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Abstract:

We consider a supply chain with a single supplier and two retailers. The retailers choose

their orders strategically and if their orders exceed the supplier’s capacity, quantities are allocated

proportionally to the orders. We experimentally study the capacity allocation game using subjects

motivated by financial incentives. We find that the Nash Equilibrium, which assumes that players

are perfectly rational, substantially exaggerates retailers’ tendency to strategically order more than

they need.

We propose a model of bounded rationality based on the Quantal Response Equilibrium, in

which players are not perfect optimizers and they face uncertainty in their opponents’ actions. We

structurally estimate model parameters using the maximum likelihood method. Our results confirm

that retailers exhibit bounded rationality, become more rational through repeated game play, but

may not converge to perfect rationality as assumed by the Nash equilibrium. Finally, we consider

several alternative behavioral theories and show that they do not explain our experimental data as

well as our bounded rationality model.

Keywords: bounded rationality; capacity allocation; supply chain; quantal response equilib-

rium; Nash equilibrium.

1 Introduction

Capacity allocation is an important issue in supply chain management. When demand is high,

there may be a capacity shortfall in the supply chain. Since it is often infeasible to expand capacity

in the short term, a capacity-constrained supplier has to divide the limited supply among prospec-

tive retailers. Consequently, retailers may choose their orders strategically, and such behavior has

profound implications on profits and supply chain efficiency. In this paper, we conduct labora-

tory experiments to study retailers’ ordering behavior in capacity allocation games. We identify
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systematic deviations from standard game-theoretic predictions, and develop a model of bounded

rationality to explain the empirical regularities in our data.

Capacity allocation games have been studied extensively in the literature. The game-theoretic

framework is perhaps the most popular method in analyzing how different allocation mechanisms

affect retailers’ ordering behavior and supply chain performance. Cachon and Lariviere (1999a,

1999b) investigated three allocation schemes: proportional, linear and uniform. The uniform allo-

cation rule is “truth-inducing,” while the proportional and linear allocation rules are shown to be

“order-inflating,” i.e., they may induce retailers to order more than they need so as to secure higher

allocated quantities; such distorted information may cause the bullwhip effect (Lee et al. 1997).

Another mechanism that has been proposed is the turn-and-earn system (Cachon and Lariviere

1999c), in which capacity is allocated based on past sales. There is also a large stream of existing

work that examines the role of pricing mechanisms in allocating scarce capacity (e.g., Dewan and

Mendelson 1990). All the papers above characterize the retailers’ behavior using the classic concept

of Nash equilibrium.

Although the Nash equilibrium provides a reasonable and valuable method of analysis, it is

based on two strong assumptions. First, every player is a perfect optimizer who always takes an

action to maximize her expected payoff. Second, every player has perfect knowledge of opponents’

decision models and thus can perfectly infer what courses of actions her opponents will choose. In

capacity allocation games, both assumptions may not hold. In this paper, we consider bounded

rationality in capacity allocation games using the notion of quantal choice (Luce, 1959): all possible

choice alternatives are candidates for selection, but more attractive alternatives (yielding higher

utility) are chosen with larger probability. In a game-theoretic setting, such noisy optimization has

two implications. First, players are no longer able to always optimize individual payoffs. Second,

since their opponents also exhibit noisy decision-making, players face strategic uncertainty, i.e.,

they are not sure what their opponents will do. These two features allow us to relax the restrictive

assumptions described above.

Experimental studies of rationality in game theory include McKelvey and Palfrey (1992), who

find that subjects frequently fail to choose the unique Nash equilibrium actions, although they

are able to make fewer errors over time with learning. McKelvey and Palfrey (1995) suggest that

such errors may be due to bounded rationality and that these errors can be modeled by using

latent utility components that are not reflected in pecuniary payoffs. They introduce the Quantal

Response Equilibrium (QRE) framework, in which all players select actions according to the quantal

choice model. Many general properties (e.g., existence, uniqueness, comparative statics) have been
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developed for models with both discrete and continue action sets (Chen et al. 1997, Anderson

et al. 2002). The QRE framework has reasonable good predictive power in many game-theoretic

settings (see Goeree and Holt 2001), including alternating-offer bargaining (Goeree and Holt 2000),

coordination games (Anderson et al. 2001), auctions (Anderson et al. 1998, Goeree et al. 2002),

constant-sum centipede games (Fey et al. 1996), traveler’s dilemma games (Capra et al. 1999), and

pricing contracts (Lim and Ho 2007, Ho and Zhang 2008). Although the QRE framework is well-

established in behavioral economics, it is relatively new in the operations management literature;

e.g., Su (2008) studies single-player newsvendor decisions using the quantal choice framework. We

wish to begin studying multi-player applications of the QRE framework by first considering a simple

capacity allocation game.

In this paper, we consider a supply chain with one supplier and two retailers. We conduct

laboratory experiments to study retailers’ ordering behavior in capacity allocation games. The

experiment is designed as a one-shot game and subjects receive cash payments based on their

performance in the experiments. We focus on the proportional allocation rule: retailers receive

allocated quantities that are proportional to their orders, so they have an incentive to inflate

their orders so as to secure more favorable allocated quantities when facing capacity shortfalls.

The experimental data suggest that the subjects do not make decisions as predicted by the Nash

equilibrium. To explain the experimental observations, we consider models of bounded rationality

based on the QRE concept. We structurally estimate the parameters of the models and show that

our models fit the data reasonably well. Our results show that the QRE can be a useful tool for

analyzing strategic interactions in operational settings.

In the next section, we describe our capacity allocation model and present a standard game-

theoretic analysis of the model. In Section 3, we describe the experimental design and provide some

general statistical results. In Section 4, we develop models of bounded rationality and use them

to analyze the capacity allocation games. In Section 5, we structurally estimate parameters of the

models using maximum likelihood. In section 6, we consider several alternative behavioral theories

and show that they do not explain the experimental data as well as our bounded rationality models.

