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1. Introduction

Let r; denocte the continuously compounded return on the value-weighted portfolio of the
New York Stock Exchange (N YSE) in month ¢, and let d; denote the dividend vield on that
portfolio at the end of month ¢ (the sum of the dividends paid in months ¢ — 11 through ¢
divided by the value of the portfolio at the end of month t). Regressing the return on the
lagged dividend yield, using the 804 returns from January 1927 through December 1993,
produces the results,

e = -0.0008 + 02016 d_;, + ¢ R?* = 0.0024 1
(—0.1262) (1.3832) o(e) = 0.0559, 1)

where t-statistics appear in parentheses. The regression explains only 0.24% of the variance
in monthly stock returns, aud the ¢ statistic for the slope coefficient is only 1.38.! Many
might interpret these results as suggesting that the ability of dividend yields to forecast
monthly stock returns is at best weak, but is such an interpretation of the evidence justified

on economic grounds?

Consider a risk-averse investor with a one-month investment horizon who, on December
31, 1993, must decide how to allocate funds between common stocks and riskless cash. The
dividend yield on that date is equal to 2.71%, which when substituted for de_y into (1),
gives a fitted conditional mean of the continuously compounded stock return equal to 47
basis points. In comparison, because a dividend yield of 2.71% is less than the average yield
of 4.35% for the 1927-93 period, the sample mean of the continuously compounded return
over that period is 79 basis points. To what extent, if any, should the investor making
the asset-allocation decision incorporate this estimated difference of 32 basis points between
the unconditional and conditional means? On ope band, the modest ¢ statistic implies a
substantial probability of observing a slope coefficient greater than the estimate of 0.2 even
if stock returns are completely unpredictable. If returns are unpredictable, then an investor
who uses the estimated 32-basis-point difference in expected monthly returns would probably
tend to under-allocate to stocks. On the other hand, stock returns could be predictable in
precisely the manner estimated, in which case an investor who simply ignores the estimated
32-basis-point difference would probably tend to overallocate to stocks. How should the
investor’s asset-allocation decision depend on the current dividend yield?

We suggest that the answer to the above asset-allocation problem provides an economi-

'Fama and Frenck (1988) present the results of similar regressions and conclude that dividend yields
account for only small fractions (typically less than 5%) of the variance of monthly returns. To our knowledge,
the carliest study that reports a time-series regression of stock returns on dividend yielda is Rozeff (1984).
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cally relevant metric by which to characterize the strength of the regression evidence on the
predictability of stock returns. Qur framework assumes a risk-averse investor with initially
vague beliefs about the distribution of stock returns. The investor uses the above regression
evidence to update those beliefs, and these revised beliefs are then used by the investor
to compute the optimal asset allocation. We find that the asset allocation chosen by the
investor depends importantly on the level of the current dividend yield. For example, an
investor with relative risk aversion equal to 2 would allocate about 60% to stocks with a
current yield of 2.71%, whereas the same investor would allocate nearly 100% to stocks if
the current yield were instead equal to its long-run average of 4.35%.

The importance of dividend yield in the allocation decision also appears to be fairly
robust to two additional considerations. The first consideration, known commonly as “data
mining,” is that the forecasting variable, dividend yield in this case, might simply have been
selected ez post as the best predictor within a larger set of regressors. As argued by Keim
and Stambaugh (1986), given that an asset’s current price is inversely related to the discount
rate applied to expected future cash flows, variables that are inversely related to price levels
are reasonable candidates ez ante as predictors of returns. At high frequencies, dividends are
smooth relative to stock prices, so the dividend yield exhibits a strong inverse association
with the level of equity prices and thereby arises as a plausible predictive variable. Dividend
yield can also be identified as a predictive variable in more formal equilibrium models with
time-varying moments of consumption growth, such as in Kandel and Stambaugh (1991).
Thus, although we select dividend yield in part because it occupies a central role in much of
the recent empirical literature on the predictability of stock returns, we would suggest that
the data-mining critique is not weil placed here. Nevertheless, given that data-mining is often
raised as a concern in discussions of return predictability, some consideration of the issue
seems appropriate.? We construct a data-mining scenario by allowing there to be a given
number of additional regressors, all of which, when included in a multiple regression along
with dividend yield, receive zero estimated slopes in the 1927-93 sample. The investor's prior

beliefs must admit the possibility, however, that all of the variables might predict returns.

The second additional consideration is the assumption made regarding the investor’s prior
beliefs. Rather than assuming that the investor has vague beliefs about the distribution of
stock returns, we also examine cases where the investor possesses informed beliefs about

?Foster and Smith (1994) address the data-mining problem in the context of lesting the point null hy-
pothesis of no predictability using a frequentist approach. They obtain cutoff R? values that are adjusted
to account for data mining, and they conclude that some of the reported magnitudes of R? in models for
predicting monthly stock returns could be achieved with reasonably high probability by searching across a
relatively small number of regressors.



the stock return’s mean and variance, and these informed beliefs are weighted against the
predictability of stock returns. We represent such an “informative no-predictability” prior
as being-equivalent to having observed fifty years of hypothetical data in which stock returns
have the same sample mean and variance as in the actual sample but where the estimated
slope coefficients on all predictive variables are ezactly zero.?

These additional considerations must reduce the importance of dividend yield in the
allocation decision, but a substantial role for that variable can still remain. For exam_gle,
with the informative no-predictabiity prior and with dividend yield having been mined from
a data set containing 100 additional variables, the investor with relative risk aversion of 2
would allocate 70% to stocks at the current yield of 2.71%, but the same investor would
allocate 94% to stocks if the yield were instead equal to its long-run average of 4.35%.
We conclude that, when judged by this economic metric, the sample evidence reveals an
important degree of predictability in monthly stock returns.

The remainder of the paper proceeds as follows. Section 2 presents the methodological
framework in which the investor’s optimal asset allocation is computed. This framework is
then used in section 3 to compute optimal allocations over a range of values for the current
dividend yield. The roles of risk aversion, prior beliefs, sample size, and data mining are
explored, and the value to the investor of entertaining return predictability is investigated
by comparing “certainty-equivalent” rates of return. Section 4 shows that the R? of the
regression in (1) plays the key role in determining the sensitivity of the optimal stock al-
location to the predictive variable, and additional insight into that role is provided in an
infinite-sample setting. Our investigation of return predictability in this study reveals that
statistical significance, as judged by standard frequentist methods, can contrast sharply with
economic signficance. In order to demonstrate that such a result does not hinge on statistical
assumptions specific to our regression framework, we present in section 5 a simple two-state,
two-outcome example that illustrates a similar contrast between economic and statistical

significance. Section 6 concludes the paper and suggests directions for future research.

*In fact, Goetzmann and Jorion (1994) report estimates of the regression in (1) using pre-1927 data Lhat
differ from the post-1827 results. Using Cowles monthly U.S. indexes for NYSE stocks for the pericd from
1872-1926, they obtain obtain an R? of 0.003, a slope of —0.142, and a t-statistic of —1.41. They find,
however, a somewhat stronger relation for the post-1927 period than we report in (1), apparently because
they use returns and dividends for the S&P Composite Index instead of the value-weighted NYSE portfolio.
As a consequence, their overall-period results actually correspend more closely to our post-1927 results: for
the entire 1872-1992 period they report an R? of 0.002, & slope of 0.159, and a ¢ statistic of 1.70.



2. The Allocation Decision
2.1. The Investor’s Objective

Let w denote the fraction of the investor’s portfolio allocated to stocks, where 0 < w < 1.
For an allocation of w in stocks at the end of month T, the investor's wealth at the end of
month T + 1, per $1 invested at time T, is

Wri =wexp{rra} + (1 - w)exp{ir}, (2)

where ir is the continuously compounded riskless rate on cash for month T + 1, observed
at the end of month 7. The investor chooses w s0 as to maximize the expected value of the

utility function
W't for A>0and A #£1
"} = 1~A 1
(W) = { InW for A= 1. @)
That is, if &7 denotes the data set observed by the investor through the end of month T,

then the investor is assumed to solve

max [ (Wrs)p(rria|r)drras, (4)

where p(rr;;|®r) denotes the density of rr4+1 conditional on ®y.

