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ABSTRACT 
 

TREATMENT SELECTION: UNDERSTANDING WHAT WORKS FOR WHOM IN 

MENTAL HEALTH 

Zachary Daniel Cohen 

Robert DeRubeis 

Individuals seeking treatment for mental health problems often have to choose between 

several different treatment options. For disorders like depression and PTSD, many of the 

available treatments have been found to be, on average, equally effective. Research on 

precision medicine aims to identify the most effective treatment for each patient. This 

work is based on the idea that individuals respond differently to treatment, and that these 

differences can be studied and characterized. The push for personalized and precision 

approaches in mental health involves identifying moderators - variables that predict 

differential response into treatment recommendations. Unfortunately, there has been little 

real-world application of these findings, in part due to the lack of systems suited to 

translating the information in actionable recommendations. This dissertation will review 

the history of treatment selection in mental health, and will present specific examples of 

treatment selection models in depression and PTSD. Differences between treatment 

selection in the context of two equivalently effective interventions and stratified medicine 

applications in which goal is to optimize the allocation of stronger and weaker 

interventions will be discussed. Methodological challenges in building (e.g., variable 

selection) and evaluating (e.g., cross-validation) treatment selection systems will be 

explored. Approaches to precision medicine being used by different groups will be 

compared. Finally, recommendations for future directions will be made. 
 

  



vii 
 

 

TABLE OF CONTENTS 

DEDICATION	......................................................................................................................	III 

ACKNOWLEDGMENT	.....................................................................................................	IV 

ABSTRACT	..........................................................................................................................	VI 

LIST OF TABLES	...............................................................................................................	IX 

LIST OF FIGURES	.............................................................................................................	IX 

CHAPTER 1:  TREATMENT SELECTION IN DEPRESSION	.............................	XIII 

Abstract................................................................................................................................................ xiii 

Introduction ............................................................................................................................................ 1 

INTRODUCTION TO RESEARCH ON PREDICTIVE VARIABLES................................................ 8 

Overview ................................................................................................................................................. 8 

Understanding Moderator Relationships ............................................................................................. 11 

Two Frequently Cited Treatment Selection Variables ......................................................................... 14 

THE PERSONALIZED ADVANTAGE INDEX APPROACH ........................................................... 16 

REVIEW OF THE LITERATURE ON MULTIVARIABLE PREDICTION MODELS ................... 18 

Overview ............................................................................................................................................... 18 

Prognostic Models ................................................................................................................................. 19 

TREATMENT SELECTION APPROACHES .................................................................................... 21 

Overview ............................................................................................................................................... 21 

Extending the Personalized Advantage Index to Stratified Medicine.................................................. 24 

Patient Subtypes ................................................................................................................................... 25 

RECOMMENDATIONS FOR BUILDING TREATMENT SELECTION MODELS ....................... 29 

EVALUATING TREATMENT RECOMMENDATION APPROACHES ......................................... 32 

DISCUSSION ....................................................................................................................................... 35 

FUTURE DIRECTIONS ...................................................................................................................... 37 



viii 
 

 

Acknowledgments ................................................................................................................................. 38 

Supplemental Material: Supplemental Example 1 ............................................................................... 39 

CHAPTER 2: RECOMMENDING COGNITIVE-BEHAVIORAL VERSUS 
PSYCHODYNAMIC THERAPY FOR MILD TO MODERATE ADULT 
DEPRESSION: A DEMONSTRATION OF A NEW VARIABLE SELECTION 
APPROACH FOR TREATMENT SELECTION	.........................................................	51 

Abstract................................................................................................................................................. 51 

Significance Statement .......................................................................................................................... 52 

Introduction .......................................................................................................................................... 53 

Method .................................................................................................................................................. 57 

Results ................................................................................................................................................... 66 

Discussion.............................................................................................................................................. 73 

Limitations ............................................................................................................................................ 74 

Future Directions .................................................................................................................................. 76 

Conclusion............................................................................................................................................. 77 

Acknowledgments ................................................................................................................................. 78 

Supplemental Material: Participants ................................................................................................... 78 

Supplemental Material: Data Pre-Processing ...................................................................................... 82 

Supplemental Material: Missing Data Imputation .............................................................................. 90 

Supplemental Material: Variable Selection.......................................................................................... 90 

Supplemental Material: Supplemental Results. ................................................................................... 97 

CHAPTER 3: IMPROVING TREATMENT DECISIONS FOR PATIENTS WITH 
PTSD: A DEMONSTRATION OF MODEL-BASED TREATMENT SELECTION 
USING THE PERSONALIZED ADVANTAGE INDEX APPROACH	..................	100 

Abstract............................................................................................................................................... 100 

Significance Statement ........................................................................................................................ 101 

Introduction ........................................................................................................................................ 103 

Methods............................................................................................................................................... 108 



ix 
 

 

Results ................................................................................................................................................. 115 

Discussion............................................................................................................................................ 123 

Acknowledgments ............................................................................................................................... 130 

Supplemental Material: Methods ....................................................................................................... 131 

Supplemental Material: Results ......................................................................................................... 145 

BIBLIOGRAPHY	.............................................................................................................	146 

Chapter 1 References .......................................................................................................................... 146 

Chapter 3 References .......................................................................................................................... 168 
 

LIST OF TABLES 
Chapter 1, Supplemental Table 1: Review of review and meta-analyses of predictors in 
depression ……………..............................................................................................…...43 
Chapter 1, Supplemental Table 2: Comparison of treatment selection methodology 
showing heterogeneity ……………………………...…………………..……………….46 
Chapter 2, Table 1: Summary of variable selection results ...…………….….………...67 
Chapter 2, Table 2: Final regression model specified using the full sample ..…...…….69 
Chapter 2, Supplemental Table 1: Baseline sample characteristics ..............................81 
Chapter 2, Supplemental Table 2: All baseline predictors………………….….……..83 
Chapter 2, Supplemental Table 3: BootStepAIC variable selection moderator sign 
consistency output ……………………………………………………………………….96 
Chapter 2, Supplemental Table 4: Predictor variables included in the final model .…97 
Chapter 3, Table 1: Demographic and clinical characteristics of patient sample ...….110 
Chapter 3, Table 2: Summary of variable selection results …………………….……116 
Chapter 3, Table 3: Final model predicting end-PSS generated using full sample .....119 
Chapter 3, Table 4: Observed mean end-PSS scores for patients who received their 
indicated or non-indicated treatment with group difference tests and effect sizes .…..123 
Chapter 3, Supplemental Table 1: Descriptive statistics of baseline variables ….…132 
 

LIST OF FIGURES 
Chapter 1, Figure 1: Five ways in which the differential effects of two treatments can 
vary as a function of a continuous moderator variable, and in which the interactions 
between treatment and moderator are linear. The relationships shown are for illustrative 
purposes only, but they draw on observations in the relevant empirical literatures. In a–c, 
at high levels of the moderator, one treatment is expected to produce stronger effects, 
whereas at low levels the other treatment is expected to be superior (disordinal 
interactions). In d and e, one of the two treatments is superior, on average, but the degree 
of superiority is expected to vary with the level of the moderator (ordinal interactions). In 



x 
 

 

b, c, and e, the moderator is also a prognostic variable, such that a score on the moderator 
predicts outcome, independent of treatment (moderator main effects). In a and d, there is 
no moderator main effect. The moderator is predictive only in concert with treatment. 
Higher change scores on the y-axis indicate more improvement. Abbreviations: ADM, 
antidepressant medication; CBT, cognitive-based therapy; SD, standard deviation .…….4 
Chapter 1, Figure 2: The figure depicts the expected improvement for different patient 
prototypes in different treatment contexts. The treatment contexts range from lowest to 
highest intensity (colored bars). Patient prototypes, which range from spontaneous 
remitters to intractable patients, are labeled on the x-axis. As shown with the colored 
bars, spontaneous remitters would be expected to show the same high level of response 
(95%) in any treatment context. Similarly, intractable patients would be expected to show 
the same low level of response (5%) irrespective of the treatment provided to them. 
Prototypes 2, 3, 4a, 4b, and 5 would be expected to show different levels of response 
depending on the treatment provided. Prototypes 3, 4a, and 4b are all “pliant,” but they 
differ in regard to the expected responses to the two high intensity treatments (TxA and 
TxB). Patients represented by prototypes 4a and 4b differ from those represented by 
prototype 3 in that they require a specific high intensity treatment, whereas prototype 3 
patients would be expected to evidence a high level of response to either high intensity 
treatment. This distinction is also depicted by the heights of the yellow bars (unspecified 
high intensity treatment), which represent the averages of the expected responses to TxA 
and TxB within each prototype ……………………………….………………………..26 
Chapter 1, Supplemental Figure 1: a) This shows a disordinal moderator relationship 
between a continuous predictor (# of prior antidepressant exposures) and outcome. For 
those who received CT, there is no relationship between # of prior antidepressants and 
outcome. For those who received ADMs, the greater the number of prior ADM 
exposures, the less change is expected in symptoms of depression over the course of 
treatment. People with two or few prior ADM exposures are expected to experience more 
change in ADM treatment than in CT, and individuals with large numbers (4 or more) of 
prior ADM exposures are predicted to experience greater change in CT than in ADM. For 
individuals with 3 prior ADMs, there is no predicted difference in outcomes between the 
two treatments. This moderator shows a main effect. b) This shows a disordinal 
moderator relationship between a categorical predictor (prior CT) and outcome. For those 
who receive ADM (in blue), there is no relation between prior CT and outcome. For 
those treated with CT (in red), individuals who have never had a course of CT are 
expected to benefit more with CT than are those with a history of CT. Looking within 
CT-history subgroups, individuals with no prior CT are expected to experience more 
symptom change in CT than with ADM, and within the subgroup of individuals who had 
previously received CT there is the opposite expectation. This moderator has no main 
effect. c) This shows an ordinal moderator relationship between a continuous variable (# 
of children) and outcome. For those treated with CT, there is a positive relationship 
between # of children and symptom change, such that the more children, the more 
symptom improvement could be expected. For those treated with ADM, the opposite 
relationship is observed. For people with no children, there is no expected difference 
between the two treatments in terms of change in symptoms. But for those with children, 
the more children a patient has, the larger the advantage the expected advantage of CT 
over ADM. This moderator has no main effect. d) This shows an ordinal moderator 



xi 
 

 

relationship between a categorical variable (marital status) and outcome. There is no 
difference between CT and ADM for unmarried people, but for married people there is a 
large advantage of CT over ADM. Married people are expected to do better than 
unmarried people in CT (red bars). Unmarried people are expected to do better than 
married people in ADM. This moderator has no main effect. e) This shows a disordinal 
moderator relationship between continuous predictor (personality disorder symptoms) 
and outcome. In ADM, there is a positive relationship between PD symptoms and 
outcome: the more PD symptoms, the more symptom change is expected. In CT, the 
opposite (a negative) relationship is observed. People with fewer PD symptoms are 
expected to experience more change in CT treatment than in ADM, and individuals with 
more PD symptoms experienced greater change in ADM than in CT. For individuals with 
average levels of PD symptoms, there is no difference expected in outcomes between the 
two treatments. There is no main effect of the number of personality disorder symptoms. 
f) This figure shows the same disordinal moderator relationship as in figure e, but for a 
categorical version of the personality disorder predictor (diagnosis yes/no). On average, 
patients with a PD experience more change in ADM than those without a PD. For those 
who got CT, individuals without a PD diagnosis experience, on average, more change 
than those with a PD diagnosis. Thus, ADM is expected to be better than CT for those 
with a PD, and CT is expected to be better than ADM for those without a PD. There is no 
main effect of having a PD. g) This shows a disordinal moderator relationship between 
continuous predictor (neuroticism) and outcome. For those who receive ADM, there is a 
negative relationship between neuroticism and outcome: the more neurotic a patient is, 
the less symptom change should be expected over treatment. For those who receive CT, a 
stronger relationship in the same direction is expected. There is a main effect of the 
moderator (such that in both conditions, more neuroticism is associated with less 
symptom change), but the nature of these relationships involves a crossover around the 
mean level of neuroticism for the same. Thus, for people with very low levels of 
neuroticism, CT is expected to be superior to ADM, and for those who with high levels of 
neuroticism, ADM is preferred to CT. h) This illustrates the same disordinal moderator 
relationship as figure g but between a categorical predictor (employed vs. unemployed) 
and outcome. There is a main effect of employment, such that people who are 
unemployed experience less improvement than people who are employed. However, the 
extent to which unemployment predicts poorer response differs by treatment. The 
decrease in expected response comparing employed to unemployed individuals is larger 
for ADM than for CT. Practically, ADM is preferred to CT for people who are employed, 
and CT is preferred to ADM for people who are unemployed. i) This shows an ordinal 
moderator relationship between a continuous variable (anxiety symptoms) and outcome. 
There is a main effect of anxiety symptoms, such that more anxiety is related to less 
change in depression across treatment. For those with the fewest anxiety symptoms, there 
is no difference between the two treatments. For the rest of the sample, ADM is 
associated with more symptom change than CT, and the size of this predicted advantage 
of ADM grows as individuals have increasingly high levels of anxiety symptoms .……41 
Chapter 2, Figure 1: Visualization of the moderator relationships. Conditional plots 
with confidence bands for the conditional mean generated using R package visreg from 
the final model estimated in the complete sample. Conditioning for each plotted variable 



xii 
 

 

uses the mean value for all other variables. The X-axes represent the 
standardized/centered scores that were used during analysis …………………………...70 
Chapter 2, Figure 2: Comparison of end-of-treatment HAM-D scores for patients 
randomized to their PAI-indicated treatment with those who were randomized to their 
non-indicated treatment. Figure 2a shows this comparison with treatment conditions 
collapsed for the full sample (left set of bars), and for the 60% of patients with larger 
PAIs (right set of bars). Figure 2b decomposes the comparison by treatment for the full 
sample, with those indicated to need CBT represented by the left two bars, and those 
indicated to need PDT by the right two bars. Figure 2c presents the same breakdown as in 
figure 2b, but for the 60% of patients with larger PAIs .……………………...…………72 
Chapter 2, Supplemental Figure 1: Patient flow chart……………………………..….80 
Chapter 2, Supplemental Figure 2: Random Forest variable importance plot with 
permutation test ………………...………………………………………………………..92 
Chapter 2, Supplemental Figure 3: Mean HAM-D for each of 1000 ten-fold CVs .…98 
Chapter 2, Supplemental Figure 4: Mean HAM-D for the largest 60% PAIs for each of 
1000 ten-fold CVs …….………….……………………………………………………...99 
Chapter 3, Figure 1: Comparison of end-PSS scores for patients who received their 
PAI-indicated (“got PAI”) treatment versus those who received their non-indicated (“got 
other”) treatment for the full sample (left bars) and for the subset of patients (right bars) 
with larger PAIs that exceeded the reliable change index (RCI) ………………………121 
Chapter 3, Figure 2: Panel a) Comparison of end-PSS scores for patients who received 
their PAI-indicated treatment versus those who received their non-indicated broken down 
by those who were CPT-indicated (left bars) versus PE-indicated (right bars). Panel b) 
The same comparisons presented in Figure 3a performed in the subset of patients with 
larger PAIs that exceeded the reliable change index (RCI) …………………..……….121 
Chapter 3, Supplemental Figure 1: Moderator relationships from the final model 
visualized using the R package visreg (Breheny & Burchett, 2013). Conditional plots 
with confidence bands for the conditional mean from the final model estimated in the 
complete sample. Conditioning for each plotted variable uses the mean value for all other 
variables. The Y-axis represents the predicted end-of-treatment score on the PSS, and the 
X-axis represents the standardized/centered score for each variable that was used during 
analysis. PSS = PTSD Symptom Scale; STAXI = State Trait Anger Expression 
Inventory; TSI = Trauma Symptom Inventory; PSQI = Pittsburgh Sleep Quality Index; 
SAEQ = Sexual Abuse Exposure Questionnaire ……………………………………...146 

 

  



xiii 
 

 

CHAPTER 1:  Treatment Selection in Depression  
 
This work was originally published in Annual Review of Clinical Psychology: 

Cohen, Z. D., & DeRubeis, R. J. (2018). Treatment selection in depression. Annual 
review of clinical psychology, 14, 209-236. https://doi.org/10.1146/annurev-clinpsy-
050817-084746 

 

Abstract 

Mental health researchers and clinicians have long sought answers to the question “What 

works for whom?” The goal of precision medicine is to provide evidence-based answers 

to this question. Treatment selection in depression aims to help each individual receive 

the treatment, among the available options, that is most likely to lead to a positive 

outcome for them. Although patient variables that are predictive of response to treatment 

have been identified, this knowledge has not yet translated into real-world treatment 

recommendations. The Personalized Advantage Index (PAI) and related approaches 

combine information obtained prior to the initiation of treatment into multivariable 

prediction models that can generate individualized predictions to help clinicians and 

patients select the right treatment. With increasing availability of advanced statistical 

modeling approaches, as well as novel predictive variables and big data, treatment 

selection models promise to contribute to improved outcomes in depression. 

Keywords: treatment selection, precision medicine, personalized medicine, stratified 

medicine, depression, mental health treatment 
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Introduction 

Depression is the world’s leading cause of disability (World Health Organization 

2017). Despite the existence of a variety of evidence-based interventions for major 

depressive disorder (MDD), response rates in the treatment of depression remain 

approximately 50% (National Health Service 2016, Papakostas & Fava 2010). The 

pursuit of novel neurological (e.g., deep brain stimulation; Mayberg et al. 2005), 

pharmacological (e.g., ketamine; McGirr et al. 2015), and psychological (e.g., positive 

affect treatment; Craske et al. 2016) treatments is one avenue through which researchers 

are attempting to improve treatment outcomes (Holmes et al. 2014). This review focuses 

on an alternative approach: treatment selection, the aim of which is to provide for each 

individual the treatment, among the available options, that is most likely to lead to a 

positive outcome for them. 

Half a century ago, Gordon Paul (1967) stated, in a paper that has been cited more 

than 1,000 times: “[i]n all its complexity, the question towards which all outcome 

research should ultimately be directed is the following: What treatment, by whom, is 

most effective for this individual with that specific problem, and under which set of 

circumstances?” The spirit of this passage—the question “What works for whom?”—has 

been invoked in countless discussions of evidence-based practices in clinical psychology. 

The idea is a good one, recognizing that no single treatment is likely to be the best 

for everyone. How to address this issue, however, has not been obvious or simple. In 

recent years, researchers have developed and tested the utility of multivariable prediction 

models to address the “What works for whom?” question. The promise of this work lies 

in the ability of such models to integrate multiple sources of information, rather than to 
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rely on a single feature to inform treatment selection. In other areas of medicine, the 

effort to match individuals to their indicated treatments is called precision medicine 

(Hamburg & Collins 2010), which has largely replaced the term personalized medicine 

(Katsnelson 2013, Schleidgen et al. 2013). Precision medicine1 has afforded major 

advances in cancer treatment (National Research Council 2011, Schwaederle et al. 2015). 

For example, chemotherapy is the standard treatment for non–small-cell lung carcinoma 

(NSCLC). Early trials of the drugs erlotinib and gefitinib found little to no benefit of 

these drugs alone or in combination with chemotherapy (Pao & Miller 2005). However, 

recent clinical trials have found significantly improved outcomes for these drugs, relative 

to chemotherapy, in a specific subset of NSCLC patients with tumor mutations linked to 

the mechanisms of action of erlotinib and gefitinib (Paez et al. 2004, Rosell et al. 2012). 

We believe that similar approaches can help improve outcomes in mental health. 

In this review, we describe several approaches to selecting the right treatment for 

an individual with depression. A striking feature of efforts in this area is the 

heterogeneity of the statistical approaches that are employed (Petkova et al. 2017, Weisz 

et al. 2015). 

Variables that predict outcome are of two kinds: prescriptive or prognostic. 

Prescriptive variables, often referred to as moderators, affect the direction or strength of 

                                                             
1As defined by a National Research Council report, precision medicine “refers to the tailoring of 
medical treatment to the individual characteristics of each patient. It does not literally mean the 
creation of drugs or medical devices that are unique to a patient, but rather the ability to classify 
individuals into subpopulations that differ in their susceptibility to a particular disease, in the 
biology and/or prognosis of those diseases they may develop, or in their response to a specific 
treatment. Preventive or therapeutic interventions can then be concentrated on those who will 
benefit, sparing expense and side effects for those who will not. Although the term ‘personalized 
medicine’ is also used to convey this meaning, that term is sometimes misinterpreted as implying 
that unique treatments can be designed for each individual.” (National Research Council 2011, p. 
125). 
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the differences in outcome between two or more treatments (Baron & Kenny 1986), and 

thus can help predict whether a patient will benefit more from one treatment relative to 

another. Cronbach (1957) described prescriptive relationships as “aptitude-by-treatment” 

interactions, which have typically been explored through subgroup or subset analysis 

(Doove et al. 2014, Wang & Ware 2013). Figure 1 displays a variety of types of 

prescriptive relationships, which can be ordinal (sometimes called quantitative 

interactions) or disordinal (sometimes called qualitative interactions; involving a full 

crossover) (Gail & Simon 1985, Gunter et al. 2011a, Wellek 1997, Widaman et al. 2012). 

Fournier et al. (2008) reported an example of a disordinal moderator in depression: The 

presence of a comorbid personality disorder (PD) predicted better response with 

antidepressant medication (ADM), relative to cognitive therapy (CT), and its absence 

predicted a better response to CT than to ADM. 
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Figure 1. Five ways in which the differential effects of two treatments can vary as a 
function of a continuous moderator variable, and in which the interactions between 
treatment and moderator are linear. The relationships shown are for illustrative purposes 
only, but they draw on observations in the relevant empirical literatures. In a–c, at high 
levels of the moderator, one treatment is expected to produce stronger effects, whereas at 
low levels the other treatment is expected to be superior (disordinal interactions). In d and 
e, one of the two treatments is superior, on average, but the degree of superiority is 
expected to vary with the level of the moderator (ordinal interactions). In b, c, and e, the 
moderator is also a prognostic variable, such that a score on the moderator predicts 
outcome, independent of treatment (moderator main effects). In a and d, there is no 
moderator main effect. The moderator is predictive only in concert with treatment. 
Higher change scores on the y-axis indicate more improvement. Abbreviations: ADM, 
antidepressant medication; CBT, cognitive-based therapy; SD, standard deviation 
 

ADM
CBT

c   Prior ADMs as a disordinal moderator, with a main
effect of the moderator only in one condition

0

2

4

6

8

10

12

0 1 2 3 4 5 6

Number of prior ADM exposures

Δ 
D

ep
re

ss
io

n 
(p

re
–p

os
t)

Δ 
D

ep
re

ss
io

n 
(p

re
–p

os
t)

6

8

10

12

14

16

–3 –2 –1 0 1 2 3

Anxiety symptoms (SDs)

e   Comorbid anxiety symptoms as an ordinal
moderator, with moderator main effect

d   Number of children as an ordinal moderator,
no moderator main effect 

6

8

10

12

14

0 1 2 3+

Number of children

Δ 
D

ep
re

ss
io

n 
(p

re
–p

os
t)

4

6

8

10

12

14

16

–3 –2 –1 0 1 2 3

Δ 
D

ep
re

ss
io

n 
(p

re
–p

os
t)

Personality disorder symptoms (SDs)

a   Personality disorder symptoms as a disordinal
moderator, no moderator main effect 

4

6

8

10

12

14

16

Δ 
D

ep
re

ss
io

n 
(p

re
–p

os
t)

–3 –2 –1 0 1 2 3

Neuroticism (SDs)

b   Neuroticism as a disordinal moderator, with
moderator main effect

CohenFig01.pdf   1   1/5/18   18:16



5 
 

 

A variable is prognostic if it predicts response in a single treatment, or 

irrespective of treatment condition. If only one intervention is being analyzed, only 

prognostic relationships can be inferred. Although a predictor2 may appear to be 

prognostic in a single-treatment analysis, it might predict differential treatment response 

in a study that compares two or more treatments. Additionally, a variable can function as 

a prognostic predictor in one context and as a prescriptive predictor in another. For 

example, higher depression severity is associated with worse outcomes in depression. In 

comparisons of medication to CT, baseline severity is prognostic because it has the same 

relationship to outcome in both treatments (Weitz et al. 2015). However, in comparisons 

of medication to placebo (Ashar et al. 2017) or of psychotherapies to control conditions, 

higher baseline severity predicts a larger advantage of the active treatment over the 

control, making severity prescriptive in these contexts (Driessen et al. 2010, Fournier et 

al. 2010). 

Therapists select treatments for patients as a matter of course in every day 

practice. A clinician who attends to information about a specific client’s presentation will 

likely generate hypotheses about the client’s expected responses to potentially available 

treatments (Lorenzo-Luaces et al. 2015). These predictions may draw on a variety of 

sources, including a clinician’s history with clients with similar features, their 

experiences in training and supervision, reasoning based on theory, and the empirical 

literature on treatment response (Raza & Holohan 2015). However, there is limited 

                                                             
2The term predictor is sometimes used to refer specifically to prognostic relationships, but it can 
also be used to refer broadly to both prognostic and prescriptive variables, which is the way we 
use it here. 
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empirical literature to guide personalized, or precision, selection of treatments. Clinicians 

are therefore forced to practice what Perlis (2016) has dubbed “artisanal medicine.” 

Artisanal medicine is the practice of making treatment decisions in an 

idiosyncratic or unsystematic manner, or in a manner guided by theory and experience 

but largely uninformed by empirical evidence or feedback. Unfortunately, the lack of 

standardization that defines artisanal medicine limits the validity and utility of such 

approaches for decision making (Dawes 1979, 2005; Dawes et al. 1989; Tversky & 

Kahneman 1983). 

In treatment contexts, statistical decision making, also called actuarial decision 

making, relies on predictions made with the use of algorithms, in a reproducible way. 

Grove et al. (2000) detail the ways in which actuarial approaches to decision making can 

overcome limitations and biases prevalent in human judgment (Dawes et al. 1989, Pauker 

& Kassirer 1980). By and large, empirical tests of clinical versus actuarial prediction 

(Grove & Meehl 1996) have revealed the superiority of actuarial methods. More than 60 

years ago, Paul Meehl (1954) published his seminal monograph on this topic, titled 

Clinical versus Statistical Prediction: A Theoretical Analysis and a Review of the 

Evidence. The field of mental health treatment has only just begun to apply Meehl’s line 

of thinking to precision mental health. 

For much of the twentieth century, evidence-based practice in mental health has 

largely concerned the provision of a specific treatment to patients based on a specific 

DSM-defined disorder. Evidence to guide such decisions has come from randomized 

clinical trials (RCTs), in which active treatments are compared to control conditions or to 

other active treatments (Chambless & Hollon 1998). For example, on the basis of positive 
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findings in RCTs, CT (Beck et al. 1979) and interpersonal therapy (IPT; Klerman & 

Weissman 1994) are each considered evidence-based psychotherapies for MDD. 

Similarly, among the psychoactive medications, specific classes of drugs have been 

studied under the assumption that they have differential efficacy with specific disorders 

(Fineberg et al. 2012). 

However, as has been widely discussed in the literature, the library of empirically 

supported treatments (ESTs) is insufficient to address clinician and client needs (Hollon 

et al. 2002). The average treatment effect (ATE) is the extent to which, for the clients in 

the sample, a given intervention leads to more (or less) symptom improvement, on 

average, relative to comparator conditions. The main findings from RCTs refer to effects 

of treatments, on average, and not to potentially important sources of variability in 

treatment response (Imai & Ratkovic 2013, Kessler et al. 2017). Consider, for example, a 

case in which an ATE of 10 points on change in the Beck Depression Inventory (BDI) is 

estimated in a comparison of a strong treatment versus a weaker intervention. This might 

reflect an average change of 20 in the strong condition and 10 in the weak condition. It 

would be a mistake to assume that, even with such a large average change in the strong 

treatment condition, every client benefited substantially more from it than they would 

have from the weak condition. In fact, it is typical in such studies that reductions in the 

BDI observed in some clients are near the group average, whereas in others the 

reductions will be quite large, and in still others there will be little or no change observed. 