Finally, we present concluding remarks in Section 7.

2 Capacity Allocation Game

In this section, we introduce the capacity allocation game in a supply chain consisting of one

supplier and two retailers. The supplier has a limited capacity K. Each retailer i submits an order

xi to the supplier. We use x−i to denote the order of retailer i’s competitor. Both orders will be
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filled if the supplier has sufficient capacity, i.e., K ≥ xi + x−i. Otherwise, the supplier divides its

capacity among the two retailers using the proportional allocation scheme: each retailer i receives

an allocated quantity yi that is proportional to her order xi, i.e.,

yi =
xi

xi + x−i
·K. (1)

This is a simple rule commonly used in semiconductor manufacturing (Mallik and Harker, 2004),

computing resources (Li and Li, 2004), and communication networks (Kelly, 1997). The retailers

operate in independent markets, each with constant demand D. We assume that the demand is

sufficiently large, i.e., D > K/2; otherwise, each retailer can simply place an order to meet her

entire demand and capacity allocation is no longer an issue.

Let the cost of each unit be c and the market price be p. Then, given an allocated quantity yi,

the profit of retailer i is p ·min{D, yi} − c · yi. The retailer earns the maximum possible profit of

(p− c) ·D when she secures an allocated quantity yi = D. For convenience, we shall express profits

relative to the above benchmark. Note that for every unit yi falls below demand D, retailer i incurs

a shortage cost of s ≡ p − c, and for every unit yi exceeds demand D, retailer i incurs a wastage

cost of w ≡ c. Therefore, the retailer’s profit is (p− c) ·D−w ·max{yi−D, 0}− s ·max{D− yi, 0}.

Too high an allocated quantity generates wastage costs while too low an allocated quantity leads

to shortage costs.

With the above setting, we have a two-player game between the retailers. When retailer i

submits an order xi and her competitor submits an order x−i, the payoff of retailer i is given by

πi(xi, x−i) = (p− c) ·D − w ·max

{
xiK

xi + x−i
−D, 0

}
− s ·max

{
D − xiK

xi + x−i
, 0

}
. (2)

The above game does not have a finite pure-strategy Nash equilibrium because each player’s

best response is always to submit an order that is higher than her opponent’s (see Cachon and

Lariviere, 1999a). To circumvent this problem, we make a minor modification to our model. We

assume that orders are constrained by an upper bound U , i.e., the retailers are not allowed to submit

any order exceeding U . The assumption is reasonable in practice: when U is large, orders above U

are not plausible. With this upper bound, it is easy to show that the unique Nash equilibrium in

our capacity allocation game is (U,U). In other words, both retailers submit the maximum allowed

order of U units and they both receive an equal allocated quantity of K/2 units in equilibrium.

Interestingly, the Nash equilibrium prediction is invariant to model parameters. As long as

they are in a capacity-constrained situation (i.e., K < 2D), in equilibrium, both retailers order U

units regardless of the shortage and wastage costs. Even if the upper bound U is very large, both
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retailers always order exactly U units – not one unit less. This is an extremely sharp prediction.

In the next section, we shall proceed to conduct an experimental investigation of this prediction.

3 Experiments and Results

We adopt a between-subjects experimental design. There are two treatment conditions with

different cost parameters as explained next. We use the following parameter values. The supplier’s

capacity isK = 90 and each retailer faces demandD = 50. (Note that the total demand is 2D = 100

and exceeds capacityK = 90.) The shortage cost is s = 5. The above parameters remain unchanged

across the two cost conditions. However, the wastage cost is chosen as w = 2 in one condition and

w = 20 in another. We refer to the former as the low-cost condition and the latter as the high-cost

condition. The order quantities of both retailers are restricted to be integers between 0 and U ,

where U = 100. During the experiment, subjects earned points as their payoffs. The payoff (in

points) for a subject whose allocated quantity is y is: 100−s ·max{D−y, 0}−w ·max{y−D, 0}. In

our experiment, we shifted the payoff function by a constant so that the maximum possible profit

for all treatment conditions is always 100 points.

We conducted one experimental session for each of the two treatments. In each session, there

were 30 subjects, all of whom are undergraduates at a major university in China. Each session

consisted of 30 decision rounds. In each round, every subject is randomly matched with another

subject and the pair plays the capacity allocation game, so each subject played the game 30 times

in total. Subjects are matched with every other subject at most twice, and they never know the

identity of their opponents. At the beginning of a session, the administrator explained to the

subjects the experimental instructions, as shown in the Appendix A. Then, subjects were assigned

a set of exercises to ensure their understanding of the task. Each subject was required to obtain

a perfect score on the exercise before starting the decision rounds. Each session lasted for about

60 minutes. When a session ended, the total points earned by each subject over all rounds were

summed and converted to cash payments. The average earning of each subject is approximately 50

RMB, which is equivalent to US$15 after adjusting by purchasing power parity.