The parameter A in the iso-elastic utility function in (3) is commonly referred to as the
investor’s coeficient of relative risk aversion, and we will follow that conventional terminol-
ogy. When returns are not independently and identically distributed, however, and when
an investor chooses consumption and asset allocations in a dynamic multiperiod setting, the
value of A defined with respect to the investor’s derived utility of wealth can differ dramat;-
cally from that investor’s relative risk aversion defined with respect to utility for consumption
in any single period. Black (1990) presents a continuous-time model in which both the direct
utility of consumption, u(C), and the derived utility of wealth, v(W), are of the same iso-
elastic form, except that the risk aversion parameter in u(C) can be much higher than the
corresponding parameter in v(W). In essence, the investor’s ability to smooth consumption
translates into a greater tolerance for risk when making the asset-allocation decision.* We
will entertain values of 4 from 1 to 20, often concentrating on the lower end of that range,
but the reader should bear in mind that such values can be consistent with higher values for
risk aversion defined with respect to the direct utility of consumption.

‘In a similar vein, Kandel and Stambaugh (1991) demonstrate that, in & multiperiod setting, the “price
of risk” (the ratio of the mean excess stock return to variance of the return), often used to infer values of risk
aversion, can be much lower than the coefficient of relative risk aversion defined with respect to the direct
utility of consumption.



2.2. The Conditional Distribution of the Stock Return

The investor assesses a conditional distribution of the stock return by assuming a likelihood
function with unknown parameters and then updating initially vague beliefs about those
parameters using the data. We model this process using a Bayesian regression model with
diffuse priors. The continuously compounded stock return r, is the dependent variable in
the regression

Ty = I:_lﬁ + ¢, (5)

where the K'-element vector of independent variables is given by zi_y = (1 diey 2,,), 74—
contains N variables that are observed at the end of month ¢ — l,and K = N +2. When
N =0, then d;_, is the only independent variable (other than the constant). The distur-
bances ¢, t = 1,2,...,T, are assumed to be independent mean-zero draws from a normal
distribution with variance o2. Although we assume E{e|zi-1} = 0, the vector z,_, is in
general stochastic, and some elements of ;-1 can be correlated with past disturbances.’
For example, the dividend yield at the end of month ¢ — 1 is likely to be negatively corre-
lated with the unexpected return in that month, ¢_;. Thus, the regression in {5) departs
somewhat from the standard Bayesian regression framework, in which Ty is assumed to be
either nonstochastic or stochastic but distributed independently of the disturbances with a

distribution involving neither 8 nor o,.%

Our approach to modeling the stochastic properties of the regressors is to include them
as dependent variables in a st of N' + 1 additional regression equations. That is, let yi =

(re d; z.), and define the multivariate regression
y: = I;-—IB + u:) (6)

where B is a K x K matrix of regression coefficients whose first column is B, and y, is a
K-vector of disturbances whose first elemnent is €. In other words, the elements of z,_, are
modeled as a first-order vector autoregression (VAR). We assume that the vectors u,, ¢t =
1,...,T, are independent mean-zero draws from a multivariate normal distribution with a
covariance matrix equal to . The T observations for this multivariate regression model are

represented in the matrix notation,

Y=XB+U, ‘ (7)

®See Stambaugh (1986) and Nelson and Kim {1993) for treatments of this problem in a frequentist setting.
®See, for example, page 59 of Zellner (1971).




where

! I ' ’
W Tg U,y
' ’ [
Y2 , T Uy
Y = S, X = . ,and U = A (8)
? 1 1
vr Ira ur

Note that rows 1 through (T — 1) in Y are simply rows 2 through T' in X, excluding the
first column of ones in the latter matrix. Following an approach common to many Bayesian
time-series models, the analysis will proceed conditional on the “pre-sample” observation z,.
The joint probability density function for the elements of U is given by

PUIE) o |17/ expl- el V™), (9

where “tr” denotes the trace operator. The Jacobian of the transformation from U to Y is
equal to unity, so the likelihood function is given by

P(Y|B, %, 20)  |Z|-T/3 exp[—-%tr(}" ~ XB)(Y - XB)E"!]. (10)

In our initial investigation, we assume that the investor's prior beliefs about the unknown

parameters, before observing the data, are “diffuse” and represented as
p(B,E) o |Tjmhe (11)

This prior density is intended to represent vague initial beliefs about the parameters of the
regression model. As will be explained later, we also consider an alternative set of prior
beliefs that are weighted against the predictability of stock returns.

The investor’s data set ®y contains Y and zg. Note that the vector of independent
variables at the end of month T is zf = (1 yr), where y4 is simply the last row of Y. The
distribution of rr4; conditional on the data is known in Bayesian analysis as the “predictive
pdl.” With the prior distribution as in (11) and the likelihood function as in (10), the
predictive pdf for rr, is given by a Student ¢ distribution:

plrraion) = et L ()T B
where ) :
B=(X'X)"'X"y, (13)
h= sl?[l - (XX + zreh) 2], (14)
s = <y - XBY(y - XP), (15)
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v=T-2N-3, . (186)

and y is the first column of ¥'. When N = 0, so that dr is the only variable used in predicting
returns, then (14) can be rewritten as

1 1 (dr — (I)2 ! .
h—;;[l+f(1+T ) (17)
where _
_ 1 T-1
d= 'Tz:dh and (18)
L=
1 T-1 _
t=0 '

Additional details are provided in the Appendix.

The conditional distribution in (12) is used in the maximization in (4), with the integra-
tion from —oo to co. When A > 1, expected utility is equal to —oo when w = 1, although the
optimal w can be very close 1. We simply restrict w < .99 throughout. The maximization
problem, a special case of the Bayesian one-period control problem discussed by Zellner (1971,
pp- 320-327), is solved numerically, since we are unaware of an exact analytic solution.” In
particular, an analytic solution cannot consist of a simple mean-variance-based allocation
formula, because the mean and the variance of the simple rate of return, Rryy = exp{rr4),
do not exist when T is finite.® The first and second conditional moments of the continuously

compounded stock return are given by

E{rr41|®r} = 278 , and (20)

hiv ~2)’ (21)

var{ryy,|®r} =

where we impose v > 2 throughout the analysis.

"The numerical solution is obtained using Brent’s method with parabolic interpolation for the maximiza-
tion and an adaptive recursive Newton-Cotes eight-panel rule to evaluate the integral. See Brent (1973),
Forsythe, Malcolm, and Moler (1977), and Press et. al. (1986).

8This follows from a similar observation about the moment-generating function of the Student ¢ diatri-
bution, as noted in Kendall and Stuart (1977, p. 63). A mean-variance-based solution to the one-period
Bayesian portfolio problem with i.i.d. returns is obtained by Bawa, Brown, and Klein (1979). Their assump-
tions imply a Student ¢ predictive distribution for the simple rate of return (permitting infinitely negative
wealth), and they obtain a mean-variance solution to the expected-utility maximization by appraximating
that distribution as being Normal. A number of studies have investigated the use of Bayesian estimation
techniques in asset allocation where a mean-variance optimization is specified & priori rather than derived as
the outcome of maximizing expected utility under a Bayesian predictive distribution. A partial list of such
studies includes Jobson, Korkie, and Ratti (1979), Jobson and Korkie (1980), Jorion (1985, 1986, 1981),
and Frost and Savarino (1986). Another approach is explored by Grauer and Hakansson (1992), who max-
imize expected utility using a historical series of returns as the possible outcomes in a discrete predictive
distribution, where each historical outcome is mean-adjusted using a Bayesian estimator of expected returns,
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2.3. Data Mining

The regression presented in (1) has only one independent variable, d;_;. Suppose it were the
case, however, that this choice is made by observing that, if dividend yield is included along
with the N additional independent variables in z,_,, then only the ordinary-least-squares
coeflicient on d;_; is nonzero. Such a scenario offers a version of “data mining,” in which
di-1 is presented as the independent variable in the simple regression model only because
none of the other NV variables receive non-zero coefficients in the multiple regression.

Even when the sample slope coefficients on the N additional variables in z,_, are zero,
the conditional distribution of rr4; is different from that obtained when N = 0, where
the additional variables are excluded e priori. The conditional mean of r741 is unaffected,
but, from (16}, increasing N reduces the degrees of freedom parameter v, which, given
(21), increases the conditional variance of rry;. Moreover, the value of h in (14) is made
smaller by the inclusion of the additional variables, which, again using {21), also increases

the conditional variance of rr,;.

