increases, the role of personalizing becomes more apparent. As we

see, the performance of Replacement-Greedy does not improve much when we increase k and it

is close to the performance of Greedy-Train (which chooses all the k elements during the training

phase–see (8.4) and the discussion therein). However, since Meta-Greedy does (a small) task-specific

optimization at test time, its performance becomes much better. We emphasize again that, in order

to be fair, the comparison in Figure 8.4 has been obtained using the same computational power

allowed at test time for both meta-learning and two-stage approaches.

8.6. Conclusion and Future Work

In this paper, we extended the notion of Model-Agnostic Meta-Learning (MAML) to discrete

optimization and in particular to submodular maximization. We proposed a novel formulation in

which we aim to find an initial solution set that can be quickly adapted to a new task at a relatively

low computational cost. In our meta-learning framework, the process of selecting set items is done in

two parts: In the first part, a set of items are selected offline according to prior experience and data.

In the second part, which happens at test time, a set of elements that is personalized to the new

revealed task is selected. For the proposed problem, we introduced a deterministic variant of the

greedy algorithm which obtains a solution that is at least 0.53-optimal, when the tasks are monotone

and submodular. We further presented a randomized algorithm that improves this result and obtains

(1− 1/e− o(1))-approximation in expectation. We also studied the performance of our proposed

meta-learning framework and algorithms for two real-world applications: movie recommendation

270

and ride-sharing problems. Our numerical results indicate the advantage of our proposed scheme

with respect to traditional learning procedures as well as methods based on two-stage submodular

optimization.

There are numerous open directions that can be investigated along the lines of discrete meta-learning

and user-specific adaptation for discrete problems (indeed, this work can be considered as a first step).

Examples include extending the results to a more general setting when the tasks are (approximately)

submodular but non-monotone, and considering the case that the tasks at training and test times

are drawn according to two different probability distributions (possibly with bounded distance).

271

8.7. Proof of Proposition 3

Let Str, {Si}mi=1 be the output of Algorithm 14 and S∗
tr, {S∗

i }mi=1 be the optimal solution for

problem (8.7). We first show that the output of Algorithm 14 in phase 1 satisfies the following

inequality:
m∑
i=1

fi(S
∗
tr ∪ S∗

i)−
m∑
i=1

fi(Str) ≤
m∑
i=1

fi(Str ∪ S∗
i) (8.10)

To show (8.10) let e(t) be the tth element of greedy procedure in phase 1, and S
(t)
tr be the tth set

in this procedure, where e(t) = argmax
e

m∑
i=1

fi(S
(t−1)
tr ∪ e)− fi(S(t−1)

tr). let J (0) = S∗
tr and define J (t)

iteratively as follows. Let D(t) = J (t−1) \ S(t−1)
tr and define o(t) in the following way:

1. If e(t) ∈ D(t), then let o(t) = e(t).

2. Otherwise, if e(t) /∈ D(t), let o(t) be one of the elements of Dt chosen uniformly at random.

Define J (t) := J (t−1) ∪ e(t) \ o(t). We show this procedure in the following chain.

(S∗
tr, {S∗

i }mi=1)
{e(1)i }
−−−→
{o(1)i }

(J (1), {S∗
i }mi=1) . . .

{e(l)i }
−−−→
{o(l)i }

(J (l), {S∗
i }mi=1)

(Str = ∅, {S0
i }mi=1 = ∅)

{e(1)i }
−−−→ (S

(1)
tr , {∅}mi=1) . . .

{e(l)i }
−−−→ (S

(l)
tr , {∅}mi=1)

272

then we can write the following inequalities:

m∑
i=1

fi(S
(t)
tr)− fi(S

(t−1)
tr) =

m∑
i=1

fi(S
(t−1)
tr ∪ e(t))− fi(S(t−1)

tr) (8.11)

≥
m∑
i=1

fi(S
(t−1)
tr ∪ o(t)i)− fi(S(t−1)

tr) (8.12)

≥
m∑
i=1

fi(S
∗
i ∪ J (t−1))− fi(S∗

i ∪ J (t−1) \ o(t)) (8.13)

≥
m∑
i=1

fi(S
∗
i ∪ J (t−1))− fi(S∗

i ∪ J (t−1) \ o(t)i)

+
m∑
i=1

−fi(S∗
i ∪ J (t)) + fi(S

∗
i ∪ J (t−1) \ o(t)i) (8.14)

=
m∑
i=1

fi(S
∗
i ∪ J (t−1))− fi(S∗

i ∪ J (t)) (8.15)

where (8.12) follows from definition of e(t) and the greedy procedure and (8.13) follows from

submodularity since in each step S(t−1)
tr ⊆ J (t−1) and o(t) ̸∈ S(t−1)

tr and finally, equation (8.14) follows

from the fact that −fi(J (t) ∪ S∗
i) + fi(J

(t−1) ∪ S∗
i \ o(t)) ≤ 0. Then, by summing over t from 0 to l

we get the following inequality:

m∑
i=1

fi(Str) =
m∑
i=1

fi(S
(l)
tr)− fi(S

(0)
tr) =

m∑
i=1

l∑
t=0

fi(S
(t)
tr)− fi(S

(t−1)
tr) (8.16)

≥
m∑
i=1

l∑
t=0

fi(S
∗
i ∪ J (t−1))− fi(S∗

i ∪ J (t)) (8.17)

=

m∑
i=1

fi(S
∗
i ∪ J (0))− fi(S∗

i ∪ J (l)) (8.18)

=

m∑
i=1

fi(S
∗
i ∪ S∗

tr)− fi(S∗
i ∪ Str) (8.19)

where the last equality comes from the process of defining J . Because, we only change one element

by adding element found in greedy process and removing one element from the optimal set in each

step and the size of J (t) is l in each step; therefore, after l step J (l) = Str. By rearranging the terms

and summing over i the claim in (8.10) follows.

273

Second, for the phase 2 of the algorithm 14 we can use the usual analysis of greedy(Krause and Golovin,

2014) for set Si:

m∑
i=1

fi(Str ∪ Si)− fi(Str) ≥ (1− 1

e
)(

m∑
i=1

fi(Str ∪ Sopti)− fi(Str)) (8.20)

≥ (1− 1

e
)(

m∑
i=1

fi(Str ∪ S∗
i)− fi(Str)) (8.21)

≥ (1− 1

e
)(

m∑
i=1

fi(S
∗
tr ∪ S∗

i)− 2fi(Str)) (8.22)

where Sopti = argmax
|Si|≤k−l

fi(Str ∪ Si) in the equation (8.20). Equation (8.20) follows from usual

greedy analysis, equation (8.21) follows from definition of Sopttr , and equation (8.22) follows from

equation (8.10).

Now divide both sides of (8.10) by 1/m and regroup the terms to obtain

1

m

m∑
i=1

fi(Str ∪ Si) ≥
(
1− 1

e

)
(OPT− 2β) + β, (8.23)

where β := 1
m

∑m
i=1 fi(Str).

Finally, since Si ⊆ Si ∪ Str by monotonicity fi(Si ∪ Str) ≥ fi(Str). Then, combing this observation

with the result in (8.23) implies

1

m

m∑
i=1

fi(Str ∪ Si) ≥ max

{
β , (1− 1/e)(OPT− 2β) + β

}
.

8.8. Proof of Proposition 4

Let Str, {Si}mi=1 be the output of Algorithm 15 and S∗
tr, {S∗

i }mi=1 be the optimal solution for

problem (8.7). We first show the following about the output of algorithm 15, phase 1.

274

m∑
i=1

fi(S
∗
tr ∪ S∗

i)−
m∑
i=1

fi(Si) ≤
m∑
i=1

fi(S
∗
tr ∪ Si) (8.24)

to show (8.24) consider the following:

let e(t)i = argmax
e

fi(S
(t−1)
i ∪ e)− fi(S(t−1)

i). let J (0)
i = S∗

i and define J (t)
i iteratively as follows. Let

Dt
i = J

(t−1)
i \ S(t−1)

i and define o(t)i in the following way:

1. If e(t)i ∈ Dt
i , then o(t) = e

(t)
i ;

2. Otherwise, if e(t)i /∈ Dt
i , let o(t)i be one of the elements of Dt

i chosen uniformly at random;

Define J (t)
i := J

(t−1)
i ∪ e(t)i \ o

(t)
i .

(S∗
tr, {S∗

i }mi=1)
{e(1)i }
−−−→
{o(1)i }

(S∗
tr, {J

(1)
i }mi=1) . . .