We present some summary statistics of our experimental results. Figure 1 shows the distribution

of subjects’ orders as well as the Nash equilibrium prediction, for both high-cost (left panel) and

low-cost (right panel) sessions. There is a clear discrepancy between our data and the predictions

by the Nash equilibrium that both retailers will order 100 units for both cost conditions. In the

high-cost session, there are only 122 observations (13.56% of a total of 900 observations) that

coincide with the Nash equilibrium prediction; for the remaining 86.44% of our data, subjects’
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behavior goes against standard game-theoretic reasoning. Similarly, in the low-cost session, only

723 out of 900 observations (80.33%) agree with the Nash equilibrium prediction. Although this is

higher than the corresponding figure of 13.56% in the high-cost session, our results suggest that the

predictive power of Nash equilibrium remains inadequate. There remains a significant proportion

(about 20%) of the data that is inconsistent with the Nash equilibrium prediction.
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Figure 1: Distribution of orders in the high-cost condition (left) and low-cost condition (right),

compared to the Nash equilibrium prediction

Next, our data show systematic differences between the low-cost and high-cost conditions. For

example, the average order is 75.8 in the high-cost condition but it increases to 95.8 in the low-cost

condition. Furthermore, as many as 86.89% of the orders exceed 90 in the low-cost condition but

there is only 27.56% in the high-cost condition. Similarly, on the other extreme, only 2.11% of the

orders are less than 60 in the low-cost condition but the corresponding figure of 16.00% is much

higher in the high-cost condition. These observations suggest that subjects tend to order more

in the low-cost condition. However, the Nash equilibrium predicts that subjects always order 100

units regardless of model parameters.

Finally, our data also exhibit systematic time trends. In our experiment, each subject has the

chance to play the game 30 times. The average orders chosen by subjects in each round are shown

in Figure 2, together with the 5-th and 95-th percentiles of the orders in each round. From the

figures, we see a clear upward trend in orders over time. For example, in the high-cost condition

(left panel), the average order is 53.5 in Round 1 but increases to 85.6 by Round 30; similarly,

in the low-cost condition (right panel), the average order is 75.2 in Round 1 but increases to 98.3

by Round 30. As retailers increase their order quantities, their choices move toward the Nash
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equilibrium prediction of U = 100. Our results suggest that subjects are learning as they play the

game repeatedly.
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Figure 2: Time trends in the data for the high-cost condition(left) and low-cost condition(right)

In summary, our experimental results highlight three main empirical regularities that the Nash

equilibrium prediction fails to account for. First, subjects frequently submit orders that are smaller

than the Nash equilibrium prediction. Second, the deviation described above appears to be more

significant in the high-cost condition compared to the low-cost condition. Third, there are significant

time trends: the fraction of observations that coincide with the Nash equilibrium increases over

time.

In the next section, we shall explain these observations using a behavioral decision model.

4 A Model of Bounded Rationality

In standard game-theoretic reasoning, there is common knowledge of perfect rationality, which

entails two assumptions. First, every player is a perfect optimizer and is able to choose the best

response to her opponents’ actions. Second, every player can perfectly predict her opponents’

choices because her opponents are also perfectly rational and thus they choose their best responses

accordingly. These assumptions give rise to the Nash equilibrium concept, which often yields sharp

theoretical predictions. However, in practice, common knowledge of perfect rationality seldom

holds.

McKelvey and Palfrey (1995) proposed the idea of a Quantal Response Equilibrium (QRE),

which provides a way to incorporate bounded rationality into game-theoretic reasoning. Formally,

a QRE with two players can be defined as follows. Let πi(ai, a−i) denote player i’s payoff from
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choosing action ai when her opponent chooses a−i. Then, the QRE is a strategy profile in which

player i’s action Ai is a random variable defined over action set Si and her opponent’s action A−i

is also a random variable defined over action set S−i. For player i, each admissible action ai ∈ Si

is chosen with probability

Pi(ai) =
exp{Eπi(ai, A−i)/β}∑

a′i∈Si

exp{Eπi(a′i, A−i)/β}
. (3)

These choice probabilities are obtained by assuming that each player chooses a “noisy” best re-

sponse by maximizing Eπi(ai, A−i) + εi instead of maximizing Eπi(ai, A−i). We obtain the logit

specification above by assuming that the noise terms εi are i.i.d. with an extreme-value distribution

(McFadden, 1981).1 For the opponent, each admissible action a−i is also chosen with probability

given by a similar expression as (3).

Note that the QRE embeds a quantal choice model into each individual player’s decision frame-

work. In this way, the QRE captures bounded rationality in every player’s behavior. It satisfies two

important properties. First, rather than perfectly optimizing payoffs, players choose stochastic best

responses. They are noisy optimizers because all feasible actions are chosen with strictly positive

probability, although actions with higher expected payoffs are chosen more often. Second, players

face uncertainty over their opponents’ choices because they recognize that their opponents are also

playing stochastic best responses. Similar to the Nash equilibrium, the QRE is internally consistent

in the sense that players have rational expectations and possess correct beliefs of the probability

distributions over opponents’ actions.

The QRE model has a single parameter β. We call this the bounded rationality parameter. For

sake of parsimony, we use a common parameter β for every player; Rogers et al. (2009) incorporate

heterogeneity in players’ bounded rationality but we leave this for future research. We interpret

the magnitude of the parameter β as the extent of bounded rationality in each player’s behavior.

Specifically, it reflects the extent of cognitive and computational limitation of the player. When

β → ∞, the player lacks the ability to make any rational judgement and thus randomizes over

all alternatives with equal probabilities. On the other hand, when β → 0, the player chooses the

payoff-maximizing alternative with certainty, i.e., the QRE in this limiting case is consistent with

the Nash equilibrium. In this case, if there is more than one optimal choice, the player uniformly

randomizes among them.

1Haile et al. (2008) caution that if the error terms εi are allowed to be correlated or have different marginal

distributions, the QRE imposes no falsifiable restrictions on data. But, they note that “the standard logit specification

imposes such restrictions and can starkly limit the set of possible QRE outcomes in many games (p. 196).”
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We now apply the QRE framework to analyze the capacity allocation game. Under the propor-

tional allocation rule, retailer i receives allocated quantity yi =
xi

xi+x−i
·K and the resulting payoff

function πi(yi) is

πi(yi) = M − s ·max{D − yi, 0} − w ·max{yi −D, 0}, (4)

where M is the maximum possible profit of each player. Note that the QRE does not change as

M varies. This is because the expected profit from each possible choice is shifted by the same

amount that does not change the relative payoffs and thus does not change the choice probabilities

in equation (3). Thus, in our experiment, we can exogenously fix M to be any arbitrary constant,

while K, D, s, w are set as parameters that can be manipulated.