We can analyze the effect of the additional variables on the quantity A in the following

manner. Define

>
== Zy, a.nd (22)
T =0
. 1 T-1
L, == Z(z, - zZ)(ze - 2). (23)
T =0
Assume also that, in the sample, the V additional variables are uncorrelated with dividend
yield, i.e.,
1 T-1 _
= (- )d - d) =0, (24)
t=0
Then, as shown in the Appendix, £ in (14) can be rewritten as
1 1 (dT - d_)z s\s=1 = -
h:s—zl-{-vf l+T+(ZT“z)2, (zr — %) , (25)

which is decreasing in the quantity,
¢ =(zr—2)E 27 - 7). . (26)

Providing reasonable hypothetical values for the sample quantity g is difficult in general,

but a simple distributional result obtaius for a special case. If zg, z1,.. ., zr are independent



draws from a multivariate normal distribution, then®

r-N .
mq is distributed as Fyr._n. (27)

Although successive realizations of z, are likely to be carrelated in general, with nonzero
coefficients appearing for those variables in the VAR defined within (6), we use (27) in later
computations designed to gauge, at least roughly, the potential impact of data mining on the
asset-allocation decision. The value of ¢ is set using the 99th percentile of the F distribution
in (27). This extreme value is chosen as a partial attempt to recognize that typical values
of q are likely to be larger if the elements of z, exhibit positive serial dependence.

2.4. Prior Beliefs Weighted Against Predictability

With the diffuse prior in (11}, the density for the regression coeflicients is uniform over the
real line. We also examine the asset-allocation decision using a prior density that assigns
greater probability to regression slope coefficients in the neighborhood of zero. We construct
this “informative no-predictability” prior by first combining the diffuse prior in (11) with &
hypothetical sample of size Ty in which the sample regression coefficients on dividend yield
and the &V additional predictive variables are exactly zero. The posterior distribution for the
regression parameters B and T obtained from that hypothetical sample is then used as the
prior in computing the predictive distribution for rr4, based on the actual sample of size T.
This predictive distribution must, by basic principles of Bayesian analysis, be the same as
that obtained when the diffuse prior is combined with one sample of size T* = Ty + T that
simply combines the hypothetical and actual samples.

We assume for simplicity that, if Xy denotes the Ty x K matrix containing the observations
of z; in the hypothetical sample, then

X! X, = g‘lx'x, (28)

and we also assume that the sample means and variances of r, are the same in the actual

and hypothetical samples. Define

1 & .
F = T ;rh (29)
T
& = %Z(r, ~ )2, (30)

t=t

%See, for example, chapters 3 and 7 of Anderson (1984).



,303[5 0 ... O}" (31)

t

5= (22) bo+ (22) (32)

= 2 [Tt - XD - X0+ () G- prxx(- ),
he = sLI (l -z [(l + ’%) X'X + J:T::fr] B :cy) , and "(34)

v =T —2N -3, (35)

The predictive distribution of rry, is of the same Student-t form as in (12):

Plv" +1)/2) b ]“"’“’”

o 1/2
p(rr+1|®1) = /2T /2 ('iz—') [1 + —(rr1 = 276°)° (36)

When N = 0, or under the data-mining scenario described previously (where the last NV
elements of 3 equal zero}, equations (33) and {34) can be simplified as

1 - N ToTH -
1= o (Bt - XBY - XB) + () Basd (37)
and p 02 7 -1
1 1 - - -
h‘=372[1+F(l+(—T&3—)—+(ZT—f)E.1(Zr—z))] L ()

where ,Bm is the second element of 4. The value of ¢ in (26) is constructed using the 99th
percentile of the F distribution in (27), except that T replaces 7.

3. Asset-Allocation Results

In this section we use the regression estimates reported in (1) to compute the optimal allo-
cation in stocks, w, conditional on different hypothetical values of the most recent dividend
yield, dy. The objective is to explore the economic significance of stock-return predictability
by analyzing the sensitivity of w to this single predictive variable. We first present results
based on the diffuse prior in (11), and then we present results based on a no-predictabiity
informative prior with a 50-year hypothetical prior sample.

3.1. Allocations Based on a Diffuse Prior

Figure 1 presents optimal allocations based on returns and dividends for the 804-month

period from 1927-93. The riskless rate iy is held constant at 0.235%, the continuously
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compounded monthly yield on the Treasury Bill with 27 days to maturity as of 12/31/93,1
In computing these results we set N = 0, so there is no allowance for additional independent
variables. The figure displays, for five values of relative risk aversion (A), the optimal
allocation in stocks as a function of current dividend yield. The range for the dividend yield
is centered at the average yield for the sample, 4.35%, and extends two sample standard
deviations (2 x 1.36%) above and below that value. For logarithmic utility (4 = 1), the
optimal stock allocation is only 0.35 at the lowest dividend yield of 1.6%, but the optimal
allocation rises to 1.0 for yields of about 3% or greater. For an investor with A = 2, the
optimal allocation in stocks begins at only 0.18 for the lowest yield but rises to an allocation
of essentially all-stocks at yields of about 4% or greater.!! At higher levels of risk aversion
(A =35, 10, and 20}, the optimal stock allocation remains less than 1.0 for the range of yields
considered, but the differences in w across the range of yields are substantial. Even when
A = 20, for example, the allocation to stocks increases by roughly a factor of 10 (.02 versus
.2) as the dividend yield increases from 1.6% to 7.1%.

Figure 2 presents the same analysis as figure 1, except that the number of additional
independent variables (V) is set to three hundred instead of zero. Even with this very large
number of additional independent variables, the current dividend yield still plays an impor-
tant role in the asset-allocation decision, particularly at the lowest levels of risk aversion.
With logarithmic utility, for example, the optimal allocation to stocks is about 0.50 when
the dividend yield is only 1.6% but increases to 1.00 when the dividend yield is 7.1%. An
investor with A = 2 doubles the allocation to stocks, from 0.25 to 0.50, as the yield moves
from 1.6% to 7.1%. Although the fraction allocated to stocks is low in any event for the
higher levels of risk aversion, substantial relative increases in the stock allocation occur in
those cases as well. For example, an investor with A = 10 also doubles the stock allocation
(from 0.05 to 0.10) over the range of dividend yield considered. The general effect of raising
N is both to flatten the relation between the optimal stock allocation and dividend yield
and to lower the allocation at the average yield.

The basic message delivered by figures 1 and 2 is that the evidence on the predictability
of stock returns is strong enough to exert a substantial influence on an investor’s allocation
of funds between stocks and cash. That is, if the investor initially possesses vague beliefs,
as represented by a diffuse prior, then the sample contains information sufficient to cause
the investor to allocate funds in a manner that depends importantly on the current dividend

Y9This value is obtained from the CRSP Government Bond Files. .
''Recall that, when A > 1, expected utility falls to —co as w approaches 1.0, so the optimal allocation in
these cases is close but not equal to 1.0,
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vield. Obviously, this description of the data contrasts sharply with the message delivered
by the standard approach to judging “significance” of a regression.

Table 1 reports additional results that illustrate the separate roles of sample size (T') and
the number of additional variables (N) in the asset-allocation decision. In order to isolate T

from other quantities that would change across samples of different sizes, the values of 3, d,
63, and (v/T)s? are held constant at the values obtained from the actual 1927-93 sample.
That is, we change only the size of the samples that generate a common set of sufficient
statistics. Optimal stock allocations are computed under various combinations of T' and N

for relative risk aversion equal to both two and ten.

When v (= T — 2N ~— 3) is small, which occurs with either a small value of T or a
sufficiently large value of iV, then the optimal stock allocations increase only slightly as
dividend yield moves from low to high. In these cases, such as (T'= 6, N = 0) or (T = 804,
N = 350), the evidence of predictabiity is sufficiently weak so as to render the current
dividend yield relatively unimportant in the allocation decision. Note however that, when
N = 0, the optimal allocations reach their large-sample values at rather modest sample
sizes: the allocations at T = 60 differ only slightly from those at T = 804. (Recall that
T = 804 corresponds to the actual 1927-93 sample.) In other words, when there is known
to be at most one predictive variable, estimation risk quickly becomes unimportant to the
stock-versus-cash allocation decision. A rather quick disappearance of estimation risk is also
observed in earlier studies that assume returns to be unpredictable, so that the unconditional
mean and variance are the only unknown parameters. For example, Brown (1979) reports
that the optimal stock allocation in such a problem is typically at least 95% of the infinite-
sample allocation with samples as small as 50 months.!? In general, the results in table 1
indicate that, even when the number of independent variables is a substantial fraction of the

sample size, the optimal allocation depends importantly on the predictive variable.