{e(k−l)
i }
−−−−−→
{o(k−l)

i }
(S∗

tr, {J
(k−l)
i }mi=1)

(Str = ∅, {S0
i }mi=1 = ∅)

{e(1)i }
−−−→ (∅, {S(1)

i }mi=1) . . .
{e(k−l)

i }
−−−−−→ (∅, {S(k−l)

i }mi=1)

then we can write the following inequalities:

fi(S
(t)
i)− fi(S(t−1)

i) = fi(S
(t−1)
i ∪ e(t)i)− fi(S(t−1)

i) (8.25)

≥ fi(S(t−1)
i ∪ o(t)i)− fi(S(t−1)

i) (8.26)

≥ fi(S∗
tr ∪ J

(t−1)
i)− fi(S∗

tr ∪ J
(t−1)
i \ o(t)i) (8.27)

≥ fi(S∗
tr ∪ J

(t−1)
i)− fi(S∗

tr ∪ J
(t−1)
i \ o(t)i)

− fi(S∗
tr ∪ J

(t)
i) + fi(S

∗
tr ∪ J

(t−1)
i \ o(t)i) (8.28)

= fi(S
∗
tr ∪ J

(t−1)
i)− fi(S∗

tr ∪ J
(t)
i) (8.29)

where (8.26) follows from definition of e(t)i and the greedy procedure and (8.27) follows from the

submodularity since in each step S(t−1)
i ⊆ J (t−1)

i and o(t)i ̸∈ S
(t−1)
i and finally, equation (8.28) follows

from the fact that −fi(S∗
tr ∪ J

(t)
i) + fi(S

∗
tr ∪ J

(t−1)
i \ o(t)i) ≤ 0 because of monotonicity. Then, by

275

summing over t from 0 to k − l we get the following inequality:

fi(Si) = fi(S
(k−l)
i)− fi(S(0)

i) =
k−l∑
t=0

fi(S
(t)
i)− fi(S(t−1)

i) (8.30)

≥
k−l∑
t=0

fi(S
∗
tr ∪ J

(t−1)
i)− fi(S∗

tr ∪ J
(t)
i) (8.31)

= fi(S
∗
tr ∪ J

(0)
i)− fi(S∗

tr ∪ J
(k−l)
i) (8.32)

= fi(S
∗
tr ∪ S∗

i)− fi(S∗
tr ∪ Si) (8.33)

where the last equality comes from the process of defining J (k−l)
i ; since, the size of J (t)

i is k − l in

each step and after k − l step J (k−l)
i = Si. Then, by rearranging and summing over i we can obtain

(8.24).

Second, for phase 2 of algorithm 15 we can use the usual analysis of greedy(Krause and Golovin,

2014) for set Str :

m∑
i=1

fi(Str ∪ Si)− fi(Si) ≥ (1− 1

e
)(

m∑
i=1

fi(S
opt
tr ∪ Si)− fi(Si)) (8.34)

≥ (1− 1

e
)(

m∑
i=1

fi(S
∗
tr ∪ Si)− fi(Si)) (8.35)

≥ (1− 1

e
)(

m∑
i=1

fi(S
∗
tr ∪ S∗

i)− 2fi(Si)) (8.36)

where Sopttr = argmax
|Str|≤l

m∑
i=1

fi(Str ∪ Si) in equation (8.34). Equation (8.34) follows from the usual

greedy analysis, equation (8.35) follows from the definition of Sopttr , and equation (8.36) follows the

from equation (8.24).

Now divide both sides of (8.36) by 1/m and regroup the terms to obtain

1

m

m∑
i=1

fi(Str ∪ Si) ≥
(
1− 1

e

)
(OPT− 2γ) + γ, (8.37)

276

where γ := 1
m

∑m
i=1 fi(Si).

Finally, since Si ⊆ Si ∪ Str by monotonicity fi(Si ∪ Str) ≥ fi(Si). Then, by combing this result wit

(8.37) we obtain

1

m

m∑
i=1

fi(Str ∪ Si) ≥ max

{
γ , (1− 1/e)(OPT− 2γ) + γ

}
.

The following shows the ratio of lower bound to optimum (a similar plot can be obtained for the

lower bound of Proposition 3 when γ is replaced with β.). As we observe, in the worst case, the

approximation factor is 0.5.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

R
a

ti
o

 t
o

 O
p

ti
m

a
l

Figure 8.5: y-axis: The lower bound of Proposition 4 divided by OPT, x-axis: γ/OPT.

8.9. Proof of Theorem 30

Let θ2 = 1
m

∑m
i=1 fi(S

(2)
tr ∪ S

(2)
i). Since S(2)

tr found greedily given {Si}mi=1 we can write:

θ2 − γ ≥ (OPT− γ)(1− 1

e
) ≥ (

1

m

m∑
i=1

fi(S
′ ∪ S(2)

i)− γ)(1− 1

e
) (8.38)

277

for every | S′ |≤ l. Also, we can write

OPT− γ =
1

m

m∑
i=1

fi(S
∗
tr ∪ S∗

i)− fi(S
(2)
i) (8.39)

≤ 1

m

m∑
i=1

fi(S
∗
tr ∪ S

(2)
i ∪ S

∗
i)− fi(S

(2)
i) (8.40)

=
1

m

m∑
i=1

fi(S
∗
tr ∪ S

(2)
i ∪ S

∗
i) + fi(S

∗
tr ∪ S

(2)
i)− fi(S∗

tr ∪ S
(2)
i)− fi(S(2)

i) (8.41)

≤ 1

m

m∑
i=1

fi(S
∗
tr ∪ S

(2)
i ∪ S

∗
i)− fi(S∗

tr ∪ S
(2)
i) +

θ2 − γ
1− 1/e

(8.42)

≤ 1

m

m∑
i=1

fi(S
(2)
i ∪ S

∗
i)− fi(S

(2)
i) +

θ2 − γ
1− 1/e

(8.43)

where (8.42) comes from (8.38), and (8.43) comes from submodularity. We thus obtain

OPT− θ2 − γ
1− 1/e

− γ ≤ 1

m

m∑
i=1

fi(S
(2)
i ∪ S

∗
i)− fi(S

(2)
i) (8.44)

Also we can write for any set S′ such that | S′ |≤ l:

1

m

m∑
i=1

fi(S
′ ∪ S∗

i)− fi(S
′
) ≥ 1

m

m∑
i=1

fi(S
′ ∪ S∗

i ∪ Si)− fi(S
′ ∪ Si) (8.45)

≥ 1

m

m∑
i=1

fi(S
′ ∪ S∗

i ∪ Si)− fi(Si) + fi(Si)− fi(S
′ ∪ Si) (8.46)

≥ 1

m

m∑
i=1

fi(S
∗
i ∪ Si)− fi(Si) + fi(Si)− fi(S

′ ∪ Si) (8.47)

≥ OPT− θ2 − γ
1− 1/e

− γ +
1

m

m∑
i=1

fi(Si)− fi(S
′ ∪ Si) (8.48)

≥ OPT− 2
θ2 − γ
1− 1/e

− γ (8.49)

where (8.45) follows from submodularity, (8.47) follows from monotonicity, and (8.48) follows from

(8.44), and (8.49) follows from (8.38). This results the following for any set S′ such that |S′ | ≤ l:

1

m

m∑
i=1

fi(S
′ ∪ S∗

i)− fi(S
′
) ≥ OPT− 2

θ2 − γ
1− 1/e

− γ (8.50)

278

Now, from (8.50) we can find a new bound for the performance of algorithm 16. From (8.50) we can

write:

1

m

m∑
i=1

fi(S
(1)
tr ∪ S∗

i)− fi(S
(1)
tr) ≥ OPT− 2

θ2 − γ
1− 1/e

− γ (8.51)

Also, since in Algorithm 1 the set S(1)
i is constructed greedily on the top of S(1)

tr , we have:

1

m

m∑
i=1

fi(S
(1)
tr ∪ S

(1)
i)− β ≥ (

1

m

m∑
i=1

fi(S
(1)
tr ∪ S∗

i)− β)(1−
1

e
) (8.52)

≥ (OPT− 2
θ2 − γ
1− 1/e

− γ)(1− 1

e
), (8.53)

where (8.53) follows from (8.51). We thus obtain:

1

m

m∑
i=1

fi(S
(1)
tr ∪ S

(1)
i) ≥ (OPT− 2

θ2 − γ
1− 1/e

− γ)(1− 1

e
) + β (8.54)

Using the same procedure as above, by defining θ1 = 1
m

∑m
i=1 fi(S

(1)
tr ∪ S

(1)
i), we can prove:

1

m

m∑
i=1

fi(S
(2)
tr ∪ S

(2)
i) ≥ (OPT− 2

θ1 − γ
1− 1/e

− γ)(1− 1

e
) + β (8.55)

which results in the following lower bound:

max

{
1

m

m∑
i=1

fi(S
(1)
tr ∪ S

(1)
i) ,

1

m

m∑
i=1

fi(S
(2)
tr ∪ S

(2)
i)

}
≥ max

{
θ1, θ2, (1− 1/e)(OPT−γ) + β − 2(θ2 − γ), (1− 1/e)(OPT−β) + γ − 2(θ1 − β)

}
. (8.56)

Finally, given (8.54) and (8.56), the factor 0.53 is obtained as a result of the following procedure.

Let β and γ given as β := 1
m

∑m
i=1 fi(S

(1)
tr) and γ := 1

m

∑m
i=1 fi(S

(2)
i). Then the left-hand-side term

279

in (8.8) is lower bounded by:

min
θ1,θ2

max

{
θ1, θ2, (1− 1/e)(OPT−γ) + β − 2(θ2 − γ), (1− 1/e)(OPT−β) + γ − 2(θ1 − β)

}
subject to θ1 ≥ max{β, (1− 1/e)(OPT− 2β) + β}

θ2 ≥ max{γ, (1− 1/e)(OPT− 2γ) + γ}

Note that the constraints hold due to the results of Proposition 1 and 2. In particular, the above

bound is always larger than 0.53×OPT for any value of β and γ.