We provide some numerical examples with parameters K = 90, D = 50, s = 5, and w = 20,

as in the high-cost condition in our experiment. Figure 3 presents the QRE distributions with

different values of β. These choice distributions suggest that the QRE model can explain our data

better since it allows for choices below the Nash equilibrium prediction of 100. As β increases,

the distribution shifts towards the left and eventually converges to the uniform distribution. As

β decreases, the QRE distribution becomes more concentrated around 100 and converges toward

a point mass at the Nash equilibrium prediction of 100. In this way, the bounded rationality

parameter β provides flexibility in model fitting.
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Figure 3: QRE distributions for the high-cost condition with different values of β

Similarly, we numerically compute the QRE for the low-cost condition in our experiment, with

parameters K = 90, D = 50, s = 5, and w = 2. Note that the high-cost condition and the low-cost

condition differ only in w. For the same β, it is interesting to compare the QRE distributions under

the two different cost conditions. For example, Figure 4 presents the two QRE distributions for the

case where β = 12. The figure shows that even with the same value of β, the QRE distributions

may change with the cost parameter w. Particularly, for the low-cost condition, choices tend to be
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more clustered around 100. This is one of the empirical regularities observed in our experiment. On

the other hand, recall that the Nash equilibrium yields the same prediction for both cost conditions.
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Figure 4: QRE distributions for the high-cost and low-cost conditions with β = 12

The numerical examples above show that the QRE model may be a good candidate to help

explain our experimental observations. However, the model has a shortcoming. All the examples

in Figures 3 and 4 yield unimodal QRE distributions, either with a bell-shape or with a peak at

100. In contrast, the data (see Figure 1) may exhibit two peaks, one at 100 and another around the

60-69 range. Thus, the restriction to unimodal distributions may compromise the performance of

the QRE model and it is always in theory possible to find another model that fits the data better.

Therefore, our primary goal is not to find the best-fitting model, but simply to understand how

much better the QRE performs compared to the Nash equilibrium benchmark.

In addition, we enrich the standard QRE model by allowing the bounded rationality parameter

β to change over time. In our experiment, the data suggest that players become “more rational”

through repeated game play because their orders increase and converge toward the Nash equilibrium

prediction. This phenomenon indicates that the bounded rationality parameter β may in fact

decrease over time due to learning. To incorporate such an effect, we allow the bounded rationality

parameter in round t, denoted by β(t), to decay exponentially over time:

β(t) = β + (α− β)e−δ(t−1). (5)

Similar approaches have been adopted in the literature (e.g., McKelvey and Palfrey, 1992). In

particular, we have β(1) = α and β(∞) = β, so we may interpret α and β respectively as the initial

and eventual bounded rationality parameters, and δ as the rate of learning. To reflect the learning

patterns observed in the data, we expect the value of α to be larger than the value of β, so β(t)

would decrease from α towards β as the round t goes from 0 to ∞.

10



5 Maximum Likelihood Estimation

In this section, we fit the model to our data from the experiment. We use the principle of max-

imum likelihood to obtain parameter estimates and interpret subjects’ behavior in the experiment.

We specify the likelihood function and describe how it depends on our model parameters. In the

estimation, we fit up to four parameters: the initial bounded rationality α, the eventual bounded

rationality β, the learning rate δ, and a noise term ϵ (explained below). Given parameters α, β and

δ, let ft(x) be the probability of choosing an order quantity x in round t. According to the QRE

model described by equation (3), it follows that

ft(x) =
exp{Eπ(x,Rt)/β(t)}∑

x′∈S
exp{Eπ(x′, Rt)/β(t)}

. (6)

Here, β(t) is the bounded rationality parameter in round t as given by equation (5), and Rt is a

random variable with distribution {ft(·)} over the choice domain S = {0, 1, . . . , 100}. Since the

capacity allocation game is symmetric and we use the same bounded rationality parameter for both

retailers, the same QRE distribution will apply to both of them. Let X = {xit|i = 1, 2, ...I; t =

1, 2, ..., T} be the order quantities in the experimental data, where xit represents the order chosen

by subject i in round t, I is the total number of subjects, and T is the total number of decisions

rounds in a session. Then, we have the following likelihood function:

L(α, β, δ, ϵ|X) =
I∏

i=1

T∏
t=1

{
(1− ϵ) · ft(xit) + ϵ · 1

|S|

}
, (7)

that is, with probability (1 − ϵ), the player chooses an order according to the QRE distribution

{ft(·)}, and with probability ϵ, the player uniformly chooses an order over the choice domain

S = {0, 1, . . . , 100} so that the conditional probability of observing xit is 1/|S| with |S| = 101. The

adoption of a uniform error term ϵ is common in experimental economics (see, e.g., Harless and

Camerer, 1994). If the specified model fits the data perfectly, we would have ϵ = 0. In practice, we

expect ϵ to be positive but small. To fit the model, we maximize the likelihood function L(·) over

the four parameters α, β, δ, ϵ.

There are several special cases of our model that deserve special attention. First, when we

restrict α = β = δ = 0 (hence β(t) ≡ 0 over all t), the QRE reduces to the Nash equilibrium.

In this case, there is only a single free parameter ϵ. Using the generalized likelihood principle, we

may check whether the above three parameters (α, β and δ) are indeed zero; if not, the data would

provide evidence in favor of bounded rationality (in the form of QRE). Second, when we restrict

α = β and δ = 0 (hence β(t) ≡ β over all t), there is no learning because the bounded rationality
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parameter would remain constant over all rounds. We call the second case the static model, which

has two parameters β and ϵ. This two-parameter special case can be used to detect learning effects.

