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Abstract

Scheduling of sporadic task systems on multiprocessor
platforms is an area which has received much attention in
the recent past. It is widely believed that finding an optimal
scheduler is hard, and therefore most studies have focused on
developing algorithms with good utilization bounds. These
algorithms can be broadly classified into two categories:
partitioned scheduling in which tasks are statically assigned
to individual processors, and global scheduling in which
each task is allowed to execute on any processor in the plat-
form. In this paper we consider a third, more general, ap-
proach called cluster-based scheduling. In this approach
each task is statically assigned to a processor cluster, tasks in
each cluster are globally scheduled among themselves, and
clusters in turn are scheduled on the multiprocessor plat-
form. We develop techniques to support such cluster-based
scheduling algorithms, and also consider properties that
minimize processor utilization of individual clusters. Since
neither partitioned nor global strategies dominate over the
other, cluster-based scheduling is a natural direction for re-
search towards achieving improved utilization bounds.

1 Introduction

With rapid development in microprocessor technology,
multiprocessor and multi-core designs are becoming an at-
tractive solution to fulfill increasing performance demands.
In the real-time systems community, there has been a grow-
ing interest in real-time multiprocessor scheduling theories.
In general, existing real-time scheduling approaches over
m processors can fall into two categories: partitioned and
global scheduling. Under partitioned scheduling each task is
statically assigned to a single processor and is allowed to ex-
ecute on that processor only. Under global scheduling tasks
are allowed to dynamically migrate across m processors and
execute on any of them.
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We consider another approach using a notion of (pro-
cessor) cluster. A cluster is a set of m’ processors, where
1 < m’ < m. Under cluster-based scheduling, tasks are
statically assigned to a cluster and are globally scheduled
within the cluster. Cluster-based scheduling can be viewed
as a generalization of partitioned and global scheduling; it
is equivalent to partitioned scheduling at one extreme end
where we assign tasks to m clusters each of size one, and
global scheduling at the other extreme end where we assign
tasks to a single cluster of size m. Cluster-based scheduling
can be further classified into two types: physical and virtual
depending on how a cluster is mapped to processors in the
platform. A physical cluster holds a static one-to-one map-
ping between its m’ processors and some m’ out of m pro-
cessors in the platform [12]. A virtual cluster allows a dy-
namic one-to-many mapping between its m’ processors and
some m° out of m processors in the platform. Scheduling
tasks in this virtual cluster can be viewed as scheduling them
globally on m® processors in the platform with amount of
concurrency at most m'. A key difference is that physical
clusters share no processors in the platform, while virtual
clusters can share some.

Motivating examples. We now illustrate the capabili-
ties of cluster-based scheduling over partitioned and global
scheduling using an example. Consider a sporadic task set
comprised of 6 tasks as follows: 74 = 79 = 73 = 74 =
(3,2,3), 75 = (6,4,6), and 74 = (6,3,6). The notation
followed here is (7', C, D), where T denotes minimum sep-
aration, C' worst-case execution requirement, and D relative
deadline. Let this task set be scheduled on a multiproces-
sor platform comprised of 4 processors. It is easy to see that
this task set is not schedulable under any partitioned schedul-
ing algorithm, because no processor can be allocated more
than one task. Figure 1 shows the schedule of this task set
under global earliest deadline first (EDF) [24], EDZL [13],
least laxity first (LLF) [27], fp-EDF [4], and US-EDF[m/2m-
1] [32] scheduling algorithms. As shown in the figure, the
task set is not schedulable under any of these scheduling al-
gorithms. Now consider cluster-based scheduling as follows:
tasks 71, 79, and 73 are executed on a cluster C; comprised of
2 processors under global LLF, and tasks 74, 75, and 74 are
executed on another cluster Co comprised of 2 processors us-
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Figure 1. Motivating example

ing global EDF. The resulting schedule is shown in Figure 1,
and as can be seen all the task deadlines are met.

In addition to being more general than physical clustering,
virtual clustering is also less sensitive to task-cluster map-
ping. This can be explained using the same example as above
with an additional task 7, = (6,1, 6). Just for comparison,
suppose 77 is assigned to the first cluster C; along with tasks
71, T2, and 73. Then, physical cluster-based scheduling can-
not accommodate those two clusters on 4 processors. On the
other hand, virtual clustering has a potential to accommodate
them on 4 processors by dynamically allocating a slack in the
second cluster Cy (time interval [5, 6]) to the first cluster C;.

Clustering can also be useful as a mechanism to place a
restriction on the amount of concurrency. Suppose m tasks
can thrash a L2 cache in a multi-core platform, if they run
in parallel at the same time. Then, one may consider forcing
only some (at most m’) of the m tasks to run in parallel to
prevent them from thrashing the L2 cache. This can be easily
done if the m tasks are assigned to a cluster of m’ processors.
A similar idea was used in [1].

Hierarchical scheduling. The notion of physical cluster-
ing requires intra-cluster scheduling only. This is because
clusters are assigned disjoint processors, and hence tasks
in different clusters cannot interrupt each others execution.
However, the notion of virtual clustering inherently brings
up an idea of hierarchical scheduling: inter-cluster and intra-
cluster scheduling. Under inter-cluster scheduling physical
processors are dynamically assigned to virtual clusters, and
under intra-cluster scheduling processor allocations given to
a virtual cluster are assigned to tasks in that cluster. Consider
the example shown in Figure 2. Let a task set be divided into
three clusters Cq1, Co, and Cs, each employing global EDF
scheduling strategy. If we use physical clustering, then each
cluster can be separately analyzed using existing techniques
for global EDF. On the other hand if we use virtual cluster-
ing, then in addition to intra-cluster schedulability analysis,
there is a need to develop techniques for scheduling clusters
C1,Cs, and C3 on the multiprocessor platform. Therefore,
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Figure 2. Example hierarchical framework

supporting hierarchical multiprocessor scheduling is cardi-
nal to the successful development of virtual clustering, and it
is the main focus of this paper.