Understanding the heterogeneity of treatment effects could facilitate treatment selection 

by identifying individuals for whom more than a 10-point advantage of the stronger 
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treatment would be expected, as well as individuals for whom the weaker treatment might 

be equally, or even more, effective (Kessler et al. 2017). 

INTRODUCTION TO RESEARCH ON PREDICTIVE VARIABLES 

Overview 

Variables examined in research on the prediction of mental health outcomes in 

depression have been drawn from a variety of sources, including routinely assessed 

domains such as demographic, environmental, and diagnostic information. A recent 

emphasis on neurobiological variables (Gabrieli et al. 2015, Jollans & Whelan 2016, 

Leuchter et al. 2009, Pizzagalli 2011, Stephan et al. 2017) has begun to reveal the 

potential of the inclusion of neurocognitive (Gordon et al. 2015) and biomarker-based 

assessments as predictors (Uher et al. 2014). For example, McGrath et al. (2013) 

measured pretreatment brain activity using positron emission tomography in a depression 

RCT and identified right-anterior-insula metabolism as a disordinal moderator: Insula-

hypometabolism was associated with better outcomes in CT and worse outcomes with 

ADM, while insula-hypermetabolism was associated with the opposite pattern. In 

Supplemental Table 1 we list recent reviews of predictors in depression, the results of 

which could inform future treatment selection investigations. 

By far, the most common approach to the prediction of treatment response in 

mental health is to take advantage of the information captured in prognostic relationships 

(e.g., Rubenstein et al. 2007). Prognostic statements regarding response to intervention 

are of the following form: A client with characteristic X, in a given context (e.g., with 
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any intervention, or with a specific treatment3), has a Y% chance of experiencing 

symptom remission. Prognostic information can be used to provide realistic expectations 

to the treating clinician, as well as the client and their family (Kessler et al. 2016). This 

includes expectations concerning the rapidity and extent of response to the treatment that 

will be provided, as well as whether special attention should be paid to the client’s 

progress (Hunter et al. 2011, Lutz et al. 2014). 

The information conveyed in a prognostic statement does not inform directly the 

following question: “What is the best available option for this client at this time?” A 

common mistake in the interpretation of a prognostic finding is to conclude that clients 

found to have a poor prognosis in a given treatment will have a better prognosis in a 

different treatment (Simon & Perlis 2010). Consider the finding that, in CT, patients with 

chronic depression exhibit lower recovery rates than those with nonchronic depression 

(Fournier et al. 2009). This might indicate that other interventions (e.g., ADMs) or 

treatments created specifically for chronic depression, such as Cognitive Behavioral 

Analysis System of Psychotherapy (CBASP; McCullough Jr 2003), should be preferred 

over CT for individuals with chronic depression. However, it could instead be that CT is 

as effective as (or even more effective than) other available interventions for such 

individuals (Cuijpers et al. 2017). Indeed, evidence from an RCT comparing CT to ADM 

suggested that chronicity is prognostic, in that it was associated with similarly lower 

response rates in both treatments (Fournier et al. 2009), and an RCT comparing CBASP 

                                                             
3We are referring to a case in which a characteristic predicts outcome in studies of a single 
treatment, and in which its predictive value is unknown in other contexts. Note that if a factor 
predicts outcome in one treatment but does not predict outcome in a second, it could be 
prescriptive in that context (see Figure 1c for an example). 
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to ADM in individuals with chronic depression found no difference in response rates 

(Nemeroff et al. 2003). The only type of investigation that can directly address the 

prescriptive question (i.e., “Which treatment is likely to be most effective for a client 

with X, Y, and Z characteristics?”) is one that focuses on moderation4. Unfortunately, 

analyses of this type are much less frequently conducted (see Supplemental Example-1 

for an early example of the single moderator approach, with a twist, from Beutler et al. 

1991). 

Studies in which pretreatment variables are found to predict treatment response 

can provide clues about treatment mechanisms (typically identified in efforts to find 

variables that mediate a treatment effect) (MacKinnon et al. 2007), and thus can help 

distinguish between compensation and capitalization models of the effects of 

psychotherapies. The compensation model is that individuals with deficits in areas 

targeted by a therapy will benefit the most from it. An example of this is the hypothesis 

that CT, which targets dysfunctional cognitions, would be preferred over IPT for 

individuals high on cognitive dysfunction and low on interpersonal functioning, and vice 

versa. The support for this hypothesis is equivocal. Capitalization models, which propose 

that therapies work best when they build on clients’ strengths, have received some 

support (Barber & Muenz 1996, Cheavens et al. 2012). 

                                                             
4Prescriptive questions can be investigated through the simultaneous use of two or more 

prognostic models in the same sample (e.g., see Kessler et al. 2017) 
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Understanding Moderator Relationships 

Given the observed heterogeneity in the presentation, history, and prognosis of 

depression, it is unlikely that any single variable in isolation will have clinically useful 

predictive utility (Simon & Perlis 2010). Nonetheless, considering how a single 

moderator would guide treatment selection is a useful exercise for enhancing one’s 

understanding of how multivariable treatment selection algorithms work. To that end, we 

created plots (see Figure 1) depicting hypothetical examples5 of prescriptive 

relationships that could be observed with continuous moderators. In Supplemental 

Figure 1, we also discuss the application to clinical decision making of findings of 

prescriptive relationships when the moderators are binary, as well as when prognostic 

predictors are identified. 

In empirical reports of moderator findings, the distinctions between different 

types of prescriptive relationships illustrated in Figure 1 are rarely made, and when the 

details of these relations are implied they can be inconsistent, misleading, or incorrect. 

Issues with data processing and the behavior of regression coefficients can make 

interpreting and describing moderator relationships difficult even for the individuals who 

perform the analyses (Kraemer & Blasey 2004). To learn more about these topics, we 

refer the reader to Kuhn & Johnson (2013). 

Consider the following statement: “Clients high on characteristic Z experienced 

superior outcomes with ADM, relative to CT.” It is tempting to infer that those who are 

                                                             
5These examples are for illustrative purposes only. We drew upon patterns that have been 
observed in empirical studies, but the figures do not represent empirical findings, per se. We 
followed the structure used by Kraemer (2013) and Schneider et al. (2015) in creating these 
figures. 
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low on characteristic Z would respond better to CT than to ADM, but there is nothing in 

the statement about such individuals. Thus, the statement could describe any of a variety 

of relationships, including those that Figure 1a,b,e depicts. If Figure 1e were true, a 

clinician should encourage individuals with high levels of Z to pursue ADM, whereas 

individuals with low levels of Z should be informed that there is no indication of a 

meaningful difference between the two treatments. However, the relationship could also 

be characterized by the pattern in Figure 1a,b. If this were true, individuals high on Z 

would receive the same recommendation (choose ADM), but individuals low on Z should 

be steered away from ADM and toward CT. In the case of Figure 1a, an individual with 

an average level of Z would be informed that the two treatments are expected to be 

similarly effective for him or her, and the expected size of the advantage of one treatment 

over the other is similar at each end of the spectrum. In the case of Figure 1b, the 

expected advantage of ADM over CBT for those high on Z is larger than the expected 

advantage of CBT over ADM for those low on Z. This example illustrates one of the 

many ways in which the translation from analysis to interpretation to implementation can 

result in either optimal, suboptimal, or even harmful application of prescriptive 

information to clinical decision making. 

The importance of evaluating the evidence for predictors prior to utilizing them in 

clinical settings deserves special emphasis in treatment selection (Howland 2014, Perlis 

2016). When reading an empirical investigation of individual differences in treatment 

response, one must identify the population from which the sample was drawn. Although a 

paper may describe its findings as pertaining to “treatment response in depression,” it is 

necessary to attend to specific features of the sample (e.g., inclusion/exclusion criteria, 
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range of depression severity, extent of comorbidity, treatment history) to determine the 

pertinence of the evidence to a specific client. For example, depressive symptom severity 

has been reported to predict differential response to ADMs versus placebos, with ADMs 

evidencing superiority over placebo for moderate to high severity, and little to no 

differences seen at the lower end of the severity spectrum (Barbui et al. 2011, Fournier et 

al. 2010, Khan et al. 2002, Kirsch et al. 2008). However, for most trials, entry criteria 

include moderate or greater symptom severity (Zimmerman et al. 2015, 2016), thus 

restricting the range of severity that can be investigated, and constraining the 

applicability of many positive moderator findings to a subset of the population of patients 

with MDD. There are many examples of predictive algorithms built using data from a 

sample of clients treated with one antidepressant that have failed to generalize to a 

different antidepressant (Chekroud et al. 2016, Iniesta et al. 2016a, Perlis et al. 2010). 

Similarly, models predicting the onset of major depressive episodes in European primary 

care (King et al. 2008) have not generalized to the US general population (Nigatu et al. 

2016). 

Reliance on tests of significance can result in misleading impressions about the 

importance of predictive variables (Nuzzo 2014, Wasserstein & Lazar 2016). For 

example, if a variable selection approach relies on p-values (often with p < .05 as a 

threshold) to assess statistical significance, a variable could miss a predetermined cut-off 

by a small margin, leading to a report that the variable is not predictive (Bursac et al. 

2008). However, the difference in the predictive utility of an excluded variable that “just 

missed” (e.g., p = .06) and an identified predictor that is “barely” significant (e.g., p = 

.04) is, of course, trivial (Mickey & Greenland 1989). Most RCTs are powered to detect 
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main effects, and therefore are powered to detect only very strong interactions. 

Complicating matters further, different analytic approaches can identify different 

variables, even when applied to the same data (Cohen et al., under review). Additionally, 

variables that were not assessed, or that were assessed and not analyzed, could also be 

important predictors. Finally, statistically significant results are not necessarily clinically 

significant, if effect sizes are small (Meehl 1978). In the context of a large sample, small 

or weak relationships can be identified as statistically significant. However, statistically 

significant variables are not always good predictors (Lo et al. 2015). More relevant are 

metrics that can characterize the importance of the relationship and can therefore quantify 

and translate the clinical meaning of the findings (Bossuyt & Parvin 2015). For example, 

Janes et al. (2011) developed a statistical method for evaluating treatment selection 

markers that went beyond the classic approach of testing for a statistical interaction 

between a predictor and treatment to answer four important questions: “1) Does the 

marker help patients choose among treatment options?; 2) How should treatment 

decisions be made that are based on a continuous marker measurement?; 3) What is the 

impact on the population of using the marker to select treatment?; and 4) What proportion 

of patients will have different treatment recommendations following marker 

measurement?” (p. 253). Moving beyond statistics, consideration of factors such as cost, 

feasibility, and client burden should be weighed against the additive predictive power of 

variables that exceed those routinely collected in clinical settings (Perlis et al. 2009). 

Two Frequently Cited Treatment Selection Variables 

In real-world contexts, two variables often influence treatment selection in 

depression. The first is client preference (McHugh et al. 2013): Many treatment 
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guidelines (Hollon et al. 2014) specify the importance of attending to clients’ preferences. 

However, studies of the predictive utility of client preference include positive (Kocsis et 

al. 2009, Mergl et al. 2011, Swift & Callahan 2009), mixed (Dunlop et al. 2017, Group 

2008, McHugh et al. 2013), and negative (Dunlop et al. 2012b, Leykin et al. 2007b, 

Renjilian et al. 2001, Winter & Barber 2013) findings. Seemingly, contrary to lay 

intuition, preference is not a reliable indicator of treatment response. What’s more, 

patients’ preferences might shift when given individualized information about expected 

outcomes. 

Second, a client’s experience with previous treatments for depression can serve a 

prognostic or prescriptive function, as suggested by findings from several outcome 

studies. Prior exposure to ADMs and history of nonresponse to ADMs have each been 

found consistently to predict poor response to future courses of antidepressants 

(Amsterdam et al. 2009, 2016; Amsterdam & Shults 2009; Byrne & Rothschild 1998. 

Moreover, there is evidence that the number of prior ADM exposures can provide 

prescriptive information. For example, Leykin et al. (2007a) found that multiple previous 

ADM exposures predicted a poorer response to ADM, but not to CT, such that a client 

with two or more prior exposures was significantly more likely to benefit from CT than 

ADM. Clearly, assessing treatment history is important and could be used to inform 

treatment selection. 
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THE PERSONALIZED ADVANTAGE INDEX APPROACH 

In 2011, we, along with other members of our research team, began to explore the 

possibility that machine learning6 (Iniesta et al. 2016b, Passos et al. 2016) or 

multivariable regression modeling approaches could be brought to bear on problems in 

precision mental health. We initiated our journey with a specific goal in mind: to find or 

develop an approach that could identify clients with MDD for whom antidepressants are 

likely to be more beneficial than CT, and vice versa. Two findings from our lab prompted 

our interest. First, in a sample of clients with moderate to severe MDD, ADM and CT 

had produced nearly identical group-average effects on depressive symptoms over the 

course of a 16-week RCT (DeRubeis et al. 2005). Second, we had discovered five 

variables (marital status, employment status, PD comorbidity, antidepressant treatment 

history, and number of recent stressful life events) that served as moderators of symptom 

change in this sample (Fournier et al. 2009). 

What was striking about the variables that moderated the effects of ADM versus 

CT was that no single one dominated the differential predictions. To survive the variable 

selection procedure, each variable had to make an independent contribution to the 

statistical model. As a result, the variables needed to be relatively uncorrelated with each 

other in the sample, such that they could not be used to define a factor, per se. Rather, we 

had identified five vectors, represented by the five variables, any one of which could be 

used to point a client to either ADM or CT as their preferred treatment, although there 

was not an especially strong predictor in the bunch. We understood this to indicate that 

                                                             
6Gillan & Whelan (2017) explain the following: “Machine-learning (essentially synonymous with 
‘data-mining’ or ‘statistical learning’) refers to a class of approaches that focus on prediction 
rather than interpretation or mechanism.” (p. 35) 
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there are many “reasons” one treatment may be more effective than another for a given 

person. 

This posed a challenge for selecting treatments for patients with contradicting 

indications. For example, as noted above, clients with comorbid PD improved more with 

ADM than they did in CT, whereas clients without comorbid PD improved more in CT 

than with ADM (Fournier et al. 2008). It was also the case that clients who were 

unemployed improved more in CT than with ADM. How is a clinician to use this 

information in recommendations to a client with comorbid PD (indicating ADM) who 

was unemployed (indicating CT)? How does the clinician integrate information when 

considering different recommendations from the other three variables when forming a 

treatment recommendation? The implication of the literature on actuarial versus clinical 

decision making, which has focused on prognosis, is that outputs from a well-constructed 

statistical method should be able to provide useful information in treatment selection 

contexts, as well. 

We also reasoned that effective guidance for clinicians and clients would, ideally, 

be “graded,” to reflect the likelihood that for some clients differential benefit would be 

expected to be quite substantial, for others it would be negligible, and for others in 

between. To address these challenges, we developed the Personalized Advantage Index 

(PAI) approach (DeRubeis et al. 2014a), which has since been featured in work both 

internal and external to our lab (Huibers et al. 2015, Vittengl et al. 2017, Zilcha-Mano et 

al. 2016; Cohen et al., under review; Keefe et al., 2018; Webb et al., 2018). 

Essential to the PAI approach is the identification of variables in a dataset that 

predict differential response to two or more treatments. Once the variables have been 
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identified, a multivariable statistical model that includes interaction terms representing 

the prescriptive variables7 is constructed. A PAI for a given client is then calculated as 

the difference between their predicted outcomes in two treatments (treatment A and 

treatment B). To generate the prediction for treatment A, the client’s values on the 

baseline variables, as well as the value representing treatment A, are inserted into the 

model. This is repeated, with the value of treatment B inserted into the model. The 

predicted value with treatment A in the model is compared with the predicted value under 

treatment B. The sign of the difference reflects the model-indicated treatment, and the 

magnitude of the difference reflects the magnitude, or strength, of the predicted 

difference. We return to a focus on the PAI approach more specifically in a discussion of 

issues of broader importance in treatment selection, following a review of literatures on a 

variety of prognostic and prescriptive multivariable approaches in mental health. 

REVIEW OF THE LITERATURE ON MULTIVARIABLE PREDICTION 

MODELS 

Overview 

If a single predictive variable with a very large effect can be identified in a 

treatment context, application to practice is likely to be straightforward. In depression, 

however, such variables have not been identified consistently. In part for this reason, 

single variables have not found widespread use in treatment selection contexts. One 

exception to this is baseline symptom severity, which has been included in many practice 

                                                             
7Some of the machine-learning models we have constructed do not include interaction terms per 
se, but they perform the same task of modeling differential response. 
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guidelines as an indication that stronger treatments, or the combination of ADMs and 

psychotherapy, are to be preferred over lower-intensity interventions (American 

Psychiatric Association 2010, National Institute for Health and Clinical Excellence 

2009). The status of baseline severity as a prescriptive variable has been supported 

primarily in comparisons of an active treatment with a control (Driessen et al. 2010, 

Fournier et al. 2010), but not in comparisons of two active treatments (Vittengl et al. 

2016, Weitz et al. 2015). 

Multivariable models are more likely to yield powerful predictions (Perlis 2013), 

and they comport with our understanding of psychopathology and treatment response as 

complex, multiply determined phenomena (Drysdale et al. 2017). Unfortunately, the 

interpretation and application of multivariable models is less straightforward for the 

clinician than are single-variable approaches. To further complicate matters, it may be 

important not only to consider multiple variables simultaneously, but also to consider 

potential interactions among multiple variables (Tiemens et al. 2016). As new, more 

powerful modeling approaches become available (Kapelner & Bleich 2013, Luedtke & 

van der Laan 2016, Ma et al. 2016), researchers must weigh the increased flexibility and 

predictive power of such approaches against the interpretability (Hastie et al. 2009, James 

et al. 2013) of simpler models (Green & Armstrong 2015), especially insofar as the goal 

is to disseminate the models in ways that are acceptable to clinicians and clients 

(Delgadillo et al. 2016). 

Prognostic Models 

Recent multivariable modeling efforts (Chekroud et al. 2017) highlight the potential 

for these advanced approaches to improve prognostic prediction in mental health (see 
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Gillan & Whelan 2017 for an extensive review). For example, Chekroud et al. (2016) 

used archival data from the Sequenced Treatment Alternatives to Relive Depression 

(STAR*D) study (Trivedi et al. 2006) to identify predictors of response to acute selective 

serotonin reuptake inhibitor (SSRI) treatment of depression. They validated their model 

in an external sample from a separate study, the Combining Medications to Enhance 

Depression Outcomes trial (Rush et al. 2011). Interestingly, although they found that it 

had acceptable predictive power in the study’s two SSRI conditions, it was not 

significantly predictive for the validation sample’s non-SSRI ADM condition, suggesting 

that the model may not work outside of the drug class on which it was developed. 

It is understandable that more progress has been made to date with prognostic models, 

relative to prescriptive models, but the former have less relevance to a core question in 

mental health treatment: “Which treatment should client X pursue to have the greatest 

likelihood of having a positive outcome?” In many medical contexts, treatment 

recommendations follow from accurate diagnosis. However, for many mental health 

diagnoses, especially depression, there exists an abundance of ESTs that a client could 

potentially receive. Thus, in mental health, using person characteristics to help guide 

individuals to their optimal treatment is especially important. Uher et al. (2012) noted the 

limitation of their prognostic model, which predicts response to ADM in MDD, relative 

to a prescriptive model: “Clinical application of this finding will require identification of 

a treatment that is effective in individuals [identified as less likely to respond to ADM]” 

(p. 976). 
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TREATMENT SELECTION APPROACHES 

Overview 

Byar & Corle (1977) published an early example of a multivariable treatment 

selection model in medicine. Working with longitudinal data from a sample of men who 

were randomized to one of two treatments for prostate cancer, they explored whether, for 

each man, the more promising treatment of the two could be identified using a set of 

characteristics ascertained prior to random assignment. At the time, the field’s emphasis 

had been on discovering, for all patients with a given diagnosis, “which treatment is 

best.” Byar & Corle capitalized on advances in statistical methodology that allowed for 

survival modeling with multiple covariates and used the heterogeneity of patients to 

develop a rubric that could, in principle, inform individual treatment recommendations. 

Byar (1985) later applied this general approach to the differential prediction of survival in 

response to two dosage levels of chemotherapy for prostate cancer. Surprisingly, not until 

1994 was any of Byar’s work cited by others in the context of actuarial modeling in 

treatment selection. Yakovlev et al. (1994) applied a similar methodology to a treatment 

selection problem in cervical cancer, but from 1994 until 2011 (Gunter et al. 2011b) none 

of these works was cited in a publication that applied or extended the differential 

prediction methods described by Byar or Yakovlev. 

The past half-decade has witnessed a surge of interest in optimizing treatment 

selection using multivariable predictive models, and much of this work is focused on 

treatments for depression. When moving beyond prognostic prediction into treatment 

selection, several additional considerations come into play. The first factor to consider is 

whether the treatment decision is between two or more equivalent interventions or, 
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instead, between a stronger versus a weaker intervention, as this distinction has 

implications for how one builds and evaluates the models. We begin our discussion 

focusing on contexts in which the decision is between equally effective treatments, when 

the question truly is “What will work best for each given patient?” We follow this with a 

review of the special case of stratified medicine (stepped-care), in which at least one of 

the candidate interventions results in greater improvement than a comparison condition, 

on average. 

One of the earliest examples of multivariable treatment selection in mental health 

came from Barber & Muenz’s (1996) reanalysis of the Treatment of Depression 

Collaborative Research Program (Elkin et al. 1989) study, which compared CT to IPT for 

MDD. The authors built a “matching factor” that combined the prescriptive value of 

marital status, avoidance, obsessiveness, and baseline severity in a linear model 

predicting symptom change. They also tested the prescriptive value of two personality 

disorder diagnoses, avoidant PD and obsessive-compulsive PD, and proposed that the 

models including these factors could be used to match patients to CT or IPT. 

Lutz et al. (2006) employed a statistical technique called “nearest-neighbors” to 

predict differential outcomes between two variations of CT. In the nearest-neighbors 

method, each client’s outcome in each treatment is predicted from the average observed 

outcomes in the respective treatments of groups of clients who are most similar to the 

index client on a set of features. 

Kraemer (2013) proposed a method that involves the creation of a single variable 

(termed M*) that represents a weighted combination of multiple moderators. This 

approach was demonstrated using data from a randomized comparison of IPT versus 



23 
 

 

ADM (Wallace et al. 2013). The statistical approach behind the M* method excludes any 

consideration of main effects in an attempt to maximize the power of the differential 

prediction of outcome (Kraemer 2013). Thus, two clients with identical M* scores could 

have very different prognoses, but this information is not given by the method. Recently, 

the M* approach has been used to analyze data from a comparison between aripiprazole 

augmentation and placebo augmentation for ADM-treatment-resistant late-life depression 

(Smagula et al. 2016), and between two psychological treatments for clients with anxiety 

disorders (Niles et al. 2017a,b). 

A series of papers by Uher et al. demonstrates the evolution of treatment selection 

from single to multivariable approaches. Using data from the Genome-Based Therapeutic 

Drugs for Depression study (Uher et al. 2009), they tested the prognostic and prescriptive 

utility of three symptom clusters (factors) and the six symptom dimensions that made up 

the factors (Uher et al. 2012). They examined the predictive power of each of these nine 

variables in isolation and found evidence for only the anxiety symptom dimension as a 

moderator. Recently, they returned to the question of treatment selection in this sample, 

using a multivariable approach with an expanded set of potential variables (Iniesta et al. 

2016a). They found that a model that simultaneously included the effects of multiple 

variables could predict differential response to antidepressants with clinically meaningful 

accuracy, thus demonstrating the potential of multivariable approaches for treatment 

selection. 

Other groups have used variants of the methods already described to address 

treatment selection questions (Cloitre et al. 2016, Westover et al. 2015). In Supplemental 

Table 2 we contrast some of the approaches used in the multivariable prediction work 
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referenced in this review. Although this abundance demonstrates the strong interest in 

precision medicine, the heterogeneity of methods (Doove et al. 2014) contributes to 

difficulties in detecting consistencies and inconsistencies in predictors, and creates a 

barrier to identifying “best practices.” 

To date, most attempts to build prescriptive models for treatment selection have 

utilized data from RCTs. Future efforts, exemplified by the ongoing work of Gillan et al. 

to collect mental health treatment outcome data online (Gillan & Daw 2016), will likely 

also rely on nonrandomized data. The potential influence of unknown confounds is a 

limitation of treatment selection efforts outside the context of RCT data. The bias in 

predictions in such studies can derive from “selection effects,” which result when clients 

with a given feature (e.g., history of nonresponse to ADMs) are provided with one of the 

treatments preferentially (e.g., CT). In these contexts, approaches such as propensity 

score analysis (d’Agostino 1998) can be employed to mitigate the effects of confounds. 

Extending the Personalized Advantage Index to Stratified Medicine 

When a model is developed to guide treatment decisions in health care contexts in 

which the available interventions differ in terms of strength, cost, availability, or risk, the 

question “Which treatment is predicted to be most effective for each individual?” may be 

moot. The treatment with the strongest effect on average is likely to be predicted to be the 

most effective one for most or all of the clients. In these contexts, the more relevant 

question is often “What is the best way to allocate the stronger/costlier/less 

available/riskier (hereafter ‘stronger’) treatment?” The practical goals of predictive 

models in stratified medicine are to enhance the efficient allocation of scarce or costly 

resources, as well as to limit patients’ unnecessary exposure to treatments that require 
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substantial time commitments or are associated with heightened side effect risk 

(Hingorani et al. 2013). 

Considerations of treatment allocation for stronger versus weaker interventions, 

including part-whole comparisons (e.g., combined ADM + CT versus ADM alone) 

should address the distinction between two ways in which the stronger treatment 

produces superior average change. One possibility is that every client is expected to 

benefit more—and by a similar amount—from the stronger treatment. In such cases, 

decisions about who should be provided the stronger treatment will not be based on 

clients’ predictive features, except insofar as the clients with the worst prognoses might 

be provided the strongest treatment, for ethical reasons. However, it may be that 

individuals vary in regard to how much more they will benefit from the stronger 

treatment, relative to the weaker one. In such cases, it becomes important to identify 

client characteristics that predict differential response to the stronger versus the weaker 

treatment. 

Patient Subtypes 

To better describe the patient types on whom treatment selection might be tested, we 

propose an adaptation of DeRubeis et al.’s (2014b) conceptualization of client types. In 

an attempt to highlight the relationship between therapy quality and patient improvement, 

they posited five exemplar types meant to represent the spectrum of potential associations 

that could be expected between therapy quality and improvement: spontaneous remitters, 

easy patients, pliant patients, challenging patients, and intractable patients. For 

spontaneous remitters, any level of therapy quality (from the best to the worst) would 

lead to high levels of improvement. For patients at the other end of the spectrum (the 
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intractable patients), little to no improvement would be expected, regardless of the level 

of therapy quality. In the middle of this spectrum are pliant patients, defined as those 

patients whose improvement would vary as a function of therapy quality, such that with 

very poor quality therapy or no therapy, no improvement would be expected, and with the 

highest quality therapy possible, complete improvement would be expected to result. For 

the purpose of treatment selection, the pliant patient category can be broken down into 

two subgroups: individuals who would improve insofar as they receive quality treatment 

of any type and other individuals for whom the correlation between quality and 

improvement would be moderated by the “match” between patient and treatment (see 

Figure 2, types 3 and 4a/4b). These latter individuals (Figure 2, type 4a/4b,), who will 

respond well to—but only to—a specific treatment, are the individuals for whom PAI-

type treatment selection will be most important. 