8.10. Proof of Theorem 31

Consider round t in which | Str |< l and | Si |< k − l the expected gain of the algorithm with

probability l
k is the maximum gain from adding an element e∗ = argmax

e

m∑
i=1

fi(S
t
tr∪e∪Sti)−fi(Sttr∪Sti)

or with probability k−l
k the gain is

m∑
i=1

maxei fi(S
t
tr ∪ ei ∪ Sti)− fi(Sttr ∪ Sti) which can be written as

follows.

E[
m∑
i=1

fi(S
t+1
tr ∪ S

t+1
i)− fi(Sttr ∪ Sti)|Sttr, Sti]

=
l

k
max
e

m∑
i=1

fi(S
t
tr ∪ e ∪ Sti)− fi(Sttr ∪ Sti) +

k − l
k

m∑
i=1

max
ei

fi(S
t
tr ∪ ei ∪ Sti)− fi(Sttr ∪ Sti) (8.58)

280

assuming S∗
tr, S

∗
i is optimal solution, we can also write:

1

k

m∑
i=1

fi(S
∗
tr ∪ S∗

i)− fi(Sttr ∪ Sti) ≤
1

k

m∑
i=1

fi(S
∗
tr ∪ S∗

i ∪ Sttr ∪ Sti)− fi(Sttr ∪ Sti) (8.59)

≤ 1

k

∑
e∈S∗

tr\St
tr

m∑
i=1

fi(e ∪ Sttr ∪ Sti)− fi(Sttr ∪ Sti)

+
1

k

m∑
i=1

∑
e∈S∗

i \St
i

fi(e ∪ Sttr ∪ Sti)− fi(Sttr ∪ Sti) (8.60)

≤ l

k
max
e

m∑
i=1

fi(S
t
tr ∪ e ∪ Sti)− fi(Sttr ∪ Sti)

+
k − l
k

m∑
i=1

max
ei

fi(S
t
tr ∪ ei ∪ Sti)− fi(Sttr ∪ Sti) (8.61)

where (8.59) follows from monotonicity, and (8.60) follows from submodularity. Then, from (8.61)

and (8.58) we conclude that:

E[
m∑
i=1

fi(S
t+1
tr ∪ S

t+1
i)− fi(Sttr ∪ Sti)|Sttr, Sti] ≤

1

k

m∑
i=1

fi(S
∗
tr ∪ S∗

i)− fi(Sttr ∪ Sti) (8.62)

In other words, the expected improvement in the objective (left-hand side of (8.62)) is at least 1/k

times the gap of the current objective value to OPT (i.e. right-hand side of (8.62)). Note that (8.62)

is only valid when | Str |< l and | Si |< k − l. Hence, by defining the stopping time τ as first time

that either | Str |= l or | Si |= k − l, and a telescopic usages of the bounds in (8.62), we obtain the

following bound:

E

[
1

m

m∑
i=1

fi(S
τ
tr ∪ Sτi)

]
≥ OPT× E

[(
1−

(
1− 1

k

)τ)]

The following theorem finds an upper bound on E[(1− 1
k)
τ] which finishes the proof.

Lemma 57. If stopping time τ is first time that either | Str |= l or | Si |= k − l then E[(1− 1
k)
τ] ≤

c+ exp(−1 +
√

3c.log(kc)) where c = 1
min{l,k−l} .

Proof. let u1, u2, · · · be i.i.d random variables with distribution ui ∼ Bernoulli(1− l/k), i.e. p(ui =

281

1) = (k − l)/k. The stopping time τ is the first time that
∑τ

i=1 ui = k − l or τ −
∑τ

i=1 ui = l. Let

us define Xr =
∑r

i=1 ui.

Furthermore, we define τ ′
= r when r is the first time that Xr = r− l and τ ′′

= r when r is the first

time that Xr = k − l. Also, let c = 1
min{l,k−l} as it was defined in the lemma. By this definition,

τ = min{τ ′′
, τ

′} and we can write the following about the probabilities of τ ′ and τ ′′ :

p(τ
′
= r) =

(
r − 1

l − 1

)
(
k − l
k

)r−l(
l

k
)l

p(τ
′′
= r) =

(
r − 1

k − l − 1

)
(
l

k
)r−k+l(

k − l
k

)k−l

then, based on the definition of τ ′ and τ ′′ we have the following properties for τ ′ and τ ′′ :

• if r < k − l then p(τ ′′
= r) = 0.

• if r < l then p(τ ′
= r) = 0.

• if r > k then p(τ ′ ≤ τ ′′ |τ ′
= r) = 0.

• if r < k then p(τ ′ ≤ τ ′′ |τ ′
= r) = 1.

• if r < k then p(τ ′ ≥ τ ′′ |τ ′′
= r) = 1

• if r > k then p(τ ′ ≥ τ ′′ |τ ′′
= r) = 0.

• p(τ
′′
= r|τ ′ ≥ τ ′′

) = p(τ = r|τ ′ ≥ τ ′′
).

• p(τ
′
= r|τ ′ ≤ τ ′′

) = p(τ = r|τ ′ ≤ τ ′′
).

Moreover using Bayes rule we can write:

•

p(τ
′
= r|τ ′ ≤ τ ′′

) =
p(τ

′ ≤ τ ′′ |τ ′
= r)p(τ

′
= r)

p(τ ′ ≤ τ ′′)
=
1(r ≤ k)p(τ ′

= r)

p(τ ′ ≤ τ ′′)
.

282

•

p(τ
′′
= r|τ ′ ≥ τ ′′

) =
1(r ≤ k)p(τ ′′

= r)

p(τ ′′ ≤ τ ′)
.

Let X̄r = r − Xr we can write X̄r =
∑r

i=1 vi where v1, v2, v3, . . . are i.i.d random variable with

distribution vi ∼ Bernoulli(l/k). Then, we can write the following using Chernoff bound:

p(τ
′
= r) ≤ p(Xr = r − l) (8.63)

≤ p(X̄r ≥ l) (8.64)

≤ p(X̄r ≥ r(
l

k
)− (k − r) l

k
) (8.65)

≤ exp

(
−
(k − r)2(lk)

2

3r(lk)

)
(8.66)

= exp

(
−(k − r)2(l)

3rk

)
(8.67)

Similarly:

p(τ
′′
= r) ≤ p(Xr = k − l) (8.68)

≤ p(Xr ≥ k − l) (8.69)

≤ p(Xr ≥ r(1−
l

k
)− (k − r)(1− l

k
)) (8.70)

≤ exp

(
−
(k − r)2(1− l

k)
2

3r(1− l
k)

)
(8.71)

≤ exp

(
−(k − r)2(k − l)

3rk

)
(8.72)

≤ exp

(
−(k − r)2

3rkc

)
(8.73)

then we can write the E[(1− 1
k)
τ] as follows:

E[(1− 1

k
)τ] =

k∑
r=1

(1− 1

k
)rp(τ = r) ≤ (1− 1

k
)k−α

√
c +

k−α
√
c∑

r=1

(1− 1

k
)rp(τ = r) (8.74)

283

Our goal is to find proper bound for (8.74). we focus on the second term in (8.75)-(8.81) and try to

find proper bound for it.

k−α
√
c∑

r=1

(1− 1

k
)rp(τ = r) (8.75)

=

k−α
√
c∑

r=1

(1− 1

k
)r(p(τ

′
= r|τ ′

< τ
′′
)p(τ

′
< τ

′′
) + p(τ

′′
= r|τ ′ ≥ τ ′′

)p(τ
′ ≥ τ ′′

)) (8.76)

=

k−α
√
c∑

r=1

(1− 1

k
)r(p(τ

′
= r) + p(τ

′′
= r)) (8.77)

=

k−α
√
c∑

r=l

(1− 1

k
)rp(τ

′
= r) +

k−α
√
c∑

r=k−l
(1− 1

k
)rp(τ

′′
= r) (8.78)

≤
k−α

√
c∑

r=l

exp

(
−(k − r)2

3rkc

)
+

k−α
√
c∑

r=k−l
exp

(
−(k − r)2

3rkc

)
(8.79)

≤ (k − l) exp
(
−(k − (k − α

√
c))2

3k2c

)
+ l exp

(
−(k − (k − α

√
c))2l

3k2

)
(8.80)

≤ (k − l) exp
(
−(α
√
c)2

3k2c

)
+ l exp

(
−(α
√
c)2l

3k2

)
(8.81)

where (8.76) follows from law of total probability, (8.77) follows from bayes rule, (8.79) follows from

Chernoff bound, (8.80) follows from the fact that r < k. Let α = 3
√
log(1c).k. As result, we have:

k−α
√
c∑

r=1

(1− 1

k
)rp(τ = r) ≤ (k − l)c3 + lc3cl (8.82)

Assume without loss of generality k − l ≤ l and k − l ≥ 2. As a result, c = 1
k−l . we want to show

that (k − l)c3 + lc3cl = c2 + lc3cl ≤ c. To show this, we show the following equivalent inequality :

l(k − l)−3cl ≤ c(1− c) = k − l − 1

(k − l)2
(8.83)

This holds since k − l ≥ 2 we have l
(k−l)3 (k − l)

−3(cl−1) ≤ l
(k−l)3 2

−3(l
k−l

−1) ≤ l
(k−l)3 l

k−l

= 1
(k−l)2 ≤

284

k−l−1
(k−l)2 . Moreover, we can bound the first term in (8.74) as follows:

(1− 1

k
)k−α

√
c ≤ exp(−1 + 3

√
c. log(

1

c
)) (8.84)

summing up we can find the following bound for E[(1− 1
k)
τ] which finishes the proof.

