
Kinegami: Open-source Software for Creating
Kinematic Chains from Tubular Origami

D. A. Feshbach, W.-H. Chen, D. E. Koditschek, C. R. Sung

Abstract: Arms, legs, and fingers of animals and robots are all examples of
“kinematic chains” - mechanisms with sequences of joints connected by effec-
tively rigid links. Lightweight kinematic chains can be manufactured quickly and
cheaply by folding tubes. In recent work [Chen et al. 23], we demonstrated that
origami patterns for kinematic chains with arbitrary numbers of degrees of free-
dom can be constructed algorithmically from a minimal kinematic specification
(axes that joints rotate about or translate along). The work was founded on a cat-
alog of tubular crease patterns for revolute joints (rotation about an axis), pris-
matic joints (translation along an axis), and links, which compose to form the
specified design. With this paper, we release an open-source python implemen-
tation of these patterns and algorithms. Users can specify kinematic chains as a
sequence of degrees of freedom or by specific joint locations and orientations. Our
software uses this information to construct a single crease pattern for the corre-
sponding chain. The software also includes functions to move or delete joints in
an existing chain and regenerate the connecting links, and a visualization tool so
users can check that the chain can achieve their desired configurations. This pa-
per provides a detailed guide to the code and its usage, including an explanation
of our proposed representation for tubular crease patterns. We include a number
of examples to illustrate the software’s capabilities and its potential for robot and
mechanism design.

1 Introduction
Origami is a promising platform for constructing mechanisms and robots due to its
lightweight structure, parameterizable mechanical properties, and cheap materials
and fabrication [Rus and Tolley 18]. The low cost also gives it potential to broaden
access to robot construction, but the required design expertise – both for mecha-
nisms and origami patterns – can be a barrier to entry. Software tools can help
users generate origami designs with desired mechanical behavior, and algorithm-
assisted systems designed for exploratory, human-in-the-loop workflows would be
particularly helpful for users without the expertise to directly specify exactly what
they want. We present such a tool for kinematic chains (sequences of joints con-
nected by rigid links) made of tubular origami, based on the pattern library and
joint placement algorithms from [Chen et al. 23].

FESHBACH, CHEN, KODITSCHEK, SUNG

Previous work in computational origami has developed pattern generation tools
for many classes of static structures including branching figures [Lang 96], tessel-
lations [Bateman 02], polyhedral surfaces [Demaine and Tachi 17], and box pleat-
ings [Lang and Tsai 18]. Other software lets users design their own patterns and
simulate their kinematics [Tachi 10, Ghassaei et al. 18, Suto et al. 23] and mechan-
ics [Gillman et al. 18, Liu and Paulino 18].

Our previous work [Chen et al. 23] introduced a catalog (Figure 2) of tubular
origami patterns for revolute and prismatic joints connected by bending and twist-
ing links. In that paper, we also provided algorithms to construct the path geometry
of a whole chain given the kinematic specifications, i.e., the rotational axes for rev-
olute joints and the translational axes for prismatic joints. These algorithms append
joints one by one, solving for the new joint’s position and orientation such that it
has the specified axis of motion and has a feasible link path from the previous joint.

In this paper, we use the results from [Chen et al. 23] to create an open-source
tool for algorithm-assisted design exploration of kinematic chains made of tubular
origami. Using our system requires minimal technical background, namely, basic
familiarity with matrix-vector math and python. The system supports a variety of
user workflows to explore designs and configurations, as summarized in Figure 1.
In particular, because the sufficient conditions developed in [Chen et al. 23] that
guarantee a non-intersecting physical implementation may yield overly conserva-
tive (large limbed) designs, we add editing support to rework the automatically gen-
erated crease pattern (e.g., use human intuition to develop a more compact but still
non-intersecting implementation). Moreover, compared to [Chen et al. 23], we add
capacity to visualize link structures (by their bounding cylinders), and plot a variety
of configurations of a given chain design. Our code, and module folding videos,
are at https://sung.seas.upenn.edu/research/kinegami/.