Third, we may also restrict β = 0 (hence β(t) = αe−δ(t−1)). This special case allows for bounded

rationality to be present initially (through the parameter α) but assumes that choice behavior

would eventually approach perfect rationality and match the Nash equilibrium prediction. Thus,

we term this special case the transient model, which has three parameters α, δ and ϵ. We use this

special case to check whether boundedly rational behavior is persistent over time.

Table 1: Estimation result of high-cost condition

Theoretical model Nash Static Transient Full Model

α - - 18.745 20.912

β - 13.410 - 8.260

δ - - 0.027 0.079

ϵ 0.873 0.004 0.004 0.004

Number of parameters 1 2 3 4

Log-likelihood −3940.0 −3720.1 −3465.3 −3460.4

Likelihood ratio test against Full model χ2 = 959.2 χ2 = 519.4 χ2 = 9.8 -

(p = 0.000) (p = 0.000) (p = 0.002)

We first fit the models using data from the high-cost session. All numerical computations are

performed using Matlab. Table 1 reports the parameter estimates for our full QRE model as well

as the special cases described above. We emphasize three observations from Table 1.

1. The log-likelihood score of the Nash equilibrium model is significantly smaller than those

of the other three models. The likelihood ratio test between the Nash model and any of

other three models yields χ2-statistics in excess of 100 (p-value < 0.0001), suggesting that

all model parameters α, β, and δ are significantly positive. This result indicates that the

bounded rationality models (based on QRE) fit our experimental data better than the model

of perfect rationality (based on Nash equilibrium). In fact, for the Nash equilibrium model,

the maximum likelihood estimate of the noise parameter is ϵ = 0.873, which is much larger

than the corresponding estimates of other models. This suggests that the Nash equilibrium

model fits the data poorly and thus gives rise to a large noise parameter.

2. The static model, which assumes no learning, yields a log-likelihood score of −3720.1, while

the full model yields a log-likelihood score of −3460.4. The likelihood ratio test statistic is
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χ2 = 519.4 (p-value < 0.0001), so the estimates of α and δ are statistically significant. This

result provides evidence of learning in the data.2

3. Comparing the last two columns of Table 1, we see that the log-likelihood scores of the full

model and the transient model are −3460.4 and −3465.3 respectively. The likelihood ratio

test yields χ2 = 9.8 (p-value = 0.0017), which suggests that β (interpreted as a measure

of bounded rationality that persists after repeated learning) is significantly positive. This

implies that the bounded rationality parameter will eventually converge to a positive value of

8.260, though convergence is not necessarily guaranteed after the 30 rounds of game play in

the data. Therefore, our result shows that although subjects are learning through repeated

game play, bounded rationality remains a persistent phenomenon.

Next, Table 2 presents the analogous results for the low-cost session. We make the following

three observations.

1. Similar to our observation from the high-cost condition, the Nash equilibrium model performs

the worst. In particular, compared to the full model (with log-likelihood of −1249.2), the Nash

equilibrium model (with log-likelihood of −1261.3) is strongly rejected (χ2 = 24.2, p-value

< 0.0001). This suggests that the bounded rationality is again significant in the low-cost

condition. However, the evidence appears weaker since the test-statistics are now smaller,

though still highly significant.

2. Similar to before, we again find some evidence of learning, although somewhat weaker. For

example, comparing the middle two columns, we see that the two-parameter static model

without learning is rejected in favor of the three-parameter transient model with learning

(χ2 = 5.2, p-value = 0.0225).

3. We find no evidence for the persistence of bounded rationality in the low-cost condition. In the

full model, maximum likelihood estimation yields β = 0, i.e., bounded rationality eventually

vanishes. This result is different from the high-cost condition.

2To check the robustness of our result, we consider an alternative learning curve of the form β(t) = β + α
1+δ(t−1)

;

see, e.g., De Bruyn and Bolton (2008). Compared to our learning equation in (5), which assumes exponential

discounting of the bounded rationality parameter over time, their specification assumes hyperbolic discounting. With

the alternative learning curve, the static no-learning model is again rejected in favor of the full model (χ2 = 520.0,

p-value < 0.0001).
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Table 2: Estimation result of low-cost condition

Theoretical model Nash Static Transient Full Model

α - - 0.250 0.250

β - 0.161 - 0.000

δ - - 0.029 0.029

ϵ 0.199 0.189 0.187 0.187

Number of parameters 1 2 3 4

Log likelihood −1261.3 −1251.8 −1249.2 −1249.2

Likelihood ratio test against Transient model χ2 = 24.2 χ2 = 5.2 - -

(p = 0.000) (p = 0.023)

Our analysis thus far is encouraging. The structural estimation results suggest that a model

of bounded rationality in the form of QRE can provide a good fit of the data.3 Although our

experimental investigation yields several anomalies that cannot be explained by the standard Nash

equilibrium prediction, we have shown that the QRE provides an appealing alternative.

In Figure 5, we compare the predictions of our full model with the data; we present plots for

Rounds 1-10 (top), Rounds 11-20 (middle) and Rounds 21-30 (bottom), in the high-cost (left) and

low-cost (right) sessions. Dividing the data and predictions this way, we see that the QRE model

appears to fit our data reasonably well, both over time and over the two cost conditions.