There have been considerable studies on hierarchical
uniprocessor scheduling. Denoting a collection of tasks and
a scheduler as a component, existing studies in uniproces-
sor scheduling [28, 31, 18] employed the notion of com-
ponent interface, to specify resources that are required for
scheduling the component’s tasks. Analogously, we denote
a cluster along with tasks and scheduler assigned to it as a
component in hierarchical multiprocessor scheduling frame-
works. To support inter-cluster scheduling, this paper pro-
poses a component interface that specifies resources required
for scheduling tasks in the component’s cluster. Inter-cluster
scheduler can then allocate processor supply to the cluster
based on its component interface, and intra-cluster scheduler
can then use this processor supply to schedule tasks in the
cluster. Many new issues arise to adopt the notion of compo-
nent interface from uniprocessor to multiprocessor schedul-
ing frameworks. One of them is how to enable a component
interface to carry information about concurrent execution of
tasks in the component. For example, suppose a single task
cannot execute in parallel. Then, multiple processors cannot
be used concurrently to satisfy the execution requirement of
this single task. Such an issue needs to be handled for the
successful development of component interfaces. In this pa-
per, we present one solution to this issue. Our approach is to
capture in a component’s interface, all the concurrency con-
straints of tasks in that component. The interface demands
enough processor supply from inter-cluster scheduler so that
the intra-cluster scheduler can handle task-level concurrency
constraints, thereby freeing the inter-cluster scheduler from
such issues.

Contributions. The contribution of this paper is four-
fold. First, we introduce the notion of general hierarchi-
cal multiprocessor scheduling framework to support virtual
cluster-based scheduling. Second, we present an approach
to specify in a component’s interface, the concurrency con-
straints of tasks in the component. We introduce a multi-
processor resource model based interface that not only cap-
tures task-level concurrency constraints, but also specifies to-
tal resource requirements of the component. This enables
the inter-cluster scheduler to schedule clusters using their in-
terfaces only. Third, since such interfaces represent partial
resource supplies, as opposed to dedicated ones, we also ex-
tend existing schedulability conditions for global EDF mul-



tiprocessor scheduling in this direction'. Such extensions to
schedulability conditions are essential in supporting develop-
ment of component interfaces. Fourth, we consider the opti-
mization problem of developing a component interface with
an aim to minimize its total resource requirement (processor
utilization). We present an efficient solution to this problem
on the basis of following property of our global EDF schedu-
lability condition: processor utilization required by a compo-
nent interface to schedule tasks in the component increases,
as number of processors allocated to the component’s cluster
increases. Thus, an optimal solution can be obtained when
we find the smallest number of processors that can guarantee
schedulability of the component.

2. Related work

Multiprocessor scheduling. In general, studies on real-
time multiprocessor scheduling can fall into two categories:
partitioned and global scheduling. Many partitioning algo-
rithms [6, 25, 29] and global scheduling algorithms [13, 3,
10, 17, 5, 14, 9] have been proposed in the past. It is well
known that neither partitioning nor global scheduling algo-
rithms dominate the other, and this motivates the more gen-
eral task-processor mapping that clustering proposes.

Partitioning algorithms which allow a task to execute on
at most two processors have been proposed in the past by
Andersson et. al. [2] and Kato and Yamasaki [20]. These
algorithms are special instances of cluster-based scheduling,
because each task can be viewed as belonging to its own vir-
tual cluster having at most two processors. Also, these stud-
ies focus on implicit-deadline task systems and to the best of
our knowledge extensions to deadline constrained systems
have not been done. In another direction, global scheduling
algorithms, US-EDF[m/2m — 1] [32] and fp-EDF [4], which
give special treatment to certain high utilization tasks have
also been proposed. These algorithms can also be regarded
as special instances of clustering. Each high utilization task
can be viewed as belonging to its own physical cluster hav-
ing exactly one processor, and the low utilization tasks can
be assigned to a single cluster comprised of remaining pro-
Cessors.

Baruah and Carpenter [8] introduced an approach that can
restrict the processor migration of jobs, in order to allevi-
ate the inflexibility of partitioned scheduling and the proces-
sor migration overhead of global scheduling. Their approach
can be categorized as job-level partitioned scheduling. They
showed that task-level and job-level partitioned scheduling
approaches do not dominate each other. This algorithm is
also a special instance of virtual clustering, where each task
belongs to its own virtual cluster having one processor, and
cluster-processor mapping can change with each job.

'Due to lack of space, we have chosen to focus on one scheduling algo-
rithm in this paper. However, the issues are same for other schedulers, and
hence techniques developed here are applicable to other schedulers as well.

Moir and Ramamurthy [26] and Anderson et. al. [1] pre-
sented an approach that can upper bound the amount of con-
current execution within a group of tasks. They developed
their approach using a hierarchical scheduling framework
under Pfair scheduling. These approaches are most related
to our work, but they differ from our technique mainly in the
following aspect. We introduce a multiprocessor resource
model that makes it possible to clearly separate intra-cluster
and inter-cluster scheduling; it allows to develop schedula-
bility analysis techniques for virtual clustering that are easily
extensible to many different scheduling algorithms. How-
ever, their approaches do not employ such a notion. There-
fore their analysis techniques are bound to Pfair scheduling,
and do not generalize to other algorithms and task models
such as the ones considered in this paper. We believe this
flexibility provides a powerful tool for the development of
various task-cluster mapping and scheduling algorithms.

Calandrino et. al. [12] presented a study with a focus on
determining an appropriate size for physical clusters, while
our study focuses on virtual clustering.