Additionally, we provide a fabrication-agnostic mathematical representation for
tubular origami patterns. The code from [Chen et al. 23] calculates patterns directly
in 2D as rectangles with duplication at the sides: it builds physical tubes by rolling
the rectangles around and adhering the duplicated sides together. However, tubu-
lar origami structures can be manufactured in other ways [Wickeler et al. 23], so
it is more general to separate out the pattern representation from the fabrication
file generation. Therefore in this paper we represent patterns with a graph respect-
ing the cylindrical wraparound: the duplication involved in 2D-to-3D fabrication is
handled in its own method rather than being part of the underlying representation.
Vertices are represented using a 2D parameterization of the prism surface where
one coordinate wraps modularly about the tube. Edges represent shortest paths on
the surface connecting the vertices. There is initially ambiguity about which short-
est path an edge should correspond to, but we resolve this by proving (Lemma 1)
that a straight crease in a tubular pattern cannot travel more than halfway about the
tube, so an edge is naturally associated with a unique globally-shortest path (unless
the vertices are radially opposite: in that case there are exactly two globally-shortest
paths, whose representations we can distinguish by vertex ordering, and if either is
creased then both must be).

https://sung.seas.upenn.edu/research/kinegami/

KINEGAMI: OPEN-SOURCE SOFTWARE FOR CREATING KINEMATIC CHAINS FROM TUBULAR
ORIGAMI

Append a new joint/waypoint

User specifies:
Move existing

joint/waypoint

Delete a

joint/waypoint

User edits existing chain design

Joint Placement Algorithm

Finds position on and orientation about axis of motion

Safe Version OR Compact Version

Axis of motion OR
Exact position

and orientation

Algorithm checks if valid link paths exist

for the proposed addition or modification

Kinegami Chain Data Representation

Structural Design:

Relative joint positions/orientations,

link paths

Configuration:

Joint states (default to 0) and

global positions/orientations

Change

joint

states

Crease Pattern

Physical Chain Visualization

Fabricate

Generate

User satisfied

with design

Show User wants to see the

same design in a

different configuration

Valid: apply proposed change

Add joint, and

waypoints routing the

path along the way

Invalid: reject

change and

warn user

User not satisfied with design

Figure 1: Flow chart depicting system capabilities to illustrate potential user work-
flows. Boxes with black background are user actions to edit the chain design or
configuration, and arrows with italicized labels are user judgements or actions. The
crease pattern is based only on the chain’s structural design, while the visualization
also depends on the current configuration (joint states).

The remainder of the paper is structured as follows. Section 2 defines the rel-
evant concepts in mechanisms and robotics. Section 3 reviews the tubular origami
modules and joint placement algorithms from [Chen et al. 23], gives an overview
of our system’s capabilities for exploring chain designs and configurations, and
shows example chains. Section 4 describes mathematical details of our graph rep-
resentation for tubular origami, with proof of Lemma 1 and explanation of why it is
necessary. Section 5 provides a user guide to our python code. Section 6 concludes
with directions for future work.

2 Background
2.1 3D Rigid Transformations, Reference Frames, and Poses
The (proper) 3D rigid transformations describe the ways in which one can move
an object in 3D space without deforming or reflecting it. Such transformations map
each point in the object to its new location, i.e., they are maps R3! R3, but they
are commonly encoded by 4� 4 matrices operating on vectors in homogeneous

FESHBACH, CHEN, KODITSCHEK, SUNG

coordinates(position vectors with 1 appended). Speci�cally, a (proper 3D rigid)
transformation matrixis a 4� 4 matrix of the form

T =
�

R t
0> 1

�
; R=

�
x̂ ŷ ẑ

�
(1)

whereR is a rotation matrix (i.e., x̂; ŷ; ẑ are an orthonormal basis ofR3 ordered
such that̂x � ŷ = ẑ) andt is the translation vector. This de�nes the 3D rigid trans-
formationv 7! Rv+ t.

The terms “frame”, “pose”, and “transformation” are closely related: they are
all represented by this class of matrices, but they are used in slightly different con-
texts. Aposeis the position and orientation of some object. A (reference)frame
de�nes a coordinate system with respect to which other things are encoded: the
pose of an object de�nes a frame, but frames can also be more abstract, such as the
global framegiven by the origin and coordinate axes of the visualization plotting
system. A (rigid)transformationis a map between frames or poses. Further details
can be found in [Waldron and Schmiedeler 16].