E[(1− 1

k
)τ] ≤ c+ exp(−1 + 3

√
c.log(

1

c
)) (8.85)

8.11. Counter-example for Submodularity of the Objective in (8.7)

In this section, we provide a counterexample for submodularity of the objective function in the

equation (8.7). We consider a maximum coverage problem in which the function value is an area

covered by a set of elements. We define the ground set V = {ABIJ,BCDI,ACDJ, IDEH

,HEFG,BCEH} which has shown in Figure 8.6. Each element is a rectangle, and a function value

of that element is an area covered by that element. We refer to each element (rectangle) by it’s

vertices.

Figure 8.6: Counter Example of Submodularity

285

Let AC = CD = DE = EF = 1, and BC = 0.75. Also in (8.7) we let m = 1 and k − l = 1 which

means that we are considering a single set function f defined as: f(S) = maxe∈V A(S ∪ e), where

A(T) is a area of set T . Note that the area function A is monotone and submodular, however as

we will show below, the function f is not submodular. To do so, we consider two sets T1 = ∅ and

T2 = {ACDJ} and add the element IDEH to both sets and observe that f does not satisfy the

diminishing returns property. Let us first compute the function value at T1 and T2 as follows:

f(T1) = max
e∈V

A(e) = A({BCEH}) = 1.5,

and

f(T2) = max
e∈V

A(T2 ∪ e) = A({ACDJ, IDEH}) = 1.75.

Similarly, we compute the function value at T ′
1 = T1 ∪ {IDEH}, and T ′

2 = T2 ∪ {IDEH}:

f(T
′
1) = max

e∈V
A(T

′
1 ∪ e) = A({IDEH,ACDJ}) = 1.75,

and

f(T
′
2) = max

e∈V
A(T

′
2 ∪ e) = A({IDEH,ACDJ,EFGH}) = 2.5.

We can now see that T1 ⊆ T2, but f(T ′
2)− f(T2) ̸≤ f(T

′
1)− f(T1). Therefore, f is not submodular.

Also let us make a remark about k-submodularity which studies functions of k subsets of the ground

set that are disjoint sets. This class of functions is submodular in each orthant (Ohsaka and Yoshida,

2015). However, in the submodular meta-learning framework, sets can have overlap, and there is

no restriction on the sets to be disjoint. Therefore, our framework is different from k-submodular

maximization.

286

BIBLIOGRAPHY

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24:2312–2320, 2011.

Arman Adibi, Aryan Mokhtari, and Hamed Hassani. Submodular meta-learning. arXiv preprint
arXiv:2007.05852, 2020.

Arman Adibi, Aritra Mitra, George J Pappas, and Hamed Hassani. Distributed statistical min-max
learning in the presence of Byzantine agents. arXiv preprint arXiv:2204.03187, 2022a.

Arman Adibi, Aritra Mitra, George J Pappas, and Hamed Hassani. Distributed statistical min-max
learning in the presence of byzantine agents. In Proc. of the 61st IEEE Conference on Decision
and Control, pages 4179–4184, 2022b.

Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. Advances in neural
information processing systems, 24, 2011.

Mridul Agarwal, Vaneet Aggarwal, and Kamyar Azizzadenesheli. Multi-agent multi-armed bandits
with limited communication. arXiv preprint arXiv:2102.08462, 2021.

Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. arXiv preprint
arXiv:1803.08917, 2018.

Mohammad Alkousa, Darina Dvinskikh, Fedor Stonyakin, Alexander Gasnikov, and Dmitry Ko-
valev. Accelerated methods for composite non-bilinear saddle point problem. arXiv preprint
arXiv:1906.03620, 2019.

Nima Anari, Nika Haghtalab, Seffi Naor, Sebastian Pokutta, Mohit Singh, and Alfredo Torrico. Struc-
tured robust submodular maximization: Offline and online algorithms. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 3128–3137. PMLR, 2019.

Antreas Antoniou, Harrison Edwards, and Amos J. Storkey. How to train your MAML. In 7th
International Conference on Learning Representations, ICLR, 2019.

Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic
gradient descent with delayed updates. In Algorithmic Learning Theory, pages 111–132. PMLR,
2020.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pages 214–223. PMLR, 2017.

Mahmoud Assran, Arda Aytekin, Hamid Reza Feyzmahdavian, Mikael Johansson, and Michael G
Rabbat. Advances in asynchronous parallel and distributed optimization. Proceedings of the IEEE,

287

108(11):2013–2031, 2020.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002.

Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular functions.
In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
1497–1514. SIAM, 2014.

Eric Balkanski, Baharan Mirzasoleiman, Andreas Krause, and Yaron Singer. Learning sparse
combinatorial representations via two-stage submodular maximization. In International Conference
on Machine Learning, pages 2207–2216, 2016.

Eric Balkanski, Aviad Rubinstein, and Yaron Singer. An exponential speedup in parallel running
time for submodular maximization without loss in approximation. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 283–302. SIAM, 2019.

Rafael Barbosa, Alina Ene, Huy Nguyen, and Justin Ward. The power of randomization: Distributed
submodular maximization on massive datasets. In International Conference on Machine Learning,
pages 1236–1244, 2015.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization. Princeton
university press, 2009a.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization. Princeton
university press, 2009b.

Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. Citeseer.

Dimitri P Bertsekas and John N Tsitsiklis. Convergence rate and termination of asynchronous
iterative algorithms. In Proceedings of the 3rd International Conference on Supercomputing, pages
461–470, 1989.

Dimitris Bertsimas, David B Brown, and Constantine Caramanis. Theory and applications of robust
optimization. SIAM review, 53(3):464–501, 2011.

Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference
learning with linear function approximation. In Conference on learning theory, pages 1691–1692.
PMLR, 2018a.

Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference
learning with linear function approximation. In Conference on learning theory, pages 1691–1692.

288

PMLR, 2018b.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning
with adversaries: Byzantine tolerant gradient descent. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pages 118–128, 2017.

Ilija Bogunovic, Slobodan Mitrović, Jonathan Scarlett, and Volkan Cevher. A distributed algorithm
for partitioned robust submodular maximization. In 2017 IEEE 7th International Workshop
on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pages 1–5. IEEE,
2017a.

Ilija Bogunovic, Slobodan Mitrović, Jonathan Scarlett, and Volkan Cevher. Robust submodular
maximization: A non-uniform partitioning approach. In International Conference on Machine
Learning, pages 508–516. PMLR, 2017b.

Ilija Bogunovic, Junyao Zhao, and Volkan Cevher. Robust maximization of non-submodular objectives.
In International Conference on Artificial Intelligence and Statistics, pages 890–899. PMLR, 2018.

Ilija Bogunovic, Andreas Krause, and Jonathan Scarlett. Corruption-tolerant gaussian process bandit
optimization. In International Conference on Artificial Intelligence and Statistics, pages 1071–1081.
PMLR, 2020.

Ilija Bogunovic, Arpan Losalka, Andreas Krause, and Jonathan Scarlett. Stochastic linear bandits
robust to adversarial attacks. In International Conference on Artificial Intelligence and Statistics,
pages 991–999. PMLR, 2021.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan McMahan, et al. Towards
federated learning at scale: System design. arXiv preprint arXiv:1902.01046, 2019.

Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and Jonathan Binas.
Reinforcement learning with random delays. In International conference on learning representations,
2020.

Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet. Bounded regret in stochastic multi-armed
bandits. In Conference on Learning Theory, pages 122–134. PMLR, 2013.

Swapna Buccapatnam, Jian Tan, and Li Zhang. Information sharing in distributed stochastic bandits.
In 2015 IEEE Conference on Computer Communications (INFOCOM), pages 2605–2613. IEEE,
2015.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization
with cardinality constraints. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on
Discrete algorithms, pages 1433–1452. SIAM, 2014.

289

Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM Journal on Computing, 44(5):
1384–1402, 2015.

Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a monotone sub-
modular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–1766,
2011.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university press,
2006.

Ronshee Chawla, Abishek Sankararaman, Ayalvadi Ganesh, and Sanjay Shakkottai. The gossiping
insert-eliminate algorithm for multi-agent bandits. In International Conference on Artificial
Intelligence and Statistics, pages 3471–3481. PMLR, 2020a.

Ronshee Chawla, Abishek Sankararaman, and Sanjay Shakkottai. Multi-agent low-dimensional linear
bandits. arXiv preprint arXiv:2007.01442, 2020b.

Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maximization via the
multilinear relaxation and contention resolution schemes. SIAM Journal on Computing, 43(6):
1831–1879, 2014.

Lin Chen, Christopher Harshaw, Hamed Hassani, and Amin Karbasi. Projection-free online optimiza-
tion with stochastic gradient: From convexity to submodularity. arXiv preprint arXiv:1802.08183,
2018a.