Table 2 reports the conditional standard deviations of the continuously compounded
monthly stock return rri;, and these values provide some intuition for the allocations in
table 1. When T is large and N is small, then the conditional standard deviation of the
monthly stock return is about 5.6%, which is no doubt familiar to most readers as a typical
magnitude for the monthly stock volatility. As is apparent from table 2, however, when T is
small or when NV is large relative to T, then the conditional volatility of the monthly stock

12Gee his table 8.1, page 115. Brown assumes diffuse priors for the unconditiona! mean and variance, a
likelihood function in which the simple rate of return (as opposed to the continuously compounded rate) is
normally distributed, and a utility function that is either quadratic or negative exponential.
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return can be several times greater, reaching 20% or more.'® In those cases, the “estimatjon
risk” arising from uncertainty about the parameters of the return distribution accounts for
much of the total conditional volatility. This higher estimation risk reduces the importance
of the predictive variable dr in the allocation decision, as disussed previously, but this higher
risk also lowers the allocation to stocks at the average level of d (4.35%). The allocations
at the average level of dr in table | are virtually identical to the allocations that would be
chosen if the sample regression coefficient on d;_; in (5) were zero (along with the coefficients
on z;-;)."* In that complete absence of sample evidence of predictability, the investor would
essentizlly allocate the same amount to stocks for all levels of dr, and this allocation is lower
in the cases where the conditional volatility of stocks is high.

From the perspective of the investor, how important is it that predictability, or at least
its possibility, be taken into account in making the allocation decision? We pursue this
question by comparing the “certainty equivalents” for two different allocations, where a‘!.
certainty equivalent is defined as the riskless rate that would provide utility equal to the
expected utility of the chosen allocation. The first allocation, wy, is taken from table 1. The
second allocation, w,, uses data only on historical returns, and the investor's prior beliefs
rule out predictability. That is, the likelihood function assumes that returns are drawn
independently from a normal distribution with mean u and variance o2, and the investor has
diffuse prior beliefs about 4 and ¢. For a given T, the second allocation is very close to that
from table 1 for the case when N =0 and dr is at its average level (4.35%). The certainty
equivalents for both allocations, ¢(w;) and c(w;), are then computed with respect to the
predictive distribution used to compute the first allocation, which uses data for returns as
well as the predictive variables and where the investor’s prior beliefs admit the possibility that
returns are predictable. In essence, an investor who perceives this predictive distribution but
is forced to allocate w; to stocks values this allocation with a certainty equivalent of c¢(ws),
which is necessarily less than the certainty equivalent of c{w,) for the optimal allocation.

The difference in certainty equivalents, c¢(w;) — ¢(w;), is reported in table 3, where the
values of T, N, and relative risk aversion (A) are the same as in table 1. One source of large

¥ Much of the increase in the conditional variance that occurs as N increases relative to 7" can be attributed
to the fact that the quantity v = T — 2N — 3 is used in (15) as the denominator for computing s?, which
enters the conditional variance according to (21) and (25). That is, for a given sum of T squared fitted
residuals, the conditional volatility increases in the number of variables used to fit the regression. This
effect is analogous to that in the standard frequentist setting for a multiple regression with K regressors
(including the intercept), where the unbiased estimate of the residual variance is obtained by dividing the
sum of squared fitted residuals by T — K, whatever the estimated values of the X — I slape coefficients.

“For a given T and N, the allocation would be identical to that in table 1 at the average level of dr and
slightly less than that allocation at the more extreme values of dyp.
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differences is an over-allocation to stock when the variance of its predictive distribution
is high. When T is sufficiently large, the variance of the pdf of rr,; can be much lower
when one assumes i.i.d. behavior than when one entertains the the possibility that a large
number of variables might predict returns. Consider, for example, the case where T = 804
and N = 300. An investor with relative risk aversion equal to 2 would, under the i.i.d.
assumption, assess the monthly standard deviation of stocks to be about 5.6% and would
allocate nearly 100% of his portfolio to stocks {(w2). In contrast, the optimal allocation when
predictability is entertained (w,) ranges from 0.25 to 0.50 across the various levels of dy.
Thus, w; exceeds w; by between 0.75 and 0.50, and this over-allocation to stocks occurs
when the standard deviation of the predictive distribution for the stock return is nearly
15% per month (table 2). Not surprisingly, the certainty-equivalent losses in this case range

between 6.8% and 15.8%, expressed as differences in annualized rates.

Another source of differences in certainty equivalents is an over-allocation to stock when
its conditional expected return is low or an under-allocation when its conditional expected
return is high. When T = 804 and N = 0, the variance of the predictive distribution used
to compute the optimal allocation w) is essentially identical to the variance of the predictive
distribution under the i.i.d. assumption used to compute w;. Thus, in this case, the difference
between w; and w; essentially reflects only the difference between the conditional mean of the
predictive pdf for rryy, given dr, and the “unconditional” mean in the pdf obtained under
the i.i.d. assumption. An investor with relative risk aversion equal to 10 would, under the
i.i.d. assumption, choose a stock allocation of about 0.23 (w;). The optimal allocation wy is
0.05 at dr = 1.64% but rises to 0.40 at dr = 7.05%. Thus, w; exceeds w; by 0.18 at the low
dividend yield but is less than w; by about that amount at the high yield. In both cases, the
certainty-equivalent loss associated with w; is about 60 basis poinfs. For the investor with
risk aversion equal to 2, the certainty-equivalent loss associated with wy is 225 basis points
when dr = 1.64%, resulting from an over-allocation to stocks of about 0.73, whereas the loss

in the high-yield state is negligible, since w; and w; are then both equal to essentially 100%.

3.2. Allocations with an Informative Prior

When the investor’s prior beliefs are weighted against predictability, then the optimal alloca-
tion to stock should, one might think, be less sensitive to the current value of the predictive
variable than when prior beliefs are diffuse. We explore this intuition by recomputing all of
the above results using the informative no-predictability prior described earlier. The size of

the hypothetical prior sample is 50 years (or Ty = 600, since we are dealing with monthly

14



returns). Figures 3 and 4 and tables 4 through 6 display the results for the same cases
analyzed above for the diffuse prior.

The allocations displayed in figure 3 are based on the actual 804-month sample for the
case where there are no additional independent variables (N = 0). These allocations conform
to the simple intuition suggested above: they rise less steeply as a function of dividend yield
than do the allocations with a diffuse prior (figure 1). With the informative prior, the log-
utility investor (A = 1) allocates 100% to stocks throughout the range of dr considered,
so that, for example, a dividend yield of 1.6% no longer causes such an investor to back
away from an all-stock position. At higher levels of risk aversion, however, the allocations
still display considerable sensitivity to dividend yield. The investor with A = 2 allocates
essentially 100% to stocks for yields greater than about 3.5%, but the stock allocation drops
10 65% at a yield of 1.6%. For the higher levels of risk aversion, the allocations at least double
as dividend yield moves from the bottom to the top of the range considered. Thus, even
with prior beliefs equivalent to 50 years of hypothetical data in which the sample regression
coefficient of returns on dividend yield is exactly zero, the evidence of predictability in the
actual 804-inonth sample is still sufficient to give the predictive variable an important role

in the asset-allocation decision.

Perhaps more interesting are the allocations in figure 4, which are also based on the
actual 804-month sample but with 300 additional independent variables (N = 300). In
this case, the allocations that use the no-predictability informative prior exhibit greater
sensitivity to dividend yield than do those using the diffuse prior (figure 2). This somewhat
counter-intuitive result can be understood by comparing the volatilities of the predictive
distributions obtained using the two priors. Recall that, with the diffuse prior, the conditional
standard deviation of the continuously compounded monthly stock return {rr4.) is nearly
15% when T = 304 and N = 300 (table 2). With the informative prior, however, this
standard deviation, from table 5, is only about 8.5%. In essence, the informative prior
lowers estimation risk. Even though the conditional mean of ryy; is less sensitive to dr
with the informative prior, this effect is outweighed in the allocation decision by the lower
predictive variance. Thus, dividend yield retains an important role in the allocation decision
even when prior beliefs are weighted against predictability and there are many additional
independent variables that receive zero estimated regression slopes (in both the hypothetical

and actual samples).