 

Figure 2. The figure depicts the expected improvement for different patient prototypes in 
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different treatment contexts. The treatment contexts range from lowest to highest 
intensity (colored bars). Patient prototypes, which range from spontaneous remitters to 
intractable patients, are labeled on the x-axis. As shown with the colored bars, 
spontaneous remitters would be expected to show the same high level of response (95%) 
in any treatment context. Similarly, intractable patients would be expected to show the 
same low level of response (5%) irrespective of the treatment provided to them. 
Prototypes 2, 3, 4a, 4b, and 5 would be expected to show different levels of response 
depending on the treatment provided. Prototypes 3, 4a, and 4b are all “pliant,” but they 
differ in regard to the expected responses to the two high intensity treatments (TxA and 
TxB). Patients represented by prototypes 4a and 4b differ from those represented by 
prototype 3 in that they require a specific high intensity treatment, whereas prototype 3 
patients would be expected to evidence a high level of response to either high intensity 
treatment. This distinction is also depicted by the heights of the yellow bars (unspecified 
high intensity treatment), which represent the averages of the expected responses to TxA 
and TxB within each prototype. 

The analytical tools used to construct PAI models can be adapted to inform decisions 

in stratified medicine, where the choice is often between a high- versus low-intensity 

treatment, and where the high-intensity treatment is more effective, on average. In such 

cases, the goal is to distinguish between individuals who are likely to benefit much more 

from the high-intensity treatment than from the low-intensity treatment, versus those for 

whom the expected differential benefit is small. As with the PAI approach, a continuous 

index is created (Forand et al. 2017), but in this case its purpose is to array patients along 

a continuum from those who are most likely to experience a positive response 

irrespective of treatment to those for whom the expected outcome is poor (Figure 2, 

types 2/3/5). Lorenzo-Luaces et al. (2017) implemented such an approach as a proof of 

concept, with data from a randomized comparison of a high-intensity treatment (CT) with 

two lower-intensity treatments. On average, as described in the main outcome paper from 

the trial, the differences between CT and each of the two comparison conditions were 

small (van Straten et al. 2006). Lorenzo-Luaces et al. constructed a multivariable 
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prognostic index8 as described above. Following DeRubeis et al. (2014b), they predicted 

that, for clients with poorer prognoses, the provision of CT would lead to a higher 

likelihood of response, relative to the lower-intensity conditions. Between-treatment 

comparisons were not expected to reveal differences in response rates in the subset of 

clients with scores indicating better prognoses. Findings were consistent with these 

predictions, suggesting that the application of these principles in stratified medicine could 

substantially increase the efficiency of mental health treatment systems. Gunn et al.’s 

(2017) recently initiated RCT tests a symptom-based depression clinical prediction tool 

called Target-D for stepped-care in primary care. 

Two recently published works using data from the National Health Service’s 

Improving Access to Psychological Therapy (IAPT) program also highlight ways in 

which multivariable models could be used to guide stratified medicine in mental health. 

Saunders et al. (2016) used latent profile analysis to create eight profiles that described 

sets of baseline demographic data and symptom features that defined patient clusters. 

One of their goals was to identify subsets of clients (those with profiles similar to each 

other) for whom differential predictions could be made between high-intensity treatment 

and low-intensity psychological treatment. In a different sample of clients treated for 

mood and anxiety disorders in the IAPT services, Delgadillo et al. (2016) explored the 

                                                             
8A prescriptive index could also be used in the context of such a comparison. Use of a 

prescriptive model in this context would identify patients for whom the stronger 

treatment is expected to lead to better outcomes than the weaker treatment, patients for 

whom less advantage of the stronger treatment is expected, and perhaps a subset of 

patients for whom no advantage of the stronger treatment is expected, or even a subset for 

whom the weaker treatment is predicted to be better than the stronger treatment. 
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potential utility of treatment selection models. The authors created an index that 

generated predictions as to which clients were likely to achieve reliable and clinically 

significant improvement in depression or anxiety symptoms. Recent work using a 

prognostic index of case complexity yielded similar results in a separate sample of IAPT 

patients (Delgadillo et al. 2017). 

RECOMMENDATIONS FOR BUILDING TREATMENT SELECTION MODELS 

In what follows, we review the major steps involved in constructing and evaluating a 

treatment selection approach from a dataset that includes values, for each client, on 

variables that reflect pretreatment characteristics, the treatment provided to the client, and 

the client’s observed outcome in that treatment. Understanding these steps is critical for 

the clinical researcher who wants to conduct PAI analyses, as well as for the clinician 

who wants to interpret and evaluate the utility of findings from treatment selection 

studies. 

The first step is to identify and prepare the candidate predictor variables. Good 

candidate predictor variables are those that are measured prior to the point of treatment 

assignment and that plausibly could be related to outcome, either in general (prognostic) 

or differentially between treatments (prescriptive). If prior research has indicated that a 

variable predicts outcome, then it should be included as a potential predictor, but as the 

literature on predictors (and especially on moderators) in mental health is still relatively 

sparse, including other putative variables is recommended. Variables must not have 

significant missingness, and tests for systematic missingness should be performed to 

inform the appropriateness of imputation (Jamshidian & Jalal 2010). Variables should 

also exhibit sufficient variability. For example, it makes little sense to include gender if 
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95% of the sample were female. Many variable selection and modeling techniques used 

in prediction are sensitive to situations in which the set of predictors has high collinearity, 

and thus it is wise to examine the covariance structure of the potential predictors, and to 

take steps to reduce high collinearity (Kraemer 2013). Other considerations for preparing 

potential predictors include dealing with outliers/leverage points, making categorical 

variables binary (where indicated), and transforming variables for theoretical reasons or 

to deal with problematic distributions (e.g., those with high skew). Finally, centering 

variables can help avoid inferential errors and increase stability when using regression-

based approaches (Kraemer & Blasey 2004). 

The choice of variable selection and modeling approaches can be constrained by the 

nature of the outcome variable. Although many approaches can accommodate both binary 

and continuous outcomes, the use of categorical outcomes, or longitudinal and survival-

type outcomes, is limited to a select subset of the available approaches. 

Once potential predictor and outcome variables have been selected, the next step is to 

build the prediction model. This is typically a two-step process comprising variable 

selection and model-weight specification. Many different variable selection approaches 

have been proposed for treatment selection, all of which attempt to identify which 

variables, among the potential predictors, contribute meaningfully to the prediction of 

outcome. Gillan & Whelan (2017) provide an excellent discussion of theory-driven 

versus data-driven approaches to model specification. Classic approaches rely on 

parametric regression models [e.g., forward or backward stepwise regression; see 

Fournier et al. (2009) for a worked example] that select only those variables with 

statistically significant relations with outcome. A subset of these approaches includes 
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penalties that aim to create parsimonious models by limiting the number of variables 

selected (Tibshirani 1996). Others employ bootstrapping procedures or shrinkage 

parameters that seek to maximize the stability and generalizability of the models (Austin 

& Tu 2004, Garge et al. 2013, Zou & Hastie 2005). Advances in statistical modeling and 

computational resources have led to feature selection approaches, many of which are 

based on machine learning, that can flexibly model and identify predictors with nonlinear 

and higher-order interactions (Bleich et al. 2014). The line between variable selection and 

model weight specification is not always clear, as some modeling approaches combine 

the two in one step. Gillan & Whelan (2017) provide an in-depth review of the merits of 

machine learning in mental health; interested readers can also consult books focused on 

applied clinical predictive modeling (Chakraborty & Moodie 2013, Parmigiani 2002, 

Steyerberg 2008). 

Cohen et al. proposed a new variable selection approach that combines the outputs of 

multiple procedures with the aim of generating robust predictors (Cohen et al., under 

review). It also allows for the inclusion of complex relations that often exist between 

predictors and outcome in treatment selection contexts that are often overlooked in 

classic regression-based approaches. We performed four different variable selection 

approaches in seven mental health RCTs and found both consistencies and 

inconsistencies in which variables were identified in each dataset across the different 

approaches. Some variables were identified consistently as important, some variables 

were identified consistently as unimportant, and other variables had mixed indications, 

depending on the variable selection method. We can have increased confidence in the 

importance of variables that are consistently identified as important, and similarly, that 
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those variables rejected consistently should be considered unimportant. We also believe 

that we can use our understanding of the different methodologies to determine whether 

those variables that are identified in some approaches but not in others are inconsistently 

identified due to weak or noisy effects, and thus should be considered poor predictors, or 

whether this pattern can be attributed to shortcomings of specific approaches. For 

example, a variable might be selected by one approach that can flexibly model higher-

order interactions (Bleich et al. 2014) but excluded by a second that cannot (Austin & Tu 

2004) if that variable’s predictive relationship to outcome involves a three-way or 

nonlinear interaction. 

Once the variables that have prognostic or prescriptive relationships to outcome have 

been identified, the model weights are specified. Model weights determine how much, 

and in what direction, each variable contributes to the prediction of outcome. Although 

the specifics of how a modeling approach characterizes these relationships can differ 

(e.g., parametric approaches, which might use linear regression, versus nonparametric 

machine-learning approaches, which might utilize tree-based modeling approaches), any 

of these approaches can generate predictions for new clients for each treatment condition 

for which the prediction is to be made. Both variable selection and weight setting should 

be performed using techniques that maximize the stability and generalizability of the 

model (Gillan & Whelan 2017). 

EVALUATING TREATMENT RECOMMENDATION APPROACHES 

As described in previous sections, once a model is built it can be used to generate 

predictions for each patient’s outcomes. The utility of the model can then be evaluated on 

the basis of comparisons of the predictions with observed outcomes. This can be done 
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either within the dataset that was used to generate the predictions or with a new sample of 

clients who are randomized to receive treatment A or treatment B. When the same dataset 

is used both to generate the model and to test its utility, special care must be taken to 

avoid a situation in which the model is fit specifically to the sample and is therefore 

unlikely to generalize in an independent application (Collaboration 2015, Ioannidis 

2005). 

To estimate the expected utility of the prediction-based recommendations without 

bias, data from the to-be-predicted patient cannot be included in the course of 

development of the algorithm (Hastie et al. 2009). This can be accomplished in model 

development with the use of bootstrapping or internal cross-validation methods. Ongoing 

efforts to refine feature selection and weight setting with cross-validation focus on ways 

of identifying robust feature sets and robust means of determining the weights that will be 

applied to those features. Well-constructed models are built with the aim of avoiding both 

underfitting and overfitting at both the feature-selection and weight-setting stages. The 

procedures for maximizing power (avoiding underfitting) and generalizability (by 

avoiding overfitting) are in continuous development. 

Although there are many ways one could test a PAI prospectively, the most 

straightforward approach would be to randomize a new sample of clients to each 

treatment. A test of the utility of the model can then be derived from a comparison of the 

outcomes of those individuals who happen to be randomized to the intervention that was 

identified by the model as more likely to have a positive outcome, versus the outcomes of 

those who get randomized to their nonindicated intervention. In the context of equivalent 

average outcomes for the two treatments, if the average response of those who receive 
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their indicated treatment is (statistically significantly) superior to the average response of 

those who receive their nonindicated treatment, this can be taken as evidence that the 

model has predictive power. Further examination of the size of this benefit, in the context 

of other relevant factors (e.g., cost of administering the required assessments) would 

inform a judgment concerning the clinical utility of a model (Huang et al. 2012, 2015). 

Another approach to a prospective study would be to randomize participants to 

allocation-as-usual (AAU; for example, patient preference or clinical judgment) versus 

model-guided allocation. Although attractive for its comparison to a real-world treatment 

allocation strategy, this approach reduces the sample size available for comparison, as the 

only patients that can be used to compare the utility of the model are those for whom the 

AAU and model-based assignments disagree. 

Careful consideration of the distinction between the different patient types reviewed 

earlier is important when evaluating treatment selection models. Indexes such as the PAI 

yield binary recommendations (A versus B), but they also contain information about the 

strength of the recommendation. When used to inform treatment selection in the context 

of two treatments with equivalent average effects, many individuals can be expected to 

have PAIs close to zero, indicating that little to no difference in outcomes is predicted 

between the treatments. For these individuals, one implication is that either treatment 

could be recommended, as would be so for a type-3 pliant patient from Figure 2, who 

will respond to any treatment according to its strength. However, an individual with a 

PAI near zero might instead be a spontaneous remitter (type 1), an easy patient (type 2), a 

difficult patient (type 5), or an intractable patient (type 6). An examination of the within-

treatment prognostic predictions will provide an indication of which profile best 
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describes such an individual. Predictions of roughly equally poor outcomes in both 

treatments might indicate a challenging or intractable patient, whereas predictions of full 

symptom resolution in both treatments might indicate a spontaneous remitter, an easy 

patient, or a type-3 pliant patient. A patient with poor predicted outcomes in both 

treatments under consideration would tentatively be categorized as intractable (type 6), 

but it is possible that such a patient (type 5) might benefit from a treatment not included 

in the comparison, such as the combination of the two treatments studied. Identifying 

these individuals and recommending a stronger treatment could reduce the number of 

exposures to ineffective treatments. 

A recommendation that treatment A is to be preferred over treatment B could arise from a 

PAI that is very large, in which case a clinician might strongly advise a client to pursue 

treatment A. However, if the predicted advantage is so small as to be clinically 

meaningless (e.g., a PAI close to zero), then the clinician would communicate this 

information to the client, and other factors would play a larger role in selecting treatment. 

Evidence for the importance of attending to recommendation strength can be found in the 

results of contexts in which greater expected benefit of treatment selection was observed 

for individuals with larger PAIs compared to those whose PAIs were smaller (DeRubeis 

et al. 2014a; Huibers et al. 2015; Cohen et al., under review; Keefe et al., 2018). 

DISCUSSION 

Clinical practitioners and researchers have long sought knowledge about what works 

for whom. This knowledge matters. Many stakeholders would benefit from 

improvements in our ability to identify, for each individual, the intervention among those 

under consideration that is most likely to yield the best response. The implications for 
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individuals are obvious. People suffering from depression want interventions that will 

work. Limiting the number of individuals exposed to ineffective first-line treatments and 

reducing the average time to recovery will not only reduce suffering from the symptoms 

of depression, but will increase economic productivity inasmuch as symptoms of 

depression interfere with a person’s ability to perform work functions at a high level 

(Layard et al. 2007). Intelligent allocation of limited or costly resources has relevance for 

any class of treatment, including psychotherapy—the availability of which is often 

limited by the availability of trained clinicians—and pharmacotherapy, in which 

associated risks should be minimized. 

Success in efforts to match individuals to treatments has been elusive. Historical 

attempts to use research findings to promote propitious matches of clients to treatments 

have relied on analyses that take into account a single feature of the client. Work with 

single features has been attractive in part due to its simplicity, and because of the ease 

with which a theory-based interpretation can be applied to the findings to support or 

understand the resulting recommendations. Unfortunately, the vast majority of this 

research on individual differences in treatment response (e.g., project MATCH; Allen et 

al. 1997) has failed to have a meaningful impact on client care (Simon & Perlis 2010). 

Modern multivariable treatment selection approaches can overcome many of the 

shortcomings that have hindered progress and therefore hold great promise for the future 

of precision mental health. Part of this future will require a resolution of the tension 

between the statistical methodology of explanatory approaches that have dominated 

psychology and the predictive approaches the will power precision medicine going 

forward (Yarkoni & Westfall 2017). 
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Although it was not the focus of this review, we want to emphasize that we believe 

the treatment selection process should be an open and shared decision-making process 

between patients and clinicians. Treatment selection tools should be viewed as providing 

useful information that helps inform this collaborative decision-making process. 

FUTURE DIRECTIONS 

Research that informs treatment selection will continue to include analyses of data 

from RCTs, but it should and likely will also be conducted with large treatment databases 

(Kessler 2018), collected online or through electronic medical records (Perlis et al. 2012). 

The designs of RCTs will also be better tuned to the goals of precision mental health. 

Recent work has demonstrated the potential for dynamic assessment in precision mental 

health (Fernandez et al. 2017, Fisher & Boswell 2016). Modular psychotherapies that can 

be accessed online are fertile grounds for future efforts to personalize treatment for 

depression (Watkins et al. 2016). The pretreatment assessments that provide grist for 

treatment selection models will include biomarkers and other measures that promise to 

reveal prescriptive relationships, in addition to the self-report, demographic and clinical 

variables that have fueled most treatment selection findings reported to date. There are 

several ongoing studies, designed specifically to generate knowledge relevant to outcome 

prediction in depression treatment, that feature potential biomarkers, including 

information from neuroimaging and genetic testing (Brunoni et al. 2015, Lam et al. 2016, 

Williams et al. 2011). Two such trials are the Establishing Moderators and Biosignatures 

of Antidepressant Response for Clinical Care for Depression study (Trivedi et al. 2016), 

which focuses on two antidepressants (sertraline and bupropion) in the context of early-

onset, recurrent MDD, and the recently completed Predicting Response to Depression 
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Treatment study, which compared CBT to ADM in treatment-naive adults with moderate 

to severe MDD (Dunlop et al. 2012a). Lutz et al. (2017) have recently initiated an RCT 

that tests personalized psychotherapy prediction and adaptation tools in a real-world 

clinic. The exploratory nature of many of the existing prediction models increases the 

importance of external validation and tests of generalizability. To realize the promise of 

precision mental health, existing models as well as those that are being developed will 

need to be validated prospectively against standard allocation schemes (Kingslake et al., 

2017). Moreover, it will be important for all stakeholders, including providers and 

patients, to be involved in shaping the tools that will translate the findings into practice. 
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Supplemental Material: Supplemental Example 1 

An example of the single moderator approach, with a twist. Prior to randomizing 

63 patients with MDD to one of three treatment conditions, Beutler et al. (1991) assessed 

them on two dimensions hypothesized to be differentially predictive of outcomes in the 

conditions. Specifically, the investigators predicted that “the degree to which patients 

characteristically use externalization as a coping style (i.e., acting out, projection, etc.) 

would be positively associated with improvement in a treatment that focuses on 

behavioral change (CT) but would be negatively associated with improvement in insight-

oriented (FEP and S/SD) treatments…(and that) level of patient preassessed resistance 

potential would be positively related to patient response in self-directed treatment (S/SD) 

but would be negatively related to improvement in authority directed (FEP and CT) 

therapies.” (p. 334). This study possessed several admirable features, and the findings 

were impressive. The dimensions and treatments were selected based on clinical theory, 

and the investigators specified the directions of the associations of each of the two 

dimensions in each of the three treatments. Of the six directional predictions they made, 

four of them were borne out, with the absolute values of the correlations between the 

relevant predictor and outcome ranging from 0.47 to 0.60 (Beutler et al., 1991). A fifth 

correlation was in the predicted direction (0.17) and a sixth was in the direction opposite 

of the prediction, but only slightly (-0.10).  

Unfortunately, their conclusions illustrated a common limitation on inferences 

from findings regarding the differential prediction of outcomes in two or more 

treatments. When more than one variable exhibits a predictive relation to outcome, the 

translation of prediction findings to sound clinical judgment is difficult. In the Beutler et 
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al. (1991) study, two variables were identified (externalization and resistance potential), 

each of which was used to make independent differential predictions of outcome.  As has 

been true of other investigators who have identified multiple prescriptive variables in a 

dataset, the authors did not provide guidance as to how to combine or integrate 

information from the two predictors (see a paper from our group for a more recent 

example of this common shortcoming; Fournier et al. 2009). Without an integration of 

the variables, the conclusions from this kind of predictive work will be as limited as those 

from studies of single prescriptive variables. Indeed, recent publications by Beutler and 

colleagues speak about the importance of coordinating multiple sources of information 

when making treatment decisions (Beutler et al., 2016), and Beutler et al.’s Systematic 

Treatment Selection (Beutler & Clarkin, 1990) and Prescriptive Psychotherapy (Beutler 

& Harwood, 2000) represent attempts to formalize the application of empirical findings 

of the sort described above to clinical practice. 
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number of prior ADM exposures, the less change is expected in symptoms of depression over the 
course of treatment. People with two or few prior ADM exposures are expected to experience 
more change in ADM treatment than in CT, and individuals with large numbers (4 or more) of 
prior ADM exposures are predicted to experience greater change in CT than in ADM. For 
individuals with 3 prior ADMs, there is no predicted difference in outcomes between the two 
treatments. This moderator shows a main effect. b) This shows a disordinal moderator 
relationship between a categorical predictor (prior CT) and outcome. For those who receive ADM 
(in blue), there is no relation between prior CT and outcome. For those treated with CT (in red), 
individuals who have never had a course of CT are expected to benefit more with CT than are 
those with a history of CT. Looking within CT-history subgroups, individuals with no prior CT 
are expected to experience more symptom change in CT than with ADM, and within the 
subgroup of individuals who had previously received CT there is the opposite expectation. This 
moderator has no main effect. c) This shows an ordinal moderator relationship between a 
continuous variable (# of children) and outcome. For those treated with CT, there is a positive 
relationship between # of children and symptom change, such that the more children, the more 
symptom improvement could be expected. For those treated with ADM, the opposite relationship 
is observed. For people with no children, there is no expected difference between the two 
treatments in terms of change in symptoms. But for those with children, the more children a 
patient has, the larger the advantage the expected advantage of CT over ADM. This moderator 
has no main effect. d) This shows an ordinal moderator relationship between a categorical 
variable (marital status) and outcome. There is no difference between CT and ADM for 
unmarried people, but for married people there is a large advantage of CT over ADM. Married 
people are expected to do better than unmarried people in CT (red bars). Unmarried people are 
expected to do better than married people in ADM. This moderator has no main effect. e) This 
shows a disordinal moderator relationship between continuous predictor (personality disorder 
symptoms) and outcome. In ADM, there is a positive relationship between PD symptoms and 
outcome: the more PD symptoms, the more symptom change is expected. In CT, the opposite (a 
negative) relationship is observed. People with fewer PD symptoms are expected to experience 
more change in CT treatment than in ADM, and individuals with more PD symptoms experienced 
greater change in ADM than in CT. For individuals with average levels of PD symptoms, there is 
no difference expected in outcomes between the two treatments. There is no main effect of the 
number of personality disorder symptoms. f) This figure shows the same disordinal moderator 
relationship as in figure e, but for a categorical version of the personality disorder predictor 
(diagnosis yes/no). On average, patients with a PD experience more change in ADM than those 
without a PD. For those who got CT, individuals without a PD diagnosis experience, on average, 
more change than those with a PD diagnosis. Thus, ADM is expected to be better than CT for 
those with a PD, and CT is expected to be better than ADM for those without a PD. There is no 
main effect of having a PD. g) This shows a disordinal moderator relationship between 
continuous predictor (neuroticism) and outcome. For those who receive ADM, there is a negative 
relationship between neuroticism and outcome: the more neurotic a patient is, the less symptom 
change should be expected over treatment. For those who receive CT, a stronger relationship in 
the same direction is expected. There is a main effect of the moderator (such that in both 
conditions, more neuroticism is associated with less symptom change), but the nature of these 
relationships involves a crossover around the mean level of neuroticism for the same. Thus, for 
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people with very low levels of neuroticism, CT is expected to be superior to ADM, and for those 
who with high levels of neuroticism, ADM is preferred to CT. h) This illustrates the same 
disordinal moderator relationship as figure g but between a categorical predictor (employed vs. 
unemployed) and outcome. There is a main effect of employment, such that people who are 
unemployed experience less improvement than people who are employed. However, the extent to 
which unemployment predicts poorer response differs by treatment. The decrease in expected 
response comparing employed to unemployed individuals is larger for ADM than for CT. 
Practically, ADM is preferred to CT for people who are employed, and CT is preferred to ADM 
for people who are unemployed. i) This shows an ordinal moderator relationship between a 
continuous variable (anxiety symptoms) and outcome. There is a main effect of anxiety 
symptoms, such that more anxiety is related to less change in depression across treatment. For 
those with the fewest anxiety symptoms, there is no difference between the two treatments. For 
the rest of the sample, ADM is associated with more symptom change than CT, and the size of 
this predicted advantage of ADM grows as individuals have increasingly high levels of anxiety 
symptoms. 

 
Supplemental Table 1. Review of reviews and meta-analyses of predictors in 
depression. 

  

Focus Focus Predictor domains Type Reference 

MDD IPT All Systematic review Bernecker et al. 
(2017) 

MDD All Sociodemographic, 
clinical, personality, 
stress and adversity, 

cognitive 

Review Kessler et al. 
(2017) 

MDD ADM Biomarkers Review Fabbri et al. (2017) 

MDD Exercise Demographic, 
biological, clinical, 

psychosocial 

Systematic review Schuch et al. (2016) 

MDD ADM (withdrawal) Demographic, clinical Systematic review Berwian et al. 
(2016) 

MDD Psychotherapies Sociodemographic, 
clinical, environmental 

Meta-analytic 
review 

Cuijpers et al. 
(2016) 

MDD, SZ, 
bipolar, 
substance 
abuse 

ADM Biomarkers 
(pharmacogenetics) 

Review El-Mallakh et al. 
(2016) 
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MDD ADM, CBT Demographic, clinical Individual patient 
data analysis 

Vittengl et al. 
(2016) 

MDD and 
ADHD 

EEG Biomarkers Review Olbrich et al. 
(2015) 

MDD ADM Biomarkers 
(pharmaco-
epigenetics) 

Review Lisoway et al. 
(2017) 

MDD all Biomarkers Review Kemp et al. (2015) 

MDD ADM Biomarkers 
(neuroimaging) 

Review Phillips et al. 
(2015) 

MDD all 

 

Biomarkers 
(neuroimaging) 

Review Lener and Iosifescu 
(2015) 

MDD ADM, ECT and TMS Biomarkers Systematic review Dichter et al. 
(2015) 

MDD ADM and 
psychotherapy 

Biomarkers 
(inflammation) 

Meta-analysis Strawbridge et al. 
(2015) 

MDD ADM Biomarkers 
(neuroimaging) 

Review Chi et al. (2015) 

MDD ADM Demographic, clinical, 
psychosocial 

Review Hirschfeld (2000) 

TRD ADM Demographic, clinical, 
biomarker 

Systematic review Bennabi et al. 
(2015) 

MDD ADM Biomarkers 
pharmacogenetics 

Meta-analysis Biernacka et al. 
(2015) 

Mood 
disorders 

ADM Biomarker (BDNF) Systematic and 
quantitative meta-

analysis 

Polyakova et al. 
(2015) 

MDD ADM Pharmacogenetics Review Perlis (2014) 

MDD ADM Biomarkers (EEG) Review Olbrich and Arns 
(2013) 

MDD and 
ALZ 

ADM Biomarker 
(pharmacogenetics/ph

armacodynamics) 

Review Souslova et al. 
(2013) 

MDD and 
anxiety 

All treatments Biomarkers 
(neuroimaging) 

Review Jappe et al. (2013) 



45 
 

 

TRD ADM Biomarkers Review Smith (2013) 

Late-life 
depression 

ADM Demographic, Clinical Patient-level meta-
analysis 

Nelson et al. (2013) 

MDD Physical exercise Demographic, clinical Systematic review 
and meta-analysis 

Silveira et al. 
(2013) 

Mood 
disorders 

Medication adherence Demographics, 
clinical, psychosocial 

Review Pompili et al. 
(2013) 

Observatio
nal studies 
in MDD 

Medication  adherence Sociodemographic and 
clinical 

Systematic review Rivero-Santana et 
al. (2013) 

MDD 

 

All Clinical (personality 
disorder) 

Systematic review 
and meta-analysis 

Newton-Howes et 
al. (2013) 

MDD ADM, psychotherapy Demographic, clinical Systematic review 
and meta-analysis 

Cuijpers et al. 
(2012) 

MDD All treatments Biomarkers 
(neuroimaging) 

Meta-analysis and 
review 

Pizzagalli (2011) 

MDD ADM Demographic Meta-regression Naudet et al. (2011) 

MDD ADM Demographic, clinical Meta-regression Serretti et al. (2011) 

Mood and 
anxiety 
disorders 

ADM Demographic, clinical, 
psychosocial, 
biomarkers 

Review Serretti et al. (2009) 

MDD, 
anxiety 

Internet-based 
interventions 

Demographic, 
Clinical, Psychosocial, 

Biomarkers 

Systematic review Christensen et al. 
(2009) 

MDD ADM Demographic, clinical, 
psychosocial, 
biomarkers 

Review Kemp et al. (2008) 

MDD Psychotherapy Demographic, clinical, 
environmental 

Meta-regression Cuijpers et al. 
(2008) 

MDD CBT Clinical Meta-regression Haby et al. (2006) 

MDD ADM Personality 
(personality disorder) 

Systematic review 
and meta-analysis 

Kool et al. (2005) 

MDD ADM, placebo Demographic, 
biomarkers, clinical, 

personality, 
environmental 

Selective review Dodd and Berk 
(2004) 
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MDD ADM Demographic, clinical, 
psychosocial 

Review Bagby et al. (2002) 

MDD ADM Clinical, biomarkers Review Joyce and Paykel 
(1989) 

 

Abbreviations: ADHD, attention deficit hyperactivity disorder; ADM, antidepressant 
medication; ALZ, Alzheimer’s disease; BDNF, brain-derived neurotropic factor; CBT, 
cognitive behavioral therapy; ECT, electroconvulsive therapy; EEG, 
electroencephalography; IPT, interpersonal therapy; MDD, major depressive disorder; 
PD, personality disorder; RCTs, randomized clinical trials; SSRI, serotonin-selective 
reuptake inhibitor; SZ, schizophrenia; TMS, transcranial magnetic stimulation; TRD, 
treatment-resistant depression. 