Hierarchical scheduling. For uniprocessor platforms,
there has been a growing attention to hierarchical schedul-
ing frameworks. Since a two-level framework was intro-
duced [16], its schedulability has been analyzed under fixed-
priority [21] and EDF-based [23] scheduling. For multi-
level frameworks, many resource model based component
interfaces such as bounded-delay [28], periodic [22, 31],
and EDP [18] have been introduced, and schedulability
conditions have been derived under fixed-priority and EDF
scheduling [19, 22, 31, 15, 18]. As discussed in the introduc-
tion, these studies do not provide any technique to capture
task-level concurrency constraints in interfaces, and there-
fore are not well suited for virtual clustering.

3. Task and resource models

In this section, we describe our task model and the mul-
tiprocessor platform. We also introduce multiprocessor re-
source models which we use as component interfaces.

3.1. Task and platform models

Task model. We assume a deadline constrained spo-
radic task model [7]. In this model, a sporadic task 7; is
specified as (T}, C;, D;), where T; is the minimum separa-
tion, C; is the worst-case execution time requirement, and
D, is the relative deadline. These task parameters satisfy the
property C; < D; < T;. Successive instances of 7; are re-
leased with a minimum separation of 7; time units. We refer
to each instance of a sporadic task as a job. Each job of 7;
must receive C; units of processor capacity within D; time
units. We also assume that these C; units must be supplied
non-concurrently to the job.

Multiprocessor platform and scheduling strategy. In
this paper we assume an identical, unit-capacity multiproces-
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sor platform. Each processor in this platform has a schedu-
lable utilization of one. We also assume that a job can be
preempted on one processor and may resume execution on
another processor with negligible preemption and migration
overheads, as in the standard literature of global schedul-
ing [3, 10, 5]. We assume such a global scheduling strategy
within each cluster, and in particular, we assume that tasks in
clusters are scheduled using global EDF.

3.2. Multiprocessor resource model

A resource model is a model for specifying the charac-
teristics of a resource supply. When these models represent
component interfaces, they specify resource requirements of
the component. Periodic [31], EDP [18], bounded delay [19],
etc, are examples of resource models that have been exten-
sively used for analysis of hierarchical uniprocessor frame-
works. These resource models can also be used as compo-
nent interfaces in hierarchical multiprocessor frameworks.
One way to achieve this is to consider m’ identical resource
models as a component interface, where m’ is number of
processors allocated to the component’s cluster. However,
this interface is restrictive because each processor contributes
same amount of resource as any other processor in the clus-
ter, to satisfy the component’s resource requirements. It is
desirable to be more flexible, in that interfaces should be able
to represent the collective processor requirement of compo-
nents, without fixing the contribution of each processor a pri-
ori. Apart from increased flexibility, such interfaces can also
improve processor utilization.

We now introduce multiprocessor resource models that
specify the characteristics of resource supply provided to a
cluster by an identical unit-capacity multiprocessor platform.
These resource models do not fix the contribution of each
processor in the cluster a priori, and hence are suitable can-
didates for component interfaces. A multiprocessor periodic
resource (MPR) model T = (II, ©, m') specifies that a unit-
capacity, identical multiprocessor platform collectively pro-
vides © units of resource in every II time units to a cluster
comprising of m/ processors, i.e., © resource units are pro-
vided with concurrency at most m/’. It is then easy to see that
a feasible MPR model must satisfy the condition © < m/II.
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Figure 4. sbfr and Isbfp

The supply bound function of a resource model (sbf)
lower bounds the amount of resource supply that the model
provides in a given time interval. Specifically, sbfg(¢) is
equal to the minimum amount of resource that model R pro-
vides in any time interval of duration ¢. In uniprocessor
frameworks, sbf is used in schedulability conditions to gen-
erate resource model based component interfaces. Extending
this approach to hierarchical multiprocessor frameworks, in
this paper we derive similar schedulability conditions to gen-
erate MPR model based component interfaces. Hence, we
now present the sbf fora MPR model I = (II, ©, m/), where
weleta = |2 ] and B = © — m’a. The schedule for I' that
generates this minimum supply in a time interval of dura-
tion ¢ is as shown in Figure 3. As can be seen, length of the
largest time interval with no supply (duration ¢; in the figure)
is equal to 2IT — 2 [-2]. Thereafter, I is guaranteed to pro-
vide © units of resource in every II time units. sbfr is then

)
given by the following equation where k& = {t_(H_MJ
and ] = t — 211 + [-2]. This function is also plotted in
Figure 4.

Sbfe(t) = {k@ +max{0,[I — kII]m/ + ©} t>TI - (9]
0 Otherwise

M
Note by setting m’ = 1 in Equation (1), we get the sbf of
periodic resource model (II, ©) [31], indicating that MPR
models generalize periodic resource models. In uniproces-
sor frameworks, although schedulability conditions with sbf
have been derived, a linear approximation (lower bound) of
sbf is often used to improve the efficiency of interface gen-
eration process. Hence, in anticipation, we present following
linear lower bound for the sbf of MPR model I". This func-
tion is also plotted in Figure 4.

Isbfr (1) :% (t ) <H - mg)) @

Uniprocessor resource models such as periodic or EDP,
allow a view that a component executes over an exclusive
share of a physical uniprocessor platform. Extending this no-
tion, MPR models allow a view that a component, and hence
the corresponding cluster, executes over an exclusive share of
a physical multiprocessor platform. Although this view guar-
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antees a minimum total resource share (given by sbf), it does
not enforce any distribution of this share over the processors
in the platform apart from the concurrency bound m’. In this
regard MPR models are general, and hence our candidate for
component interfaces.