Tables 4 and 6 report, for the informative no-predictability prior, the allocations and

certainty-equivalent comparisons for the same sets of T, N, and A as reported in tables 1
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and 3 for the diffuse prior. Comparing the allocations in table 4 to those in table 1 further
illustrates the phenomenon that moving from the diffuse to the informative prior reduces
both estimation risk and the sensitivity of E{r74,|®r} to dr. In cases where estimation risk
is already low using the diffuse prior, the reduced sensitivity of E{rr4,|®7} to dr exerts the
more important effect on the allocation decision. Thus, when T is sufficiently large relative
to IV, the allocations are less sensitive to dy using the informative prior. This result occurs,
for example, in most of the cases where ¥V = 0. In cases where T is small or N is large, so
that there is substantial estimation risk using the diffuse prior, then lowering that estimation
risk exerts the more important effect, so the allocation then becomes more sensitive to d.
In these cases, the allocation to stocks at the average level of dr also increases, again due
to the reduced stock volatility. For example, when T = 360 and N = 150, an investor with
risk aversion of 2 and the informative prior chooses stock allocations ranging from 0.56 when
dr = 1.64% to 0.92 when dr = 7.05%, and the average allocation, chosen at the average
yield of 4.35%, is equal to 0.74. If the same investor instead has the diffuse prior, then those

allocations range from 0.25 to 0.34 and average only 0.30.

Moving from the diffuse to the informative no-predictabiity prior generally reduces the
certainty-equivalent loss associated with the suboptimal allocation chosen using the i.i.d.
assumption. In cases where the estimation risk is already low using a diffuse prior, the
reduced sensitivity of E{rr,|®r} to dr simply reduces the deviation between the optimal
allocation (w;) at an extreme value of dy and the suboptimal “average” allocation {w;) based
on the i.i.d. assumption. For example, when T' = 804, an investor with risk aversion equal 2
allocates essentially 100% to stock under the i.i.d. assumption, whether the prior is diffuse
or informative. (In the i.i.d. case, the informative prior simply provides the equivalent of
50 years of information about the unconditional mean and variance of re.) If N =0 and
this investor has a diffuse prior, then the optimal allocation at dr = 1.64% is equal to 0.27
using a diffuse prior (table 1) as compared to 0.64 using the informative prior (table 4). The
conditional standard deviation of rry; is about the same using either prior, about 5.6%, so
the certainty-equivalent loss simply drops from 225 basis points (table 3) to 51 basis points
(table 6).

When the estimation risk is reduced significantly in moving to the informative prior,
so that the allocations actually become more sensitive to dr, the certainty-equivalent loss
associated with w; still tends to be lower with the informative prior. There are at least two
effects here, both of which often work in the same direction. First, Jw; — w,| is often lower
using the informative prior than using the diffuse prior, even though w, is more sensitive to

dt using the informative prior. This result occurs because the lower estimation risk obtained
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with the informative prior also tends to raise the stock allocations at all levels of dr, as noted
earlier. If T = 804 and N = 300, for example, then the allocation chosen at dr = 1.64%
by the investor with risk aversion of 2 is 0.25 using the diffuse prior as compared to 0.42
using the informative prior, which is closer to w; (essentially 100% with either prior, as noted
above). A second effect, which tends to reinforce the first effect in the example just cited,
is that the lower estimation risk obtained using the informative prior also tends to reduce
the certainty-equivalent loss associated with a given over-allocation to stocks. That is, even
if wy; where the same when dy = 1.64% using both priors, the lower conditional volatility
of rr41 using the informative prior—8.56% (table 5) versus 14.89% (table 2)—would most
likely result in a lower certainty-equivalent loss.

4. The Role of 2
4.1. Rewriting the Conditional Distribution

Although we use dividend yield as the predictive variable, identical results would obtain for
any predictive variable that produces the same in-sample goodness-of-fit as reported for the
regression in (1}. That is, the sample statistics used to construct the various conditional
distributions for rr4; can be rewritten in terms of 7 and &2, the unconditional sample

moments of returns defined in (29) and (30}, and

_y-XBYly-XB)

2 _
R =1 o

(39)
the regression’s unadjusted sample R-squared.

To see this, first express the most recent observation of the predictive variable as being

6 sample standard deviations away from its sample mean. In the case of dividend yield,
dr = J+ 66:!' (40)

where d and &3 are defined in (18) and (19). Then it is easily verified that, for example, the
predictive pdf in (12) when N = 0 can be rewritten as

v 1/2 : —(v41)/2
plrri®7) = %/—Q;r%% (g) [1 + g(rrﬂ -7 — 6V R%,)? , o (41)

where, rewriting (15) and (17),
s*= %(1 - RY52, (42)
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h=si2[1+%(1+62)], (43)

and v =T — 3. A similar rewriting is also straightforward in the data-mining scenario and
with the informative no-predictability prior.

As reported in (1), the regression of mnonthly stock returns on dividend yields produces
an R? equal to 0.0024. Recall also that, in the previous section, we report optimal stock
allocations for values of the current dividend yield between 1.64% and 7.05%, or for 6 ranging
between -2 and 2. Given (41) through (43), the allocations reported in the previous section
would apply over a range of £25 for any other predictive variable that produces an in-sample
R? equal to 0.0024.

4.2. Known Parameters (Infinite Sample)

As the sample size T approaches infinity, the investor learns precisely the values of the
parameters of the conditional distribution of the stock return. In all of the cases considered
above, the stock return’s conditional distribution in finite samples is of the Student-t form,
so the conditional distribution converges to a normal density as T' approaches infinity.

Assume the investor knows that the continuously compounded stock return r,,; over the
discrete period from ¢ to ¢ + 1 has mean yq, variance ¢?, and is an infinitely divisible normal
random variable.' If the investor’s portfolio of stocks and cash is rebalanced continuously
to maintain a constant fraction wy in stocks, then the continuously compounded return on
the portfolio from ¢ to ¢ +1 will also be normally distributed. In this case, it is easily verified
that the optimal value of w, for an investor whose utility for wealth at time ¢ + 1 is of the
form in (3) is given by!6 _

B i 1

w = Aa-f + ﬂ- (44)

In the previous section, we solve for the optimal buy-and-hold allocation at the beginning
of a month, so that no rebalancing occurs during the month. Nevertheless, the continuous-
rebalancing solution in equation (44) provides a close approximation to the infinite-sample
allocations reported in table 1, where g, is set equal to the fitted value from (1) and oy is
set equal to &, reported with that regression. (Recall that the “infinite-sample” alocations
reported earlier simply treat the sample statistics obtained from the actual 804-month sample

15See Ingersoll (1987, chapter 12), for a discussion of infinite divisibility.

'$The derivation is a straightforward application of results contained in Merton (1969), and an expression
equivalent to (44) also arises as a solution lo a special case of the dynamic consumption-investment problem
analyzed in that study.
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as if they were generated by an infinite sample.) In fact, when rounded to the nearest 0.01,
the optimal allocations computed using (44) agree exactly with all of the allocations reported
in table 1 for the infinite-sample case (where the upper bound of 0.99 is again binding when
A = 2 and dr equals the three largest values).

Equation (44) can be used to provide additional insight into the role of R? in the allocation
decision. If the interest rate (i;) and the conditional variance (¢,) are held constant, then
we can simply consider the dispersion in w, across realizations of g, i.e. across realizations
of the predictive variable. Following the definition of R? in (39), we write

B = var{ja} o,

and

of = (1 - R*)a?,
where o? denotes the unconditional variance of r,. Then (44) can be rewritten as

_ Be~ 1 -1_
T Al - R T 3A (45)

w't

which implies

1 _VE
Ao, (1 — R?)’
If we evaluate (46) at A = 10, R? = 0.0024, and o, = 0.056, where the last two quantities
reflect sample estimates, then std. dev.{w} = 0.0877, which is approximately the difference

std. dev.{w} = (46)

between the successive values of w reported for the infinite-sample case in table 1. Similarly,
when A = 2 then (46) gives std. dev.{w;} = 0.439, which is approximately the difference
between the infinite-sample allocations in table 1 for the two lowest dividend yields (where

the upper bound of 0.99 on the stock allocation is not binding).