2.2 Joints and Links
A kinematic chainis a sequence ofjointsconnected by rigid structures calledlinks
[Waldron and Schmiedeler 16]. Ajoint is a connection between two rigid structures
that constrains their relative motion [Waldron and Schmiedeler 16]. Joints whose
motion constraints arise from contact between the body surfaces have six basic
types, classi�ed by the types of motion they allow [Waldron and Schmiedeler 16].
Three have a single degree of freedom characterized by a line called theaxis of
motion:

• Revolutejoints allow rotation about the axis.
• Prismaticjoints allow translation along the axis.
• Helical joints allow screw-like motion: rotation about and translation along the

axis, coupled together by apitch ratio into one degree of freedom.

The other three basic joint types have multiple degrees of freedom:

• Cylindrical joints allow both rotation about and translation along an axis of mo-
tion (not coupled together, so they are two separate degrees of freedom).

• Sphericaljoints allow rotation about a point (three degrees of freedom).
• Planar joints allow translation and rotation within a plane (three degrees of free-

dom).

Each of the multiple-degree-of-freedom joints can be instantiated by composing
revolute and prismatic joints. [Chen et al. 23] includes examples of each of these
compound joints, and we also generate such examples with our code (Figure 3).

2.3 Dubins Paths
Paths with a minimum turning radius, calledDubins pathsafter their introduction in
2D by [Dubins 57], are well-studied in the motion planning literature, for example

KINEGAMI: OPEN-SOURCE SOFTWARE FOR CREATING KINEMATIC CHAINS FROM TUBULAR

ORIGAMI

Figure 2: The tubu-
lar origami pattern
catalog from [Chen
et al. 23], with n= 6.
The fabricated exam-
ples are folded from
Polyethylene tereph-
thalate (PET) plastic
with creases etched
by laser-cut dots. The
tubular wraparound
is adhered with tape.
The prismatic joint
example is folded
from clear PET with
the inner REBO
structure painted
white for visibility.

for turning-constrained vehicles [Boissonnat et al. 94,Lugo-Cárdenas et al. 14,Cai
et al. 17,Karapetyan et al. 18]. In 3D, the shortest Dubins path from a start point and
direction to a goal point and direction is either a helicoidal arc or of the form CSC
or CCC (or a degenerate case thereof), where S is a straight line segment and C is
a circular arc of the minimum turning radius [Sussmann 95]. [Hota and Ghose 10]
provides an optimization-based approach to computing CSC Dubins paths in 3D.

3 System Overview and De�nitions
Our system enables users to create kinematic chains made of tubular origami. The
chains (section 3.1) have revolute and prismatic joints connected by links follow-
ing CSC Dubins paths. To iteratively construct a chain, users append each joint
either by specifying its exact pose or by specifying only its axis of motion and
letting an algorithm (section 3.2) place the joint along the axis. Users can input
poses and axes either in global coordinates or relative to the previous joint's pose.
Additionally, users can modify existing chains by moving or deleting joints. Joint
movements can be given as translations along the axis of motion, rotations about
the axis of motion, or arbitrary rigid transformations. Joint movements can be set
either to propagate to all subsequent joints or to apply only to the given joint.

If a proposed modi�cation cannot generate feasible link paths, the system will
reject the change and warn the user. When a user has a candidate design, they
can specify the state of each joint to visualize different con�gurations of the chain,
letting them check whether it can do what they want and modify the design ac-
cordingly. Figure 1 summarizes available work�ows. Figure 3 shows a variety of
example chains visualized in our system. The generating code is in theexamples
folder of our repository.

FESHBACH, CHEN, KODITSCHEK, SUNG

3.1 Kinegami Chains and Con�gurations

Figure 2 shows the catalog of tubular origami modules de�ned by [Chen et al. 23],
instantiated on the hexagonal prism (n = 6). We illustrate and fabricate the pat-
terns as a �at sheet with the �rst side duplicated at the end to adhere the tubular
wraparound, but the patterns could also be folded directly from a cylinder.