 

Supplemental Table 2. Comparison of treatment selection methodology showing 
heterogeneity 

 

Reference Comparison Variable 
Selection 

Modeling Testing Approach 

Barber and 
Muenz (1996) 

CT vs. IPT backwards 
stepwise 

elimination 

Linear 
regression 

within sample “matching 
factor” 

Lutz et al. 
(2006) 

CT vs. iCBIT nearest neighbor nearest 
neighbor and 
ETR - tested 
with logistic 
regression 

LOO Nearest 
neighbors 

Wallace et al. 
(2013) 

IPT vs. ADM M* approach + 
PCA 

linear 
regression 

within sample M * approach 

McGrath et al. 
(2013) 

CT vs. ADM 2-way ANOVA ANOVA within sample TSB 

DeRubeis, 
Cohen, et al. 
(2014) 

CT vs. ADM Domain 
Stepwisea 

linear 
regression 

LOO PAI 

Huibers et al. 
(2015) 

CT vs. IPT Domain 
Stepwisea 

linear 
regression 

LOO PAI 
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Zilcha-Mano et 
al. (2016) 

SET vs. ADM vs. 
PBO 

mobForest logistic 
regression 

LOO PAI 

Delgadillo et 
al. (2016) 

Step-2 vs. Step-3 
in IAPT 

backwards 
stepwiseb 

elimination, 
bootstrapping, 

split-halves 
validation 

logistic 
regression, 

simplified risk 
weighting 
scheme 

within sample Leeds Risk 
Index 

Smagula et al. 
(2016) 

Augmentation 
with aripiprazole 
vs. placebo for 

venlafaxine non-
response 

M*approach + 
lasso 

logistic 
regression 

within sample M* approach 

Saunders et al. 
(2016) 

Step-2 vs. Step-3 
in IAPT 

none LPA, split-
halves, logistic 

regression 

held-out 
validation 

sample 

n/a 

Iniesta, Malki, 
et al. (2016) 

SRI ADM vs. 
NRI ADM 

previous single-
variable 

moderator 
analyses from 6 

papers and 
ENRR, in four 

(inclusive) sets of 
variables 

linear and 
logistic ENRR 

10-fold CV with 
resampling, 

permutation test 

n/a 

Cloitre et al. 
(2016) 

STAIR/EXP vs. 
STAIR/SupC vs. 

SupC/EXP 

single-variable 
moderator 
analyses 

mixed effects 
modeling 

within sample, 
permutation test 

GEM 

Koutsouleris et 
al. (2016) 

Antipsychotic 
medicationc 

4x5-fold CV, 
Stepwise forward  

selection using 
RBF-SVMd 

Ensemble 
prediction 

leave-site-out 
CV 

n/a 

Chekroud et al. 
(2016) 

citalopram 10-fold CV, 
ENRR 

GBMe external samplef n/a 

Chekroud et al. 
(2017) 

4 ADM 
conditionsg 

10-fold CV, 
ENRR 

GBM external sample n/a 

Vittengl et al. 
(2017) 

C-CT vs. C-
ADM 

Single variable, 
backwards and 

forwards 
stepwise 

regression 

Cox regression 
model 

LOO PAI 

Niles, Loerinc, 
et al. (2017) 

CALM vs. UC M* approach + 
stepwiseh 

linear 
regression 

within sample M* approach 
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regression with 
5-fold CV 

Niles, 
Wolitzky-
Taylor, et al. 
(2017) 

CT vs. ACT M* approach + 
OLS stepwiseh 
regression with 

3-fold CV 

logistic 
regression 

within sample M* approach 

Delgadillo et 
al. (2017) 

Step-2 vs. Step-3 
in IAPT 

Lasso and the 
.632 bootstrap 

resampling 
method 

(CATREG-
Lasso) 

Held-out 
validation 

sample 

Prognostic-
index of 

case-
complexity 

Kapelner et al. 
(under review) 

CT vs. ADM Theoretical / 
Prior Literature 

linear 
regression 

Robust 
bootstrap CV 

PTE / PAI 

Keefe et al. 
(2018) 

CPT vs. PE mobForest, 
bootStepAIC 

logistic 
regression 

5-fold CV PAI 

Webb et al. 
(2018) 

ADM vs. PBO mobForest,  

BART, ENRR, 
bootStepAIC 

linear 
regression 

10-fold CV PAIi 

Deisenhofer et 
al. (2018) 

Tf-CBT vs. 
EMDR 

Genetic model 
selection 
alogrithm 

logistic 
regression 

LOO PAI / HTEj 

Cohen et al. 
(under review) 

CT vs. SPSP mobForest,  

BART, ENRR, 
bootStepAIC 

linear 
regression 

10-fold CV PAI 

Kim et al. 
(submitted) 

lithium vs. 
quetiapine 

mobForest,  

BART, ENRR, 
bootStepAIC 

linear 
regression 

10-fold CVk PAI 

Schweizer et al. 
(submitted) 

C-ADM vs. 
MBCT-TS 

mobForest,  

BART, ENRR, 
bootStepAIC 

logistic 
regression 

10-fold CVk PAI / HTEj 

 
CT = Cognitive Therapy 
IPT = Interpersonal Therapy 
iCBIT = integrated cognitive-behavioral interpersonal therapy 
LOO = Leave-one-out cross-validation 
ADM = Antidepressant Medication 
M* = Combined moderator approach presented by Kraemer (2013) 
PCA = principal-component analysis 
ANOVA = Analysis of variance 
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TSB = treatment-specific biomarker 
a = stepwise variable selection based on Fournier et al. (2009) 
PAI = Personalized Advantage Index 
SET = Supportive Expressive Therapy 
PBO = Placebo 
mobForest = bootstrap-aggregation of model-based recursive partitioning by the random forest 
algorithm 
IAPT = Improving Access to Psychological Therapies 
Step-2 in IAPT = Low intensity treatments (e.g., brief psychoeducational interventions based on 
cognitive therapy principles) 
Step-3 in IAPT = High intensity treatments (e.g., cognitive therapy, interpersonal therapy)  
b = stepwise variable selection based on Mick and Ratain (1994) 
LPA = Latent Profile Analysis 
SRI = serotonin-reuptake-inhibiting antidepressant, specifically escitalopram 
NRI = norepinephrine-reuptake-inhibiting antidepressant, specifically nortriptyline 
ENRR = Elastic Net Regularized Regression 
CV = cross-validation 
STAIR = Skills Training in Affective and Interpersonal Regulation 
EXP = modified form of prolonged exposure 
SupC = supportive counseling 
c = The 5 treatment groups (haloperidol, amisulpride, olanzapine, quetiapine, and ziprasidone) 
were combined and analyzed together. 
RBF = non-linear radial basis function kernel  
SVM = Support Vector Machine 
d = (also tested linear SVM, univariate logistic regression, L2-regularized multivariate regression, 
decision tree ensembles) 
GBM = Gradient Boosting Machine 
e = (also tested naive Bayes classifier, Linear Discriminant Analysis, and radial or ‘Gaussian’ 
SVM)  
f = validation sample had three treatment conditions: Escitalopram + Placebo vs. Escitalopram + 
Bupropioin vs. Venlafaxine + Mirtazapine 
g = Citalopram vs. Escitalopram + Placebo vs. Escitalopram + Bupropioin vs. Venlafaxine + 
Mirtazapine 
C-CT = Continuation Cognitive Therapy 
C-ADM = Continuation Antidepressant Medication 
CALM = patient choice of computer-assisted CBT (CALM Tools for Living) and/or psychotropic 
medications  
UC = Usual Care (any treatment administered by primary care provider) 
h – stepwise variable selection based on James et al. (2013) 
ACT = Acceptance and Commitment Therapy 
OLS = Ordinary Least Squares 
CATREG-Lasso = penalized categorical regressions with optimal scaling  
PTE = Personalized Treatment Evaluator 
CPT = Cognitive Processing Therapy 
PE = Prolonged Exposure 



50 
 

 

bootStepAIC = bootstrapped variant of an AIC-based backward selection model   
BART = Bayesian Additive Regression Trees 
Tf-CBT = Trauma Focused Cognitive Behavioral Therapy 
EMDR = Eye Movement Desensitization and Reprocessing  
HTE = Heterogeneity of Treatment Effect, following recommendations by Kessler et al. (2017). 
i = Webb and colleagues also examined a model in which the variables were selected a priori used 
previous findings in the literature or theory (uninformed by data-driven variable selection) 
j = the HTE adaptation involved creating two separate prognostic models (one for each treatment 
condition) instead of a single model with interactions.  
SPSP = Short Psychodynamic Supportive Psychotherapy  
MBCT-TS = Mindfulness-Based Cognitive Therapy with support for medication tapering 
k = these two studies employed a “full” 10-fold CV, in which both variable selection and 
weight setting were performed in the training samples  
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CHAPTER 2: Recommending cognitive-behavioral versus psychodynamic therapy 
for mild to moderate adult depression: A demonstration of a new variable selection 

approach for treatment selection 
 

This work is under review as: 

Cohen, Z. D., Kim, T. K., Van, H. L., Dekker, J. J. M., & Driessen, E. (under review). 
Recommending cognitive-behavioral versus psychodynamic therapy for mild to moderate 
adult depression: A demonstration of a new variable selection approach for treatment 
selection.  

 

Abstract 

Objective: We use a new variable selection procedure for the Personalized Advantage 

Index approach to generate treatment recommendations based on pre-treatment 

characteristics for adults with mild-to-moderate depression deciding between cognitive 

behavioral (CBT) versus psychodynamic therapy (PDT). 

Method: Data are drawn from a randomized comparison of CBT versus PDT for 

depression (N=167, 71%-female, mean-age=39.6). The approach combines four different 

statistical techniques to identify patient characteristics associated consistently with 

differential treatment response. Variables are combined to generate predictions indicating 

each individual’s optimal-treatment. The average outcomes for patients who received 

their indicated treatment versus those who did not were compared retrospectively to 

estimate model utility. 

Results: Of 49 predictors examined, depression severity, anxiety-sensitivity, 

extraversion, and psychological-treatment-needs were included in the final model. The 

average post-treatment Hamilton-Depression-Rating-Scale score was 1.6 points lower 

(95%CI=[0.5:2.8]; d=0.21) for those who received their indicated-treatment compared to 
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non-indicated. Among the 60% of patients with the strongest treatment recommendations, 

that advantage grew to 2.6 (95%CI=[1.4:3.7]; d=0.37).  

Conclusions: Variable selection procedures differ in their characterization of the 

importance of predictive variables. Attending to consistently-indicated predictors may be 

sensible when constructing treatment selection models. The small-N and lack of separate 

validation sample indicate need for prospective tests before this model is used. 

 

Keywords: precision medicine; depression; cognitive behavioral therapy; 

psychodynamic therapy; treatment selection, variable selection 

Significance Statement 

Adults seeking treatment for mild to moderate depression have a large variety of 

psychological and pharmacological treatment options available to them, and clinicians 

helping clients decide which treatment to pursue could use client-factors associated with 

differential response to improve their ability to determine which treatment, among the 

available options, would be most likely to result in a positive response. The process of 

determining which factors to use, and how to synthesize the available information into a 

clear, actionable recommendation could be improved through the use of treatment 

selection approaches based on statistical prediction models. Variable selection, an 

essential step in the construction of treatment selection models, can be stabilized by 

attending to those variables that are consistently indicated across several different 

variable selection approaches.  



53 
 

 

Introduction 

Major depressive disorder is a highly prevalent, debilitating mental disorder that 

is currently ranked as the single largest contributor to global disability (World Health 

Organization, 2017). Among the most frequently utilized psychotherapies for depression 

are cognitive behavioral therapy (CBT) and psychodynamic therapy (PDT). Two 

randomized clinical trials have found PDT noninferior to CBT in the outpatient treatment 

of depression (Driessen et al., 2013; Gibbons et al., 2016). These results are in line with 

meta-analytic findings reporting no significant differences between CBT and PDT for 

depression (Barth et al., 2013; Driessen et al., 2015). These minimal efficacy differences, 

along with differential therapeutic theories used in CBT and PDT (Hoffart & Johnson, 

2017), raise the question whether individual patients can be identified that might benefit 

more from one of these treatments than the other. If so, treatment selection could improve 

outcomes in depression by helping individuals select the specific intervention that is most 

likely to be successful (Cohen & DeRubeis, 2018). 

DeRubeis and colleagues (2014) developed a treatment selection approach that 

can be used to identify each individual’s optimal treatment based on multiple patient 

characteristics, using data from a randomized clinical trial. This approach is called the 

Personalized Advantage Index (PAI). The core concept behind the PAI approach is to 

identify pre-treatment patient characteristics that are associated with differential response 

to treatment (so-called moderators) and, using these variables, to build a statistical model 

that can generate predictions for an individual in two (or more) treatments. For each 

individual, the treatment with the best predicted outcome is defined as the indicated 

treatment. In the case of a two-treatment comparison, an individual’s PAI is a single 
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number derived through the subtraction of their predictions in one treatment from the 

other. The PAI provides a directional indication of which treatment the individual should 

receive, as well as information about the strength of the recommendation, represented by 

the size (in absolute value) of the PAI. 

In their initial demonstration, DeRubeis et al. (2014) analyzed data from a 

randomized comparison of antidepressant medication and CBT and found that, for 

patients with large predicted advantages in one treatment over the other (60% of sample), 

those who received their PAI-indicated treatment had superior outcomes relative to 

patients who received the non-indicated treatment, with an effect size (Cohen’s d=0.58) 

larger than that reported in a recent systematic review of drug-placebo differences 

(Turner et al., 2008). Huibers and colleagues (2015) published similar findings applying 

the PAI approach to a comparison of cognitive therapy versus interpersonal therapy for 

adult outpatient depression. Related efforts based on the PAI approach have generated 

models aimed at differentiating placebo and antidepressants responders (Webb et al., 

2018), minimizing risk of dropout (Zilcha-Mano et al., 2016) and relapse (Schweizer et 

al., submitted; Vittengl et al., 2017),. The principles on which the PAI is based have also 

been applied to treatment selection in post-traumatic stress disorder (Deisenhofer et al., 

2018; Keefe et al., 2018). These studies represent but one strand of research on treatment 

selection. Other approaches include the M* approach (Niles, Loerinc, et al., 2017; Niles, 

Wolitzky-Taylor, et al., 2017; Smagula et al., 2016; Wallace et al., 2013) initially 

introduced by Kramer (Kraemer, 2013), and a series of efforts by Uher, Iniesta and 

colleagues (Iniesta et al., 2018; Iniesta et al., 2016; Uher et al., 2012). For a 
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comprehensive review of this literature, we suggest recent reviews by Cohen and 

DeRubeis (2018), Gillan and Whelan (2017), and Kessler (2018).  

Different statistical methods can be used to select the patient characteristics 

included in the statistical models that generate treatment recommendations. For instance, 

the initial applications (DeRubeis et al., 2014; Huibers et al., 2015) relied on a domain-

based backwards stepwise-regression (Fournier et al., 2009) to build the statistical model. 

A recent PAI-based treatment selection effort by Vittengl and colleagues (2017) used a 

series of single-variable models to establish the statistical significance of independent 

moderators, and then used backwards and forwards stepwise variable selection 

procedures to reduce the set. Another recent PAI effort relied upon a machine-learning 

approach called random forests (RF) for variable selection (Zilcha-Mano et al., 2016). 

Building on this work, Keefe et al., (2018) used a two-stage variable selection approach 

in which they used RF followed by a stepwise AIC-penalized bootstrapped method. This 

variability is discussed in Cohen and DeRubeis’ (2018) review of treatment prediction 

reports in depression. They noted that there is very little consistency in the variable 

selection approaches that have been employed in this area. 

This heterogeneity is problematic because different variable selection approaches 

applied to the same dataset can lead to different conclusions about variable importance 

(Bleich et al., 2014), and treatment recommendations can vary based on which variables 

are included in the model. In their review, Cohen and DeRubeis (2018) identified 43 

reviews (and meta-analyses) of predictors of treatment response in depression but, as 

many of these reviews noted, no coherent picture of which predictors are most important 

has emerged. The variability and lack of replicability in efforts to identify predictors of 
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response in depression may be partially explained by the heterogeneity of the statistical 

approaches that are used to identify predictive variables.  

This methodological heterogeneity also makes it difficult to determine which 

variable selection procedure should be used in the context of treatment selection. The 

strengths and weaknesses of different approaches might make them more or less 

attractive for a given purpose. For example, variable selection with elastic net 

regularization (ENR) can handle high numbers of potential predictors and can overcome 

issues of high correlations between baseline variables (Friedman et al., 2010; Zou & 

Hastie, 2005). However, it does not have the capability to account for unspecified non-

linear relationships in the way that is possible when using Random Forest (RF; (Garge et 

al., 2013).  It is unlikely that any single variable selection procedure will be optimal for 

all situations. It will also be difficult to identify which single approach one should use 

without a sufficiently large dataset to allow for a training sample (in which one could try 

every approach and see which one appears to work best) and a held-out test sample (in 

which to show that the results hold, and are not due to chance findings). Unfortunately, 

RCT samples with relevant treatment comparisons are rarely large enough to support 

these efforts (Kessler, 2018), and the use of large non-randomized datasets risks potential 

confounds (e.g., selection effects) that could bias treatment selection efforts (Cohen & 

DeRubeis, 2018)(c.f. (Kessler, 2018)). 

When looking across multiple studies with or within one study using multiple 

approaches, one can have increased confidence in the importance of variables that are 

consistently selected by different techniques (Kuhn & Johnson, 2013). Similarly, 

variables that are consistently rejected can likely be considered unimportant. Knowledge 
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of the different methodologies could be used to understand whether those variables that 

are identified in some approaches but not in others are inconsistently identified due to 

weak or noisy effects, and thus should be considered poor predictors, or whether this 

pattern can be attributed to shortcomings of specific approaches (Kuhn & Johnson, 2013). 

For example, a variable might be selected by an ensemble-of-trees approach (e.g., RF) 

but excluded by another approach based on classic regression (e.g., ENR) because it 

involves a three-way interaction or non-linear interaction that was not considered in the 

latter classic approach (Kuhn & Johnson, 2013). 

Using these principles, we aimed to demonstrate an improved PAI approach by 

generating individual treatment recommendations for adult outpatients with depression 

deciding between CBT versus PDT. We introduce a novel selection process that 

synthesizes the results of four different variable selection techniques (RF, ENR, Bayesian 

Additive Regression Trees and the AIC-penalized bootstrapped approach) by selecting 

the patient characteristics that are consistently identified as associated with differential 

response. 

Method 

Design and participants. This paper draws on data from a randomized clinical 

trial comparing CBT and PDT in the outpatient treatment of depression (Driessen et al., 

2013), which included 341 patients who met DSM-IV criteria for a major depressive 

episode and scored 14 or higher on the Hamilton Rating Scale for Depression (HAM-D; 

(Hamilton, 1960). The Dutch Union of Medical-Ethic Trial Committees for mental health 

organizations approved the study design and the study protocol was published (Driessen 

et al., 2007). Efficacy results of this study are reported elsewhere, with no significant 
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treatment differences found on any of the outcome measures (Driessen et al., 2013; 

Driessen et al., 2015; Driessen et al., 2017). Two prior efforts examined which subgroups 

of patients in this trial might benefit more from one of the treatments than the other. One 

(Kikkert et al., 2016) was a replication study examining obsessive-compulsive and 

avoidant personality disorder traits as potential moderators of treatment efficacy that 

failed to replicate previous findings in that regard (Barber & Muenz, 1996), while the 

other applied model-based recursive partitioning to 23 potential moderators to identify 

subgroups of patients that might benefit specifically from one of the two treatments 

(Driessen et al., 2016). However, these studies used different patient subsamples, 

examined only a subset of the potential predictors, and were not designed to produce a 

model that could be used to generate treatment recommendations for individual patients. 

As part of the trial protocol, severely depressed (HAM-D > 24) patients at 

baseline were offered adjunctive antidepressant medication (n=129). As the treatment 

effects observed in these individuals could have been a result of the psychotherapy, the 

medication, or both, they were excluded from the current analyses. Thus, this report 

relates to the patients with moderately severe depressive symptoms (baseline HAM-D = 

14 to 24) who were treated with psychotherapy only (n=212). Of these 212 individuals, 

17 were removed for having too much missing baseline data (³ 20% missing baseline 

predictors). Finally, an additional 28 individuals who dropped out before attending at 

least 4 sessions were excluded. As our goal was to build a model to answer how 

individuals who received a meaningful course of CBT or PDT fared, we felt that 

individuals who dropped out very early in treatment would not be informative for our 

models. In the extreme, the “outcome” for patients who dropped out prior to attending a 
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single session does not reflect response to CBT or PDT. Additionally, we were less 

confident in our ability to impute valid week-16 outcomes for these early dropouts. We 

decided to remove from our analyses patients who attended 3 or fewer therapy sessions. 

This reduced our sample from 195 to 167. Thus, the final sample comprised 167 patients: 

75 in the CBT and 92 in the PDT condition (see Supplemental Figure S1 for a Patient 

Flow Chart). Baseline sample demographic characteristics for the final sample are 

presented in Supplemental Table S1. 

Interventions. Both PDT and CBT encompassed 16 individual 45-minute sessions 

within 22 weeks and were conducted according to a published treatment manual (de 

Jonghe, 2005; Molenaar et al., 2009). CBT was based on the principles described by 

Beck (1979) and included behavioral activation and cognitive restructuring according to a 

session-by-session protocol with homework assignments. Short psychodynamic 

supportive psychotherapy (de Jonghe et al., 2013) represented the psychodynamic 

intervention. This modality involved an open patient-therapist dialogue that used 

supportive and insight-facilitating techniques to address the emotional background of the 

depressive symptoms by discussing current relationships, internalized past relationships, 

and intrapersonal patterns.  

Measures. HAM-D scores were used as the outcome measure for this study. 

Trained research assistants (master-level graduate students in clinical psychology) 

assessed the HAM-D according to the Dutch scoring manual (de Jonghe, 1994). 

Assessors were not blind to treatment condition. Assessors engaged in one-hour peer 

supervision sessions bi-weekly, in which audiotaped interviews were discussed. The 

average intraclass correlation coefficient over 46 audiotaped assessments scored by 
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multiple assessors was .97.  Supplemental Table S2 lists the 49 patient characteristics 

considered during variable selection, all of which were assessed at pre-treatment.  

Building the Personalized Advantage Index model. All analyses were performed 

in R (Team, 2000). Pre-processing and random forest-based imputation of missing data 

(Stekhoven & Buhlmann, 2012) was performed on baseline and outcome data prior to 

variable selection. Future efforts in larger samples should perform these steps (especially 

imputation) separately for the training and test samples to avoid this form of double-

dipping. Categorical variables (e.g., relationship status) were turned into binary variables 

and binary variables without sufficient variability  (variables whose smallest category 

made up < 20% of the sample) were excluded (Kuhn & Johnson, 2013). Outliers for 

continuous variables were winsorized, and some variables with skewed distributions were 

log-transformed (see Supplemental Table S2 for more details). 

Variable Selection. To select the patient characteristics associated with treatment 

outcome, we applied a multi-phase selection procedure that combines four different 

variable selection methods, each of which has been used in recently published treatment 

selection efforts (Bleich et al., 2014; Iniesta et al., 2016; Keefe et al., 2018; Zilcha-Mano 

et al., 2016). The first step was to apply three approaches to identify predictors of 

(differential) treatment response: 1. Random Forest (mobForest package in R; (Garge et 

al., 2013), 2. Elastic Net Regularization (glmnet package; (Friedman et al., 2010), and 3. 

Bayesian Additive Regression Trees (BART; bartMachine package; (Kapelner & Bleich, 

2016). The second step was to reduce the variables consistently identified by the these 

three approaches using the stepwise AIC-penalized bootstrapped (Austin & Tu, 2004) 
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approach (BootStepAIC package; (Rizopoulos, 2009). We will now describe each of 

these methods in more detail, and discuss their relative strengths and limitations.  

Random Forest is a recursive partitioning approach that can accommodate large 

numbers of predictor variables as well as complex relationships including non-linear and 

higher order interactions (Kapelner & Bleich, 2016). RF builds upon recursive 

partitioning approaches like classification and regression trees and model-based recursive 

partitioning. It addresses model instability by randomly selecting features and creating 

many “tree models”, the predictions of which are aggregated to generate stable 

predictions (Austin & Tu, 2004). RF also allows for information from weaker predictors 

to be incorporated in situations where they might otherwise be dominated by stronger 

predictors, such as in bagging (Garge et al., 2013). The model function of RF can be 

specified as “y ~ tx,” which forces the approach to select splits that maximize the 

difference in the treatment condition coefficient between subgroups, thus focusing on 

identifying moderators of the treatment effect. When RF is used for variable selection, 

the permuted variable importance is generated by comparing the mean square error 

(MSE) of the predictions in the held-out (out of bag) samples when the real values are 

used to the MSE when permuted values for a given predictor are used. The extent to 

which the MSE increases when permuted values are used indicated how “important” that 

variable is (Garge et al., 2013). Variables that surpass the recommended threshold (which 

is set based on the largest observed “noise” variable, for which the permuted data 

improves the MSE, relative to the real data) are selected.  

Elastic Net Regularization can provide a hybrid of the Lasso and Ridge regression 

approaches, combining the L1 and L2 penalizations to allow for the selection of a 
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parsimonious set of variables that predict outcome (Hastie et al., 2009). We used the R 

package glmnet (Friedman et al., 2010) to implement ENR variable selection, and used 

Zou and Hastie’s (2005) recommended default value for the alpha parameter (alpha = 

0.5). Uses of ENR in the literature of variable selection and treatment selection have only 

investigated prognostic models in which a single treatment is modeled (Chekroud et al., 

2017; Chekroud et al., 2016; Iniesta et al., 2016). Current implementations of ENR in R 

do not accommodate variable selection for models in which moderators are of primary 

interest. In order to adapt ENR for the purpose of identifying moderators, we split the 

training sample into each of the two treatment groups, and then constructed prognostic 

models within each group. Variables that were retained as predictors in only one 

condition, or that were selected in both but specified with differing coefficient values, 

were identified as potential moderators of treatment effects. We refer the reader to Cohen 

and DeRubeis’ (2018) review (specifically, their Figure 1) for a more in-depth discussion 

of why variables with these relationships are candidate moderators. As one example, 

consider a variable that is selected by ENR in one treatment condition and specified with 

a positive coefficient, and that is selected in the other treatment condition but specified 

with a negative coefficient. This information could suggest that a disordinal relationship 

exists between that variable and treatment, such that individuals with higher levels on that 

variable do worse relative to individuals with lower levels in one treatment, whereas 

individuals with lower levels on that variable do worse relative to individuals with higher 

levels in the other treatment. 