Recall from the previous section that, when N is low, estimation risk becomes relatively
unimportant in samples as small as sixty months. That is, in such cases, the variance of the
conditional distribution is close to that obtained when the statistics of the actual sample
are assumed to have been generated instead by an infinite sample. Equation (46) provides
a simple explanation of why, in the cases that are approximated reasonably well by the
infinite-sample result, an R? equal to 0.0024 produces substantial differences in allocations

across alternative values of the predictive variable.!”

7Solnik (1993) explores the economic significance of asset-allocation strategies based on time-varying
conditional expected returns that are taken as fitted values from a forecasting regression, so that estimation
risk is not included.
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5. Economic versus Statistical Significance: A Simple Example

The analysis in the previous sections illustrates the potentially sharp contrast between eco-
nomic significance and statistical significance, when the latter is judged by standard frequen-
tist methods. Since the forms of the prior distributions and the likelihood functions used in
that analysis are, to some degree, specific to the regression setting employed, we construct
here a much simpler example to demonstrate that the potentially sharp differences between
the economic and statistical significance of stock-return predictability are not confined to

our regression framework.

Assume that, in any given period, the rate of return on common stock is either 40% or
—40%. In addition to past stock rcturns, a sample contains past realizations of a random
state variable, assumed to be identically and independently distributed over time and drawn
from a Binomial distribution. We label the passible realizations of this state variable “state
1" and “state 2." In our example, the sample includes M = 8§ periods for each state. The
sample distribution of stock returns observed following each state can be reported in a 2 x 2

contingency table:

state 1 | state 2
r= 40% 6 4
r=-40% 2 4

Let 6; and (1-6,) be the probabilities that, conditional on observing state i at the beginning
of a period, the subsequently observed stock return during that period will be 40% and —40%.

First consider a frequentist test of whether returns are predictable. The null hypothesis
of independence between returns and the state variable, §; = §,, can be tested against the
alternative hypothesis, 8, # 02, using Fisher’s exact test for the 2 x 2 contingency table.!®
The test is based on the conditional distribution of M; (the number of periods with a 40%
return following state 1) given the two-way table’s row and column sums. In our example,
the probability of getting M; > 6 equals 0.304. Hence, the null hypothesis of independence
between returns and the state variable (or the absence of predictability) cannot be rejected
at conventional significance levels.

Now cousider an investor with logarithmic utility who has to allocate his wealth between

the stock and cash, which we assume earns a zero riskless rate of return. The investor

18Gee Kendall and Stuart (1979).



assumes that the probabilitics ¢, and 0, arc constant over time and understands that 6, can

differ from ¢, although he has the same prior distribution about ; for both states:

_ o1 - )
B{a,a) '’

where a > 1 and B() is the “beta” function. We consider two values of a for the prior

p(6:) (47)

distribution in (47). When a = 1, the prior distribution for each of the 8;’s is the Bayes-
Laplace uniform prior on (0,1). When ¢ = 6, the prior distribution has greater 1nass around
0; = 0.5. These two prior distributions are displayed in Figure 5.

If state ¢ is observed at the beginning of each of M periods, the probability that the 40%
stock return will be realized in M; of those periods is

p(AM|0;, ML) = ( ‘f‘,’ )0‘»“-'(1 — oMM, (48)

Cornbining the prior distribution in (47) with the likelihood function in (48) yields the
posterior distribution of @;, which is also a beta distribution; 2

0]}”-4’0—1(1 -9 )1\!—1\!.’1’0-1

‘ (49)

g1 M. ) = ’
PO = B ) O = 37 o)

Let §; denote the predictive probability that, conditional on observing the above sample
evidence and then observing state i at time T, the stock return at time (T + 1) will be 40%.

Then,
{M: + a)

(M + 24)

Let w (0 £ w < 1) denote the fraction of the investor’s portfolio allocated to stocks at

0 = E(0;|M;, M) = (50)

the beginning of period T + 1. Conditional on observing state i at time T, the investor's

optimization problem is
max {f: In(i + 0.4w) + (1 = 6;) In(1 - 0.4w)}, (51)

the solution to which is

0 f (20, ~1) <0
w=1{ (B) i 0< (20~ 1) <04 (52)

L (20, —1)2> 04,

The number of sample periods where the 40% stock return follows state 2 is equal to four,

which is exactly haif of the total sample size for that state. Hence, the posterior distribution

¥See Zellner, 1971, p. 30
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of 0; is also centered around 0.5 and d, = 0.5 for both values of a in the prior. Since
the distribution of the stock return in this case is symmetric around zero, any risk-averse
investor will refrain from investing any money in stock. It can be verified easily from (52)
that w = 0 at §; = 0.5. If state 1 is observed, however, then the predictive probability of the
40% stock return will be greater than 0.5. For the prior with greater mass around §, = 0.5
(a = 6), equations (50) and (52) imply §; = 0.6 and w = 0.5 . For the uniform prior (a = 1),
6, =0T7andw =1, meaning that the portfolio will consist solely of the stock. This example
demonstrates a potential economic importance of stock return predictability similar to that
found in the previous sections. Although the investor’s prior beliefs are the same for the two
states, and although the sample contains only eight observations for each state, the investor’s
optimal portfolio differs significantly across the two states. These results contrast sharply
with the classical frequentist test of predictability.

6. Conclusions

The sample evidence on stock-return predictability can be sufficient to cause asset allocations
to depend importantly on the current value of a predictive variable, even though a null
hypothesis of no predictability might not be rejected at conventional levels of statistical
significance. An exainple is provided in this study using the dividend yield on the value-
weighted NYSE portfolio to predict that portfolio’s monthly rate of return. The predictive
variable’s importance in the allocation decision also survives, to a considerable degree, an
allowance for data mining or a specification of prior beliefs weighted against predictability.

The research conducted here can be extended along a number of dimensions. We have
confined our analysis to one predictive variable, dividend yield, in order to present the basic
ideas of the paper as simply as possible. The analysis could be extended to include other
variables that have also demonstrated some ability to predict stock returns, such as long-term
and short-term interest rates.?® Similarly, we confine our attention to a single stock portfolio,

but additional risky assets could be introduced into the allocation decision as well,?!

The regression {ramework we employ assumes that the regression disturbances are ho-

moskedastic. A number of studies have concluded, however, that stock returns exhibit

*See, for example, Fama and Schwert (1977), Keim and Stambaugh (1986), Campbell (1987), and Fama
and French (1989).

?1The eflects of estimation risk on asset allocation have been analyzed empirically for multiple risky assets
in an i.i.d. setting [e.g., Bawa, Brawn, and Klein {1979)], but we are unaware of empirical studies that
extend the problem to consider predictable returns.
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conditional heteroskedasticity [e.g., French, Schwert, and Stambaugh (1987)]. An inter-
esting extension of our framework would be to analyze the asset-allocation problem when
conditional heteroskedasticity is included in the investor’s prior distribution and assumed
likelihood function. If, for example, the conditional volatility of the stock return is posi-
tively related to the current dividend yield, the sensitivity of the optimal stock allocation to
that yield could be reduced.

A number of possible extensions involve the length of the investment horizon. We es-
sentially assume that, given a current amount to be invested, the investor maximizes an
iso-elastic derived utility of wealth over the next month. Although this maximization can
be consistent with a longer-horizon objective, the role of the investment horizon could be
analyzed directly. We know, for example, that in regressions of stock returns on dividend
yields, the R-squared tends to rise with the return horizon. This has been demonstrated
empirically in long-horizon regressions [e.g., Fama and French (1988)], it arises as an im-
plication of the joint time-series properties of the monthly return and dividend-yield series
when estimated in a VAR [e.g., Kandel and Stambaugh (1987)], and it arises as a theoretical
implication in equilibrium models with time-varying moments of consumption growth [e.g.,
Kandel and Stambaugh (1991)]. It would be interesting to explore, possibly by lengthening
the investment horizon in the asset-allocation problem, whether the higher R-squared values
associated with longer horizons correspond to a greater importance of the predictive variable

in the asset-allocation problem.