To conclude this section, we raise an open question. What determines the level of bounded

rationality and how does it vary across games? In our analysis above, we have seen how estimates

of the bounded rationality parameter β can vary substantially between the high cost and low cost

conditions. Why is this so? In general, some games may be more complex than others. When

playing “simpler” games, people may be able to behave “more rationally” and thus the bounded

rationality parameter may be smaller. A comprehensive theory that systematically identifies how

the level of bounded rationality β depends on the specific problem context (e.g., rules of the game)

will be extremely useful because it will allow us to generate precise predictions on outcomes without

first having to estimate β. We believe this is an important issue for future research. The capacity

allocation setting in this paper may provide a useful starting point: setting different allocation rules

3To guard against data overfitting, we repeat our analysis using three-fold cross validation. In the high-cost

condition, we obtain log-likelihood scores for our 4 models of −3953.3,−3739.4,−3496.4,−3474.5, which provide

even stronger support for the full model (χ2=43.8, p-value< 0.0001). However, in the low-cost condition, we obtain

the log-likelihood scores of −1283.2,−1277.4,−1277.6,−1278.3, suggesting that learning is not significant but the

QRE model is still preferred over Nash (χ2=11.6, p-value< 0.001).
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Figure 5: Comparison between the experimental data and the full model predictions in the high-

cost condition (left) and low-cost condition (right), for Rounds 1-10 (top), Rounds 11-20 (middle)

and Rounds 21-30 (bottom)

allow us to study different games while remaining within a common operational setting. Doing so

isolates the contextual effects without potentially introducing other confounding factors.

6 Alternative Explanations

We have seen that the QRE model gives more accurate and nuanced predictions of our capacity

allocation games compared to Nash equilibrium. However, there could be alternative explanations

of the data. In this section, we consider several alternatives and compare them to the QRE. Our

results suggest that it is not easy to find a simple and compelling explanation of the data, and the

QRE model appears to be an attractive candidate.

6.1 Modified utility functions

One of the most direct way of perturbing a model to generate different predictions is to modify

the underlying utility functions. In the capacity allocation games, our experimental data show that
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subjects order substantially smaller quantities than the Nash equilibrium when players maximize

expected payoffs. If players instead seek to maximize some other utility function, would they choose

to order smaller quantities in equilibrium? For example, players may be loss-averse and hence may

shy away from placing large orders that may generate negative payoffs.

To test this conjecture, we consider several alternative utility functions. Specifically, we consider

players who may be averse to (i) losses, (ii) leftover inventory, (iii) shortages, and (iv) inventory

errors. We model the above using a piecewise linear utility term, similar to Schweitzer and Cachon

(2000) and Ho, Lim, and Cui (2010). We find that under these reference-dependent utility functions,

the Nash equilibrium x∗ = 100 remains unchanged. Details are in Appendix B.

The above results suggest that our capacity allocation game is a useful vehicle for identifying

bounded rationality behavior. Since the Nash equilibrium is extremely robust to alternative utility

specifications, the deviations that we observe require another explanation, such as the QRE.

6.2 Incomplete information

Another plausible explanation for why subjects do not play the Nash equilibrium is because

they do not trust their opponents to do so. In our capacity allocation game, the Nash equilibrium

x∗ = 100 is the best response to itself. However, if the opponent chooses another quantity (e.g.,

50 due to demand being 50), then ordering 100 may in fact be a very bad thing to do and thus

the player should place a smaller order instead. Such reasoning may justify the under-ordering

observed in our data.

To formalize this intuition, we extend our model to incorporate private information over player

types. There are two types of players: strategic and non-strategic. With probability p, the player

is perfectly rational, and with probability 1− p, the player always orders exactly equal to demand

(i.e., 50); we feel that truth-telling is a natural type of non-strategic behavior in capacity allocation

games. With this setup, we have a game of incomplete information.

In the Nash equilibrium, non-strategic players always order 50 (by assumption) while strategic

players may order either 100 or 62. Specifically, when p is sufficiently large, strategic players order

100 (i.e., the best response to strategic players) and when p is sufficiently small, strategic players

order 62 (i.e., the best response to non-strategic choice of 50 units). Detailed calculations are

shown in Appendix B. Although this model admits choices below 100, it does not accommodate

choices between 62 and 100, which account for more than 60% of our data in the high-cost session.4

4In theory, it is always possible to “fill in the gaps” by introducing additional player types and specifying their

preferences so that their equilibrium orders fall between 62 and 100. However, doing so increases model complexity

because we would have to specify both the probability and preferences of each type.
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Therefore, we conclude that incomplete information does not provide a satisfactory explanation of

the data.

6.3 Iterative thinking

Finally, we consider another possible explanation of why subjects do not play the Nash equi-

librium, based on models of iterative thinking. In these models, players repeatedly perform best

response calculations; these calculations may converge to the Nash equilibrium, but if players ter-

minate this process prematurely they may make non-Nash choices. This type of player behavior

forms the basis of level-k models (Stahl and Wilson, 1995) and cognitive hierarchy models (Camerer

et al., 2004). We check whether limited iterative thinking can provide an alternative explanation

for our data.

In capacity allocation games, one form of non-strategic behavior could be ordering the true

demand (i.e., choosing x = 50). Following the terminology of Stahl and Wilson (1995), we call such

players level-0 players. Applying level-k models, we assume that level-k players best-respond to

level-(k−1) players, so players of sufficiently high levels play the Nash equilibrium. In our capacity

allocation games, letting Lk denote the choices of level-k players, it is easy to see that L0 = 50,

L1 = 62, L2 = 77, L3 = 96, and Ln = 100 when n ≥ 4.5 Then, choosing a level-k model to explain

our experimental data comes down to finding a distribution of player types. Specifically, let pk

denote the probability of level-k players in the population. Then, the level-k model predicts that

with probability pk, the quantity Lk will be chosen.