4. Component schedulability condition

In this section, we develop a schedulability condition for
components in hierarchical multiprocessor frameworks, such
that this condition accommodates the notion of a partitioned
resource supply. Specifically, we extend existing global EDF
schedulability conditions for dedicated resource, with the
supply bound function of a MPR model. Any MPR model
that satisfies this condition, can be used as an interface for
the component.

We consider a component comprising of cluster C and
n sporadic tasks 7 = {mn = (T1,C1,D1),...,7n =
(T, Cny Dyy) } scheduled under global EDF. To keep the pre-
sentation simple, we use notation C to refer to the component
as well. We now develop a schedulability condition for C as-
suming it is scheduled using MPR model I' = (II, ©,m’),
where m’ denotes number of processors in the cluster. This
condition uses the real-time processor demand of task set 7 in
C. Existing work [10] has developed an upper bound for this
demand which we can use. Only upper bounds are known
for this demand, because no notion of worst-case arrival se-
quence (analogous to the synchronous arrival sequence in
uniprocessors) is known for multiprocessors [5]. Hence, we
first summarize this existing upper bound for component de-
mand and then present our schedulability condition.

4.1. Component demand

Workload. The workload of a task 7; in an interval [a, b]
gives the cumulative length of all intervals in which ; is ex-
ecuting, when task set 7 is scheduled under C’s scheduler.
This workload consists of three parts (illustrated in Figure 5):
(1) the carry-in demand generated by a job of 7; that is re-
leased prior to a but did not finish its execution requirement
until a, (2) the demand of a set of jobs of 7; that are both
released and have their deadlines within the interval, and (3)
the carry-out demand generated by a job of 7; that is released
in the interval [a, b) but does not finish its execution require-
ment until b.

Carry-in job

Deadline of some job of task 7 \\
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Figure 6. Dispatch pattern for W;(b — a)

Workload bound for 7; under global EDF. If work-
load in an interval [a, b] can be efficiently computed for all
a,b > 0 and for all tasks 7;, then we can obtain the exact
demand of component C in all intervals. However, since no
such technique is known (apart from task set simulation), we
use an upper bound for this workload that has been obtained
by Bertogna et. al. [10]. This bound is obtained under two
assumptions: (1) some job of some task 7 has a deadline
at time instant b, and (2) this job of task 75 misses its dead-
line. In the schedulability condition which we develop these
assumptions hold for all time instants b that are considered.
Hence, this is a useful bound and we present it here. Figure 6
illustrates the dispatch pattern corresponding to this bound.
A job of task 7; has a deadline that coincides with time in-
stant b. Jobs of 7; that are released prior to time instant b are
assumed to be released as late as possible. Also, the job of
7; that is released before time instant ¢ but has a deadline in
the interval [a, b] is assumed to execute as late as possible.
This imposes maximum possible interference on the job of
71, with deadline at b. Let W;(t) denote this workload bound
for 7; in a time interval of length ¢(= b — a). Also, let CZ,(t)
denote the carry-in demand generated by the execution pat-
tern shown in Figure 6. Then,

Wi(t) = Ni(t)Ci + CZ;(t), 3)
where N,;(t) = H(TT;D) and CZ;(t) =

min{C;, max{0,t — N;(t)T;}}. In the following sec-
tion we develop a schedulability condition for C using this
workload bound.

4.2. Schedulability condition

We now present a schedulability condition for component
C when it is scheduled using MPR model I' = (II, ©,m’).
For this purpose, we extend an existing condition that checks
schedulability of C on a dedicated resource [5], with the no-
tion of partitioned resource I'.

When task 75, is scheduled on a dedicated resource com-
prised of m’ unit-capacity processors, Baruah [5] identifies
the values for time instants a and b (discussed in the previ-
ous section) that must be checked for schedulability of 7y.
In particular, he lets b correspond to the deadline of some
job of task 75 (henceforth denoted as job T,S), assumes T]l;
misses its deadline, and then specifies different values of a
that need to be considered. Figure 7 gives one such time in-
stant a considered by Baruah. It corresponds to a point in
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time such that at least one of the m’ processors is idle at that
time instant. Furthermore, this time instant must be prior to
the release of job T}; (r in the figure). Also, no processor can
be idle in the interval (a,r]. Observe that at each such time
instant a there can be at most m’ — 1 tasks that contribute
towards carry-in demand, because at most m’ — 1 processors
are executing jobs at a. Baruah uses this observation to come
up with a schedulability condition in the dedicated resource
case. Intuitively, this technique aims to derive a condition on
the total higher priority workload in interval [a, b] that guar-
antees a deadline miss for 7. In the following discussion we
extend this notion of time instant a to the case when 73 is
scheduled using MPR model I', and then present our schedu-
lability condition.

When task 7, is scheduled using MPR model I', we de-
note a time instant as ¢; j),, if at least one of the m’ processors
is idle at that instant even though it is available for use as per
supply I'. Figure 8 illustrates one such time instant. Then, to
check schedulability of task 7, we consider all time instants
a such that: (1) a is ¢jq)e. (2) a < r where 7 denotes the
release time of job T,f,, and (3) no time instant in the interval
(a,7] is t;q)e- The time instant illustrated in Figure 8 also
satisfies these properties.

To derive schedulability condition for component C, we
consider all intervals [a, b] as explained above for each task
7. € 7, and derive condition under which a deadline miss
occurs for job 72. If 72 misses its deadline, then it must be
true that the total workload in interval [a, b] of jobs of all
tasks with priority at least 77 is strictly greater than the total
processor supply available to C in that interval. Let for each
i, I; denote the total workload in interval [a, b] of all jobs of

task 7; that have priority at least 77. Then, since sbfr (b — a)
denotes a lower bound on the processor supply available to C
in interval [a, b], whenever job 77 misses its deadline it must
be true that .