Related to the issue of the iuvestment horizon is the role of dynamic rebalancing. One
might, for example, allow the portfolio to be rebalanced each month but assume that the
utility function in (3) applies instead to wealth realized at the end of twenty years. This type
of problem has been investigated empirically by Brennan, Schwartz, and Lagnado (1993'),
using a monthly approximation to an analytic solution for continuous rebalancing, but they
do not include estimation risk in their analysis.?? Addressing the latter would require that
each month the investor not only incorporate a new observation of the predictive variables
into the conditional mean but also update his beliefs about all parameters of the predictive
distribution. Of course, transaction costs would present an additional challenge to such a

modeling effort.

#Estimation risk in the case of continuous rebalancing has been addressed in a number of theoretical
studies. See, for example, Dothan and Feldman (1986), Gennotte (1986), Detemple (1986), Feldman (1989,
1982), and Karatzas and Xue (1991).
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Appendix

Zellner (1971, pp. 233-236) analyzes the predictive distribution for the traditional multivari-
ate regression model. Including lagged dependent variables as independent variables in this
model does not change the analysis, provided the pre-sample observation z, is treated as
deterministic.?> Hence, this analysis applies to the multivariate regression model (7)-(11),
and the predictive pdf is in the multivariate Student ¢ form, -

pyrail®r) o [1 + 9(vpsy — 22 B)S (g4 — 2 BY TN, (A1)
where
B =(X'X)'XY, (A.2)
S=(Y-XB)(Y - XB), (A.3)
and
g=1-z3(X'X + zrzi) 27, (A4)

The predictive pdf in (A.1) can be rewritten as

WIDT (v + K)/2)| V|
(L(1/2))*T(vf2)

where V = gv5~!. The predictive distribution of rr4; (which is the first element of yr,,) is

P(!IT«HI‘I’T) = [V + 3/"1‘-“ "‘FlTB)V(y;‘H - ‘E'TB)']—(HK)IQ: (A-5)

a univariate Student ¢ distribution:

Tl(v +1)/2 1/3 L ] (vH1)/2
plrraalen) = gt L () [ Seer -], (a

where Sy, is the (1, 1) element of §.* Observe that, using the definitions of & and s? in (14)
and (15), 51) = vs? and a = hs®. Hence,

9 _k (A7)

Sa v
The predictive distribution (12) is obtained by substituting (A.7) into (A.6).

To obtain the expressions for & in {17) and (25), first observe that?s

1
T 1+ ap (X' X) "z

1 —z0(X'X + z72z7) lar (A.8)

33Gee, for example, Hamilton (1994, p. 358).
5ee Zellner (1971, page 387).
2%See, for example, Zellner (1971, page 73).
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Substituting (A.8) into (14) vields

h= (317) (1 n I’T(}é’X)"zT) ‘ ' (A.9)

Under our specification of “data mining,” the N additional variables are uncorrelated in the

sample with the dividend yield (equation (24)). Hence,

, (A.10)

where i
1 d
p=| . " | (A1)
| d (& +4])
Note that
NS 1
P = , (A.12)
d 0
! B} 1 0
P ( 1 d ) Pl = , (A.13)
d 00
and
- ! dr — d)?
(1 47-):” ‘ :(1+(L.2—~l-). (A.14)
dT 94 .
By inverting (A.10) and employing (A.11) through (A.13) we get
r -
. 1 .
Pl (380 0 ! e
(XX = 1 0 0 0 »
X = . (A.13)
——“"‘( 10 ) B
which, together with (A.11}, gives
L e ! dr - d)? -
I (X'X) Yrr = T (1 +(%%+(ZT—E)'S:I(ZT—E)) . (A.16)
d

Substituting {A.16) into (A.9) yields (25). When N = 0, the expression for A in (25)

sunplifies to (7).
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Table 1

Optimal Stock Allocation with a Diffuse Prior

T | N [d=164% d=2.99% d=4.05% d=570% d=71.05%
Relative risk aversion = 2
6 0.24 0.31 0.39 0.44 0.43
60 0.27 0.66 0.99 0.99 0.99
120] o 0.27 0.68 0.99 0.99 0.99
360 0.27 0.70 0.99 0.9 0.99
804 0.27 0.70 0.99 0.99 0.99
10 0.26 042 0.58 0.74 0.88
60 | o5 0.24 0.26 0.27 0.29 0.30
25 | 0.26 041 0.57 072 0.86
1201 50 | 025 0.27 0.30 0.32 0.34
50| 026 0.51 0.75 0.99 0.99
360 | 150 | 025 0.28 0.32 0.35 0.38
1001 026 0.53 0.81 0.99 0.99
200] 026 0.41 0.56 0.71 0.86
804 1300 | 025 0.31 0.38 0.44 0.50
350 | 0.25 0.28 0.30 0.33 0.36
= | = 0.7 671 0.99 0.99 0.99
Relative risk aversion = 10
3 0.05 0.06 0.08 0.09 0.08
60 0.0 0.13 0.21 0.29 0.35
120 0 0.05 0.14 0.22 0.30 0.38
360 0.03 0.14 0.23 0.31 0.39
804 0.05 0.14 0.23 0.31 0.40
10 0.05 0.08 612 0.15 0.18
60 | o5 0.05 0.05 0.05 0.06 0.06
25 9.05 0.08 011 0.14 0.17
120 | £g 0.05 0.05 0.06 0.06 0.07
50 0.05 0,10 0.15 0.20 0.25
360 | 150 0.05 0.06 0.06 0.07 0.08
100 | 0.0 011 0.16 0.22 0.27
200 0.0 0.08 0.11 0.14 0.17
804 | 300 |  0.05 0.06 0.07 0.09 0.10
350 | 0.05 0.05 0.06 0.07 0.07
o | - 0.05 0.14 0.23 0.32 0.40

Note: d denotes the current dividend yield, T is the number of months in the sample, and N is the number of
independent variables in addition to d. The sample statistics are based on the period 1/1927-12/1993.
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Table 2

Conditional Standard Deviation of the Stock Return
with a Diffus_e Prior
(Percent per Month)

T | N |d=164% d=299% d=435% d=570% d=7.05%

6 351 15.18 14.76 15.78 18.51

60 6.07 5.92 5.88 5.92 6.07
120 5.82 5.75 5.72 5.75 5.82
360 | © 5.66 5.63 5.63 5.63 5.66
804 5.62 5.60 5.60 5.60 5.62
10 9.33 519 9.14 9.19 9.33

60 | o5 | 3220 32.00 31.90 32.00 32.29
53 9.49 9.42 9.39 9.42 .49

120 50 | 2428 24.15 24.11 24.15 24.28
. 50 7.48 745 744 7.45 7.48
360 1 150 | 20.35 20.30 20.29 20.30 20.35
100 7.09 7.08 7.08 7.08 7.0

200 9.50 9.48 9.48 9.48 9.50

804 | 300 | 14.89 14.88 14.87 14.88 14.89
350 | 22.37 22.35 99.34 22.35 22.37

= | - 558 558 5.58 5.58 558

Note: d denotes the current dividend yield, T is the nuinber of moaths in the sample, and N is the number of
independent variables in addition to d. The sainple statistics are based on the period 1/1927-12/1993.