Bayesian Additive Regression Trees builds on ensemble-of-tree methods such as 

RF by incorporating an underlying Bayesian probability model (Chipman et al., 2010). 
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BART and RF have similar strengths insofar as they both can handle large numbers of 

predictors, and can accommodate non-linear and higher order interactions. The inclusion 

of the Bayesian prior improves upon other tree-ensemble approaches by introducing 

regularization, which reduces the likelihood that the ensemble will become dominated by 

any single tree (Genuer et al., 2010). Kapelner and Bleich adapted the bartMachine R-

package (2016) to help focus model building on moderators. To achieve this aim, they 

introduced a parameter that forces the search for variable splits to focus more on 

treatment than other variables, thus introducing more interactions between treatment and 

other variables. This is conceptually similar to when researchers only consider 

interactions between treatment and baseline variables (and not interactions between 

baseline variables themselves), or to how RF can specify the splitting criteria to evaluate 

the difference in the treatment coefficient for the model y ~ tx. Bleich and colleagues 

(2014) adapted BART to extract informed prior information about variable importance, 

and provide an interaction plot feature that can be used to identify potential 3-way 

interactions. The ICEbox package in R (Goldstein et al., 2015) allows for the 

visualization of predictive relationships in BART models, including non-linear and 

higher-order interactions between variables and treatment. The N most important 

interactions identified by BART are retained, where N was decided based on the number 

of variables selected by Random Forest (which uses a permutation test to determine an 

importance threshold cutoff)9. See the Supplemental Variable Selection, as well as Garge 

et al. (2013) for more details on how the threshold is determined. 

                                                             
9 We decided to select the number of variables identified by RF, and not to use BART’s built-in 
permutation test for thresholding variable importance because BART’s test was created for use in contexts 
where the variable search was not biased to focus on treatment interactions. 
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We decided to reduce the variables consistently selected by the above three 

approaches using a specific fourth approach for the following reason: If the model that 

was used to generate predictions relied on linear or logistic regression, then the variables 

selected by RF or BART could lead to a model with poor fit, if, for example, these 

variables relied on non-linear relationships or higher order interactions. The 

BootStepAIC package (Rizopoulos, 2009) performs variable selection using a stepwise 

AIC-penalized bootstrapped approach (Austin & Tu, 2004). By only including the 

moderator relationships identified in the other three approaches (and their corresponding 

main effects), this search generated a model emphasizing the prediction of differential 

treatment response, while reducing the chance that predictors that require unspecified 

linear or higher-order interactions were included. 10,000 bootstrapped training samples 

were drawn, and within each training sample backwards elimination was used to select 

variables that independently contribute to predicting outcome. Austin and Tu (2004) 

recommend selecting variables that are retained in at least 60% of bootstrapped samples, 

but this recommendation is specific to prognostic variables (main effects only). As we 

were interested in interactions, we relied on the consistency of the direction of the 

coefficients across the 10,000 bootstrapped samples. By using a threshold of 95% 

consistency in sign of the moderator coefficient, variables with smaller effects that were 

consistent in the direction with which they predict differential response across treatments 

could be included. The primary goal of this step was to ensure that the variables selected 

will function properly and consistently, and increase the likelihood that the final model 

will replicate in future samples drawn from the same population.  
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Generating PAIs. Based on the set of variables selected, outcome predictions 

were generated for each study participant in both of the treatments. To avoid the risk of 

overconfidence that could occur when evaluating model-performance on individuals 

whose data were used to set model-weights, these predictions were generated using ten-

fold cross validation (CV). 10-fold CV is recommended based on its good bias and 

variance properties in small samples (Kuhn & Johnson, 2013). For each of the 10 folds, 

individuals in that fold were held out, and data from the patients in the other 9 folds were 

used to generate a linear regression model in which end-of-treatment HAM-D score was 

predicted by the set of selected predictor variables (main effects for each variable and 

terms representing their interactions with treatment). The data from the patients in the 

held-out fold were then used to generate predictions for those patients in each treatment. 

For each individual, the difference in the predicted HAM-D score in CBT and PDT is 

their PAI. Individuals with a lower predicted HAM-D score in CBT (and thus a better 

predicted outcome in CBT) were then classified as “CBT-indicated” and individuals who 

had a better predicted outcome in PDT were labeled “PDT-indicated”. The size of the 

PAI is taken to be an indication of the strength of the treatment recommendation 

(DeRubeis et al., 2014).  

Despite our use of cross-validation during the weight-setting stage, our use of the 

full sample during variable selection and imputation could lead to model overfitting and 

inflated relationships (Fiedler, 2011), and as noted by Hastie et al. (2009), represents a 

form of double-dipping that can increase risk of overconfidence. This fact, along with our 

small sample size, contributes to our strong recommendation that the model and variables 
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presented here should not be used to guide treatment decisions unless (or until) they are 

validated in an external sample. 

Evaluating PAIs. To characterize the expected utility of the PAIs for guiding 

treatment selection, we compared the average end-of-treatment HAMD scores of 

individuals who got their indicated treatment (based on their PAI scores) against that of 

participants who received their non-indicated treatment. Next, we looked within the 

subgroup indicated to need CBT, and compared HAMD scores for those who received 

their indicated treatment (CBT) to those who received their non-indicated treatment 

(PDT). We then performed the analogous comparison for those identified as “PDT-

indicated.” In order to investigate the importance of the strength of these 

recommendations following earlier PAI efforts (DeRubeis et al., 2014; Huibers et al., 

2015), we then evaluated the above comparisons within the strongest 60% of PAIs (the 

60% of the largest absolute value PAIs). The entire 10-fold cross-validation procedure 

and evaluation was repeated 1000 times to account for the influence of the selection of 

the 10 folds on the results (Kuhn & Johnson, 2013). The findings presented below 

summarize the results from these 1000 runs.  

Results 

Variable selection. Table 1 summarizes the results of our new variable selection 

approach at each stage (See Supplemental for a more detailed discussion of the results 

from each approach).  
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Table 1. Summary of variable selection results 

 <------      Step 1      ------> Step 2 Result 

Variable Random 
Forest 

Elastic 
Net BART 

Included in 
BootStep 

AIC 

Selected by 
BootStep 

AIC 

Baseline HAM-D Yes Yes Yes Yes Yes 

Age Yes No No No N/A 

Anxiety Sensitivity (ASI) No Yes Yes Yes Yes 

BAI Yes No No No N/A 

(BSI 2) Cognitive Problems  Yes Yes Yes Yes No 

(BSI 3) Interpersonal Sensitivities  Yes Yes No Yes No 

(BSI 4) Depressed Mood  Yes No Yes Yes Yes 

(BSI 5) Fear  Yes Yes Yes Yes No 

(BSI 7) Phobic Fears  Yes Yes No Yes No 

(BSI 8) Paranoid Thoughts  Yes Yes Yes Yes Yes* 

Contacted Physician No Yes No No N/A 

Dysthymia No Yes No No N/A 

Employed Yes Yes Yes Yes No 

Episode Duration No Yes No No N/A 

Inventory of Depressive 
Symptomatology (IDS) 

Yes Yes Yes Yes No 

LEIDS Acceptance No Yes No No N/A 

LEIDS Hopelessness No No Yes No N/A 

Mobility No Yes No No N/A 

NEO Extraversion No Yes Yes Yes Yes 

NEO Neuroticism Yes Yes Yes Yes No 

NVM Extraversion Yes Yes Yes Yes No 

NVM Somatization Yes Yes Yes Yes No 
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Pain (VAS) Yes Yes Yes Yes No 

Psychological Needs (PRF) Yes No Yes Yes Yes 

NEO Neuroticism x Married N/A N/A Yes Yes No 

 
Table 1. Summary of variable selection results for all variables selected by at least one 
approach. Three different variable selection approaches based on Random Forest, Elastic 
Net Regularization, and Bayesian Additive Regression Trees (BART) were applied to the 
full set of  49 potential baseline predictors. The 16 potential moderators that were 
selected by at least two of these three approaches were then submitted, along with one 
three-way interaction identified by BART (NEO Neuroticism x Married x Treatment), to 
a final variable selection stage with BootStepAIC. Bold text indicates the variables 
selected by BootStepAIC based on a criteria of at least 95% consistency of the coefficient 
sign for the interaction with treatment across 10,000 bootstrapped samples. *although 
BSI 8 was selected by BootStepAIC, its p-value in the final model built in the full sample 
was .43, and so, following the recommendation of Kuhn and Johnson (2013) to favor 
simpler models, it was not included in the final model. 
 

 
The final model including the variables selected by BootStepAIC was:  

Y = tx * (HAM-D Baseline + ASI + Depressed Mood (BSI 4) + NEO Extraversion + 

Psychological Needs) 

Thus, five variables were selected as predictors of differential treatment response: 

HAM-D score, Brief Symptom Inventory (BSI; (De Beurs & Zitman, 2005) Depressed 

Mood subscale, Anxiety Sensitivity Index total score (ASI; (Reiss et al., 1986), NEO 

Five Factor Inventory (NEO-FFI; (Hoekstra et al., 2003) Extraversion subscale, and 

Patient Request Form Psychological Needs subscale (Veeninga & Hafkenscheid, 2004). 

We note that although both the depressed mood subscale of the BSI and the HAM-D 

measure the construct of depression, the correlation between the two scales was low 

(r=.23). One explanation for this might be that the HAM-D measures a more broad set of 

symptoms (e.g., sleep, libido, appetite, psychomotor retardation, etc.) than the 6 items 
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that are captured by the BSI’s depressed mood subscale: suicidal thoughts, loneliness, 

sad/depressed mood, lack of interest, hopelessness, and worthlessness. There were no 

significant differences between the treatment groups for any of the variables selected for 

the final model (see Supplemental Table S3). Table 2 presents the final model with 

weights set using the full sample. 

Table 2. Final regression model specified using the full sample.  
 

Variable B SE p value 

(Intercept) 13.14 0.53 0.00** 

Treatment –0.50 1.05 0.63 

ASI 0.40 0.64 0.53 

Depressed Mood (BSI 4) –0.16 0.63 0.80 

HAM-D Baseline 3.30 0.58 0.00** 

NEO Extraversion –1.41 0.58 0.02* 

Psychological Needs 0.11 0.56 0.85 

Treatment x ASI –3.22 1.28 0.01* 

Treatment x Depressed Mood (BSI 4) 2.97 1.27 0.02* 

Treatment x HAM-D Baseline 1.19 1.16 0.31 

Treatment x NEO Extraversion 3.10 1.15 0.01** 

Treatment x Psychological Needs 1.65 1.46 0.15 

*p < .05, **p < .01 
 

Baseline HAM-D score was included as both a main effect and as an interaction 

with treatment, but it did not appear to have a significant moderator relationship in the 

context of the final model. The moderator relationships included in the final model are 

visualized in Figure 1. We refer the reader to a recent review on treatment selection by 
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Cohen and DeRubeis (2018) for a detailed discussion of how to approach interpretation 

of moderator relationships in treatment selection. 

Figure 1. Visualization of the moderator relationships. 

 

 

Figure 1. Conditional plots with confidence bands for the conditional mean generated 
using R package visreg from the final model estimated in the complete sample. 
Conditioning for each plotted variable uses the mean value for all other variables. The X-
axes represent the standardized/centered scores that were used during analysis. 
 

PAI Results. Individuals who received their model-indicated treatment had better 

outcomes than those who received their non-indicated treatment (see Figure 2). The mean 

end of treatment HAM-D scores, averaged across the 1,000 CVs for individuals who 

received their PAI-indicated treatment, was 12.3 (SD=7.6); the average for those 

receiving their non-indicated treatment was 13.9 (SD=7.9). This reflected, on average, a 

1.6 points advantage for those receiving their indicated treatment (95% CI=0.5 to 2.8; 

Cohen’s d=0.21, 95% CI=0.07 to 0.37). When we restricted our evaluation to the largest 
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60% of PAIs (absolute value), we found that the effect of treatment selection grew to 2.6 

points (95% CI=1.4 to 3.7; average Cohen’s d=0.37, 95% CI=0.19 to 0.54). 
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Figure 2. Comparison of end-of-treatment HAM-D scores for patients randomized 
to their PAI-indicated treatment with those who were randomized to their non-
indicated treatment.   
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Figure 2. Panel 2a shows this comparison with treatment conditions collapsed for the full 
sample (left set of bars), and for the 60% of patients with larger PAIs (right set of bars). 
Figure 2b decomposes the comparison by treatment for the full sample, with those 
indicated to need CBT represented by the left two bars, and those indicated to need PDT 
by the right two bars. Figure 2c presents the same breakdown as in figure 2b, but for the 
60% of patients with larger PAIs. 
 

Discussion 

Helping service-users and clinicians make better-informed treatment decisions is 

one of the core goals of precision medicine in mental health. In depression, treatment 

selection models can improve the ability to identify the best treatment among available 

options (Cohen & DeRubeis, 2018). Here, we have described a treatment selection model 

based on patient characteristics that could be used to decide between cognitive-behavioral 

and psychodynamic therapy for those with mild-to-moderate depression not taking 

antidepressants.  

The differential prediction described here relied on four factors: anxiety 

sensitivity, depression symptom severity, extraversion, and psychological treatment 

needs. Although in this investigation the aim was to develop and provide a first test of a 

multivariable model that could inform treatment selection, it nonetheless is important to 

attempt an understanding of the basis for each variable’s contribution to the model. In the 

following we provide tentative, speculative interpretations of the findings, taking into 

account the directions of the relationships observed.  

The ASI reflects a person's beliefs that anxiety experiences have negative 

somatic, psychological or social consequences. Higher scores on this measure were 

associated with superior outcomes in PDT relative to CBT, and vice versa for lower 

scores. Patients with higher baseline depressed mood, as measured by the BSI, tended to 
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improve more in CBT, whereas those with lower BSI scores tended to respond better to 

PDT. Those with higher scores on a measure of extraversion (on the NEO) fared better in 

CBT than in PDT. The reverse was true for those low on extraversion. The Patient 

Request Form Psychological Needs scale assesses a patient’s needs for a psychological 

treatment. Higher scores on this measure predicted better response to PDT, relative to 

CBT, and the reverse prediction was obtained for those with lower scores on this 

measure. Thus, in contrast to anxious, introverted patients, patients who were relatively 

more extraverted and who had low psychological treatments needs were better matched 

to CBT. We would speculate that these patients typically express themselves more and 

have already talked about their feelings and problems with others without much 

hesitation. They might be more in need of the structured approach of CBT, directed 

strongly at adapting behavior and changing cognitions through practical exercises. It may 

be that PDT is more efficacious for patients who search for a psychological solution to 

their depressive symptoms. Anxious and introverted patients, who have a tendency to 

avoid focusing on their problems despite a need to do so, may find that the supportive 

milieu of PDT fostered explorations of their feelings and problems in a way that was 

appropriate for their individual needs and capacities.  

Limitations 

This study has a number of limitations. Treatment selection is likely to be most 

effective when the interventions under consideration differ substantively and 

substantially in their mechanisms and targets (Cohen & DeRubeis, 2018). Relative to 

comparisons between, for example, medications and psychotherapy, the similarity of 

these two psychotherapies likely resulted in a decreased potential to identify individuals 
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who are strongly indicated to need one treatment over another. Nevertheless, among the 

60% of patients with the strongest PAIs, a d-type effect size of 0.37 was observed for 

receiving the indicated versus contraindicated treatment.  

Patients seeking treatment for depression have many options, including other 

psychotherapies and medication; this model cannot inform the decision of whether or not 

to pursue treatments other than CBT and PDT. This model would at best be valid for use 

in similar populations. It cannot be known how the model would perform if it were 

applied to patients whose values on predictors were outside the observed range on the 

predictor measures, or if used in the context of a population of those with severe 

depression or in patients who are also taking antidepressant medications.  

Kessler and colleagues (2017) leveled a valid criticism of the early publications 

on treatment selection in depression (DeRubeis et al., 2014; Huibers et al., 2015), arguing 

that, because variable selection was performed within the sample on which the model was 

evaluated, “any attempt to use the coefficients in these models to predict differential 

treatment response in a new sample of patients would almost certainly yield less positive 

effects than those suggested by the results of studies” (p. 6). Kriegeskorte and colleagues 

(2009) also note that this approach can lead to distorted descriptive statistics and invalid 

statistical inference. The size of the sample used in these analyses, although drawn from 

the largest RCT comparing these two treatments to date, did not allow for a true hold-out. 

As described by Hastie et al. (2009), the CV scheme applied here has given an unfair 

advantage to the predictors as they were chosen on the basis of the full sample, thus we 

do not approximate an evaluation of our models in a completely independent test set. 

Thus, we stress that this model would need to be validated in an independent sample 
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before being considered for use as a clinical decision tool. Despite these shortcomings, 

we believe this work represents an important step towards the types of studies that would 

address Kessler’s criticisms (e.g., prospective tests). These efforts propose potential 

moderators and present a specific model that could be investigated in future studies, and 

identify an important issue that merits increased attention by those interested in precision 

medicine: methodological heterogeneity in variable selection. 

Future Directions 

The treatment selection subfield of precision medicine in mental health is still in 

its developmental stage, and the statistical methods described in this and other similar 

efforts are constantly evolving (Zilcha-Mano, 2018). Although replication and external 

validation are essential steps that should precede the implementation of any specific 

treatment selection model, the publication and discussion of candidate predictors, models 

and statistical approaches are equally important, as they set the foundation for future 

efforts. 

A wide variety of feature selection techniques have been employed in recent 

efforts to construct treatment selection models in mental health, and no clear guidance 

exists as to which approach is best. We have presented an example of a new variable 

selection approach that incorporates several of the leading techniques in order to identify 

reliable predictors of differential response to treatment. We propose this specific 

combination as a starting point and suggest that future efforts should explore different 

permutations, such as adding other methods (e.g., Support Vector Machines), reducing 

the number of approaches used, using different combinations, or adjusting the settings 

within each of these techniques. Examples of the latter include adjusting the thresholds 
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for the inclusion of variables and specifying different tuning parameters (Kuhn & 

Johnson, 2013).  

Conclusion 

We refined the Personalized Advantage Index approach to generate individual 

treatment recommendations for adults with mild to moderate depression not taking 

antidepressants who are deciding between CBT versus PDT. Our novel approach 

synthesized the results of four different variable selection techniques by selecting the 

patient characteristics that are consistently identified as associated with (differential) 

treatment outcome. Although no significant efficacy differences were found between 

CBT and PDT across the total sample, the resulting treatment recommendations 

suggested that for the majority of the individual patients, one of the treatments could be 

predicted to more efficacious than the other based on a model including four pre-

treatment patient characteristics (anxiety sensitivity, depression symptom severity, 

extraversion, and psychological treatment needs). The small sample and lack of a 

separate validation sample indicate the need for prospective tests (Lutz et al., 2017) 

before using this model for treatment selection, but these findings add to a growing 

literature on the potential for model-guided treatment recommendations to improve 

patient outcomes for depression. 

 
Abbreviations used in manuscript: AIC = Akaike Information Criterion, ASI = Anxiety 
Sensitivity Index, BART = Bayesian Additive Regression Trees, BSI = Brief Symptom 
Inventory, CBT = Cognitive Behavioral Therapy, DSM-IV = Diagnostic and Statistical Manual 
of Mental Disorders 4th edition, ENR = Elastic Net Regularization, HAM-D = Hamilton Rating 
Scale for Depression, IDS = Inventory of Depressive Symptomatology, LEIDS = Leiden Index of 
Depression Sensitivity, MSE = Mean Squared Error, NEO = Neuroticism-Extraversion-Openness 
Personality Inventory, NVM = Shortened Dutch Adaptation of the Minnesota Multiphasic 
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Personality Inventory, PAI = Personalized Advantage Index, PDT = Psychodynamic Therapy, 
PRF = Patient Request Form, RF = Random Forests, VAS = Visual Analog Scale for Pain 
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Supplemental Material: Participants 

Participants in the trial (n=341) were referred by their general practitioner to one 

of three outpatient mental health clinics in Amsterdam, The Netherlands. Inclusion 

criteria were: 1) presence of a depressive episode according to DSM-IV criteria as 

assessed with the MINI-International Neuropsychiatric Interview – Plus (MINI-Plus; 

(Sheehan et al., 1998), 2) Hamilton Depression Rating Scale (HAM-D; (Hamilton, 1960) 

scores ≥ 14, 3) age between 18 and 65 years, and 4) written informed consent after 

explanation of the study procedures. Exclusion criteria included presence of psychotic 
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symptoms or bipolar disorder, severe suicidality warranting immediate intensive 

treatment or hospitalization, substance misuse/abuse in the last six months, pregnancy, 

inability to meet trial demands, and use of psychopharmacology or other medications that 

might influence mental functions. Participants were not compensated for their 

participation in the study.  

As our goal was to build a model to answer how individuals who received CBT or 

PDT fared, we felt that individuals who dropped out very early in treatment would not be 

meaningful to our models. In the extreme, the “outcome” for patients who dropped out 

prior to attending a single session does not reflect response to CBT or PDT. We decided 

to remove from our analyses patients who attended 3 or fewer therapy sessions. This 

reduced our sample from 195 to 167. Figure S1 presents the patient flow chart for the 

sample used in this study. Baseline sample demographic characteristics for the final 

sample are presented in Table S1. Patients in CBT (compared to PDT) were more likely 

to be married (32% vs. 17%, p = .03), had shorter average episode durations (2.29 vs. 

2.84 years, p < .005), and fewer serious life events (4.88 vs. 5.73, p = .03). 

Supplemental Figure 1. Patient flow chart 
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Supplemental Table 1. Baseline sample characteristics 

 

Demographic 
characteristics CBT (n = 75) PDT (n = 92) 

Mean difference (95% CI) 

X2 (df) 
p Value 

Age (years)   2.70 (–0.61-6.01) .11 

  Mean (sd) 38.13 (10.93) 40.83 (10.65)   

  Range 23-64 23-63   

Female (%) 55 (73) 63 (68) 0.47 (1) .49 

Northwest European (%) 50 (67) 58 (63) 0.24 (1) .63 

Married (%) 24 (32) 16 (17) 4.84 (1) .03* 

Employed (%) 31 (41) 44 (48) 0.70 (1) .40 

Prior Medication (%) 33 (44) 39 (42) 0.04 (1) .83 

Episode Duration    0.55 (0.18-0.92) .003** 

  Mean (sd) 2.29 (1.15) 2.84 (1.22)   

  Range 1-4 1-4   

Prior Treatment (%) 24 (32) 31 (34) 0.05 (1) .82 

Serious Life Events   0.85 (0.10-1.60) .03* 

  Mean (sd) 4.88 (2.47) 5.73 (2.42)   

  Range 0-11 1-11   

Education Level   2.44 (2) .30 

  Low (%) 

  Intermediate (%) 

  High (%) 

13 (17) 

27 (36) 

35 (47) 

20 (22) 

40 (43) 

32 (35) 

  

Table S1. * = p < .05, ** = p < .01. 
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Supplemental Material: Data Pre-Processing 

Prior to variable selection, we removed baseline variables with greater than 20% 

missingness. Categorical variables were transformed into binary variables. Furthermore, 

binary variables with to little variance (whose smallest category made up less than 20% 

of the sample) were removed; a low representation could lead to coefficient instability 

during cross-validation. Redundant variables were removed. Some variables were made 

ordinal, based on distributional or theoretical reasons. After data pre-processing, our new 

dataset dropped from 195 baseline predictor variables (see Table S2) to 49. Our variables 

were then mean-centered and standardized to improve numerical stability in future 

calculations (Kraemer & Blasey, 2004; Kuhn & Johnson, 2013). 
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 Supplemental Table 2. All baseline predictors 

Variable Label Explanation 
Included 

yes/no Reason excluded Data Pre-Processing 
AFHNKL Dependent personality disorder (PD) no too little variance  
ANTISL Antisocial PD no too little variance  

ASI Anxiety Sensitivity Index yes   
BAI Beck Anxiety Inventory yes   

HDRS_baseline Hamilton Depression Rating Scale 
(baseline) yes   

BRDRLL Borderline PD no too little variance  

BSI_1 Brief Symptom Inventory (BSI) Somatic 
complaints yes   

BSI_2 BSI Cognitive problems yes   
BSI_3 BSI Interpersonal sensitivities yes   
BSI_4 BSI Depressed mood yes   
BSI_5 BSI Fear yes   
BSI_6 BSI Amount Of Hostility yes  Winsorized 1 high outlier. 

BSI_7 BSI Phobic fears yes  Winsorized 2 high 
outliers. 

BSI_8 BSI Paranoid thoughts yes   
BSI_9 BSI Psychoticism yes  Winsorized 1 high outlier. 
bsi_tot BSI total score no included as subscales  
clusa Cluster A Personality no too much missingness  
clusb Cluster B Personality no too much missingness  
clusc Cluster C Personality no too much missingness  
das Dysfunctional Attitudes Scale no too much missingness  

dem1 Nationality no similar to “Ethnicity”  
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Ethnicity Ethnic/cultural group yes  

Recode to binary as 
Northwest European 

(Northwest European) vs. 
not Northwest European 

(all other categories) 

Married Marital status yes  
Recode to binary as 

married (married) vs. not 
married (all other 

categories) 
dem4 Living Situation no similar to “Married”  

Religion Religion yes  
Recode to binary as 

religious (all categories 
besides atheist) vs. not 

religious (atheist) 
dem6 Highest training no similar to “Education”  

Education Educational level (completed) yes   
dem7 Graduated? no similar to “Education”  
dem8 Current job no similar to “Employment”  

 
 
 
 

Employment 

Work Situation yes  

Recode to binary as 
employed (job, student) 

vs. not employed 
(sickness, allowance, 

disability, other). 

Main_Earner Main Earner? yes  

Recode to binary as main 
earner (main earner, dual 

earner) vs. not main earner 
(partner is main earner, 
parents are main earner, 

other). 
dem11 Job main earner no similar to “Main_Earner”  
dem12 Main income source main earner no similar to “Main_Earner”  
dem13 Height main income earner no similar to “Income”  
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Income Recoded income level yes  

Recode to binary as below 
poverty line (<= 1273 

gross per month) vs. above 
poverty line (>1273 gross 

per month) 

DEPRSL Depressive PD no 
similar to 

“LEIDS_RiskAversion”, 
“ONTWKL”, and “dimtot” 

 

dimtot Self-report questionnaire for personality 
disorders no too much missingness  

Mobility EuroQol (EQ) Item 1: Mobility yes  

Recode to binary as no 
problems with mobility 

(no problems) vs. 
problems with mobility 

(some problems, 
bedridden) 

eq2 EuroQol (EQ) Item 2: Self Care no too little variance Similar scheme as 
“Mobility” 

eq3 EuroQol (EQ) Item 3: Daily activities no similar to “HealthStatus” Similar scheme as 
“Mobility” 

eq4 EuroQol (EQ) Item 4: Pain/complaints no similar to “HealthStatus” Similar scheme as 
“Mobility” 

eq5 EuroQol (EQ) Item 5: General Mood no similar to “HealthStatus”  

eq6 EuroQol (EQ) Item 6: Current health status 
vs. last year health status no similar to “HealthStatus”  

HealthStatus Health Status yes  Winsorized 3 low outliers. 

gaf_ft 
GAF score according to pharmacotherapist 

(for severely depressed patients with 
combined treatment only) 

no too much missingness  

IDS Inventory of Depressive Symptomatology, 
Self-Report yes  Winsorized 3 high outliers 

and 6 low outliers. 
lasinte_m Social Integration no too much missingness  
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lasloss_m Loss no too much missingness  
lasnorm_m Values and Norms no too much missingness  
lasskill_m Skills no too much missingness  
lastrad_m Traditions no too much missingness  

Age Age in years yes   

LEIDS_Acceptance Leiden Index of Depression Sensitivity 
(LEIDS) acceptance/coping yes  Log transformed (add 1 to 

account for values of 0) 
LEIDS_Aggression LEIDS Aggression  yes  Winsorized 1 high outlier. 