Lin Chen, Mingrui Zhang, Hamed Hassani, and Amin Karbasi. Black box submodular maximization:
Discrete and continuous settings. In International Conference on Artificial Intelligence and
Statistics, pages 1058–1070. PMLR, 2020.

Lingjiao Chen, Zachary Charles, Dimitris Papailiopoulos, et al. Draco: Robust distributed training
via redundant gradients. arXiv preprint arXiv:1803.09877, 2018b.

Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos. Draco: Byzantine-
resilient distributed training via redundant gradients. In ICML, pages 903–912. PMLR, 2018c.

Mengjie Chen, Chao Gao, and Zhao Ren. Robust covariance matrix estimation via matrix depth.
arXiv preprint arXiv:1506.00691, 2015.

Minshuo Chen, Yu Bai, H Vincent Poor, and Mengdi Wang. Efficient rl with impaired observability:
Learning to act with delayed and missing state observations. arXiv preprint arXiv:2306.01243,
2023a.

Robert Chen, Brendan Lucier, Yaron Singer, and Vasilis Syrgkanis. Robust optimization for
non-convex objectives. arXiv preprint arXiv:1707.01047, 2017a.

290

Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 1(2):1–25, 2017b.

Zaiwei Chen, Siva Theja Maguluri, Sanjay Shakkottai, and Karthikeyan Shanmugam. A lyapunov
theory for finite-sample guarantees of asynchronous q-learning and td-learning variants. arXiv
preprint arXiv:2102.01567, 2021.

Zaiwei Chen, Sheng Zhang, Thinh T Doan, John-Paul Clarke, and Siva Theja Maguluri. Finite-
sample analysis of nonlinear stochastic approximation with applications in reinforcement learning.
Automatica, 146:110623, 2022.

Zaiwei Chen, Siva Theja Maguluri, and Martin Zubeldia. Concentration of contractive stochastic
approximation: Additive and multiplicative noise. arXiv preprint arXiv:2303.15740, 2023b.

Yu Cheng, Ilias Diakonikolas, and Rong Ge. High-dimensional robust mean estimation in nearly-
linear time. In Proc. of the thirtieth annual ACM-SIAM symp. on discrete algorithms, pages
2755–2771. SIAM, 2019.

Andrew Clark, Basel Alomair, Linda Bushnell, and Radha Poovendran. Scalable and distributed
submodular maximization with matroid constraints. In 2015 13th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pages 435–442.
IEEE, 2015.

Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. Asynchronous stochastic
optimization robust to arbitrary delays. Advances in Neural Information Processing Systems, 34:
9024–9035, 2021.

Liam Collins, Aryan Mokhtari, and Sanjay Shakkottai. Distribution-agnostic model-agnostic meta-
learning. arXiv preprint arXiv:2002.04766, 2020.

Micah Corah and Nathan Michael. Efficient online multi-robot exploration via distributed sequential
greedy assignment. In Robotics: Science and Systems, volume 13, 2017.

Micah Corah and Nathan Michael. Distributed submodular maximization on partition matroids for
planning on large sensor networks. In 2018 IEEE Conference on Decision and Control (CDC),
pages 6792–6799. IEEE, 2018.

Micah Corah and Nathan Michael. Distributed matroid-constrained submodular maximization for
multi-robot exploration: Theory and practice. Autonomous Robots, 43(2):485–501, 2019.

Bo Dai, Niao He, Yunpeng Pan, Byron Boots, and Le Song. Learning from conditional distributions
via dual embeddings. In Artificial Intelligence and Statistics, pages 1458–1467. PMLR, 2017.

Arnak S. Dalalyan and Arshak Minasyan. All-in-one robust estimator of the gaussian mean. The

291

Annals of Statistics, 2022.

Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit
feedback. 2008.

Abhimanyu Das and David Kempe. Submodular meets spectral: Greedy algorithms for subset
selection, sparse approximation and dictionary selection. arXiv preprint arXiv:1102.3975, 2011.

Constantinos Daskalakis and Ioannis Panageas. The limit points of (optimistic) gradient descent in
min-max optimization. Advances in Neural Information Processing Systems, 31, 2018.

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training gans with
optimism. arXiv preprint arXiv:1711.00141, 2017a.

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training gans with
optimism. arXiv preprint arXiv:1711.00141, 2017b.

Jelena Diakonikolas, Constantinos Daskalakis, and Michael Jordan. Efficient methods for structured
nonconvex-nonconcave min-max optimization. In International Conference on Artificial Intelligence
and Statistics, pages 2746–2754. PMLR, 2021.

Josip Djolonga, Sebastian Tschiatschek, and Andreas Krause. Variational inference in mixed
probabilistic submodular models. In Advances in Neural Information Processing Systems, pages
1759–1767, 2016.

Thinh T Doan. Finite-time analysis of markov gradient descent. IEEE Transactions on Automatic
Control, 2022.

Thinh T Doan, Carolyn L Beck, and R Srikant. On the convergence rate of distributed gradient
methods for finite-sum optimization under communication delays. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 1(2):1–27, 2017.

Bin Du, Kun Qian, Christian Claudel, and Dengfeng Sun. Jacobi-style iteration for distributed
submodular maximization. arXiv preprint arXiv:2010.14082, 2020.

Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl$ˆ2$:
Fast reinforcement learning via slow reinforcement learning. CoRR, abs/1611.02779, 2016.

Abhimanyu Dubey and Alex Pentland. Private and byzantine-proof cooperative decision-making. In
AAMAS, pages 357–365, 2020a.

Abhimanyu Dubey and Alex Pentland. Differentially-private federated linear bandits. arXiv preprint
arXiv:2010.11425, 2020b.

Abhimanyu Dubey et al. Kernel methods for cooperative multi-agent contextual bandits. In

292

International Conference on Machine Learning, pages 2740–2750. PMLR, 2020.

John C Duchi, Sorathan Chaturapruek, and Christopher Ré. Asynchronous stochastic convex
optimization. arXiv preprint arXiv:1508.00882, 2015.

Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

Sayna Ebrahimi, William Gan, Dian Chen, Giscard Biamby, Kamyar Salahi, Michael Laielli, Shizhan
Zhu, and Trevor Darrell. Minimax active learning. arXiv preprint arXiv:2012.10467, 2020.

Khalid El-Arini, Gaurav Veda, Dafna Shahaf, and Carlos Guestrin. Turning down the noise in the
blogosphere. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 289–298, 2009.

Mathieu Even. Stochastic gradient descent under markovian sampling schemes. arXiv preprint
arXiv:2302.14428, 2023.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of gradient-based
model-agnostic meta-learning algorithms. In International Conference on Artificial Intelligence
and Statistics, pages 1082–1092, 2020a.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Provably convergent policy gradient methods
for model-agnostic meta-reinforcement learning. arXiv preprint arXiv:2002.05135, 2020b.

Alireza Fallah, Asuman Ozdaglar, and Sarath Pattathil. An optimal multistage stochastic gradient
method for minimax problems. In Proc. of the 59th IEEE Conference on Decision and Control,
pages 3573–3579, 2020c.

Farzan Farnia and David Tse. A minimax approach to supervised learning. In Proceedings of the
30th International Conference on Neural Information Processing Systems, pages 4240–4248, 2016.

Moran Feldman, Joseph Naor, and Roy Schwartz. A unified continuous greedy algorithm for
submodular maximization. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pages 570–579. IEEE, 2011.

Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. A delayed proximal gradient
method with linear convergence rate. In 2014 IEEE international workshop on machine learning
for signal processing (MLSP), pages 1–6. IEEE, 2014.

Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-batch
algorithm for regularized stochastic optimization. IEEE Transactions on Automatic Control, 61
(12):3740–3754, 2016.

Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The
generalized linear case. In NIPS, volume 23, pages 586–594, 2010.

293

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 1126–1135. JMLR. org, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In Advances
in Neural Information Processing Systems, pages 9516–9527, 2018.

Victor Gabillon, Branislav Kveton, Zheng Wen, Brian Eriksson, and Shanmugavelayutham Muthukr-
ishnan. Adaptive submodular maximization in bandit setting. In Advances in Neural Information
Processing Systems, pages 2697–2705, 2013.

Evrard Garcelon, Baptiste Roziere, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud, Alessandro
Lazaric, and Matteo Pirotta. Adversarial attacks on linear contextual bandits. arXiv preprint
arXiv:2002.03839, 2020.

Bahman Gharesifard and Stephen L Smith. Distributed submodular maximization with limited
information. IEEE transactions on control of network systems, 5(4):1635–1645, 2017.

Avishek Ghosh, Justin Hong, Dong Yin, and Kannan Ramchandran. Robust federated learning in a
heterogeneous environment. arXiv preprint arXiv:1906.06629, 2019.

Avishek Ghosh, Raj Kumar Maity, Swanand Kadhe, Arya Mazumdar, and Kannan Ramachandran.
Communication efficient and Byzantine tolerant distributed learning. In 2020 IEEE International
Symposium on Information Theory (ISIT), pages 2545–2550. IEEE, 2020a.

Avishek Ghosh, Raj Kumar Maity, and Arya Mazumdar. Distributed newton can communicate less
and resist Byzantine workers. arXiv preprint arXiv:2006.08737, 2020b.