> I > sbfr(b — a).

i=1
Let Ay, denote the length of interval [a, r]. Then, as shown in
Figure 8, Ay, + Dj, denotes the total length of interval [a, b]
and whenever job T]S misses its deadline it must be true that

ZIZ' > Sbe(Ak + Dk) “)

i=1

This inequality follows from the following observations: (1)
the actual processor supply available to component C as per
I in interval [a, ] is at least sbf(Ag + Dy), and (2) there
are no t;qje time instants in interval (a, b), i.e., all available
processor supply is used by C to schedule tasks from 7. For
C to be schedulable using I', it then suffices to show that for
all tasks 7, and for all values of A;, (and hence all values of
time instant a explained above), Equation (4) is invalid.

We now derive an upper bound for each workload I;. We
separately consider the workload of task 7; in the following
two interval classes: (1) time intervals in [a, b] in which job
72 executes (intervals [t1, t2], [t3, 4] and [t5, ] in Figure 8),
and (2) the other time intervals in [a, b]. Let I; ; denote the
workload of task 7; in intervals of type (1) and I; o denote
the workload of 7; in intervals of type (2). We bound I; us-
ing upper bounds for I; 1 and I, . Under dedicated resource,
Baruah [5] only considered intervals of type (2) when de-
riving the schedulability condition. However, sbf of MPR
resource models are only defined over contiguous time in-
tervals. Hence, under partitioned resource we are required to
consider the contiguous time interval Ay + D), obtained from
the union of intervals of types (1) and (2).

Since the cumulative length of intervals of type (1) is Cj,
and there are m’ processors on which C executes, the to-
tal workload of all tasks in intervals of type (1) is clearly
upper bounded by m/Cy, ie., > L1 < m'Cy. To
bound I; » we use the workload upper bound W; presented
in Section 4.1. Observe that W;(b — a) (= W;(Ax + Dy))
upper bounds the workload of all jobs of 7; that execute
in interval [a,b] and have priority higher than 72. There-
fore, W;(Ay, + Dy,) also upper bounds I; . Furthermore,
since the total cumulative length of intervals of type (2) is
Ay, + Dy, — Cj, no I; 5 can be larger than this length. Also,
when ¢ = k, this bound can be further tightened because in
1}, 2 we do not consider the execution units of job 7',’; (these
execution units are considered for intervals of type (1)).
Thus, we can subtract Cj, from Wy (A + D) and further
1}, 2 cannot be greater than Ay,.

L;yz < I_i72 = mln{Wl(Ak -+ Dk),Ak + Dy — Ck} 7 75 k
Ii2 < Ino = min{Wi(Ar + Di) — Ck, A}

Now by definition of time instant a, at most m’ — 1 tasks
can be active (and hence have carry-in demand) at a. This



follows from the fact that at least one processor is not being
used by component C at time instant a, even though that pro-
cessor is available for C as per supply I'. Hence we only need
to consider m’ — 1 largest values of CZ; when computing an
upper bound for Z?:l 1; 5 using above equations, where CZ;
denotes the carry-in demand in WW;. The following theorem
then gives our schedulability condition and its proof follows
from the above discussion.

Theorem 1 Let us define
j@z = Hlln{Wz(Ak + Dk) —
forall i # k,

fk,g = mln{Wk(Ak =+ Dk) —

Skt X

(m/—1)
largest

CIi(Ak + Dk),Ak + Dy — Ck}

Ch —CIk(Ak +Dk) Ak}; and

dem(Ax + Dy, m 12—112 +m/Ch.

A component comprising of cluster C with m’ processors
and n sporadic tasks T = {r, = (T1,C1,D1),..., 7 =
(T, Cn, Dy)} is schedulable under global EDF using MPR

model T = (I1,©, m') if for all tasks T, € T and all Ay, > 0,
dem(Ak + Dy, m') < sbfr (Ak + Dk) 5)
In Theorem 1, if we set © = m/Il then we get the

schedulability condition for dedicated resource proposed by
Baruah [5]. This shows that our schedulability condition is
no more pessimistic than the one proposed by Baruah. Al-
though this theorem gives a schedulability test for compo-
nent C, it would be highly inefficient if we were required to
check for all values of Ay. The following theorem shows that
this is not the case?.

Theorem 2 If Equation (5) is violated for some Ay, then it
must also be violated for a value satisfying the condition

Cz+kaka(fo( ))+U+B

s §-U) ’

where Cy. denotes the sum ofm — 1 largest C;’s, U( ) =
Z?lT’U > i (Ti — D)7, ’andB 0 (2- 2%)-

It is also easy to show that Equation (5) only needs to
be evaluated at those values of Aj for which at least one
of I; o, L”g, or sbfp change. Therefore, Theorem 1 gives a
pseudo-polynomial time schedulability condition whenever
utilization (U (7)) of task set 7 is strictly less than utilization
(£) of MPR model T".

Discussion. Due to space limit, we only focus on one
intra-cluster scheduling algorithm, global EDF. However,
our analysis technique can be easily extended to other intra-
cluster scheduling algorithms. Specifically, in the schedula-
bility condition given in Equation (5), dem(Ay + Dy, m’)

2Due to space limit, we do not provide proofs of theorems and lemmas
in this paper. Please refer to our technical report [30] for the proofs.

depends on global EDF, and sbfr(A; + D) depends on
MPR model I'. Suppose there exists a function dempm ( Ay +
Dy, m') that can compute an upper bound for resource de-
mand of a task set under global DM scheduling. Then we can
plug in dempp (Ag + Dy, m’) into Equation (5) to derive a
schedulability condition for global DM intra-cluster schedul-
ing. In fact, such dempm(Ay + Dy, m’) can be obtained by
extending current results over dedicated processors [11].