It is clear that limited iterative thinking models can accommodate choices below the Nash

equilibrium of 100. However, only orders within a relatively small discrete set of choices, e.g.,

{50, 62, 77, 96, 100}, are admissible, and all other choices in between can only be explained using

a noise term ϵ. In contrast, the QRE model allows for all choices below 100. This comparison

suggests that the QRE provides a simple but compelling way to explain the observed data.6

7 Conclusion

We conduct laboratory experiments of capacity allocation games and identify several key empir-

ical regularities in the data. Specifically, subjects tend to order much less than the Nash equilibrium

5Alternatively, level-k players can best-respond to all lower types (see Camerer et al., 2004). In our capacity

allocation game, this implies that the choices Lk increase in k more slowly but may converge to L∞ < 100.
6We fit the level-k model to the data using maximum likelihood as outlined in Section 5. Despite having a

larger number of parameters (since we allow for a general distribution of thinking levels), the level-k model yields

log-likelihood scores of -3894.9 and -1258.1 for the high-cost and low-cost data. In other words, the level-k model

performs worse than our static model, with corresponding likelihood scores of -3720.1 and -1251.8.
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prediction, although they do learn to adjust their orders upward over time, and the magnitude of

disparities relative to the Nash equilibrium prediction appears to be more substantial in the high-

cost condition. Our goal is to develop a descriptive model that explains subjects’ ordering behavior.

We use the QRE framework to fit our experimental data, which is based on the premise that

players stochastically “better-respond” (rather than “best-respond”) to their decision environments.

They do not always choose the optimal alternative, but more attractive alternatives are chosen more

frequently. In a game-theoretic setting, when all players stochastically respond to one another’s

actions, we have a QRE. The QRE integrates two important strategic considerations — inability

to perfectly optimize one’s own actions and lack of absolute certainty over opponents’ actions —

into a unified framework involving decision errors and noise. We find that the QRE framework is

versatile. When appropriately calibrated, it fits our data reasonably well. When we test several

nested special cases (including the Nash equilibrium), we find evidence for suboptimal decision-

making, learning through repeated game play, as well as persistence of bounded rationality over

time. Finally, we ask the question: could there be alternative behavioral models that explain our

data equally well, if not better? To this end, we consider several alternative behavioral decision

models that incorporate modified utility functions, incomplete information, and limited iterative

thinking. Our results indicate that the QRE model provides a simple but compelling explanation

of the behavior observed in the data.

We conclude this paper with two thoughts. First, we feel that in operations models, game-

theoretic analysis may sometimes yield implausible predictions. For example, in queueing admission

games (e.g., Naor, 1969), equilibrium behavior has a threshold structure in the sense that customers

always join or always balk depending on whether queue length is above or below a threshold.

Similarly, a more recent example in the context of strategic customer behavior in buy-or-wait

games (see Su and Zhang, 2008) suggests that customers either all buy or all wait, depending on

model parameters. This type of bang-bang behavior seems too extreme to be true empirically. In

such situations, we feel that the QRE can be a natural alternative platform for rigorous analysis.

In some cases, we speculate that the QRE may even generate fresh insights. Second, although

we have in this paper focused on the capacity allocation game, we remind readers that the QRE

framework is simple yet general and can be readily applied to other operations contexts such as

those mentioned above. In some sense, as long as the modeling strategy involves choices and payoff

functions, we can always infuse the model with decision noise to study the impact of bounded

rationality in the form of QRE.
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Online Appendix A: Instructions

Thank you for participating in this decision-making experiment. The instructions are simple;

if you follow them carefully and make good decisions, you could earn a considerable amount of

money, which will be paid to you in cash before you leave today. Different subjects may earn

different amounts of cash. What you earn today depends partly on your decisions, partly on the

decisions of others, and partly on chance.

The experiment will consist of 30 decision rounds. In each round, you will be randomly matched

with another player in this room.

The decision making task is outlined as follows. Each player will take on the role of a retailer

in a supply chain. Retailers order products, receive stock, and sell them on the market. In each

decision round, you will make a single decision: how many units to order. The quantity of stock

you receive may be different from your order and will depend on the orders chosen by you as well as

the other player whom you are matched with. Your objective is to receive a quantity of stock that

is as close as possible to the quantity demanded on the market (a fixed number of units). When the

stock you receive is equal to the quantity demanded, you will earn the maximum possible profit.

However, if you receive too much or too little stock, you will incur penalties that will be subtracted

from your profit earnings. Therefore, your profit will depend on your order as well as the order of

the other player whom you are matched with.

It is important that you do not look at the decisions of others, and that you do not talk, laugh

or exclaim aloud during the experiment. You will be warned if you violate this rule the first time.

If you violate this rule a second time, you will be asked to leave and you will not be paid. That is,

your total earnings will be zero.

Experimental Procedures

The following steps will be repeated for every decision round that you participate in.

Step 1: Players submit orders. Each player chooses an integer number, ORDER, between 0 and

100. This is the number of units you would like to order. You will decide on your ORDER without

seeing the decisions made by the other player.

Step 2: Players receive stock. There is a total of 90 units of stock available. The following

procedure describes how these units will be divided between you and the player you are matched

with. The computer calculates TOTAL ORDERS, which is the sum of the orders placed by you

and the player you are matched with. This number is then revealed to both of you. If TOTAL

ORDERS is less than or equal to 90, the STOCK you receive is equal to the ORDER you placed.
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If TOTAL ORDERS is greater than 90, the STOCK you receive is calculated by the following

formula: STOCK = (ORDER / TOTAL ORDERS) * 90.

Let us consider following examples.

1. Suppose you placed an ORDER of 30 and TOTAL ORDERS is revealed to be 70. Then, you

will receive a STOCK of 30.

2. Suppose you placed an order of 50 and TOTAL ORDERS is revealed to be 100. Then, you will

receive the following STOCK: STOCK = 50 / 100 * 90 = 45.

Step 3: Players earn profit. The demand for each player is 50 units in every decision round.

Your goal is to receive a STOCK as close as possible to 50 units. Depending on whether your

STOCK is equal, less than, or greater than 50, you will receive point earnings as described below.