Avishek Ghosh, Abishek Sankararaman, and Kannan Ramchandran. Collaborative learning and
personalization in multi-agent stochastic linear bandits. arXiv preprint arXiv:2106.08902, 2021.

Antonio Ginart, Melody Y Guan, Gregory Valiant, and James Zou. Making ai forget you: Data
deletion in machine learning. arXiv preprint arXiv:1907.05012, 2019.

Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active
learning and stochastic optimization. Journal of Artificial Intelligence Research, 42:427–486, 2011.

Daniel Golovin, Andreas Krause, and Matthew Streeter. Online submodular maximization under
a matroid constraint with application to learning assignments. arXiv preprint arXiv:1407.1082,
2014.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014a.

294

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Comm. of the ACM, 63
(11):139–144, 2020.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. arXiv preprint
arXiv:1406.2661, 2014b.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas L. Griffiths. Recasting
gradient-based meta-learning as hierarchical bayes. In 6th International Conference on Learning
Representations, ICLR, 2018.

David Grimsman, Mohd Shabbir Ali, Joao P Hespanha, and Jason R Marden. The impact of
information in greedy submodular maximization. IEEE Transactions on Control of Network
Systems, 2018.

Anupam Gupta, Tomer Koren, and Kunal Talwar. Better algorithms for stochastic bandits with
adversarial corruptions. In Conference on Learning Theory, pages 1562–1578. PMLR, 2019.

Nirupam Gupta, Thinh T Doan, and Nitin H Vaidya. Byzantine fault-tolerance in decentralized
optimization under 2f-redundancy. In 2021 American Control Conference (ACC), pages 3632–3637.
IEEE, 2021.

Mert Gurbuzbalaban, Asuman Ozdaglar, and Pablo A Parrilo. On the convergence rate of incremental
aggregated gradient algorithms. SIAM Journal on Optimization, 27(2):1035–1048, 2017.

Erfan Yazdandoost Hamedani and Necdet Serhat Aybat. A primal-dual algorithm for general
convex-concave saddle point problems. arXiv preprint arXiv:1803.01401, 2, 2018.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

Hamed Hassani, Mahdi Soltanolkotabi, and Amin Karbasi. Gradient methods for submodular
maximization. arXiv preprint arXiv:1708.03949, 2017.

Hamed Hassani, Amin Karbasi, Aryan Mokhtari, and Zebang Shen. Stochastic continuous greedy++:
When upper and lower bounds match. In Advances in Neural Information Processing Systems,
pages 13087–13097, 2019.

Martin Hast, Karl Johan Åström, Bo Bernhardsson, and Stephen Boyd. Pid design by convex-concave
optimization. In 2013 European Control Conference (ECC), pages 4460–4465. IEEE, 2013.

Jiafan He, Dongruo Zhou, Tong Zhang, and Quanquan Gu. Nearly optimal algorithms for linear
contextual bandits with adversarial corruptions. arXiv preprint arXiv:2205.06811, 2022.

295

Yusuo Hu, Hua Chen, Jian-guang Lou, and Jiang Li. Distributed density estimation using non-
parametric statistics. In 27th International Conference on Distributed Computing Systems
(ICDCS’07), pages 28–28. IEEE, 2007.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics, pages
492–518. Springer, 1992.

Peter J Huber. Robust statistics, volume 523. John Wiley & Sons, 2004.

Adam Ibrahim, Waıss Azizian, Gauthier Gidel, and Ioannis Mitliagkas. Linear lower bounds and
conditioning of differentiable games. In International Conference on Machine Learning, pages
4583–4593. PMLR, 2020.

Rishabh Iyer. A unified framework of constrained robust submodular optimization with applications,
2021.

Stefanie Jegelka and Jeff A Bilmes. Online submodular minimization for combinatorial structures.
In ICML, pages 345–352. Citeseer, 2011.

Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in nonconvex-nonconcave
minimax optimization? In International Conference on Machine Learning, pages 4880–4889.
PMLR, 2020.

Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Xiaojin Zhu. Adversarial attacks on stochastic bandits.
arXiv preprint arXiv:1810.12188, 2018.

Dileep Kalathil, Naumaan Nayyar, and Rahul Jain. Decentralized learning for multiplayer multiarmed
bandits. IEEE Transactions on Information Theory, 60(4):2331–2345, 2014.

Sayash Kapoor, Kumar Kshitij Patel, and Purushottam Kar. Corruption-tolerant bandit learning.
Machine Learning, 108(4):687–715, 2019.

Soummya Kar, H Vincent Poor, and Shuguang Cui. Bandit problems in networks: Asymptotically
efficient distributed allocation rules. In 2011 50th IEEE Conference on Decision and Control and
European Control Conference, pages 1771–1778. IEEE, 2011.

Mohammad Karimi, Mario Lucic, Hamed Hassani, and Andreas Krause. Stochastic submodular
maximization: The case of coverage functions. In Advances in Neural Information Processing
Systems, pages 6853–6863, 2017.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for byzantine robust
optimization. In International Conference on Machine Learning, pages 5311–5319. PMLR, 2021.

Ehsan Kazemi, Morteza Zadimoghaddam, and Amin Karbasi. Scalable deletion-robust submodular
maximization: Data summarization with privacy and fairness constraints. In International

296

conference on machine learning, pages 2544–2553. PMLR, 2018.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a
social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 137–146, 2003.

Katrin Kirchhoff and Jeff Bilmes. Submodularity for data selection in machine translation. In Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 131–141, 2014.

Ravi Kumar Kolla, Krishna Jagannathan, and Aditya Gopalan. Collaborative learning of stochastic
bandits over a social network. IEEE/ACM Transactions on Networking, 26(4):1782–1795, 2018.

Anastasiia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees for
asynchronous sgd for distributed and federated learning. Advances in Neural Information Processing
Systems, 35:17202–17215, 2022a.

Anastasiia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees for
asynchronous sgd for distributed and federated learning. Advances in Neural Information Processing
Systems, 35:17202–17215, 2022b.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

Galina M Korpelevich. The extragradient method for finding saddle points and other problems.
Matecon, 12:747–756, 1976a.

Galina M Korpelevich. The extragradient method for finding saddle points and other problems.
Matecon, 12:747–756, 1976b.

Andreas Krause and Daniel Golovin. Submodular function maximization. Tractability, 3:71–104,
2014.

Andreas Krause, H Brendan McMahan, Carlos Guestrin, and Anupam Gupta. Robust submodular
observation selection. Journal of Machine Learning Research, 9(12), 2008a.

Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements in gaussian
processes: Theory, efficient algorithms and empirical studies. Journal of Machine Learning
Research, 9(Feb):235–284, 2008b.

Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy algorithms in
mapreduce and streaming. ACM Transactions on Parallel Computing (TOPC), 2(3):1–22, 2015.

Kananart Kuwaranancharoen, Lei Xin, and Shreyas Sundaram. Byzantine-resilient distributed

297

optimization of multi-dimensional functions. In 2020 American Control Conference (ACC), pages
4399–4404. IEEE, 2020.

Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, and Shie Mannor. Coordinated at-
tacks against contextual bandits: Fundamental limits and defense mechanisms. arXiv preprint
arXiv:2201.12700, 2022.

Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of mean and covariance. In
2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages 665–674.
IEEE, 2016.

Anusha Lalitha and Andrea Goldsmith. Bayesian algorithms for decentralized stochastic bandits.
arXiv preprint arXiv:2010.10569, 2020.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. In Concur-
rency: the Works of Leslie Lamport, pages 203–226. 2019.

Gert RG Lanckriet, Laurent El Ghaoui, Chiranjib Bhattacharyya, and Michael I Jordan. A robust
minimax approach to classification. Journal of Machine Learning Research, 3(Dec):555–582, 2002.

Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard. Distributed cooperative decision-
making in multiarmed bandits: Frequentist and bayesian algorithms. In 2016 IEEE 55th Conference
on Decision and Control (CDC), pages 167–172. IEEE, 2016.

Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard. Distributed cooperative decision
making in multi-agent multi-armed bandits. Automatica, 125:109445, 2021.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Qi Lei, Lingfei Wu, Pin-Yu Chen, Alexandros G Dimakis, Inderjit S Dhillon, and Michael Witbrock.
Discrete adversarial attacks and submodular optimization with applications to text classification.
arXiv preprint arXiv:1812.00151, 2018.

Huan Li and Zhouchen Lin. Accelerated proximal gradient methods for nonconvex programming.
Advances in neural information processing systems, 28:379–387, 2015.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference on
World wide web, pages 661–670, 2010.

Lihong Li, Yu Lu, and Dengyong Zhou. Provably optimal algorithms for generalized linear contextual
bandits. In International Conference on Machine Learning, pages 2071–2080. PMLR, 2017.

Liping Li, Wei Xu, Tianyi Chen, Georgios B Giannakis, and Qing Ling. Rsa: Byzantine-robust
stochastic aggregation methods for distributed learning from heterogeneous datasets. In Proceedings

298

of the AAAI Conference on Artificial Intelligence, volume 33, pages 1544–1551, 2019a.

Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust multi-agent
reinforcement learning via minimax deep deterministic policy gradient. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 4213–4220, 2019b.

Tengyuan Liang and James Stokes. Interaction matters: A note on non-asymptotic local convergence
of generative adversarial networks. In AISTATS, pages 907–915. PMLR, 2019.

Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies-Volume 1, pages 510–520. Association for Computational Linguistics, 2011.

Hui Lin and Jeff A Bilmes. Learning mixtures of submodular shells with application to document
summarization. arXiv preprint arXiv:1210.4871, 2012.

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave minimax
problems. In International Conference on Machine Learning, pages 6083–6093. PMLR, 2020a.

Tianyi Lin, Chi Jin, and Michael I Jordan. Near-optimal algorithms for minimax optimization. In
Conference on Learning Theory, pages 2738–2779. PMLR, 2020b.

Tianyi Lin, Chi Jin, and Michael I Jordan. Near-optimal algorithms for minimax optimization. In
Conference on Learning Theory, pages 2738–2779. PMLR, 2020c.

Fang Liu and Ness Shroff. Data poisoning attacks on stochastic bandits. In International Conference
on Machine Learning, pages 4042–4050. PMLR, 2019.

Keqin Liu and Qing Zhao. Distributed learning in multi-armed bandit with multiple players. IEEE
Transactions on Signal Processing, 58(11):5667–5681, 2010.

Gabor Lugosi and Shahar Mendelson. Robust multivariate mean estimation: the optimality of
trimmed mean. The Annals of Statistics, 49(1):393–410, 2021.

Thodoris Lykouris, Vahab Mirrokni, and Renato Paes Leme. Stochastic bandits robust to adversarial
corruptions. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 114–122, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017a.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017b.

299

David Martínez-Rubio, Varun Kanade, and Patrick Rebeschini. Decentralized cooperative stochastic
bandits. arXiv preprint arXiv:1810.04468, 2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelligence
and Statistics, pages 1273–1282. PMLR, 2017.

Stanislav Minsker. Uniform bounds for robust mean estimators. arXiv preprint arXiv:1812.03523,
2018.

Vahab Mirrokni and Morteza Zadimoghaddam. Randomized composable core-sets for distributed
submodular maximization. In Proceedings of the forty-seventh annual ACM symposium on Theory
of computing, pages 153–162, 2015.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed submodular
maximization: Identifying representative elements in massive data. In NIPS, pages 2049–2057,
2013.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas
Krause. Lazier than lazy greedy. In Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed submodular
maximization. The Journal of Machine Learning Research, 17(1):8330–8373, 2016a.

Baharan Mirzasoleiman, Morteza Zadimoghaddam, and Amin Karbasi. Fast distributed submodular
cover: Public-private data summarization. In Advances in Neural Information Processing Systems,
pages 3594–3602, 2016b.

Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. Deletion-robust submodular maxi-
mization: Data summarization with “the right to be forgotten”. In International Conference on
Machine Learning, pages 2449–2458. PMLR, 2017.

Baharan Mirzasoleiman, Kaidi Cao, and Jure Leskovec. Coresets for robust training of neural
networks against noisy labels. arXiv preprint arXiv:2011.07451, 2020.

Aritra Mitra, Hamed Hassani, and George Pappas. Exploiting heterogeneity in robust federated
best-arm identification. arXiv preprint arXiv:2109.05700, 2021a.

Siddharth Mitra, Moran Feldman, and Amin Karbasi. Submodular+ concave. Advances in Neural
Information Processing Systems, 34, 2021b.

Marko Mitrovic, Ehsan Kazemi, Morteza Zadimoghaddam, and Amin Karbasi. Data summarization
at scale: A two-stage submodular approach. arXiv preprint arXiv:1806.02815, 2018.

300

Slobodan Mitrović, Ilija Bogunovic, Ashkan Norouzi-Fard, Jakub Tarnawski, and Volkan Cevher.
Streaming robust submodular maximization: A partitioned thresholding approach. arXiv preprint
arXiv:1711.02598, 2017.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pages 1928–1937. PMLR, 2016.

Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Decentralized submodular maximization:
Bridging discrete and continuous settings. arXiv preprint arXiv:1802.03825, 2018.

Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Stochastic conditional gradient methods:
From convex minimization to submodular maximization. Journal of Machine Learning Research,
21(105):1–49, 2020a.

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient and
optimistic gradient methods for saddle point problems: Proximal point approach. In International
Conference on Artificial Intelligence and Statistics, pages 1497–1507. PMLR, 2020b.

Aryan Mokhtari, Asuman E Ozdaglar, and Sarath Pattathil. Convergence rate of o(1/k) for optimistic
gradient and extragradient methods in smooth convex-concave saddle point problems. SIAM
Journal on Optimization, 30(4):3230–3251, 2020c.

Aryan Mokhtari, Asuman E Ozdaglar, and Sarath Pattathil. Convergence rate of o(1/k) for optimistic
gradient and extragradient methods in smooth convex-concave saddle point problems. SIAM
Journal on Optimization, 30(4):3230–3251, 2020d.

Katta G Murty and Santosh N Kabadi. Some np-complete problems in quadratic and nonlinear
programming. Technical report, 1985.

Dheeraj Nagaraj, Xian Wu, Guy Bresler, Prateek Jain, and Praneeth Netrapalli. Least squares re-
gression with markovian data: Fundamental limits and algorithms. Advances in neural information
processing systems, 33:16666–16676, 2020.

Angelia Nedić and Asuman Ozdaglar. Subgradient methods for saddle-point problems. Journal of
optimization theory and applications, 142(1):205–228, 2009.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods
for machine unlearning. arXiv preprint arXiv:2007.02923, 2020.

George L Nemhauser and Laurence A Wolsey. Best algorithms for approximating the maximum of a
submodular set function. Mathematics of operations research, 3(3):177–188, 1978.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical programming, 14(1):265–294, 1978.

301

Arkadi Nemirovski. Prox-method with rate of convergence o (1/t) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM
Journal on Optimization, 15(1):229–251, 2004a.

Arkadi Nemirovski. Prox-method with rate of convergence o (1/t) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM
Journal on Optimization, 15(1):229–251, 2004b.

Yurii Nesterov. Dual extrapolation and its applications to solving variational inequalities and related
problems. Mathematical Programming, 109(2):319–344, 2007.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and
Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In International
Conference on Artificial Intelligence and Statistics, pages 3581–3607. PMLR, 2022.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn. Solv-
ing a class of non-convex min-max games using iterative first order methods. arXiv preprint
arXiv:1902.08297, 2019.

Naoto Ohsaka and Yuichi Yoshida. Monotone k-submodular function maximization with size
constraints. In Advances in Neural Information Processing Systems, pages 694–702, 2015.

James B Orlin, Andreas S Schulz, and Rajan Udwani. Robust monotone submodular function
maximization. Mathematical Programming, 172(1):505–537, 2018.

Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT press, 1994.

Yuyuan Ouyang and Yangyang Xu. Lower complexity bounds of first-order methods for convex-
concave bilinear saddle-point problems. Mathematical Programming, pages 1–35, 2019.

Ciara Pike-Burke, Shipra Agrawal, Csaba Szepesvari, and Steffen Grunewalder. Bandits with
delayed, aggregated anonymous feedback. In International Conference on Machine Learning, pages
4105–4113. PMLR, 2018.

Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated learning.
IEEE Transactions on Signal Processing, 2022.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
gradients. In Advances in Neural Information Processing Systems, pages 113–124, 2019.

Nikhil Ravi, Anna Scaglione, and Angelia Nedić. A case of distributed optimization in adversarial
environment. In ICASSP, pages 5252–5256, 2019.

302

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In 5th International
Conference on Learning Representations, ICLR, 2017.

Amirhossein Reisizadeh, Farzan Farnia, Ramtin Pedarsani, and Ali Jadbabaie. Robust federated
learning: The case of affine distribution shifts. Advances in Neural Information Proc. Systems, 33:
21554–21565, 2020.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951.

Omid Sadeghi and Maryam Fazel. Online continuous dr-submodular maximization with long-term
budget constraints. In International Conference on Artificial Intelligence and Statistics, pages
4410–4419. PMLR, 2020.

Shinsaku Sakaue. Differentiable greedy algorithm for monotone submodular maximization: Guaran-
tees, gradient estimators, and applications. In International Conference on Artificial Intelligence
and Statistics, pages 28–36. PMLR, 2021.

Maziar Sanjabi, Meisam Razaviyayn, and Jason D Lee. Solving non-convex non-concave min-max
games under polyak-lojasiewicz condition. arXiv preprint arXiv:1812.02878, 2018.

Abishek Sankararaman, Ayalvadi Ganesh, and Sanjay Shakkottai. Social learning in multi agent multi
armed bandits. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 3
(3):1–35, 2019.

Brent Schlotfeldt, Dinesh Thakur, Nikolay Atanasov, Vijay Kumar, and George J Pappas. Anytime
planning for decentralized multirobot active information gathering. IEEE Robotics and Automation
Letters, 3(2):1025–1032, 2018.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

Shahin Shahrampour, Alexander Rakhlin, and Ali Jadbabaie. Multi-armed bandits in multi-agent
networks. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2786–2790. IEEE, 2017.

Chengshuai Shi, Cong Shen, and Jing Yang. Federated multi-armed bandits with personalization. In
International Conference on Artificial Intelligence and Statistics, pages 2917–2925. PMLR, 2021.