Bertogna and Cirinei [9] have derived an upper bound for
the worst-case response time of tasks scheduled under global
EDF or global DM. They have also used this bound to im-
prove the carry-in demand CZ; that we use in our schedu-
lability condition. However, this improvement to the carry-
in demand cannot be directly applied in our case. Since we
schedule tasks using MPR resource model, any response time
computation depends on the resource supply as well, in addi-
tion to task demand. Then, to use the response time bounds
presented in [9], we must extend it with sbf of MPR resource
model. However, since we are generating the MPR resource
model, its sbf is unknown and hence the response time is not
computable. One way to resolve this issue is to compute the
resource model using binary search for ©. However, since
O is a real number, this solution can have prohibitively long
running time.

5. Component interface generation

In this section we develop a technique to generate MPR
interface I' = (II,0,m'), for a cluster C comprising of
n sporadic tasks 7 = {m = (T1,C1,D1),...,7n =
(T, Cny D)} scheduled under global EDF. For this pur-
pose, we use the schedulability condition given by Theo-
rem 1. We assume that period II of interface I' is specified
a priori by system designer. For instance, one can specify
this period taking into account preemption overheads. We
then compute values for capacity © and number of proces-
sors m’ in cluster C, such that processor utilization of the
interface is minimized. Finally, we also develop a technique
that transforms MPR interfaces to tasks in order to support
inter-cluster scheduling, i.e., to schedule clusters on the mul-
tiprocessor platform.

5.1. Minimum utilization interface

For MPR model I its utilization is defined as %. It is
desirable to minimize this quantity when generating com-
ponent interfaces, because components then consume min-
imum amount of resource from the multiprocessor platform.
We now give a lemma which states that interface utilization
required to guarantee schedulability of task set 7 monoton-
ically increases as number of processors (m’) in the cluster

increases.

Lemma 3 Consider two interfaces T'y = (I1y, 01, my) and
Iy = (s, ©9,mo) such that I} = Tl and my < meo.



Suppose these two interfaces guarantee schedulability of the
same component C with their smallest possible interface uti-
lization, respectively. Then, I's has a higher processor uti-
lization than I'1 does, i.e., ©1 < Os.

Lemma 3 suggests that when we generate interface I" for
C, we use the smallest number of processors (m’' = m*) in
order to minimize interface utilization of I'. However, an ar-
bitrarily small number for m’ (say m’ = 1) may result in an
infeasible T'. Recall that a MPR model T’ = (IT, ©,m’) is
defined to be feasible if and only if © < m/II. Therefore, we
find a feasible interface I" for C that (1) guarantees schedu-
lability of C based on Theorem 1, and (2) uses the smallest
number of processors (m*). We can find such m* through
search. Since interface utilization is monotonic with number
of processors, a binary search can be performed to determine
m™*. For this search to terminate, both a lower and upper
bound on m™* should be known. [U(7)] is clearly a lower
bound on the number of processors necessary to schedule C,
where U (7) denotes total utilization of task set 7. Therefore,
m* > [U(7)]. If the number of processors in the multipro-
cessor platform is known, then that number can be used as an
upper bound for m*. Otherwise, the following lemma gives
an upper bound for m™* as a function of parameters of task
set 7.
Lemma4 [fm' > mm%ibiw + n, then feasible MPR
model T' = (II, m'TI, m’) is guaranteed to schedule C.

Since I' in Lemma 4 is feasible and guarantees schedu-

lability of C, min (DO

Thus, we generate an interface for C by doing a binary search
, % + n]. For each
value of number of processors m’, we compute the smallest
value of O that satisfies Equation (5) in Theorem 1. How-
ever, © appears inside floor and ceiling functions in sbfp,
and hence these computations may be intractable. There-
fore, we replace sbfr in this equation with Isbfp given in
Equation (2). © (©*) corresponding to the smallest value of
m’ (m*) that guarantees schedulability of C and results in a
feasible interface is then chosen as the capacity of I'. Also,
m™ is chosen as the value for number of processors in the
cluster, i.e., I' = (I, ©*, m*).

Algorithm complexity. To bound Ay, as in Theorem 2
we must know the value of ©. However, since O is being
computed, we use its smallest (0) and largest (mlIl) possi-
ble values to bound Ag. For each value of m’ > U(1),
O can then be computed in pseudo-polynomial time using
Theorem (1), assuming sbf is replaced with Isbf. This fol-
lows from the fact that the denominator in the bound of Ay,
in Theorem 2 is non-zero. The only problem case is when
m’ = [U(1)] = U(7). However, in this case it can be shown
that I' = (I, m'IL,m’) can schedule C if and only if m’ =1
and all tasks in 7 have implicit deadlines. Therefore, comput-
ing the interface for this value of m’ can be done in constant

+ n is an upper bound for m*.

for m* in the range [[U(7)]

time. The number of different values of m’ to be considered
(i.e., in binary search for m™) is polynomial in input size,
because the search interval is bounded by numbers that are
polynomial in input parameters. Therefore, the entire inter-
face generation process has pseudo-polynomial complexity.

Example 1 Consider the example hierarchical scheduling
framework shown in Figure 2. Let clusters C1,Co, and C3
be assigned tasks as shown in Table 1. Interfaces I'7,I'5,
and 15, for clusters Ci,Cy, and C3 are shown in Fig-
ures 9a), 9(b), and 9(c), respectively. In the figures, we have
plotted the utilization of these interfaces for varying period
values, and m' denotes number of processors in the cluster.

Figures 9(a) and 9(c) show that when m’ = 1, interfaces
I'7 and I'; are not feasible, since their interface utilizations
are greater than 1 for all period values. However, when
m’ = 2, T'; and T'} are feasible, i.e., their respective utiliza-
tions are at most two. Therefore, for clusters C; and C3 we
choose MPR interfaces I'7 and I'; with m’ = 2. Similarly,
Figure 9(b) shows that I'; is a feasible interface for cluster
Co when m’ = 1. These plots also show that the overhead in-
curred by our interfaces is small for the non-trivial examples
presented here.