A link in a kinegami chain is a pair of elbow �tting modules joined by a tube,
with a twist if necessary for alignment. Since elbows instantiate rotation equivalent
to an arc with the same radius as the tube, a link instantiates a CSC Dubins path
(degenerate cases can occur in which one or more of the path sections is empty and
thus the corresponding origami modules are omitted). To avoid self-intersection
within a link, we do not use C components with turning angle> p.

The revolute joint is a pair of triangular-prism-like polyhedra joined along the
axis of rotation. The prismatic joint is a REBO pattern [Chen et al. 20] with a
surrounding cylinder to prevent off-axis bending. Both joint types are compliant
(see [Chen et al. 23] for energy analysis). Thestateof a joint is a real number in-
dicating its current displacement (rotation in radians for revolute joints, translation
for prismatic joints) from the minimum-energy state (state 0). Thejoint poseof a
joint in a chain is located at the center of the joint's physical structure (at state 0),
and itsẑ direction is the axis of motion. Note that our prismatic joints connect to
links along their axis of motion, while our revolute joints connect to links orthog-
onally to the axis of motion. Therefore, we de�ne a joint'spath directionâ as the
end tangent of the incoming link path: for prismatic joints this isẑ, and for revolute
joints this isx̂.

For each joint we also de�neproximalanddistal frames where they connect to
the incoming and outgoing links respectively. The proximal frame has orientation
matching that of the joint pose, and it is �xed relative to the joint pose. In contrast,
the distal frame's position (and for revolute joints, orientation) relative to the joint
pose depends on the joint's current state.

A con�guration of a k-joint chain is a vector inRk storing the state of each
joint. It is important to distinguish the chain's con�guration from its structural
design: different con�gurations do not vary the link shapes, and therefore cannot
alter the relative pose of each joint in its predecessor's distal frame.

3.2 Joint Placement Algorithm Overview

Since the kinematic behavior of revolute or prismatic joints is given by their axes
of motion, we say revolute or prismatic joints of the same type with the same axis
of motion arekinematically equivalent, and the kinematics of a chain is speci�ed
only by its sequence of axes of motion. [Chen et al. 23] provides two algorithms to
construct tubular chains given a sequence of axes: asafealgorithm and a relatively
compactalgorithm. The core idea is to convert the chain design problem into a
path planning problem under the observation that each module has a centerline
path and therefore can be considered as the instantiation of a rigid motion resulting
in the appropriate transformation of the local frame of the chain. Since the tubular
radius constrains the centerline path curvature, this is a Dubins planning problem.

KINEGAMI: OPEN-SOURCE SOFTWARE FOR CREATING KINEMATIC CHAINS FROM TUBULAR

ORIGAMI

Figure 3: Example
chains generated
with our system.
(a-c) Basic multi-
degree-of-freedom
joints constructed
as compound struc-
tures of revolute
and prismatic joints.
(d) PUMA arm
generated using
the compact joint
placement algorithm
(based on Denavit-
Hartenberg param-
eters from [Lee and
Ziegler 84]) then
modi�ed by man-
ually translating
joints along their
axes of motion. (e-g)
Other examples.

Links are constructed to instantiate CSC paths (section 3.1), so the joint placement
algorithms solve for poses (along the given axes of motion) far enough apart that
CSC paths exist linking the joints. Thecompactjoint placement algorithm places
a new joint at least 4r from the current chain's bounding sphere, and attaches it
with a CSC path found by an optimization from [Hota and Ghose 10]. However,
such CSC paths may have turn angles> p which would cause collisions in our
chain structures, so the alternatesafejoint placement algorithm routes the chain
through intermediatewaypointposes connected by CSC paths with turn angles
� p. These waypoints often route the links along unnecessarily convoluted paths,
which is why the �rst algorithm is called (relatively) “compact”. However, even
the compact algorithm often generates chains which can be made much shorter
with human intuition moving joints along their axes (as in Figure 3(d)), motivating
the chain editing tools we introduce in this paper.