Point Earnings

If your STOCK is equal to 50, you earn the maximum possible 100 points in this round. If

your STOCK is less than 50, you have too few units. For every unit that you are short, you incur

a penalty of 2 points, which will be subtracted from the maximum possible of 100 points for this

round. Therefore, your point earning this round will be: 100 - 2 * (50 - STOCK). If your STOCK

is greater than or 50, you have too many units. For every excess unit that you have, you incur

a penalty of 5 points, which will be subtracted from the maximum possible of 100 points for this

round. Therefore, your point earning this round will be: 100 - 5 * (STOCK - 50).

Final Dollar Payoff

Your dollar earnings for the experiment will be determined as follows. First, we will add up

your total point earnings from all 30 rounds. Then we will multiply your point earnings by 0.025.

That is, each point you earn is worth 0.025 RMB. This is the amount you will be paid when you

leave the experiment. Note that the more points you earn, the more money you will receive.
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Online Appendix B: Details on alternative explanations in Section 6

Proposition 1. The Nash equilibrium is 100 when players are averse to negative profit, wastage,

shortage, or inventory error, for both high-cost and low-cost conditions.

Proof: We provide the proof for the case of loss aversion. The other cases are similar. When

players are loss averse, they face the utility function:

u(x) =

π(x), π(x) ≥ 0

λπ(x), π(x) < 0,

where λ ≥ 1. Two properties of π1(x1, x2) are used in the proof: (i) π1(x1, x2) increases in x1 when

x1 ≤ max{1.25 ∗ x2, 50}; (ii) π1(x1, x2) decreases in x1 when x1 ≥ max{1.25 ∗ x2, 50}. Next, we

apply iterated strict dominance to our capacity allocation game.

Set S0 = [0, 100], and x
′
1 > x1.

If x
′
1 < 50, then u1(x

′
1, x2) − u1(x1, x2) ≥ π1(x

′
1, x2) − π1(x1, x2) > 0 for any x2 ∈ S0. So any

x1 < 50 is strictly dominated. Thus S1 = [50, 100]; this is the interval of best-response.

If x
′
1 < 50 ∗D/(K −D) = 50 ∗ 1.25, then u1(x

′
1, x2) − u1(x1, x2) ≥ π1(x

′
1, x2) − π1(x1, x2) > 0

for any x2 ∈ S1. So any x1 < 50 ∗ 1.25 is strictly dominated. Thus S1 = [50 ∗ 1.25, 100]; this is the

interval of best-response.

Let Sk = ⌊Sk, Sk⌋, where Sk = min{1.25k−1 ∗ 50, 100} and Sk = 100.

Finally, limk→∞ Sk = Sk = 100, so the Nash equilibrium point is 100.

�

The next result describes the equilibrium for the incomplete information game. Here, we con-

sider a game where order quantities can be any real number in [0,100] rather than integers only

(The integrality constraint introduces notational complexities without changing the nature of the

equilibrium).

Proposition 2. There exists two threshhold values p∗1 =
26w

26w+27s and p∗2 =
40w

40w+41s such that (1) if

p < p∗1, the Nash equilibrium is (62.5, 62.5); (2) if p∗1 ≤ p ≤ p∗2, the Nash equilibrium is (62.5, 62.5)

and (100, 100); and (3) if p > p∗2, the Nash equilibrium is (100, 100).

Proof: Referring to the two properties of π1(x1, x2) in the previous proof, π1(x1, x2) is max-

imized at x1 = min{max{1.25 ∗ x2, 50}, 100}. Let x∗1(x2) be the optimal value which maximizes

Eπ
′
1(x1, x2) = pπ1(x1, x2) + (1− p)π1(x1, 50). According to the two properties above, it holds that
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x∗1(x2) ∈



[50, 62.5] when x2 ≤ 40

(50, 62.5] when 40 < x2 ≤ 50

[62.5, 78.13] when 50 < x2 < 62.5

[62.5,min{1.25x2, 100}] when x2 ≥ 62.5.

(8)

In our capacity allocation games, two players are symmetric, so the Nash equilibrium point

should satisfy x∗1(x2) = x2. From equation (8), we have that the Nash equilibrium point must be

in the interval [62.5,min{1.25x2, 100}] if it exists.

Next, we discuss the extreme point when x1 ∈ [62.5,min{1.25x2, 100}] and x2 ∈ [62.5,min{1.25x1, 100}].

In this case, π1(x1, x2) = 100− s ∗ (D− x1
x1+x2

K) and π1(x1, 50) = 100−w ∗ ( x1
x1+50K −D). It can

be shown that Eπ
′
1(x1, x2) = pπ1(x1, x2) + (1− p)π1(x1, 50) would be maximized at either the left

bound 62.5 or the right bound min{1.25x2, 100}, that is x∗1(x2) = 62.5 or min{1.25x2, 100}.

Finally, it can be shown that: (1) when 0 ≤ p < 26w
26w+27s , x

∗
1(x2 = 62.5) = 62.5 and x∗1(x2 =

100) = 62.5, so the Nash equilibrium is (62.5, 62.5); (2) when 26w
26w+27s ≤ p ≤ 40w

40w+41s , x
∗
1(x2 =

62.5) = 62.5 and x∗1(x2 = 100) = 100, so the Nash equilibrium is (62.5, 62.5) and (100, 100); (3)

when 40w
40w+41s < p ≤ 1, x∗1(x2 = 62.5) = 1.25 ∗ 62.5 and x∗1(x2 = 100) = 100, then the Nash

equilibrium is (100, 100).

�

In our capacity allocation games, p∗1 = 0.7939, p∗2 = 0.7960 for high-cost condition; and p∗1 =

0.2781, p∗2 = 0.2807 for low-cost condition.
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