5.2. Inter-cluster scheduling

As discussed in the introduction, virtual clustering in-
volves two-level scheduling; scheduling of tasks within each
cluster (intra-cluster scheduling), and scheduling of clus-
ters on the multiprocessor platform (inter-cluster schedul-
ing). MPR interfaces generated in the previous section
capture task-level concurrency constraints within a cluster.
Hence inter-cluster scheduling need not worry about these
constraints when it schedules clusters using their interfaces.
However, there is no known scheduling algorithm for MPR
interfaces. Therefore, we now develop a technique to trans-
form a MPR interface into periodic tasks, such that resource
requirements of these tasks are at least as much as those of
the interface. Note that a periodic task is similar to a sporadic
task, except that T in the tuple (7', C, D) now denotes exact
separation between release times of successive jobs, instead
of minimum separation.

Definition 1 Given a MPR interface T = (II,©*, m*),

let p = ©* —m* L’%J and k = |¢]. Then, we
transform T into the periodic task set 0 = T1,...,Tm=,
where 71 = ... = T = (H,{S;J—i—l,ﬂ), Th41 =
<H, LS;J +v—k {%J ,H), and Ti1o = ... = Tpr =

(n[=].m)

In this definition, it is easy to see that the total resource de-
mand of task set 7 is ©*. Further, we have assumed that
whenever ©* is not an integer, the resource supply from I’



Cluster Task set > % > %
Cy {(60, 5, 60), (60, 5, 60), (60, 5, 60), (60, 5,60), (70, 5, 70), (70, 5, 70), (80, 5, 80), (80, 5, 80), 1.304 1.304
(80, 10, 80), (90, 5, 90), (90, 10, 90), (90, 10, 90), (100, 10, 100), (100, 10, 100), (100, 10, 100) }
Ca {(60, 5, 60), (100, 5, 100) } 0.1333 0.1333
Cs {(45, 2, 40), (45, 2, 45), (45, 3,40), (45, 3,45), (50, 5, 45), (50, 5, 50), (50, 5, 50), (50, 5, 50), 1.1222 1.1930
(70, 5,60), (70,5, 60), (70, 5, 65), (70, 5, 65), (70, 5, 65), (70, 5, 65), (70,5, 70) }
Table 1. Clusters C;,(C-, and C;
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Figure 9. MPR model based interfaces

fully utilizes one processor before moving to the next pro-
cessor. For example, if ©* = 2.5 and m*™ = 3, then I’
will provide two units of resource from two processors and
the remaining 0.5 units of resource from the third proces-
sor. Thus, MPR interfaces generated in the previous section
can be transformed into periodic tasks using Definition 1.
Once such tasks are generated for each virtual cluster, inter-
cluster scheduling can be done using existing multiprocessor
scheduling algorithms like global EDF, Pfair, etc. To prove
correctness of this transformation, we must show that the fol-
lowing two properties hold for task set 7r: (1) the amount of
processor supply necessary to meet all the deadlines of tasks
in 7 is at least as much as sbfr, and (2) the amount of con-
currency in the processor supply used by 7r is at most m*,
i.e., at any time instant at most m™ units of processor supply
is used by 7. These properties follow from the facts that
(1) total amount of processor supply used by 7 is ©* in ev-
ery successive II time units, and (2) amount of concurrency
achievable is at most m* because T has exactly m* tasks.
By definition, sbfr(¢) represents the minimum resource sup-
ply during ¢ when a processor supply of ©* is provided in
every II time units, with amount of concurrency at most m*.

Example 2 For MPR interfaces I'1,1'5, and T'5 gener-
ated in Example 1, we select period values 6,8, and
5, respectively. The corresponding MPR interfaces are
(6,8.22,2),(8,2.34,1), and (5,5.83,2), respectively. Us-
ing Definition 1 we get the periodic task sets Tr:
{(6,5,6),(6,4,6)},7’1“; {(8,3,8)}, and Trg
{(5,3,5),(5,3,5)}. Suppose the three clusters Cy1,Ca, and
Cs (i.e. task set {Tr:,Try,Tr; }) are scheduled on a mul-
tiprocessor platform using global EDF. Then the resulting
MPR interface I'* is plotted in Figure 10.

o B—BVB'B-E'E'E- 0000840406810
g8

*_*_*»%7%**%-%%K—%—%-)K*%»%*)Ef*ﬁb;(
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Figure 10. MPR interface I'*

As can be seen from Figure 10, the three clusters in Ex-
ample 2 are schedulable on a multiprocessor platform hav-
ing 4 processors (I'* is feasible when m' = 4). This ex-
ample clearly shows the advantage of virtual clustering over
physical clustering. The three components would require 5
processors under physical clustering (2 for C; and C3 each,
and 1 for C5). On the other hand, a global EDF based vir-
tual clustering technique can schedule these clusters using
only 4 processors. Although total utilization of tasks in the
three clusters is 2.56, our analysis requires 4 processors to
schedule the system. This overhead is as a result of the fol-
lowing factors: (1) global EDF is not an optimal scheduling
algorithm on multiprocessor platforms, (2) the schedulabil-
ity conditions we use are only sufficient conditions, and (3)
capturing internal concurrency constraints of a component in
its interface leads to some increase in resource requirements.



6. Conclusions

Towards supporting virtual cluster-based scheduling, we
have developed techniques for hierarchical scheduling in this
paper. Resource requirements and concurrency constraints
of tasks within each cluster are abstracted into MPR inter-
faces, and these interfaces are then transformed into periodic
tasks which are used for inter-cluster scheduling. We have
also developed an efficient technique to minimize processor
utilization of individual clusters.