LEIDS_Perfectionism LEIDS Control/perfectionism yes   
LEIDS_Hopelessness LEIDS Hopelessness/suicidality  yes   
LEIDS_RiskAversion LEIDS Risk aversion  yes   
LEIDS_Rumination LEIDS Rumination  yes  Winsorized 1 low outlier. 

leids_tot LEIDS total score no included as subscales  
SeriousLifeEvents Total number of serious life events yes   

EpisodeDuration How long have you had these complaints 
for? yes   

PriorTx Did you receive prior treatment for the 
current depressive episode? yes   

mide29 
How many previous periods in your life 

did you feel depressed and had these 
symptoms? 

no similar to 
“EpisodeDuration”  

Dysthymia Comorbid dysthymia yes   
neo_altrui NEO Altruism no too much missingness  
neo_cons NEO Conscientiousness no too much missingness  

NEO_Extraversion NEO Extraversion yes  Winsorized 2 high outliers 
and 2 low outliers. 

NEO_Neuroticism NEO Neuroticism yes  Winsorized 1 low outlier. 
neo_open NEO Openness no no values  
NRCSTL Narcissistic PD no too little variance  
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NVM_Extraversion NVM Extraversion yes   

NVM_Negativism NVM Negativism yes  Winsorize 1 high outlier 
and 3 low outliers. 

NVM_Psychopathology NVM Serious pathology yes   
NVM_Somatization NVM Somatization yes   

NVM_Embarrassment NVM Embarrassment yes   
OBSESL Obsessive Compulsive PD no too much missingness  

ONTWKL Avoidant PD no 
similar to “DEPRSL”, 

“persstr”, “clusc”, 
“dimtot” 

 

oq_ernst OQ (from Outcome Questionnaire-45) 
Ernst no 

similar to “BAI”, “BSI_2”, 
“BSI_3”, “BSI_4”, 
“BSI_5”, “BSI_7”, 

“BSI_9” 

 

oq_interp OQ Interpersonal no too much missingness  
oq_maatsch OQ Social no too much missingness  

oq_tot OQ total score no total score  

PARANL Paranoid PD no similar to “ps”, “persstr”, 
“clusa”, “dimtot”  

persstr Number of personality disorders no too much missingness  
pm Psychological mindedness scale no too much missingness  

PRF_PsychNeeds Patient Request Form: Psychological needs yes  Winsorize 1 low outlier. 

PRF_MedicalNeeds Patient Request Form: Medical and passive 
needs yes  Winsorize 2 high outliers. 

ps Personality disorder no too much missingness  
PSAGRL Passive Aggressive PD no too much missingness  
SCHZOL Schizoid PD no too little variance  
SCHZTL Schizotypal PD no too little variance  
Gender Gender yes   

THEATL Histrionic PD no too little variance  
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Contact_Physician Number of times contacted GP in the past 
four weeks yes   

tic2 Number of times contacted care provider in 
mental health care institute no similar to 

“Contact_Physician”  

tic3 Number of times contacted psychologist or 
psychotherapist in private practice no too little variance  

tic4 
Number of times contacted psychologist or 
psychotherapist at psychiatry department 

hospital 
no too little variance  

tic5 Kind of hospital no too much missingness  
Contact_Doctor Number of times contact company doctor yes   

tic7 Number of times contact medical specialist no similar to 
“Contact_Doctor”  

tic8 Type of medical specialist no too much missingness  
tic9 Number of times contact physiotherapist no too little variance  
tic10 Number of times contact social work no too little variance  
tic11 Number of times contact CAD no only 1 value  
tic12 Used home care no too little variance  
tic13 Number of times contact alternative healer no too little variance  
tic14 Type of alternative healer no too much missingness  
tic15 Day or part-time treatment no only 1 value  
tic16 Type of institution day/share no too much missingness  
tic17 Inpatient treatment in health care institute no too little variance  
tic18 Type of (general) health care institute no too much missingness  
tic19 Attended a self-help group no too little variance  

PriorMed Any prior medications? yes   
tic22 Highest education level no too much missingness  

tic23 Chronic disease in the past or current year no similar to 
“EpisodeDuration”  
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UCL_ActiveAddress Utrecht Coping List (UCL) Active 
addressing yes  Winsorized 2 high outliers 

and 1 low outlier. 
UCL_Avoidance UCL Avoidance yes  Winsorized 1 high outlier. 

VAS_Pain Somscore Visual Analog Scale for Pain yes   
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Supplemental Material: Missing Data Imputation 

Imputation: To impute missing baseline data, we used a random forest-based 

imputation strategy (missForest package in R; (Stekhoven & Buhlmann, 2012), which 

generates a single imputed dataset by averaging over multiple regression trees, thus 

giving the benefit of multiple imputation without needing to run the primary analyses 

across multiple imputed datasets (as with multivariate imputation by chained equations). 

It has been found to outperform other methods of imputation, especially when complex 

and non-linear interactions are present, and can handle different types of variables (Shah 

et al., 2014). We imputed missing values using all 49 baseline predictors, as well as other 

data including longitudinal outcome data, and information about treatment (e.g., number 

of sessions, etc.) with random forest. The treatment variable was not included during 

imputation. Integer-type variables with missing values that were imputed were rounded. 

For imputing missing baseline data, using outcomes for imputation generates coefficients 

closer to “true” coefficients, compared to not using outcomes for imputation (which 

produces biased [underestimated] coefficients; (Moons et al., 2006). Following 

imputation, we removed some of the baseline predictors that were included to improve 

the quality of our imputation but that were not appropriate to use as predictors in the 

context of the PAI. Specifically, we removed therapist variables (e.g., therapist age) 

because these variables do not reflect patient characteristics.  

Supplemental Material: Variable Selection 

Random Forest 

For Random Forest (RF) variable selection, we used the mobForest (Garge et al., 

2013) package in R. RF can be made to focus on predictor by treatment group 
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interactions during the model building process by forcing the approach to select “splits” 

that maximize the difference in the treatment condition coefficient between subgroups 

(by specifying the model function of RF as “y ~ treatment”). We set the mobForest mtry 

criteria, which determines how many variables random forest evaluates at each node for a 

single tree, to 16 based on the recommendation that mtry equal the number of predictors 

divided by three (Kuhn & Johnson, 2013). The number of trees was set to 10,000 to 

stabilize the results. Figure S2 presents the output from the varimplot() command, which 

provides a visualization of each variable’s importance (evaluated by random forest). The 

importance value for each variable is determined through permutation tests. Variables to 

the right of the dotted red line (the permutation threshold) are retained.  
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Supplemental Figure 2. Random forest variable importance plot with permutation 
test 

 
 
 

 

Elastic Net Regularization 

Elastic Net Regularization (ENR) can provide a hybrid of the Lasso and Ridge 

regression approaches, combining the L1 and L2 penalizations to allow for the selection 

of a parsimonious set of variables that predict outcome (Hastie et al., 2009). The degree 

to which ENR approximates these penalties is determined by the alpha setting, which can 

range between 0 (representing the ridge penalty) and 1 (representing the lasso). Zou and 
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Hastie (2005) recommend ENR (e.g., using alpha = 0.5) over lasso when dealing with 

highly correlated predictors, and so we set alpha = 0.5. We used the R package glmnet 

(Friedman et al., 2010) to implement ENR variable selection. ENR can handle high 

numbers of potential predictors and can overcome issues of high correlations between 

baseline variables. Current implementations of ENR in R do not accommodate variable 

selection for models in which moderators are of primary interest (because they do not 

link the main effects of variables to their interactions and thus can result in models 

wherein the interactions, but not their main effects, are included). Uses of ENR in the 

literature of variable selection and treatment selection have only investigated prognostic 

models in which a single treatment is modeled. In order to adapt ENR for the purpose of 

identifying moderators, we split the training sample into each of the two treatment 

groups, and then constructed prognostic models within each group. Variables that were 

retained in only one condition, or that were selected but specified with differing 

coefficients, were retained as potential moderators of treatment effects.  

Bayesian Additive Regression Trees  
 

Bayesian Additive Regression Trees (BART) builds on ensemble-of-tree methods 

such as RF by incorporating an underlying Bayesian probability model (Chipman et al., 

2010). We used the bartMachine package (Kapelner & Bleich, 2016) in R for variable 

selection with BART. Bleich and Kapelner developed bartMachine to extract information 

about variable importance, and provide an interaction plot feature that can be used to 

identify potential 3-way interactions, and with Goldstein and colleagues added the 

ICEbox package in R that allows for the visualization of higher-order and non-linear 

relationships from BART models (Bleich et al., 2014; Goldstein et al., 2015; Kapelner & 
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Bleich, 2016). Kapelner and Bleich adapted the bartMachine R package for the purposes 

of variable selection for the PAI to help focus model building on variables that predict 

differential treatment response. Kapelner and Bleich adapted the bartMachine R-package 

(2016) to help focus model building on moderators. To achieve this aim, they introduced 

a parameter that forces the search for variable splits to focus more on treatment than other 

variables, thus introducing more interactions between treatment and other variables. This 

is conceptually similar to when researchers only consider interactions between treatment 

and baseline variables (and not interactions between baseline variables themselves), or to 

how RF can specify the splitting criteria to evaluate the difference in the treatment 

coefficient for the model y ~ tx. For each BART model, the bartMachine package can 

output variable importance values that represent the proportion of times each variable is 

chosen as a splitting rule, as well as interaction importance values representing the same 

information. Two variables are identified as having interacted in a given tree if they 

appear together in a contiguous downward path from the root node to the terminal node. 

The developers have not yet developed a significance test for the importance of 

interactions (Kapelner & Bleich, 2016), and so we decided to take the N most important 

interactions, where N was the number of moderators selected by RF (which uses a 

permutation test to determine an importance threshold cutoff). Given instability in the 

internal tree structures that generate predictions in BART models, we created 5 separate 

BART models and only retained the interactions that were selected in the majority of the 

5 models.  

Stepwise AIC-penalized bootstrapped approach  
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The next step was to reduce the variables consistently identified by at least two of 

the these three approaches (RF, ENR, BART) using the stepwise AIC-penalized 

bootstrapped approach (Austin & Tu, 2004) instantiated in the BootStepAIC package in 

R (Rizopoulos, 2009). By only including the moderator relationships (and not prognostic 

variables that didn’t interact with treatment) identified by the other approaches (and their 

corresponding main effects), this search generated a model emphasizing the prediction of 

differential treatment response. Using the BootStepAIC approach as the final step, 

instead of RF or BART, was aimed to reduce the chance that predictors that require 

unspecified linear or higher-order interactions were be included. 10,000 bootstrapped 

training samples were drawn, and within each training sample backwards elimination was 

used to select variables that independently contribute to predicting outcome. We relied 

primarily on the consistency of the direction of the coefficients across the 10,000 

bootstrapped samples. By using a threshold of 95% consistency in sign of the moderator 

coefficient, variables with smaller effects that were consistent in the direction with which 

they predict differential response across treatments can be included. The primary goal of 

this step was to ensure that the variables selected will function properly and consistently, 

and increase the likelihood that the final model will replicate in future samples drawn 

from the same population.  



96 
 

 

Supplemental Table 3. BootStepAIC variable selection moderator sign consistency 
output 

 

Coefficient for Treatment Interaction Term + 
(%) 

– 
(%) 

Selected by 
BootStepAIC? 

Baseline HAM-D 98 2 Yes 

Anxiety Sensitivity (ASI) 1 99 Yes 

(BSI 2) Cognitive Problems  59 41 No 

(BSI 3) Interpersonal Sensitivities  44 56 No 

(BSI 4) Depressed Mood  97 3 Yes 

(BSI 5) Fear  85 15 No 

(BSI 7) Phobic Fears  83 17 No 

(BSI 8) Paranoid Thoughts  1 99 Yes* 

Employed 56 44 No 

Inventory of Depressive Symptomatology 
(IDS) 

87 13 No 

NEO Extraversion 97 3 Yes 

NEO Neuroticism 43 57 No 

NVM Extraversion 87 13 No 

NVM Somatization 6 94 No 

Pain (VAS) 74 26 No 

Psychological Needs (PRF) 95 5 Yes 

NEO Neuroticism x Married** 8 92 No 

 

Table S3. The 16 potential moderators that were selected by at least two of the three 
approaches (RF, ENR, BART), along with one three-way interaction identified by BART 
(NEO Neuroticism x Married x Treatment). These were submitted to a final variable 
selection stage with BootStepAIC. Bold text indicates the variables selected by 
BootStepAIC based on a criteria of at least 95% consistency of the coefficient sign for 
the interaction with treatment (presented in the middle columns) across 10,000 



97 
 

 

bootstrapped samples. *although BSI 8 was selected by BootStepAIC, its p-value in the 
final model built in the full sample was .43, and so, following the recommendation of 
Kuhn and Johnson (2013) to favor simpler models, it was not included in the final model. 
** NEO Neuroticism x Married represents the 3-way interaction between these two 
predictors and treatment. 
 

Supplemental Material: Supplemental Results.  
 
Table S4 compares the distributions across the two treatment groups for the five 

moderator variables included in the final model. Statistical tests revealed no significant 

group differences in any of the variables in the final model 

Supplemental Table 4. Predictor variables included in the final model. 

 

Predictor CBT (n = 75) PDT (n = 92) Mean difference 
(95% CI) p Value 

HAM-D Baseline 
  Mean (sd) 
  Range 

 
19.95 (2.59) 

15-24 

 
20.00 (3.13) 

14-24 

 
0.05 (–0.84-0.94) 

 

 
.91 

 

Anxiety Sensitivity (ASI) 
  Mean (sd) 
  Range 

 
34.82 (11.57) 

17-73 

 
33.71 (12.83) 

16-70 

 
–1.11 (–4.88-2.66) 

 

 
.56 

 

NEO Extraversion 
  Mean (sd) 
  Range 

 
32.74 (5.97) 

16-45 

 
32.44 (7.04) 

14-53 

 
–0.30 (–2.32-1.71) 

 

 
.77 

 

Depressed Mood (BSI 4) 
  Mean (sd) 
  Range 

 
2.28 (0.80) 

0.17-4 

 
2.23 (0.80) 
0.33-3.67 

 
–0.05 (–0.30-0.20) 

 
.69 

Psychological Needs 
  Mean (sd) 
  Range 

 
3.76 (0.72) 

1.78-5 

 
3.70 (0.75) 

1.78-5 

 
–0.06 (–0.29-0.17) 

 
.60 
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1000 CV PAI Runs 

The results presented in the primary manuscript present summary findings from the 1000 

ten-fold crossvalidations (CV). Figure S3 shows, for each of the 1000 runs of the 10-fold 

CV, the average HAM-D for the subgroup who got their indicated treatment (lucky, 

shown in red) and the average HAM-D for the corresponding subgroup who got their 

non-indicated treatment (unlucky, shown in blue). What is powerful about this result is 

that there wasn’t a single run in which the average score for the lucky group overlapped 

with the average score for the unlucky group in any of the other runs. This means that 

even the “worst” set of predictions generated across the 1000 runs resulted in a better 

outcome for the lucky than the unlucky.  

Supplemental Figure 3. Mean HAM-D for each of 1000 ten-fold CVs. 
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Supplemental Figure 4. Mean HAM-D for the largest 60% PAIs for each of 1000 
ten-fold CVs  

 

 
Figure S4 illustrates the above comparison for the largest 60% of PAIs. The same pattern 
can be observed, with an even larger separation between the two distributions.  
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CHAPTER 3: Improving Treatment Decisions for Patients with PTSD: A 
demonstration of model-based treatment selection using the Personalized Advantage 
Index approach 
 

This work is in preparation as: 

Cohen, Z. D., Wiltsey Stirman, S., DeRubeis, R. J., Keefe, J. R., Wiley, J. F., Smith, B. 
N., & Resick, P. A. (in prep). Improving Treatment Decisions for Patients with PTSD: A 
demonstration of model-based treatment selection using the Personalized Advantage 
Index approach.  

 

Abstract 

Objective: Individuals seeking treatment for Post-Traumatic Stress Disorder (PTSD) 

choose between numerous evidence-based treatments, including Prolonged Exposure 

(PE), and Cognitive Processing Therapy (CPT). As these treatments are, on average, 

equally effective, the decision of which treatment to pursue is complex. A new treatment 

selection method that uses predictors of differential treatment response could be used to 

inform this decision process and improve outcomes.  

Method: The Personalized Advantage Index (PAI) treatment selection approach was 

applied to data (N=159) from a randomized comparison of two treatments (CPT vs. PE) 

for female rape-trauma PTSD. Data-driven variable selection was used to create linear 

models predicting end-of-treatment PTSD Symptom Scale (end-PSS) scores. Using each 

patient’s predicted outcomes in CPT and PE, the indicated treatment was identified. 

Outcomes for patients who received their indicated versus non-indicated treatment were 

compared. 
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Results: The final model included five moderators: dissociation, childhood sexual abuse, 

trait angry-temperament, number of separate crime occasions, and daytime sleep-

dysfunction. The average end-PSS for individuals receiving their PAI-indicated treatment 

was 13.68, which is below diagnostic threshold for PTSD, and 18.56 for those receiving 

their non-indicated treatment, which is above threshold. This corresponds to an advantage 

of 4.88 points on the PSS (Cohen’s d=0.42) for receiving the PAI-indicated treatment. 

Among the 48.8% of the sample whose PAIs exceeded the reliable change index 

threshold, the mean end-PSS was 12.57 for got-indicated and 19.89 for got-non-

indicated. This advantage of 7.31 (Cohen’s d=0.64) exceeded the reliable change 

threshold. 

Conclusion: Formal decision support tools drawing on information from moderators 

could improve treatment outcomes. Treatment selection approaches are in developmental 

stages. If validated in external samples or prospective trials, these approaches could 

provide clinicians with clear, actionable recommendations for individual patients.  

 
Keywords: PTSD, precision medicine, prolonged exposure, cognitive processing 
therapy, treatment selection 

 

Significance Statement 

Two front-line treatments for PTSD, Prolonged Exposure and Cognitive Processing 

Therapy appear to be equally effective, but not all patients respond. Clinicians and 

researchers seek to minimize the likelihood of poor response, but have struggled to 

understand whether some patients might be better suited for one treatment over another. 

This paper demonstrates an approach for identifying optimal evidence-based treatments 
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for individuals with PTSD. It improves upon the consideration of individual predictors of 

treatment outcome by combining the predictors and estimating the end-of-treatment 

PTSD symptom scores for each potential treatment.   
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Introduction 

Post-traumatic stress disorder (PTSD) is a chronic, debilitating condition with a 

lifetime prevalence of 8% (Steinert et al., 2015). Although evidence suggests that patients 

who respond to psychological interventions for PTSD are likely to sustain their positive 

response (Resick, Williams, Suvak, Monson, & Gradus, 2012), rates of spontaneous 

remission are low, and those who drop out of treatment before responding are unlikely to 

improve on their own (Bradley et al., 2005; Foa et al., 2005; Morina et al., 2014; 

Perkonigg et al., 2005; Resick et al., 2012; Steinert et al., 2015). Furthermore, a negative 

experience with treatment could lower the likelihood that patients will seek or fully 

engage in additional treatment.  

Individuals seeking treatment for post-traumatic stress disorder (PTSD) are often 

confronted with a choice between multiple treatment options (Lancaster et al., 2016; 

Watts et al., 2013), including several empirically-supported treatments (ESTs) that are 

now included in treatment guidelines for PTSD (e.g., American Psychological 

Association, 2017). Unfortunately, little systematic, practical guidance is available to 

identify the intervention that is most likely to provide the greatest benefit for a given 

patient (Cohen & DeRubeis, 2018). Prolonged Exposure (PE; (Foa et al., 2007) and 

Cognitive Processing Therapy (CPT; (Resick & Schnicke, 1993), two trauma focused 

evidence-based psychotherapies (TF-EBPs) with substantial support for their efficacy and 

effectiveness for the treatment of PTSD (Bisson & Andrew, 2007; Watts et al., 2013), 

have been included in treatment guidelines. Both PE and CPT have been shown to be 

superior to placebos and to other active controls but evidence suggests that they are, on 

average, equally effective (Bisson & Andrew, 2007; Watts et al., 2013). While their 
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respective treatment manuals specify some theorized, general contraindications for TF-

EBPs, they provide no guidance as to how to choose between TF-EBPs.  

However, treatment allocation in PTSD is not random as clinicians make efforts 

to determine which treatment is most appropriate for their individual patients. Rosen and 

colleagues (2017) examined over 6,000 patients in VA PTSD teams, 23% of whom 

initiated CPT and 14% of whom initiated PE, and identified several patient factors that 

were associated with differential likelihood of receiving TF-EBPs, including factors such 

as recent hospitalizations and comorbidities. Other studies have shown similar patterns of 

findings (Mott et al., 2014; Sripada et al., 2017; Sripada et al., under review). Qualitative 

studies from the VA indicate that clinicians believe that certain patients are “not ready” 

for TF-EBPs due to factors such as psychiatric instability, complicating comorbidities 

(substance use, personality disorders), and lack of motivation (Cook et al., 2014; Rosen et 

al., 2016). Whether and why they judge the appropriateness of one TF-EBP over another 

are questions that fewer studies have investigated. 

Raza and Holohan (2015) surveyed clinicians who were VA-trained in both PE 

and CPT regarding patient factors that they believed might influence them to recommend 

PE, CPT, either, or neither. They found that clinicians were more likely to recommend 

PE over CPT for patients with low literacy, low cognitive functioning, and 

moderate/severe Traumatic Brain Injury, whereas they were more likely to recommend 

CPT over PE for patients with strong guilt, strong shame, acts of perpetration, and 

dissociation history.  Cook and colleagues (2017) also sought to understand how VA 

therapists determine which TF-EBP to provide to their patients. Therapists indicated that 
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they factored cognitive abilities, distress tolerance, and emotional stability into their 

decisions about which treatment would be most appropriate, but had difficulty 

operationalizing specific rules for making that determination. Furthermore, findings from 

qualitative studies have suggested that clinicians’ ways of making determinations did not 

appear to be consistent with guidance in TF-EBP treatment manuals about 

contraindications for treatment (Cook et al., 2017; Osei-Bonsu et al., 2017). Thus, while 

treatment selection is occurring in routine practice, it does not appear to be systematic or 

based on research findings, and does not clearly follow guidance from treatment manuals. 

Instead, clinicians are left to make their best guesses based on sometimes limited clinical 

experience (in the case of clinicians who are newly trained in the EBPs), and findings 

from a confusing literature on individual moderators of treatment outcome (Cohen & 

DeRubeis, 2018). 

Researchers have investigated patient factors that may predict differential 

outcomes in TF-EBPs in the context of clinical trials of treatments for PTSD. For 

example, anger has been shown to relate to poorer prognosis in some studies (Foa et al., 

2005; Pitman et al., 1991), although after controlling for pretreatment PTSD severity, a 

subsequent study did not replicate this finding (Cahill et al., 2003; Cahill et al., 2004). In 

the sample of women treated with PE or CPT that will be used in this study, Rizvi and 

colleagues (2009) investigated a restricted set of variables and found several prognostic 

indicators: younger age, lower intelligence, and less education were associated with 

higher treatment dropout, whereas higher depression and guilt at pretreatment were 

associated with greater PTSD symptom improvement. In addition, severity was found to 

be a prognostic predictor, with greater severity predicting greater symptom change. They 
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also identified two prescriptive factors, age and anger: older women in PE and younger 

women in CPT had the best overall outcomes, and women with higher baseline levels of 

anger were more likely to drop out of PE. When these factors were examined in 

combination along with additional measures from the study, childhood physical abuse, 

current relationship conflict, trait anger, and racial minority status were associated with a 

higher likelihood of dropout in PE than CPT (Keefe et al., 2018).  

As Cloitre (2011) observed, despite there being over 20 studies examining 

patient-specific characteristics of treatment outcome, results between studies have been 

inconsistent and have left clinicians with little useful guidance regarding how to 

determine the best fitting treatment for their patients. Some of the reasons for the 

inconsistencies are likely due to studies that were not powered to reliably detect treatment 

moderators, as well as heterogeneity across the treatment samples (Cloitre et al., 2015). 

As noted by Cloitre and colleagues (Cloitre et al., 2015), and discussed by Cohen and 

DeRubeis (2018) in their recent review on treatment selection, this inconsistency likely 

has several sources. Some inconsistencies may suggest that these factors are not good 

candidates for supporting treatment selection (e.g., they are associated with weak or 

“noisy” effects in statistical models), while others might simply require a standardization 

in methodological approaches (e.g., poor comparability due to inconsistent modeling 

decisions). Unfortunately, information on differential patient response from randomized 

studies is rarely integrated and applied clinically (Simon & Perlis, 2010). This may be 

due, in part, to a lack of a systematic method for translating this information into 

meaningful/actionable treatment recommendations. 
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One aim of precision medicine in mental health is to understand the heterogeneity 

of responses hidden within the average-treatment effect in order to help match patients to 

their optimal treatment (Cohen & DeRubeis, 2018). For example, Cloitre (2015) 

suggested that it may be possible to identify a profile comprising moderators that capture 

key patient-level historical factors, history, diagnoses, and behaviors or circumstances 

that, taken together, can predict outcome. In this vein, DeRubeis et al. (2014) described a 

method that integrates pre-treatment information as well as outcome data from patients 

who have been randomized to one of two (or more) treatments. Since its initial 

introduction, the approach has been used and adapted by several groups (Cohen et al., 

under review; Deisenhofer et al., 2018; Huibers et al., 2015; Keefe et al., 2018; Vittengl 

et al., 2017; Webb et al., 2018; Zilcha-Mano et al., 2016). In the simplest version, a 

multivariable model is constructed that yields, for each patient, a Personalized Advantage 

Index (PAI). The PAI is an index that is computed by taking the difference between the 

estimated end-of-treatment PTSD symptom score for two or more treatments, as 

predicted by a model that combines multiple predictive and prognostic indicators of 

treatment outcomes. The sign and magnitude of the PAI, derived from these estimates of 

the expected outcomes for the patient in each treatment, is used to indicate the preferred 

treatment. If the PAI indicates that a meaningful difference is expected for a given 

patient, it could be used to guide clinicians and patients toward the selection of an 

optimal treatment. In what follows, we will provide an example of how model-based 

treatment recommendations could improve outcomes in the treatment of PTSD. 

Recent reviews have argued that in the field of mental health is that it is unlikely 

that any single variable, in isolation, will have large clinical utility in guiding mental 
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health treatment selection (Cohen & DeRubeis, 2018; Gillan & Whelan, 2017; Kessler, 

2018; Simon & Perlis, 2010). How useful any single variable would be for helping 

inform an actual treatment recommendation would depend on a variety of factors that 

have been discussed elsewhere (e.g., (Janes et al., 2011). Several recent empirical efforts 

have demonstrated that multivariable prediction models can improve upon (and 

outperform) clinical prediction (e.g., (Kautzky, Baldinger-Melich, et al., 2017; Kautzky, 

Dold, et al., 2017). Thus, although single-variable models are explored below for 

illustrative purposes, the primary focus for this paper is on recommendations that were 

generated by a multivariable model, whose predictors were selected through a data-driven 

variable selection process (Cohen et al., under review). 