Table 3

Differences in Certaintly Equivalents with a Diffuse Prior: Optimal Allocation
versus Allocation Based Only on Historical Returns
(Percent per Year)

T | N [d=1.6a% d=299% d=435% d=2570% d=71.05%
Relative risk aversion = 2
6 10.77 6.08 367 3.7 1.5
60 2,64 0.53 0.00 0.01 0.01
120 0 2,47 0.43 0.00 0.01 0.02
360 2.29 0.37 0.00 0.01 0.02
304 2.25 0.35 0.00 0.01 0.02
10 6.31 3.69 1.83 0.69 0.13
60 1 25 | 6159 57.43 54.35 5230 ° 51.21
75 6.55 3.08 7.10 0.86 0.19
1201 50 | 3847 35.98 32.55 30.26 28.37
50 4.05 .75 0.41 0.00 0.01
360 | 150 | 28.13 25.30 22.73 20.41 18.32
100 [ 3.64 141 0.23 0.00 0.01
1200 656 4.08 2.20 0.92 0.19
804 | 300 | 15.76 13.08 10.70 8.60 6.77
350 | 33.32 30.53 27.95 95.55 23.33
pa 2.2 0.34 0.00 0.02 0.03
Relative risk aversion = 10
6 1.93 113 0.68 0.50 0.81
60 0.66 0.18 0.00 0.09 0.37
1200 0 0.63 0.17 0.00 0.12 0.48
360 0.61 0.15 0.00 0.14 0.56
804 0.60 0.15 0.00 0.15 0.59
10 1.59 101 058 0.29 0.11
60 1 o5 | 15.78 15.00 14.42 14.01 13.80
25 1.70 113 0.69 0.37 0.16
120} 50 | 108 9.53 8.97 8.49 8.10
50 1.08 0.55 0.21 0.03 0.01
360 | 150 | 7.7 6.98 6.43 5.93 5.46
100 097 0.46 0.14 0.01 0.05
20| 1.75 1.20 0.75 0.41 0.18
804 | apo | 423 3.65 3.12 2.64 2.21
350 | 9.06 8.49 7.94 7.43 6.95
= | - 0.60 0.15 0.00 015 0.61

Note: d denotes the current dividend yield, T is the number of months in the sample, and NV is the number of
independent variables in addition to d. The sample statistics are based on the period 1/1927-12/1993.
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Table 4

Optimal Stock Allocation with A No-Predictability
Informative Prior

T | N |d=1.64% d=299% d=4.35% d=570% d=7.05%
Relative risk aversion = 2

6 0.99 0.99 0.99 0.99 0.99
60 0.99 0.99 0.99 0.99 0.99
120 | o 0.99 0.99 0.99 0.99 0.99
360 0.51 0.98 0.99 0.99 0.99
804 0.64 0.89 0.99 0.99 0.99
10 0.99 0.99 0.99 0.99 0.99

GO | a5 0.94 0.98 0.99 0.99 0.99
25 0.59 0.96 0.9 0.99 0.99

120 | 59 0.82 0.88 0.93 0.99 0.9
, 50 0.71 0.85 0.93 0.99 0.99
3601450 |  o0.56 0.65 0.74 0.83 0.92
100 | 055 0.75 0.94 0.99 0.99

20| 043 0.63 0.78 0.92 0.99

804 | 300 | 042 0.52 0.63 0.74 0.84
350 0.39 0.48 0.56 0.65 0.74

R 027 071 0.99 0.99 0.99

Relative risk aversion = 10

3 0.22 0.23 0.23 0.23 0.23
60 0.21 0.22 0.23 0.23 0.24
120 | o 0.20 0.21 0.23 0.24 0.25
360 0.16 0.19 0.23 0.26 0.29
804 0.13 0.18 0.23 0.28 0.33
0 0.20 0.91 0.22 0.22 0.23

60 | o5 0.19 0.20 0.20 0.21 0.22
25 0.18 0.19 .20 0.22 0.23

120 | 5 0.16 0.18 0.19 0.20 0.21
. 50 0.14 0.17 0.20 0.22 025
360 1150 o011 0.13 0.15 0.17 0.18
100 0.1 0.15 0.10 0.23 0.26
_{200| o010 0.13 0.15 0.18 0.21
804 4300 | o0.08 0.10 0.13 0.15 0.17
350 | 0.08 0.09 0.11 0.13 0.15

= ] - 0.05 0.14 0.23 0.32 0.40

Note: d denotes the current dividend yield, T is the numnber of months in the sample, and N is the number of
imdependent variables in addition to d. The sample statistics are based on the period 1/1927-12/1993.



Table 5

Conditional Standard Deviation of the Sfock Return
with a No-Predictability Informative Prior
(Percent per Month)

T [ N [d=164% d=29%% d=435% d=570% d=705%
6 5.63 5.62 5.61 5.62 563
60 5.63 5.62 5.61 5.62 5.63
120 5.63 5.61 5.61 5.61 5.63
360 O 5.62 5.61 5.60 5.61 5.62
804 5.60 5.60 5.60 5.60 5.60
oc 5.58 5.58 5.58 5.58 5.58
10| 3.2 5.81 5.80 5.81 5.82
60 | 25 6.06 6.05 6.04 6.05 6.06
M EIEE .01 5.00 6.0 5.02
0|55 641 6.39 6.39 6.39 6.41
50| 6.18 6.17 6.17 517 6.18
360|150 | 756 7.55 7.55 7.55 7.56
100 ]  6.37 6.36 6.36 6.36 6.37
20| 7.30 7.29 7.29 7.29 7.30
80419001 836 8.56 8.55 8.56 8.56
350 | 943 9.42 9.42 9.42 9.43
= | - 5.58 5.58 5.58 5.58 5.58

Note: d denotes the current dividend yield, T is the number of months in the sample, and N is the number of
independent variables in addition to d. The sample statistics are based on the period 1/1927-12/1993.
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Table 6

Differences in Certaintly Equivalents with a No-Predictability Informative Prior:
Optimal Allocation versus Allocation Based Only on Historical Returns
(Percent per Year)

T [ N [d=161% d=299% d=435% d=570% d=705%
Relative risk aversion = 2

3 0.00 0.00 0.00 0.00 0.00
60 0.00 0.00 0.00 0.00 0.00
120 | 0 0.00 0.00 0.00 0.00 0.00
360 0.13 0.00 0.00 0.00 0.01
504 0.51 0.04 0.00 0.01 0.01
10 0.00 0.00 0.00 0.00 0.00

50 1 95 0.01 0.00 0.00 0.00 0.00
REE 0.04 0.00 0.00 0.00 0.00
1201 59 0.15 0.07 0.02 -0.00 0.00
. 50 0.38 0.10 0.00 0.60 0.01
360 | 450 13 0.36 0.46 0.19 0.04
001 1.03 0.31 0.01 0.00 0.01
200 182 0.91 0.32 0.03 0.00
804 fypo | a6 2.07 .22 0.60 0.20
350 | 421 3.0 208 1.30 0.71

o | - 733 0.34 0.00 0.02 0.03

Relative risk aversion = 10

6 0.00 0.00 0.00 0.00 0.00
60 0.01 0.00 0.00 0.00 0.00
120 0 0.02 0.00 0.00 0.00 0.01
360 0.09 0.02 0.00 0.02 0.08
804 0.20 0.05 0.00 0.05 0.19
10 0.02 0.01 0.00 0.00 0.00

60 | 25 0.04 0.02 0.01 0.01 0.00
75 0.05 003 0.01 0.00 0.00

120 | 59 0.11 0.07 0.04 0.02 0.01
50 0.17 G.08 0.02 0.00 0.01

360 | 150 | 0.43 0.34 0.23 0.14 0.07
100 | 045 0.16 0.04 0.00 0.03

o |200] os8 0.35 0.18 0.06 0.01
804 {300 |  0.95 0.69 0.47 0.30 0.16
350 |  1.25 0.97 0.73 0.52 0.36

o | - 0.60 0.15 0.00 0.15 0.61

Note: d denotes the current dividend yield, T is the number of months in the sample, and N is the oumber of
independent variables in addition to d. The sample statistics are based on the period 1/1927-12/1993.
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Figure 1. Asset allocations with a diffuse prior and no additional independent
variables (NN = 0). The plot displays, for five values of relative risk aversion (A), the
fraction of the optimal portfolio allocated to stocks at various levels of the current dividend

yield.
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Figure 2. Asset allocations with a diffuse prior and 300 additienal indepen-
dent variables (/N = 300). The plot displays, for five values of relative risk aversion
(A), the fraction of the optimal portfolio allocated to stocks at various levels of the current
dividend yield.
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Figure 3. Asset allocations with an informative no-predictability prior and
no additional independent variables (/N = 0). The plot displays, for five values of
relative risk aversion (A), the fraction of the optimal portfolio allocated to stocks at various
levels of the current dividend yield.
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Figure 4. Asset allocations with an informative no-predictability prior and
300 additional independent variables (/V = 300). The plot displays, for five values of
relative risk aversion (A), the fraction of the optimal portfolio allocated to stocks at various
levels of the current dividend yield.
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p(e)
1.5

Figure 5. Prior distributions for 8 . The plot displays, for a = 1 and a = 6, the
prior distribution

_ gy

p0) = S,

where B(-) is the “beta” function.
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