In this paper, we only focused on global EDF for both
intra-cluster and inter-cluster scheduling. However, our ap-
proach of isolating the inter-cluster scheduler from concur-
rency constraints of tasks within clusters is general, and can
be adopted to other scheduling algorithms as well. Moreover,
this generality also means that our technique enables clusters
with different intra-cluster schedulers to be scheduled on the
same platform. We plan to generalize our framework by in-
cluding other intra-cluster and inter-cluster scheduling algo-
rithms.

Orthogonally, although we have focused on MPR model
based component interfaces, we can also consider a more
general explicit deadline resource model for multiprocessors,
similar to the EDP model for uniprocessor platforms [18].
Techniques developed in this paper can be extended to sup-
port component interfaces based on such models.

Splitting a given task set into processor clusters is a fun-
damental problem that must be addressed if cluster-based
scheduling has to succeed. It is essential to develop cluster-
ing algorithms that result in good utilization and load bounds,
and we are currently working in this direction.

References

[1] J. H. Anderson, J. M. Calandrino, and U. C. Devi. Real-time
scheduling on multicore platforms. In RTAS, 2006.

[2] B. Andersson and E. Tovar. Multiprocessor scheduling with
few preemptions. In RTCSA, 2006.

[3] T. P. Baker. Multiprocessor edf and deadline monotonic
schedulability analysis. In RTSS, 2003.

[4] S. Baruah. Optimal utilization bounds for the fixed-priority
scheduling of periodic task systems on identical multiproces-
sors. IEEE Trans. on Computers, 53(6):781-784, 2004.

[5] S.Baruah. Techniques for multiprocessor global schedulabil-
ity analysis. In RTSS, 2007.

[6] S. Baruah and N. Fisher. The partitioned multiprocessor
scheduling of deadline-constrained sporadic task systems.
IEEE Transactions on Computers, 55(7):918-923, 2006.

[7] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. In Proc. of
IEEE Real-Time Systems Symposium, 1990.

[8] S. K. Baruah and J. Carpenter. Multiprocessor fixed-priority
scheduling with restricted interprocessor migrations. In
ECRTS, 2003.

[9] M. Bertogna and M. Cirinei. Response-time analysis for glob-
ally scheduled symmetric multiprocessor platforms. In Proc.
of IEEE Real-Time Systems Symposium, 2007.

(10]

(11]

[12]

[13]

[14]
[15]
[16]
(7]

(18]

[19]
(20]
(21]
[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

M. Bertogna, M. Cirinei, and G. Lipari. Improved schedula-
bility analysis of edf on multiprocessor platforms. In ECRTS,
2005.

M. Bertogna, M. Cirinei, and G. Lipari. New schedulability
tests for real-time task sets scheduled by deadline monotonic
on multiprocessors. In OPODIS, 2005.

J. M. Calandrino, J. H. Anderson, and D. P. Baumberger. A
hybrid real-time scheduling approach for large-scale multi-
core platforms. In ECRTS, 2007.

S. Cho, S.-K. Lee, S. Ahn, and K.-J. Lin. Efficient real-time
scheduling algorithms for multiprocessor systems. I[EICE
Trans. on Communications, E85-B(12):2859-2867, 2002.
M. Cirinei and T. P. Baker. Edzl scheduling analysis. In
ECRTS, pages 9-18, 2007.

R. I. Davis and A. Burns. Hierarchical fixed priority pre-
emptive scheduling. In RTSS, 2005.

Z. Deng and J. W.-S. Liu. Scheduling real-time applications
in an open environment. In R7SS, December 1997.

U. C. Devi and J. H. Anderson. Tardiness bounds under global
EDF scheduling on a multiprocessor. In RTSS, 2005.

A. Easwaran, M. Anand, and I. Lee. Optimal compositional
analysis using explicit deadline periodic resource models. In
RTSS, 2007.

X. A. Feng and A. K. Mok. A model of hierarchical real-time
virtual resources. In RTSS, 2002.

S. Kato and N. Yamasaki. Real-time scheduling with task
splitting on multiprocessors. In RTCSA, 2007.

T.-W. Kuo and C.-H. Li. A fixed-priority-driven open envi-
ronment for real-time applications. In RTSS, 1999.

G. Lipari and E. Bini. Resource partitioning among real-time
applications. In ECRTS, July 2003.

G. Lipari, J. Carpenter, and S. Baruah. A framework
for achieving inter-application isolation in multiprogrammed
hard-real-time environments. In RTSS, 2000.

C. Liu and J. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the
ACM, 20(1):46 — 61, 1973.

J. M. Lépez, J. L. Diaz, and D. F. Garcia. Minimum and max-
imum utilization bounds for multiprocessor rm scheduling. In
ECRTS, 2001.

M. Moir and S. Ramamurthy. Pfair scheduling of fixed and
migrating periodic tasks on multiple resources. In RTSS,
1999.

A. Mok. Fundamental design problems of distributed systems
for the hard-real-time environment. Technical report, Ph.D.
dissetation, MIT, 1983.

A. Mok, X. Feng, and D. Chen. Resource partition for real-
time systems. In R7AS, 2001.

D.-I. Oh and T. P. Baker. Utilization bounds for n-processor
rate monotonescheduling with static processor assignment.
Real-Time Syst., 15(2):183-192, 1998.

I. Shin, A. Easwaran, and 1. Lee. Hierarchical
scheduling framework for virtual clustering of multi-
processors. Technical report, 2008. Available at
http://www.seas.upenn.edu/~arvinde/ecrts08-tr.pdf.

I. Shin and I. Lee. Periodic resource model for compositional
real-time guarantees. In RTSS, 2003.

A. Srinivasan and S. Baruah. Deadline-based scheduling of
periodic task systems on multiprocessors. Information Pro-
cessing Letters, 84(2):93-98, 2002.