Methods 

Participants. Study participants were women who met DSM-IV criteria for PTSD 

assessed using the Clinician Administered PTSD Scale (CAPS; Weathers et al., 1999), a 

standardized, reliable trauma interview. Participants were randomized to PE, CPT, or a 

six-week waitlist condition, after which these patients were also randomly assigned to 

either CPT or PE. Here, we combine the participants from the waitlist with patients from 

the treatment condition to which they were randomized. Further details on trial 

methodology and patient sample can be found in the primary outcome publication 

(Resick et al., 2002). Inclusion criteria included having experienced a completed rape in 

childhood or adulthood, being at least 3 months post-trauma, and, if on medication, being 

on a stabilized dose (N=48; 30.1%) by client self-report. 79.9% of the sample reported 

multiple trauma victimizations (mean=6.22, sd=4.75). Exclusion criteria included current 

psychosis, substance dependence, illiteracy, instability of psychiatric medication dosages, 
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current self-injurious behavior, suicidal intent, and ongoing trauma (stalking or abusive 

relationship). Although 171 patients entered the study, the 11 patients who dropped out 

during the waitlist period (prior to being informed of their assignment to treatment) were 

excluded from these analyses, as their data could not inform a model on differential 

response to treatment. One additional patient for whom PTSD symptom data were not 

available at baseline, during, or post-treatment was also excluded. Demographics for the 

final sample (N=159) are presented in Table 1. (Descriptive statistics and group 

difference tests for the full set of baseline measures can be found in Supplemental Table 

S1.) 

Table 1: Demographic and clinical characteristics of patient sample 

 Cognitive 
Processing Therapy    
(N = 78) 
mean (sd) 

 
Prolonged Exposure          
(N = 81) 
mean (sd) 

Age 31.21 (9.53) 32.28 (9.74) 

Race (% White) 57 (73.1%) 57 (70.4%) 

Years of Education 14.60 (2.02) 14.18 (2.33) 

IQ (Quick Test) 98.21 (8.54) 98.52 (9.90) 

Years Since Index Rape 8.34 (8.81) 8.38 (7.90) 

CAPS 74.91 (18.30) 74.64 (19.23) 

PSS 29.54 (8.5) 29.26 (8.84) 

BDI 23.38 (10.24) 23.38 (8.34) 

Table 1. No significant differences between treatment conditions were found for any 

variables at baseline. BDI = Beck Depression Inventory; CAPS = Clinician Administered 

PTSD Scale; PSS = PTSD Symptom Scale. 

 

Procedure. Cognitive Processing Therapy. CPT is a primarily cognitive therapy 

delivered over 12 one-hour sessions. The original manual, used in this study (Resick & 
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Schnicke, 1993), includes psychoeducation, a statement of the impact that the trauma has 

had on the patient’s life and beliefs, differentiation between thoughts and emotions, two 

assigned written accounts of the traumatic event that are reviewed in the subsequent 

session and then read daily between sessions, and cognitive restructuring of beliefs about 

the meaning of the trauma and its implications. The second half of the treatment includes 

modules that focus on disruptions in beliefs about safety, trust, power/control, esteem, 

and intimacy that may have resulted from the traumatic exposure.  

Prolonged Exposure. PE is an exposure-based treatment (Foa & Rothbaum, 

1998) that is based upon Emotional Processing Theory, which suggests that PTSD 

symptomatology is maintained by avoidance of trauma cues, and by negative cognitions 

about the self, the world, and one’s reaction to the trauma. The PE protocol used in this 

study was nine 90-minute sessions and included psychoeducation and explanation of 

rationale for PE, breathing retraining, behavioral exposures, and imaginal exposures (Foa 

et al., 2007). The majority of the sessions involve imaginal exposure of the index event 

for 45–60 minutes of the session. 

Measures. The primary outcome for the trial was the CAPS. The CAPS was only 

measured at baseline and post-treatment, and there was significant missingness for the 

post-treatment assessments due to both assessment and treatment drop-out. To have more 

assessment points for symptom change and minimize the impact of missing CAPS data, 

we decided to use the self-reported PTSD Symptom Scale (PSS; (Foa et al., 1993) as the 

outcome, which was assessed at baseline and at weeks 2, 4, 6, 8, 9, 10, and 12 (post-

treatment). In light of findings that PTSD patients who drop out of treatment prior to 

experiencing symptom response are not expected to recover, we decided to use last-
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observation-carried-forward (LOCF), a conservative imputation strategy, to model 

missing outcomes. The use of LOCF symptom scores as outcomes when examining 

predictors of response to PTSD treatments has been discussed and demonstrated in other 

prior efforts (Hagenaars et al., 2010). The mean post-treatment PSS score on the LOCF 

PSS (referred to hereafter as end-PSS) was 14.40 (sd=10.79) for the CPT group and 

17.94 (sd=12.67) for the PE group. Diagnostic cutoff scores of 14 (Coffey et al., 2006) 

and 15 (Wohlfarth et al., 2003) on the PSS have been proposed for PTSD. Mean end-PSS 

were 3.54 points lower in CPT than PE (pooled sd=11.79; Cohen’s d=0.30; t-

statistic10=1.90; p=.059). This difference mirrors the findings reported in the primary 

report of the full intent-to-treat sample11, in which post-treatment PSS and CAPS scores 

were non-significantly lower in CPT than PE (PSS of 13.66 vs. 17.99 and CAPS of 39.08 

vs. 44.89, respectively (Resick et al., 2002). 

Detailed explanations of all baseline measures are provided in the supplemental 

methods section, along with descriptive statistics and tests for group differences, which 

are presented in supplemental Table 1. 

Data Analysis. Data preprocessing and missing data are described in the 

supplemental methods. Missing baseline data were imputed using a single-dataset 

                                                             
10 Unless otherwise noted, all t-statistics and associated p-values are from 2-tailed Welch’s two sample t-
tests, equal variance not assumed. 

11 Note that the means reported by Resick et al. (2002) from the original ITT sample analyzed separately 
for the three initially randomized conditions (CPT, PE, and waitlist). Thus, means presented here for CPT 
and PE were each derived from samples of N=62. 



112 
 

 

random forest imputation strategy with the missForest package in R (Stekhoven & 

Buhlmann, 2012). More details regarding imputation are provided in the supplemental.  

Variable Selection. To leverage the benefits of data-driven variable selection 

procedures, we ran the treatment selection analyses based on a model in which the 

variables were selected using a multi-method approach recently introduced by Cohen and 

colleagues (Cohen et al., under review). This approach, which has since been used or 

adapted in other efforts (Schweizer et al., submitted; Webb et al., 2018; Wiltsey Stirman 

et al., submitted), was developed in response to the observed heterogeneity of variable 

selection approaches used in precision medicine (Cohen & DeRubeis, 2018). It combines 

four commonly used variable selection approaches in order to identify predictors that are 

selected consistently across multiple approaches: Random Forests using the mobForest 

package (Garge et al., 2013) in R, Elastic Net Regularization using the glmnet package 

(Friedman et al., 2009), Bayesian Additive Regression Trees using the bartMachine 

package (Bleich et al., 2014; Kapelner & Bleich, 2016), and stepwise AIC-penalized 

bootstrapped variable selection (Austin & Tu, 2004), using the bootStepAIC package 

(Rizopoulos, 2009). All of the variable selection techniques that comprise the approach 

utilize cross-validation and/or bootstrapping, thus increasing the stability and 

generalizability of the identified variables (Hastie et al., 2009). In Step-1, all variables are 

submitted to each of three variable selection approaches: Random Forest, Elastic Net, and 

BART. Then, the variables that are selected by at least 2 out of 3 approaches are 

submitted to the final variable selection approach, bootStepAIC. Following Austin and 

Tu’s (2004) recommendation, variables whose interactions with treatment are retained in 

at least 60% of 10,000 bootstrapped replicates are included in the final model. The multi-
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method approach harnesses benefits of machine learning while preserving the 

interpretability of classic parametric regression. See the supplemental methods and 

Cohen et al. (under review) for more details on the variable selection approach. 

Generation of PAI scores and Evaluation of the Results. The treatment selection 

model was defined using a linear regression model with the following general form 

(Tx=treatment, factors=baseline variables selected as potential moderators. The outcome 

variable, “Y”, was post-treatment score on the PSS and the covariate was the pre-

treatment score on the PSS): 

Y = covariate + Tx + factors + Tx * (factors) 

 For each patient, predictions are generated describing their expected outcomes in 

CPT or PE. The prediction that corresponds to the treatment any given patient actually 

received is called the factual prediction, and the prediction of how he or she would have 

done in the other treatment is called the counterfactual prediction. The PAI for each 

patient is the difference in the predicted outcomes between treatment-A (CPT) and 

treatment-B (PE). This index is signed, and the direction of the index indicates which 

treatment is indicated by the model to be preferred over the other. 

Outcomes of individuals classified as “CPT-indicated” who received CPT were 

compared to outcomes for “CPT-indicated” individuals who instead received their non-

indicated treatment (PE). We next performed the analogous comparison for those 

identified as “PE-indicated.” Then, we collapsed these two comparisons to examine 

whether, on average, individuals who received their indicated treatment had superior 

outcomes compared to individuals who did not receive their indicated treatment. More 
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detailed discussions of the creation and evaluation of PAIs can be found in DeRubeis et 

al. (2014), Cohen and DeRubeis (2018) and Cohen et al. (under review). 

10-fold cross-validation (CV). 10-fold CV was used when generating PAIs to 

protect against over-fitting during the model weight-setting process (Kuhn & Johnson, 

2013). The data were split into 10 folds, 9/10 of the data were used to set a model’s 

weight, and then this model generated predictions for the held out 1/10 of the sample. 

Thus, each patient’s predictions were generated from a model in which the weights were 

set without her data. The 10-fold CV procedure was repeated multiple times (N=1000) to 

account for variability related to the selection of the 10 folds, and the findings presented 

below summarize results from the 1000 runs. As noted by Hastie et al. (2009), although 

this approach attempts to approximate the protection of a true hold out sample, it does not 

fully protect against the risk of double-dipping because of our utilization of the full 

sample during the variable selection phase. However, given the small sample size, 

performing a split-halves analysis or a “complete 10-fold CV” whereby variable selection 

would be performed within each of the training samples was deemed impractical. Thus, 

the findings presented below will require replication in an independent sample. 

Clinically Significant PAIs. Generally, larger PAIs indicate stronger 

recommendations for the indicated treatment over the non-indicated treatment. We 

hypothesized that those patients for whom stronger PAIs were produced would be 

especially likely to show greater benefits of treatment selection. DeRubeis et al. (2014) 

divided the sample’s PAIs using a cutoff that was suggested by clinical guidelines. Here, 

we subset larger PAIs based on an index of reliable change of 6.15 points on the PSS that 

has been reported in the literature (Foa et al., 2002; Larsen et al., 2016). 
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Results 

Data-driven Variable Selection. Of the 57 variables under consideration, in Step-1 

14 were selected as potential moderators, as well as one potential 3-way interaction that 

was indicated by BART (see Table 2). (An additional 13 variables were selected by only 

one approach; these were not submitted to Step-2, bootStepAIC). Based on the criterion 

of being retained by bootStepAIC in at least 60% of the 10,000 bootstrapped replicates, 

five interactions were selected for the final model: trait angry temperament (subscale of 

the State Trait Anger Expression Inventory [STAXI]; (Spielberger & Sydeman, 1994), 

number of separate crime occasions, childhood sexual abuse (assessed with the Sexual 

Abuse Exposure Questionnaire [SAEQ]; (Rowan et al., 1994), dissociation (subscale of 

the Trauma Symptom Inventory [TSI]; (Briere et al., 1995), and daytime sleep 

dysfunction (subscale of the Pittsburgh Sleep Quality Index [PSQI]; (Buysse et al., 1989). 

The main effect for baseline PSS was included in the final model as a covariate, as 

planned, although it was not selected by bootStepAIC. 

Table 2. Variable selection <------      Step 1      ------> Step 2 Result 

Variable BART Elastic 
Net 

Random 
Forest 

Included 
in 

Bootstep 
AIC? 

Selected 
by 

Bootstep 
AIC? 

Baseline PSS ✔ ✔ ✔ Yes No* 

Depression (BDI) ✔ ✔ ✔ Yes No 

Trait Angry Temperament 
(STAXI) ✔ ✔ ✔ Yes Yes 

# Separate Crime Occasions ✔ ✔ ✔ Yes Yes 

Dissociative Experiences (DES) ✔ ✔ ✔ Yes No 

Parental Violence (AE-III-PP)  ✔ ✔ Yes No 
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Childhood Sexual Abuse 
(SAEQ)  ✔ ✔ Yes Yes 

Intimacy (PBRS)  ✔ ✔ Yes No 

Dissociation (TSI) ✔ ✔  Yes Yes 

Dysfunctional Sexual Behavior 
(TSI) ✔ ✔  Yes No 

Intrusive Experiences (TSI)  ✔ ✔ Yes No 

Sleep Meds (PSQI) ✔ ✔  Yes No 

Daytime Sleep Dysfunction 
(PSQI) ✔ ✔  Yes Yes 

Race White ✔ ✔  Yes No 

Sleep Meds (PSQI) x Baseline 
PSS ✔   Yes No 

IQ (Quick Test)  ✔  1/3  

Global Guilt (TRGI)  ✔  1/3  

Distress (TRGI)   ✔ 1/3  

Wrongdoing (TRGI)  ✔  1/3  

Trait Anger (STAXI) ✔   1/3  

Anger Out (STAXI)  ✔  1/3  

Anger Control (STAXI)   ✔ 1/3  

Esteem (PBRS)  ✔  1/3  

Hopelessness (BHS)  ✔  1/3  

Sleep Quality (PSQI)  ✔  1/3  

Sleep Latency (PSQI)  ✔  1/3  

Sleep Efficiency (PSQI)  ✔  1/3  

Married  ✔  1/3  

Table 2. Summary of variable selection results for all variables selected by at least one 
approach. Columns under “Step 1” present the results of the three different variable 
selection approaches based on Random Forest, Elastic Net Regularization, and BART. 
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The variables that were selected by at least two of these three approaches were then 
submitted, along with one three-way interaction identified by BART (Sleep Meds [PSQI] 
x Baseline PSS x Treatment), to a final variable selection stage with BootStepAIC. Bold 
text indicates the variables that were retained as interactions by BootStepAIC in at least 
60% of the 10,000 bootstrapped replicates, and thus were included in the final model. 
*Although baseline PSS was not selected as a moderator, its main effect was included as a 
covariate to control for its relationship to outcome. AE-III-PP = Assessing Environments-
III-Physical Punishment Scale; BART = Bayesian Additive Regression Trees; BDI = 
Beck Depression Inventory; BHS = Beck Hopelessness Scale; DES = Dissociative 
Experiences Scale; PBRS = Personal Beliefs and Reactions Scale; PSS = PTSD 
Symptom Scale; PSQI = Pittsburgh Sleep Quality Index; SAEQ = Sexual Abuse 
Exposure Questionnaire; STAXI = State Trait Anger Expression Inventory; TRGI = 
Trauma Related Guilt Inventory; TSI = Trauma Symptom Inventory. 
 

Final Model. Weights for the models used to generate the PAIs were set using the 

10-fold CV scheme described above. Table 3 presents the coefficients from a model 

where weights were set using the full sample. The interpretation of moderator effects 

based on the coefficients of regression models can be a complicated endeavor (Kraemer 

& Blasey, 2004). A recent review on treatment selection contains a more detailed 

discussion of how to interpret moderator relationships for treatment recommendations 

(Cohen & DeRubeis, 2018). To facilitate this interpretation, the moderator relationships 

included in the final model are presented visually in Supplemental Figure S1. 
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Table 3. Final linear model predicting end-PSS generated using the full sample. 

coefficient estimate std. error t value p value 

intercept 16.11 0.82 19.67 <.001*** 

Treatment (Tx) 3.69 1.64 2.25 .026* 

Baseline PSS 4.98 0.96 5.18 <.001*** 

Trait Angry Temperament (STAXI) 1.05 0.83 1.26 .210 

Daytime Sleep Dysfunction (PSQI) –2.11 0.88 –2.39 .018* 

# Separate Crime Occasions 1.48 0.89 1.66 .099† 

Dissociation (TSI) –1.76 0.94 –1.87 .064 

Childhood Sexual Abuse (SAEQ) 0.70 0.89 0.79 .434 

Tx * Trait Angry Temperament (STAXI) 4.33 1.67 2.59 .011* 

Tx * Daytime Sleep Dysfunction (PSQI) 3.83 1.68 2.28 .024* 

Tx * # Separate Crime Occasions 4.62 1.80 2.56 .011* 

Tx * Dissociation (TSI) –2.99 1.81 –1.65 .100† 

Tx * Childhood Sexual Abuse (SAEQ) –3.64 1.78 –2.04 .043* 

Table 3. Treatment was coded ±0.5 and all predictors were centered/standardized. † = p < 

.10, * = p < .05, *** = p < .001. PSS = PTSD Symptom Scale; PSQI = Pittsburgh Sleep 

Quality Index; SAEQ = Sexual Abuse Exposure Questionnaire; STAXI = State Trait 

Anger Expression Inventory; TSI = Trauma Symptom Inventory. 
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Personalized Advantage Index (PAI) Scores.12 The mean absolute value PAI in 

the full sample was 7.06,  (sd=5.31). For CPT-indicated individuals (68.6% of the 

sample) the mean was 7.87 (sd=5.54), and for PE-indicated individuals (31.4%) it was 

5.31 (sd=4.29). 

  Approximately half (48.8%) of the sample had PAIs that were large enough 

(absolute value greater than 6.15) to be considered reliable as describe previously. 

Breaking down this group by which treatment was indicated, 37.8% of the total sample 

were predicted to have a reliable advantage of CPT over PE, versus 11.0% for PE over 

CPT.  

Estimated Utility of PAI. The benefit of treatment selection (see Figure 2) was 

estimated by comparing the observed outcomes of individuals who were randomized to 

their PAI-indicated treatment (mean end-PSS=13.68; sd=10.64) to those who were not 

(mean end-PSS=18.56; sd=12.53). This reflected an average advantage of 4.88 PSS 

points (Cohen’s d=0.42; t-statistic=2.64; p=.015) for those receiving their indicated 

treatment. The difference in outcomes for those who received their indicated versus non-

indicated treatment (See Figure 3) was larger for CPT-indicated individuals (mean=6.13, 

Cohen’s d=0.53, t-statistic=2.73, p=.009) than for PE-indicated individuals (2.15, 

Cohen’s d=0.19, t-statistic=0.65, p=.526). (See Table 4 for full results and all 

comparisons.) 

                                                             
12 As noted in the methods section, these results summarize the findings from the 1000 10-fold CVs: unless 
otherwise indicated, all Ns, means, SDs, 95% CIs, Cohen’s ds, t-statistics, and p-values have been averaged 
across 1000 runs. 
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Figure 1. Comparison of end-PSS scores for patients who received their PAI-indicated 
(“got PAI”) treatment versus those who received their non-indicated (“got other”) 
treatment for the full sample (left bars) and for the subset of patients (right bars) with 
larger PAIs that exceeded the reliable change index (RCI).  
 

  
Figure 2. Panel a) Comparison of end-PSS scores for patients who received their PAI-
indicated treatment versus those who received their non-indicated broken down by those 
who were CPT-indicated (left bars) versus PE-indicated (right bars). Panel b) The same 
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comparisons presented in Figure 3a performed in the subset of patients with larger PAIs 
that exceeded the reliable change index (RCI). 

 

When this evaluation was restricted to the larger PAIs (48.8% of sample with 

PAIs above the reliability threshold), the observed effect of treatment selection (Figure 2) 

grew to 7.31 points (Cohen’s d=0.64, t-statistic=2.80, p=.011), which in addition to being 

statistically significant, surpassed the reliable change threshold. Here, as in the full 

sample, there was a larger advantage for CPT-indicated individuals (mean 

difference=8.73, Cohen’s d=0.75, t-statistic=2.90, p=.008) than for PE-indicated 

individuals (mean difference=2.68, Cohen’s d=0.26, t-statistic=0.53, p=.592). The 

average end-PSS scores among those who received their PAI-indicated treatments were 

below the diagnostic cutoffs for probable PTSD in the collapsed sample, the CPT-

indicated subgroup, and the PE-indicated subgroup, and above diagnostic threshold for 

those who received their non-indicated treatment. 
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Table 4. Observed mean end-PSS scores for patients who received their indicated or non-indicated treatment with group 
difference tests and effect sizes 

PAIs 

Random 

allocation 

end-PSS 

mean (sd) 

95% CI 

[lower, upper] 

Difference  

95% CI        

[lower, upper] Cohen’s d 

t-statistic  

(p-value) 

all PAIs got indicated 13.68 (10.64) [11.51, 15.84] 
4.88 [1.22, 8.54] 0.42 2.64 (p=.015) 

got non-indicated 18.56 (12.53) [16.25, 20.86] 
       

CPT-indicated got indicated 13.27 (10.64) [10.94, 15.61] 
6.13 [1.67, 10.59] 0.53 2.73 (p=.009) 

got non-indicated 19.40 (12.53) [16.83, 21.97] 
       

PE-indicated got indicated 14.53 (10.28) [11.53, 17.53] 
2.15 [–4.44, 8.74] 0.19 0.65 (p=.526) 

got non-indicated 16.68 (12.93) [13.71, 19.65] 
       

all PAIs > RCI got indicated 12.57 (10.35) [10.02, 15.13] 
7.31 [2.10, 12.52] 0.64 2.80 (p=.011) 

got non-indicated 19.89 (12.42) [17.15, 22.62] 
       

CPT-indicated  

> RCI 

got indicated 12.18 (10.37) [9.46, 14.90] 
8.73 [2.69, 14.76] 0.75 2.90 (p=.008) 

got non-indicated 20.91 (12.75) [17.94, 23.87] 
       

PE-indicated  

> RCI 

got indicated 13.98 (10.31) [10.23, 17.74] 
2.68 [–8.6, 13.96] 0.26 0.53 (p=.592) 

got non-indicated 16.66 (11.25) [12.93, 20.40] 
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Discussion 

Although many studies have identified prognostic predictors and moderators of 

treatment response in PTSD (Cloitre, 2015), they have resulted in little consistent 

guidance about how to select, from treatments that appear to be equally effective, which 

treatment is most likely to benefit an individual patient. Meehl (1954) was an early 

advocate for the superiority of what he described as “actuarial decision-making” over 

purely clinical decision-making. Clinicians with expertise and experience in a given field 

are generally skilled at selecting and coding the information that is needed for treatment 

selection, but often fail the difficult task of integrating information simultaneously from 

multiple (and sometimes conflicting) sources (Dawes, 1979; Dawes et al., 1989; Grove et 

al., 2000). In this paper we have described a method for generating treatment 

recommendations that simultaneously takes into account multiple factors, and yields an 

estimate of the outcomes that can be expected based on this combination of factors.  

We employed a multi-stage variable selection approach that incorporated 

advanced statistical methods designed to identify robust predictors of treatment response. 

PAI-based treatment recommendations were generated for each patient in the sample 

using cross-validation. We found a significant advantage in outcomes for patients who 

received their model-indicated treatment relative to those who did not. The mean end-

PSS of patients who received their indicated treatment was below diagnostic cutoffs for 

PTSD, whereas the mean end-PSS of those who received their non-indicated treatment 

exceeded them. These findings, if replicated in an external sample or validated in a 

prospective study, would suggest that outcomes for patients deciding between CPT or PE 

could be improved through treatment selection. 
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When we attended to the strength of the recommendations by looking within the 

roughly half of the sample with larger PAI recommendations, the statistically significant 

advantage of receiving the indicated treatment exceeded the reliable change index. This 

result, which replicates findings from other efforts regarding the importance of attending 

to the strength of recommendations (Cohen et al., under review; DeRubeis et al., 2014; 

Huibers et al., 2015; Keefe et al., 2018; Webb et al., 2018), likely reflects two features: 1) 

There are some patients for whom the two treatments are predicted to be more or less 

equally beneficial, and thus either treatment could be recommend. In these patients, very 

small PAIs might indicate a slight advantage of one treatment over the other, but this 

advantage might not be large enough to generate a meaningful effect of treatment 

selection; or 2) The predictions generated by these models contain noise, and for patients 

who have PAIs that are close to zero, the assignment of an “indicated treatment” might be 

too unstable to generate treatment recommendations that are reliable or useful. 

In the full sample, as well as in the subset of individuals with larger PAIs, the 

advantage of receiving the model indicated treatment was larger among the CPT-

indicated individuals, compared to those for whom PE was recommended. This was 

expected based on differences in the magnitudes of the PAIs, and might have been related 

to the (trend-level) superiority of CPT versus PE outcomes on the PSS in this sample.  

The data-driven variable selection approach resulted in a final treatment selection 

model comprising five variables, all of which have been the focus of prior work on 

treatment response in PTSD: dissociation, childhood sexual abuse, trait angry 

temperament, number of separate crime occasions, and daytime sleep dysfunction.  
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Some of the relationships included in the final model replicated prior findings 

from the literature. For example, we found that higher anger (trait angry temperament 

subscale of the STAXI) was associated with worse outcomes in PE (relative both to low 

trait angry temperament in PE and to high angry temperament in CPT), which aligned 

with prognostic findings from the literature associating higher baseline anger with worse 

outcomes in PE (Foa et al., 1995; Pitman et al., 1991). Although Rizvi and colleagues’ 

(2009) previous analyses of these data did not investigate trait angry temperament, they 

did investigate trait anger, for which they failed to find a significant main or moderating 

effect on treatment response. In their discussion of the variability of findings regarding 

the association between anger and outcomes in PE, Rizvi and colleagues (2009) note that 

different groups have used different measures of anger that were designed to capture 

different aspects of anger (e.g., state vs. trait, anger at self vs. others, anger at the index 

trauma vs. situationally reactive anger), as well as different outcome measures, and that 

this might account for some of the inconsistencies in the literature. Rizvi et al. (2009) did, 

however, report that higher trait anger was associated with higher dropout for PE than 

CPT. Unlike our analyses, in which LOCF was used to allow patients who dropped out 

during treatment to be retained in the sample, Rizvi et al. (2009) decided to restrict their 

analyses to a completers-only sample. Insofar as there is an association between anger 

and dropout, analyses of the relationship between anger and symptom response that are 

performed in a completers only sample risk systematically missing individuals with 

higher baseline anger. Additionally, because trait anger was a moderator of dropout in 

this sample, it is possible that Rizvi and colleagues’ (2009) use of a completers-only 
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sample masked the moderating effect of baseline anger on response that was discovered 

in our analyses.  

Dissociation (as measured by the TSI) was included as a moderator in our final 

model, in which there was a significant negative association between baseline 

dissociation and end-PSS for those in PE, and no relationship between baseline 

dissociation and outcome for those in CPT. Hagenaars et al. (2010) examined the 

relationship between three dissociative phenomena - dissociation (Dissociative 

Experiences Scale; DES), depersonalization (the mean score of the three dissociation 

items from the CAPS), and numbing (the mean score of the three numbing items from the 

PSS-avoidance subscale) - and PE treatment response and found no association between 

dissociation and response. They examined this regression in both a completers-only and 

an ITT sample (using LOCF to impute missing PSS scores) and obtained similar findings. 