Amarjeet Singh, Andreas Krause, Carlos Guestrin, and William J Kaiser. Efficient informative
sensing using multiple robots. Journal of Artificial Intelligence Research, 34:707–755, 2009.

303

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in neural information processing systems, pages 4077–4087, 2017.

Xingyou Song, Wenbo Gao, Yuxiang Yang, Krzysztof Choromanski, Aldo Pacchiano, and Yunhao
Tang. ES-MAML: simple Hessian-free meta learning. In 8th International Conference on Learning
Representations, ICLR, 2020.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
arXiv preprint arXiv:2101.10382, 2021.

Rayadurgam Srikant and Lei Ying. Finite-time error bounds for linear stochastic approximation and
TD learning. In Conference on Learning Theory, pages 2803–2830. PMLR, 2019.

Matthew Staib, Bryan Wilder, and Stefanie Jegelka. Distributionally robust submodular maximiza-
tion. In The 22nd International Conference on Artificial Intelligence and Statistics, pages 506–516.
PMLR, 2019.

Serban Stan, Morteza Zadimoghaddam, Andreas Krause, and Amin Karbasi. Probabilistic sub-
modular maximization in sub-linear time. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pages 3241–3250. PMLR, 06–11 Aug 2017a. URL
http://proceedings.mlr.press/v70/stan17a.html.

Serban Stan, Morteza Zadimoghaddam, Andreas Krause, and Amin Karbasi. Probabilistic submod-
ular maximization in sub-linear time. In International Conference on Machine Learning, pages
3241–3250. PMLR, 2017b.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for
sgd with delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350,
2019.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for
sgd with delayed gradients and compressed updates. The Journal of Machine Learning Research,
21(1):9613–9648, 2020.

Matthew Streeter and Daniel Golovin. An online algorithm for maximizing submodular functions.
In Advances in Neural Information Processing Systems, pages 1577–1584, 2009.

Lili Su and Nitin H Vaidya. Fault-tolerant multi-agent optimization: optimal iterative distributed
algorithms. In Proc. of the 2016 ACM symposium on principles of distributed computing, pages
425–434, 2016.

Lili Su and Nitin H Vaidya. Byzantine-resilient multiagent optimization. IEEE Transactions on
Automatic Control, 66(5):2227–2233, 2020.

304

http://proceedings.mlr.press/v70/stan17a.html

Shreyas Sundaram and Bahman Gharesifard. Distributed optimization under adversarial nodes.
IEEE Transactions on Automatic Control, 64(3):1063–1076, 2018.

Kiran Koshy Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong Oh. Efficient
algorithms for smooth minimax optimization. arXiv preprint arXiv:1907.01543, 2019.

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012.

Tobias Sommer Thune, Nicolò Cesa-Bianchi, and Yevgeny Seldin. Nonstochastic multiarmed bandits
with unrestricted delays. Advances in Neural Information Processing Systems, 32, 2019.

Michael J Todd. Minimum-volume ellipsoids: Theory and algorithms. SIAM, 2016.

Sebastian Tschiatschek, Aytunc Sahin, and Andreas Krause. Differentiable submodular maximization.
arXiv preprint arXiv:1803.01785, 2018.

Paul Tseng. On linear convergence of iterative methods for the variational inequality problem.
Journal of Computational and Applied Mathematics, 60(1-2):237–252, 1995.

JN Tsitsiklis and B Vanroy. An analysis of temporal-difference learning with function approximation.
IEEE Transactions on Automatic Control, 42(5):674–690, 1997.

UberDataset. Uber pickups in new york city. https://www.kaggle.com/fivethirtyeight/
uber-pickups-in-new-york-city.

Claire Vernade, Alexandra Carpentier, Tor Lattimore, Giovanni Zappella, Beyza Ermis, and Michael
Brueckner. Linear bandits with stochastic delayed feedback. In International Conference on
Machine Learning, pages 9712–9721. PMLR, 2020.

Daniel Vial, Sanjay Shakkottai, and R Srikant. Robust multi-agent multi-armed bandits. In
Proceedings of the Twenty-second International Symposium on Theory, Algorithmic Foundations,
and Protocol Design for Mobile Networks and Mobile Computing, pages 161–170, 2021.

Daniel Vial, Sanjay Shakkottai, and R Srikant. Robust multi-agent bandits over undirected graphs.
arXiv preprint arXiv:2203.00076, 2022.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
intelligence review, 18(2):77–95, 2002.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in neural information processing systems, pages 3630–3638, 2016.

John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior. Princeton
university press, 2007.

305

https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city
https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city

Jan Vondrák. Submodularity in combinatorial optimization. 2007.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

Yaqing Wang and Quanming Yao. Few-shot learning: A survey. arXiv preprint arXiv:1904.05046,
2019.

Yuanhao Wang, Jiachen Hu, Xiaoyu Chen, and Liwei Wang. Distributed bandit learning: Near-
optimal regret with efficient communication. arXiv preprint arXiv:1904.06309, 2019.

Kai Wei, Yuzong Liu, Katrin Kirchhoff, and Jeff Bilmes. Using document summarization techniques
for speech data subset selection. In Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
721–726, 2013.

Bryan Wilder. Equilibrium computation and robust optimization in zero sum games with submodular
structure. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 1658–1665, 2019.

Laurence A Wolsey. An analysis of the greedy algorithm for the submodular set covering problem.
Combinatorica, 2(4):385–393, 1982.

Yinjun Wu, Edgar Dobriban, and Susan Davidson. Deltagrad: Rapid retraining of machine learning
models. In International Conference on Machine Learning, pages 10355–10366. PMLR, 2020.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized byzantine-tolerant sgd. arXiv
preprint arXiv:1802.10116, 2018.

Jiahao Xie, Chao Zhang, Zebang Shen, Chao Mi, and Hui Qian. Decentralized gradient tracking
for continuous dr-submodular maximization. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 2897–2906, 2019.

Junchi Yang, Negar Kiyavash, and Niao He. Global convergence and variance-reduced optimization
for a class of nonconvex-nonconcave minimax problems. arXiv preprint arXiv:2002.09621, 2020.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In International Conference on Machine Learning,
pages 5650–5659. PMLR, 2018.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.

306

Bayesian model-agnostic meta-learning. In Advances in Neural Information Processing Systems,
pages 7332–7342, 2018.

Yisong Yue and Carlos Guestrin. Linear submodular bandits and their application to diversified
retrieval. In Advances in Neural Information Processing Systems, pages 2483–2491, 2011.

Sihan Zeng, Thinh T Doan, and Justin Romberg. Finite-time convergence rates of decentral-
ized stochastic approximation with applications in multi-agent and multi-task learning. IEEE
Transactions on Automatic Control, 2022.

Mingrui Zhang, Lin Chen, Hamed Hassani, and Amin Karbasi. Online continuous submodular
maximization: From full-information to bandit feedback. In Advances in Neural Information
Processing Systems, pages 9210–9221, 2019.

Renbo Zhao. Optimal stochastic algorithms for convex-concave saddle-point problems. arXiv preprint
arXiv:1903.01687, 2019.

Minyi Zhong and Christos G Cassandras. Distributed coverage control and data collection with
mobile sensor networks. IEEE Transactions on Automatic Control, 56(10):2445–2455, 2011.

Zixin Zhong, Wang Chi Cheung, and Vincent Tan. Probabilistic sequential shrinking: A best arm
identification algorithm for stochastic bandits with corruptions. In International Conference on
Machine Learning, pages 12772–12781. PMLR, 2021.

Kemin Zhou and John Comstock Doyle. Essentials of robust control, volume 104. Prentice hall
Upper Saddle River, NJ, 1998.

Lifeng Zhou, Vasileios Tzoumas, George J Pappas, and Pratap Tokekar. Distributed attack-robust
submodular maximization for multi-robot planning. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 2479–2485. IEEE, 2020a.

Tianyi Zhou and Jeff A Bilmes. Minimax curriculum learning: Machine teaching with desirable
difficulties and scheduled diversity. In ICLR (Poster), 2018.

Tianyi Zhou, Shengjie Wang, and Jeff A Bilmes. Curriculum learning by dynamic instance hardness.
Advances in Neural Information Processing Systems, 33, 2020b.

Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Curriculum learning by optimizing learning dynamics.
In International Conference on Artificial Intelligence and Statistics, pages 433–441. PMLR, 2021.

Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Peter Glynn, Yinyu Ye, Li-Jia Li, and
Li Fei-Fei. Distributed asynchronous optimization with unbounded delays: How slow can you go?
In International Conference on Machine Learning, pages 5970–5979. PMLR, 2018.

Zhaowei Zhu, Jingxuan Zhu, Ji Liu, and Yang Liu. Federated bandit: A gossiping approach. In

307

Abstract Proceedings of the 2021 ACM SIGMETRICS/International Conference on Measurement
and Modeling of Computer Systems, pages 3–4, 2021.

308

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Collaborative Linear Bandits with Adversarial Agents
	Distributed Min-Max Learning in the Presence of Byzantine Agents
	Stochastic Approximation under Delays
	Min-Max Optimization under Delays
	Minimax Optimization: The Case of Convex-Submodular
	Submodular Maximization with Distributed Constraints
	Submodular Meta-Learning
	BIBLIOGRAPHY