4 Representing Tubular Origami Crease Patterns
This section discusses formally how we represent tubular origami patterns as graphs,
and speci�cally which path along the surface corresponds to a given edge. We en-
code vertices (points on the pattern connected by creases) in a manner similar to the
angle-height parameterization of a cylinder surface, but applied to the prism tube.
Speci�cally, the tubular patterns from [Chen et al. 23] are based on right prisms
whose bases are regularn-gons of circumradiusr (with n � 4 even). One base is
considered thestarting baseand one side of it thestarting side. We parameterize

FESHBACH, CHEN, KODITSCHEK, SUNG

vertices as(x;y) wherey is the height along the tube andx is the distance about the
prism modulonb, whereb = 2r cosp(n� 2)

2n is the side length of the polygon base.
These are measured relative to the point(0;0) bisecting the starting side.

We can de�ne atubular origami surfaceas a polyhedral surfaceisometric
(deformable without stretching or tearing) to a cylinder. A crease is an edge of
this polyhedral surface, so it is a line segment inR3 along the folded surface.
Since a line segment is ageodesic(a locally-shortest path) and isometries preserve
geodesics [Do Carmo 16], it corresponds to a geodesic on the cylinder. In a �at
origami pattern there is a unique geodesic (a line segment) connecting a given pair
of vertices, so creases can easily be represented by edges (vertex pairs) and there-
fore patterns can be represented by graphs. In a tubular pattern, however, there
is ambiguity to be resolved regarding exactly which geodesic a vertex pair should
map to. The geodesics on the cylinder are the helices [Do Carmo 16] and there
are in�nitely many helices on a cylinder connecting a given pair of points (a helix
can proceed either clockwise or counterclockwise about the cylinder, and can make
arbitrarily many full turns around it between the two points).

We resolve this ambiguity by de�ning the path corresponding to a pair of ver-
tices as the globally-shortest path along the surface connecting the vertices. We say
a path iscreasedif it corresponds to a line segment joining adjacent facets in the
folded polyhedron. An edge in our graph represents the path for that vertex pair
being creased. If the vertices are radially opposite (i.e., theirx coordinates differ by
exactlynb=2) then there are exactly two globally-shortest paths connecting them,
which we distinguish via vertex order: if one is creased then the other must be as
well, but they may have different mountain-valley labels. This is justi�ed by the
following observation that speci�es the natural helix an edge should correspond to.

Lemma 1. A crease in a tubular origami pattern cannot travel more than halfway
about the tube, i.e., the corresponding path in the cylinder winds at mostp about
its central axis. If it travels exactly halfway around, then the symmetrical path in
the other direction about the tube is also creased.

Proof. Let F � R3 be a tubular origami surface andf : [0;nb) � [0;h] ! F be
its parameterization map as described above. LetC � R3 be the isometrically
corresponding cylinder surface andc : [0;nb) � [0;h] ! C be its parameterization.

Let v1 = (x1;y1) andv2 = (x2;y2) be vertices where(v1;v2) is an edge. Using
an edge to encode a crease means that in the folded structure, the line segment
connecting these vertices is entirely on the folded structure, i.e.,f (v1) f (v2) � F.
Since a line segment on a surface is a geodesic, it corresponds to a helixh on C.
Since isometries preserves length [Do Carmo 16], we havejjhjj = jj f (v1) � f (v2)jj .

Let h0 be any helix connectingc(v1) and c(v2). Sinceh0 is also a geodesic
and isometries preserve length, it corresponds to a geodesic onF of length jjh0jj
connectingf (v1) and f (v2). By the triangle inequality,jjh0jj � jj f (v1) � f (v2)jj =
jjhjj . Thereforeh is aglobally shortest helix connectingc(v1) andc(v2).

Sinceh is globally shortest, it cannot have complete wraparound, i.e., its an-
gular travel is� 2p. This leaves two candidates connectingc(v1) and c(v2), a

	Introduction
	Background
	3D Rigid Transformations, Reference Frames, and Poses
	Joints and Links
	Dubins Paths

	System Overview and Definitions
	Kinegami Chains and Configurations
	Joint Placement Algorithm Overview

	Representing Tubular Origami Crease Patterns
	User Guide to Kinegami Code
	3D Rigid Transformations using corke2021roboticsToolboxPython
	Joints
	Links
	Chain Generation
	Adjusting an Existing Chain
	Changing Joint States
	Tubular Origami Pattern Generation

	Conclusion
	Acknowledgements