However, Hagenaars and colleagues findings came from a different measure of 

dissociation, the dissociative experiences scale (DES). As a post-hoc exploratory analysis 

aimed to better approximate their approach, we constructed two regression models using 

the subset of the sample treated with PE (with and without controlling for baseline PSS) 

predicting end-PSS using DES scores. These analyses replicated their results, as we 

found that although higher levels of baseline dissociation (DES) were associated with 

worse outcomes in the model in which baseline PSS was not included as a covariate, no 

relationship between dissociation and outcome was found after controlling for baseline 

PSS. Taken together, these findings highlight the importance of attending to differences 

in analytic approaches (include variables, outcomes, samples, and statistical 

methodologies) when interpreting findings on predictors reported in the literature.   
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Many of the issues described above also complicated efforts to compare our 

results from the other four moderators with findings from the literature. For example, 

previous research in PE found that prior trauma in childhood was associated with poorer 

treatment outcomes (Hembree et al., 2004) We did not replicate this finding: in our final 

model, higher scores on a continuous variable representing levels of childhood sexual 

abuse (measured using the SAEQ) was associated with worse outcomes in CPT, but not 

PE. However, Hembree et al. (2004) used a different assessment tool (the Standardized 

Assault Interview) that assessed for a childhood history of not only sexual abuse, but also 

physical abuse, and witnessing extreme family violence, and they included this 

information as a binary variable that was yes if prior exposure to any of the three criteria 

was endorsed. In this study, childhood trauma that was non-sexual in nature was assessed 

with a different tool and included as a separate variable. Additionally, there were sample 

differences that might be especially important when comparing the relationship between 

history of childhood sexual assault and outcomes: only 68.5% of their sample had PTSD 

related to a sexual assault (rape or attempted rape), as compared to 100% of our sample. 

These examples demonstrate one reason why we advocate using data-driven 

treatment selection models to inform treatment recommendations. A recent review by 

Cohen and DeRubeis (2018) provides a more in-depth discussion of the potential issues 

that can arise when trying to abstract clinical recommendations from the literature on 

predictors. Given these barriers, it is unsurprising that little progress has been made to 

date in the area of precision medicine approaches to mental health treatment selection. 

Approaches to model building and evaluation are still in the developmental stages. The 

variable selection approach used here is merely a proposed starting point, many details of 
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which should be tested and empirically derived and refined in future work. Future efforts 

could explore different permutations of the composite variable selection methods, such as 

adding different approaches (e.g., Support Vector Machines), reducing the number of 

approaches used, or adjusting relevant settings within each of the techniques. Examples 

of the latter include adjusting the thresholds for the inclusion of variables and specifying 

different tuning parameters (Kuhn & Johnson, 2013).  

Despite these complications, and in part because of them, a growing body of 

literature describing data-driven approaches to treatment selection in depression 

(Chekroud et al., 2016; Delgadillo et al., 2017; DeRubeis et al., 2014; Iniesta et al., 2016; 

Kessler et al., 2017; Perlis, 2013; Petkova et al., 2017; Saunders et al., 2016; Smagula et 

al., 2016; Vittengl et al., 2017; Wallace et al., 2013; Webb et al., 2018; Zilcha-Mano et 

al., 2016), anxiety (Niles, Loerinc, et al., 2017; Niles, Wolitzky-Taylor, et al., 2017), 

psychosis (Koutsouleris et al., 2016), and PTSD (Cloitre et al., 2016; Deisenhofer et al., 

2018; Keefe et al., 2018) has emerged, laying the foundation necessary to make research-

informed treatment recommendations feasible.  

The data-driven variable selection in this study utilized the same sample from 

which the training samples used for model estimation were drawn. This could lead to 

model overfitting and inflated relationships (Fiedler, 2011), and as noted by Hastie et al. 

(2009), represents a form of double-dipping that can increase risk of overconfidence. 

However, unlike the vast majority of moderator research in the psychiatric literature, we 

employed a multi-method, multi-step variable selection process that used bootstrapping 

and cross-validation, incorporating out-of-bag predictions and permutation tests to select 

variables that are more likely to generalize to a new sample. Moreover, to limit the risk of 
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bias in the model coefficients, the predictive utility of our model was estimated using 

repeated 10-fold cross-validation for weight setting. Nevertheless, in light of these 

concerns and our small sample size, the model and variables presented here should not be 

used to guide treatment decisions until they have been validated in an external sample. 

Even then, it is unclear (and perhaps unlikely; Nigatu et al., 2016) that this model would 

generalize to a population that is different from the one in which it was built (i.e., civilian 

females with rape-trauma PTSD). At this time, this is the only completed trial comparing 

CPT and PE for sexual trauma PTSD on which the present model could be tested. A 

large-scale trial comparing CPT and PE for PTSD in a veteran population (N = 900) may 

provide the sample size necessary to both develop and prospectively test a single 

treatment selection model, building off of the model developed in the present study 

(Schnurr et al., 2015). 

Beyond concerns of reliability and generalizability, issues related to ethical and 

practical barriers to treatment selection will need to be addressed. As noted by Cloitre 

(2015), “The consideration of treatment matching to patient needs extends beyond 

symptom acuity and complexity… Treatment matching to patients also requires 

consideration of access to care and logistical barriers” (p. 500). However, building 

powerful, reliable models of treatment response is a necessary first step on the road to 

precision mental health. Once models being proposed in the literature are successfully 

validated in external samples or different populations, clinicians and patients can begin to 

use the clear information such approaches provide about expected outcomes in different 

treatments to improve the shared decision-making process by which they plan and initiate 

treatment.   
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Supplemental Material: Methods 

Participants 

Descriptive statistics for the sample on the baseline variables and tests for group differences are presented in Supplemental 

Table S1. 

Supplemental Table 1. Descriptive statistics of baseline variables 

 

Cognitive 
Processing 
Therapy 
 (N = 79) 
mean (sd) 

 
Prolonged 
Exposure          
(N = 81)  
mean (sd) 

 
Continuous:  

Mean difference 
(95% CI) 

Categorical: X2 (df) p value 
% missing 

Age 31.21 (9.53) 32.28 (9.74) –1.08 (–4.1, 1.94) .481 0.0% 

Race (% White) 57 (73.1%) 57 (70.4%) 0.04 (1) .839 0.0% 
Years of Education 14.60 (2.02) 14.18 (2.33) 0.42 (–0.26, 1.11) .222 1.9% 

IQ (Quick Test) 98.21 (8.54) 98.52 (9.90) –0.31 (–3.21, 2.59) .834 6.3% 
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Years Since Index Rape 8.34 (8.81) 8.38 (7.90) –0.04 (–2.66, 2.58) .978 1.3% 

Total Sex Crime Exposures 2.38 (2.42) 2.26 (2.65) 0.12 (–0.68, 0.91) .770 1.3% 

Clinician Administered PTSD Scale 
(CAPS)13 

74.91 (18.30) 74.64 (19.23) 0.27 (–5.62, 6.15) .928 0.0% 

PTSD Symptom Scale (PSS) 29.54 (8.5) 29.26 (8.84) 0.28 (–2.44, 3.00) .840 0.0% 
Beck Depression Inventory (BDI) 23.38 (10.24) 23.38 (8.34) 0.00 (–2.92, 2.92) .998 1.9% 

Beck Hopelessness Scale (BHS) 9.54 (5.45) 9.67 (5.39) –0.12 (–1.82, 1.58) .887 7.5% 

Dissociative Experiences Scales 
(DES) 

19.59 (13.06) 22.69 (15.00) –3.10 (–7.51, 1.32) .168 6.9% 

Childhood Sexual Abuse (SAEQ) 1.11 (1.74) 1.38 (1.93) –0.27 (–0.84, 0.31) .360 0.6% 

Childhood Physical Abuse (AE–
III–PPS) 

3.59 (1.98) 4.15 (2.49) –0.56 (–1.27, 0.15) .119 1.9% 

Current Partner Conflict14 (CTS) 11 (14.7%) 11 (14.1%) 0.00 (1) 1 3.8% 

                                                             
13 Due to its overlap with the PSS, the CAPS was not included as a potential predictor 

14 Current Partner Conflict (yes/no) had too little variability to be included (10.8%) and thus was excluded from the variable selection process and missing values 
were not imputed. 
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Previous Partner Conflict (CTS) 1.79 (1.36) 1.50 (1.41) 0.29 (–0.15, 0.72) .194 1.9% 

MDD (current) 34 (43.6%) 31 (38.3%) 0.27 (1) .603 0.6% 
Panic Disorder15 (current) 8 (10.4%) 9 (11.3%) 0.00 (1) 1 1.3% 
Alcohol (lifetime) 34 (43.6%) 39 (48.1%) 0.17 (1) .676 8.2% 
Married 19 (24.4%) 20 (24.7%) 0.00 (1) 1 1.3% 

Global Guilt (TRGI) 2.35 (1.09) 2.48 (1.11) –0.13 (–0.48, 0.21) .457 1.3% 
Distress (TRGI) 3.19 (0.55) 3.20 (0.61) –0.01 (–0.19, 0.17) .912 1.9% 
Guilt Cognitions (TRGI) 1.83 (0.84) 2.09 (0.88) –0.26 (–0.53, 0.01) .056† 3.1% 

Hindsight Bias (TRGI) 1.88 (1.03) 2.14 (1.15) –0.26 (–0.61, 0.08) .131 3.8% 

Wrongdoing (TRGI) 1.63 (0.97) 1.97 (0.92) –0.34 (–0.63, –0.04) .026* 5.7% 

Lack of Justification (TRGI) 2.54 (1.03) 2.68 (0.92) –0.14 (–0.45, 0.16) .355 5.7% 

State Anger (STAXI) 17.48 (7.33) 17.95 (7.63) –0.46 (–2.81, 1.88) .696 4.4% 
Trait Anger (STAXI) 20.69 (5.86) 21.43 (5.53) –0.74 (–2.53, 1.04) .413 4.4% 
Trait Angry Temperament (STAXI) 7.23 (2.80) 7.79 (2.68) –0.55 (–1.41, 0.31) .206 4.4% 

                                                             
15 Panic disorder (yes/no) had too little variability to be included (14.4%) and thus was excluded from the variable selection process and missing values were not 
imputed. 
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Trait Angry Reaction (STAXI) 9.97 (3.08) 10.22 (2.84) –0.26 (–1.18, 0.67) .585 4.4% 
Anger In (STAXI) 19.97 (4.63) 20.73 (4.14) –0.75 (–2.13, 0.62) .281 4.4% 
Anger Out (STAXI) 15.33 (4.22) 15.63 (4.18) –0.31 (–1.62, 1.01) .646 4.4% 
Anger Control (STAXI) 20.76 (5.70) 21.81 (5.19) –1.05 (–2.75, 0.66) .228 4.4% 
Anger Expression (STAXI) 30.66 (10.28) 30.60 (8.95)  0.06 (–2.96, 3.08) .969 4.4% 
Number of Separate Crime 
Occasions 

6.33 (4.89) 6.12 (4.65)  0.21 (–1.28, 1.71) .780 4.4% 

Negative Rape Belief (PBRS) 5.40 (0.68) 5.26 (0.85) 0.15 (–0.10, 0.39) .236 10.7% 
Undoing (PBRS) 2.56 (1.84) 2.13 (1.63) 0.44 (–0.11, 0.98) .117 6.9% 
Self–Blame (PBRS) 3.17 (1.52) 2.95 (1.71) 0.21 (–0.29, 0.72) .407 10.7% 
Safety (PBRS) 2.50 (1.46) 2.53 (1.31) –0.03 (–0.47, 0.40) .889 10.7% 
Trust (PBRS) 2.73 (0.98) 2.77 (1.13) –0.04 (–0.37, 0.30) .828 10.7% 
Competence and Power (PBRS) 3.12 (0.92) 3.01 (1.02) 0.11 (–0.19, 0.41) .477 10.7% 
Esteem (PBRS) 3.17 (0.83) 3.20 (0.86) –0.02 (–0.29, 0.24) .854 10.7% 
Intimacy (PBRS) 3.01 (1.06) 2.83 (1.18) 0.17 (–0.18, 0.53) .330 10.7% 
Anger/Irritability (TSI) 13.17 (5.33) 13.74 (6.33) –0.57 (–2.41, 1.27) .541 9.4% 
Anxious Arousal (TSI) 14.64 (4.58) 14.77 (4.86) –0.13 (–1.61, 1.35) .864 8.8% 
Defensive Avoidance (TSI) 16.16 (4.69) 16.94 (4.57) –0.79 (–2.24, 0.66) .286 8.8% 
Depression (TSI) 14.04 (5.72) 13.39 (5.31)  0.65 (–1.08, 2.38) .459 8.8% 
Dissociation (TSI) 12.07 (4.80) 12.35 (5.53) –0.29 (–1.91, 1.34) .727 9.4% 
Dysfunctional Sexual Behavior 
(TSI) 

1.52 (0.98) 1.53 (1.00) –0.01 (–0.32, 0.30) .966 4.4% 

Impaired Self–Reference (TSI) 13.69 (5.94) 13.44 (5.69)  0.25 (–1.57, 2.07) .787 10.1% 
Intrusive Experiences (TSI) 13.84 (4.90) 14.31 (5.81) –0.47 (–2.16, 1.22) .581 5.0% 
Sexual Concerns (TSI) 11.62 (6.64) 11.68 (6.86) –0.05 (–2.17, 2.06) .960 8.8% 
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Tension–Reduction Behavior (TSI) 5.87 (4.41) 6.17 (4.02) –0.30 (–1.62, 1.02) .656 4.4% 
Subjective Sleep Quality (PSQI) 1.94 (0.84) 1.88 (0.80)  0.06 (–0.20, 0.32) .646 0.6% 
Sleep Latency (PSQI) 1.94 (1.05) 2.00 (0.92) –0.07 (–0.38, 0.24) .672 1.3% 
Sleep Duration (PSQI) 1.90 (1.01) 1.74 (0.97)  0.16 (–0.15, 0.47) .312 2.5% 
Habitual Sleep Efficiency (PSQI) 1.24 (1.11) 1.23 (1.17)  0.01 (–0.35, 0.36) .968 3.1% 
Sleep Disturbance (PSQI) 1.72 (0.62) 1.94 (0.66) –0.22 (–0.42, –0.02) .034* 2.5% 
Use of Sleeping Medication (PSQI) 21 (26.9%) 35 (43.2%) 3.93 (1) .047* 0.6% 
Daytime Sleep Dysfunction (PSQI) 1.70 (0.81) 1.75 (0.78) –0.05 (–0.30, 0.20) .687 1.9% 
Global Sleep Score (PSQI) 10.76 (3.80) 11.39 (4.26) –0.64 (–1.90, 0.63) .321 3.8% 

Supplemental Table S1. Baseline predictors. † = p < .10, * = p < .05, missing values imputed; AE-III-PP = Assessing Environments-

III-Physical Punishment Scale; BART = Bayesian Additive Regression Trees; BDI = Beck Depression Inventory; BHS = Beck 

Hopelessness Scale; CAPS = Clinician Administered PTSD Scale; CTS = Conflict Tactic Scale; DES = Dissociative Experiences 

Scale; PBRS = Personal Beliefs and Reactions Scale; PSS = PTSD Symptom Scale; PSQI = Pittsburgh Sleep Quality Index; SAEQ = 

Sexual Abuse Exposure Questionnaire; STAXI = State Trait Anger Expression Inventory; TRGI = Trauma Related Guilt Inventory; 

TSI = Trauma Symptom Inventory. 
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Measures 

The PTSD Symptom Scale (PSS) is a 17-item inventory scale that assesses 

PTSD symptom severity (Foa et al., 1993). The PSS has demonstrated high internal 

consistency and strong concurrent and convergent validity with other measures of 

psychological distress and PTSD symptomatology (Foa et al., 1993). The current study 

calculated the frequency score for each subscale: reexperiencing, avoidance, and arousal. 

The alpha coefficient from the current study was .84.  

 The Beck Depression Inventory (BDI) includes 21 self-report questions that 

assess depression symptomatology (Beck et al., 1996). The BDI allows respondents to 

evaluate their mental state in the past week based on a four descriptions that differ by 

severity level. Beck et al. (1988) found satisfactory internal consistency (mean 

Cronbach’s alpha of .86), strong convergent and concurrent validity with other measures 

of depression. In the current study, the alpha coefficient was .92.  

The 44-item State Trait Anger Expression Inventory (STAXI) was designed to 

measure expression, experience and control of anger (Spielberger & Sydeman, 1994). 

Respondent’s scores from the STAXI range from 10-40, with higher scores signifying 

greater levels of anger. Spielberger and colleagues (1983) found good internal 

consistency as well as convergent validity for the questionnaire with similar anger 

measures. To assess participant anger, the current study used the trait anger (frequency of 

feeling angry), trait angry temperament (reacting with anger without provocation), trait 

angry reaction (frequency of feeling angry in frustrating situations), anger expression-in 

(frequency of feeling angry and expressing the anger physically or verbally), anger 
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expression-out (frequency of feeling angry without expression), and anger control 

(frequency of controlling expression of anger) subscales. The alpha coefficient from this 

sample was .86.  

The 80-item Conflict Tactic Scale-2 (CTS) quantifies the severity and frequency 

of conflict and violence within intimate, interpersonal relationships (Straus et al., 1996); 

items were added to assess sexual coercion. Respondents are asked to rate accuracy of 

certain statements across the following areas: negotiation (e.g., “My partner showed care 

for me even though we disagreed”), physical assault (“my partner chocked me”), sexual 

coercion (“My partner made my have sex without a condom”), injuries (“I went to a 

doctor because of a fight with my partner”), and psychological aggression (“My partner 

called me fat or ugly”). Among these domains, the current study employed the current 

and previous partner conflict subscales, which represent a composite of the frequency and 

severity of reported experiences. Past research has shown CTS to have reliability ranging 

from .79 to .95 and acceptable construct and convergent validity (Straus et al., 1996).  

The Personal Beliefs and Reactions Scale (PBRS) includes a 55-item inventory 

that measures rape-victims’ maladaptive beliefs about the traumatic event and internal 

characteristics (Resick et al., 1991; Mechanic & Resick, 1999). Resick and colleagues 

(1991) found strong test-retest reliability among rape victims (α = .81). The current study 

included each of the eight subscales from the PBRS: rape beliefs, self-blame, undoing, 

safety, trust, competence and power, esteem, and intimacy.  

The Trauma Symptom Inventory (TSI) includes 100-items on a four point 

Likert scale that assess a large range of symptoms related to trauma (Briere et al., 1995). 

The current study used each of the ten clinical scales: anger/irritability, anxious arousal, 
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defensive avoidance, depression, dissociation, dysfunctional sexual behavior, impaired 

self-reference, intrusive experiences, sexual concerns, and tension-reduction behavior. 

This self-report measure has been reported to have strong internal consistency (α = .74-

.90) and good convergent validity with similar trauma measures (e.g., CAPS; (Briere et 

al., 1995; McDevitt-Murphy et al., 2005).  

The Pittsburgh Sleep Quality Index (PSQI) is a 19-item inventory that measures 

individuals’ sleep quality in the past month (Buysse et al., 1989). The PSQI has 

acceptable internal consistency ranging from .67 to 83 (Buysse et al., 1989; Cook et al., 

2013) as well as strong validity (Carpenter & Andrykowski, 1998). The current study 

used the subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, 

sleep disturbances, use of sleeping medication, daytime dysfunction, and the global PSQI 

score to assess sleep quality of participants.  

The Trauma Related Guilt Inventory (TRGI) presents 32-items about guilt in 

relation to hindsight bias, distress, violation of personal standards, and lack of 

justification (Kubany et al., 1996). Past research revealed high internal consistency and 

strong correlation with other guilt-related measures (Kubany et al., 1996). The current 

study analyzed the three scales: distress, global guilt, and guilt cognitions along with the 

three subscales: hindsight bias, lack of justification, and wrongdoing. The scales and 

subscales had acceptable internal consistency in the current study ranging from .73 to .92.  

The Beck Hopelessness Scale (BHS) includes 20 true-false questions that assess 

future beliefs and expectations as well as loss of motivation (Beck et al., 1974). The BHS 

has been found to have high internal consistency (α = .93) and good convergent validity 

with measures of hopelessness (Beck et al., 1974).  
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The Dissociative Experiences Scale (DES) includes 28 self-report items on a 11-

point scale from “never” to “always” that assess the frequency (in percent) of experiences 

related to amnesia, depersonalization-derealization and absorption (Bernstein & Putnam, 

1986; Carlson & Putnam, 1993). This measure (total range: 0–100) was designed to 

measure general dissociative disorders among individuals. Prior research on the DES has 

demonstrated strong reliability with the mean Cronbach’s alpha of .93 (Van IJzendoorn 

& Schuengel, 1996). There is some evidence that the DES is more related to general 

dissociative tendencies than to state dissociation (Bremner et al., 1998). 

IQ was measured using the Quick Test includes 50 items that measure general 

intelligence (Ammons & Ammons, 1962). The respondent does not need to read, write or 

speak; instead, the individual uses drawings to explain the meaning of different words. 

Past research indicates that the QT correlates well with other intelligence measures (i.e., 

WAIS; (Maloney et al., 1973). 

The Assessing Environment-III Scale (AE-III) assesses childhood experience of 

punishment, family atmosphere, marital distress, and rejection from parents (Berger & 

Knutson, 1998; (Berger et al., 1988).  Respondents are asked a series of true-false 

questions which range in severity levels. Prior research indicates high internal 

consistency (α = .85; (Bluestone, 2005). The “Parent Violence” variable represents the 

total score from the AE-III parent violence scale. 

The Sexual Abuse Exposure Questionnaire (SAEQ) assesses the nature (e.g., 

age of onset, duration, frequency) of sexual abuse experiences in 10 categories of 

increasingly invasive events ranging from “exposure of genital area” to intercourse 
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(Rowan et al., 1994). The overall exposure score, which is ranges from 0 to 10 based on 

the number of categories that are endorsed as having been experienced, has been found to 

have good test-retest reliability (.73 to .93). In these analyses “Childhood Sexual Abuse” 

variable represents the SAEQ total overall exposure score. 

Data Pre-Processing and Missing Data Imputation 

Variables with greater than 20% missingness or less than 20% membership in 

smallest category were excluded. The highest missingness for variables that remained 

was 10.7% (see supplemental Table S1). Categorical variables were made binary where 

appropriate. For example, the categorical variable describing marital status was made 

binary (married or cohabitating vs. other). Imputation of missing outcome and baseline 

data was performed using the missForest package in R (Stekhoven & Buhlmann, 2012), 

which implements a non-parametric random forest-based imputation strategy, generating 

a single imputed dataset by averaging over multiple regression trees. It has been found to 

outperform other methods of imputation, especially when complex and non-linear 

interactions are present, and can handle different types of variables (Shah et al., 2014; 

Waljee et al., 2013). To improve imputation, all available longitudinal symptom 

measures from the CAPS and PSS were included during the imputation process, after 

which all except baseline PSS were removed. The treatment variable was not included 

during imputation. To reduce risk of leverage points, boxplots were used to identify 

outliers, which were winsorized by setting their values to the closest non-outlier value. 

The follow variables had outliers: Age (one high), Years Education (one high), TRGI 

Distress (three low), STAXI Trait Anger (one high), STAXI Trait Angry Temperament 

(three high), STAXI Anger Out (three high), Total Sex Crime Exposures (nine high), 
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PBRS Negative Rape Beliefs (five low), TSI Defensive Avoidance (one low), TSI 

Dissociation (six high), TSI Tension-Reduction Behaviors (three high), and Dissociative 

Experiences Scale (three high). Due to skewed distributions, one continuous variable 

(PSQI Sleep Meds) was made binary (yes/no) and two were log transformed to achieve 

normal distributions (TSI Dysfunctional Sexual Behavior and Previous Partner Conflict 

from the CTS).  

Variable Selection 

Following the approach introduced by Cohen and colleagues (under review), all 

potential baseline predictors (see Table S1) were entered simultaneously into each of the 

first three approaches: Random Forest (RF), Elastic Net Regularization (ENR), and 

Bayesian Additive Regression Trees (BART). The variables that were consistently 

identified as having important interactions with treatment in at least 2 of the 3 methods 

were then subjected to the fourth and final variable selection approach: stepwise AIC-

penalized bootstrapped variable selection (bootStepAIC). The variables that were 

selected by bootStepAIC comprised those that were used in the final model. Additional 

details on each method are provided below. 
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Random Forest (RF). RF is a non-parametric recursive partitioning approach to 

modeling that can accommodate large numbers of predictor variables as well as complex 

relationships (e.g., higher order interactions and non-linear associations). To perform RF 

variable selection, we used the mobForest package (Garge et al., 2013) in R, which can 

be made to focus its search on moderators (as opposed to main effects or prognostic 

variables). The mtry criteria, which determines how many variables random forest 

evaluates at each node for a single tree, was set to 19 (# predictors divided by 3). The 

number of trees was set to 10,000 to stabilize the results. Variables that surpass a 

permutation-based importance threshold were selected.  

Elastic Net Regularization (ENR). ENR combines the Ridge (L1 penalization) 

and Lasso (L2 penalization) approaches, allowing for the selection of a parsimonious set 

of variables related to outcome (Hastie et al., 2009). ENR can accommodate large 

numbers of variables and is robust to high predictor covariance (Friedman et al., 2010; 

Zou & Hastie, 2005). ENR was performed using the glmnet package (Friedman et al., 

2009). The glmnet alpha parameter was set to 0.5. The glmnet package is unable to 

accommodate variable selection in the context of moderators. Thus, we took the approach 

of building two prognostic models: the sample was split into two groups, one for each 

treatment, and variable selection was performed separately for each sample. To stabilize 

our results, we ran ENR 5 times (for each group), and the variables that were retained 

consistently throughout all 5 runs were considered. Variables that were selected in only 

one condition, or that were selected in both but specified with differing coefficients, were 

selected as potential moderators. 
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Bayesian Additive Regression Trees (BART). Variable selection with BART 

was performed using the bartMachine package (Kapelner & Bleich, 2016). BART, which 

builds on ensemble-of-tree methods (e.g., RF) by incorporating an underlying Bayesian 

probability model, has been adapted to extract information about variable importance 

(Bleich et al., 2014; Goldstein et al., 2015). The variable selection routine can be focused 

on identifying moderators by forcing the variable splitting search to focus more (here we 

set this parameter to 10-times more) on the treatment variable than other variables, thus 

introducing more interactions between treatment and other variables. This can be thought 

of similar to what researchers do when they only consider interactions between treatment 

group and baseline variables (and not interactions between baseline variables 

themselves). The N most important interactions identified by BART were retained, where 

N was determined based on the number of variables selected by RF based on its 

permutation test importance threshold cutoff. To account for variability in internal model 

structure, BART was run five times, and only variables that were among the N most 

important for all five runs were retained. 

Variables selected by at least two of the three approaches were submitted to 

Stepwise AIC-penalized bootstrapped variable selection (Austin & Tu, 2004), which 

was performed using the bootStepAIC package in R (Rizopoulos, 2009). bootStepAIC 

was chosen as the final approach due to our use of linear regression for our final model, 

which made it essential that all included variables function in the context of a linear 

regression. A moderator selected by one of our two ensemble-of-tree-based approaches 

RF or BART could lead to a model with poor fit, if, for example, that variable relied on 

an unspecified non-linear relationships or higher order interaction. Within each of 10,000 
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bootstrapped training samples, backwards elimination was performed. The bootstrapped 

replicates were examined for internal consistency (Austin & Tu, 2004), and moderators 

that were retained in at least 60% of the bootstrapped samples were included in the final 

regression model.  
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Supplemental Material: Results 

Supplemental Figure 1. Visualization of moderator relationships. 

 

Figure S1. Moderator relationships from the final model visualized using the R package 

visreg (Breheny & Burchett, 2013). Conditional plots with confidence bands for the 

conditional mean from the final model estimated in the complete sample. Conditioning 

for each plotted variable uses the mean value for all other variables. The Y-axis 

represents the predicted end-of-treatment score on the PSS, and the X-axis represents the 

standardized/centered score for each variable that was used during analysis. PSS = PTSD 

Symptom Scale; STAXI = State Trait Anger Expression Inventory; TSI = Trauma 

Symptom Inventory; PSQI = Pittsburgh Sleep Quality Index; SAEQ = Sexual Abuse 

Exposure Questionnaire. 
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